

849 NW State Road 45 Newberry, FL 32669 USA Phone: 888.472.2424 or 352.472.5500 Fax: 352.472.2030 Email: <u>info@timcoengr.com</u> Website: <u>www.timcoengr.com</u>

FCC PART 15.209 LOW POWER UNLICENSED INTENTIONAL RADIATOR TEST REPORT

Applicant	GuardRFID		
Addross	#8 – 1600 Derwent Way		
Address	Delta, BC Canada V3M 6M5		
FCC ID	VZKSP1		
Model Number	Tag Exciter		
Product Description	125 kHz RFID Transmitter		
Date Sample Received	May 23, 2008		
Date Tested	June 5, 2008		
Tested By	Richard Block		
Approved By	Mario de Aranzeta		
Report Number	3754WUT7TestRepot.pdf		
Test Results	PASS FAIL		

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENT

ATTESTATION	. 3
REPORT SUMMARY	.4
TEST ENVIRONMENT	.4
TEST SETUP SUMMARY	.4
GENERAL INFORMATION	. 5
EMC EQUIPMENT LIST	.6
TEST PROCEDURES	.7
RADIATION INTERFERENCE	. 8
OCCUPIED BANDWIDTH	10
POWER LINE CONDUCTED INTERFERENCE	11

ATTESTATION

This equipment has been tested in accordance with the standards identified in the referenced test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report and demonstrate that the equipment does comply with the appropriate standards.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made by me or under my supervision, at TIMCO ENGINEERING, INC. located at 849 N.W. State Road 45, Newberry, Florida 32669 USA.

Authorized by: Mario de Aranzeta
Signature: On File
Function: Lab Supervisor / Test Engineer
Date: June 16, 2008

REPORT SUMMARY

Disclaimer	The test results only relate to the item tested.	
Applicable Rule(s)	Pt 15.209, Pt 15.107, ANSI C63.4: 2003	
Related Report	No related report	

TEST ENVIRONMENT

Test Facility	Timco Engineering, Inc. 849 NW State Road 45 Newberry, FL 32669 USA.
Test Condition in the	Temperature: 26°C
laboratory	Relative humidity: 50%

TEST SETUP SUMMARY

Test	The DUT was placed in continuous transmit mode of		
Exercise/Software	operation per applicant's instruction.		
Supporting	N/A The DUT is a stand along transmitter		
Equipment	N/A. The DOT is a stand-alone transmitter		
Deviation from the	No deviation		
standard/procedure	no deviation		
Modification of DUT	No modification		

GENERAL INFORMATION

DUT Description	125 kHz Transmitter					
FCC ID	VZKSP1	VZKSP1				
IC Label	TBD					
Model Number	Tag Exciter					
Serial Number	N/A					
Trade Name	GuardRFID					
Operating Frequency	125 kHz					
No. of Channels	1					
Max. Output Power	N/A					
Modulation	None					
	⊠ 110–120Vac/50– 60Hz					
DUT Power Source	DC Power					
	Battery Operated Exclusively					
Test Item	Prototype Pre-Production Production					
Type of Equipment	Fixed	Mobile	Portable			
Antenna Specification	N/A					

EMC EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/27/07	3/26/10
3-Meter OATS	TEI	N/A	N/A	Listed 1/11/06	1/10/09
Antenna: Biconnical	Eaton	94455-1	1057	CAL 12/12/07	12/12/09
Antenna: Biconnical	Electro- Metrics	BIA-25	1171	CAL 4/29/07	4/29/09
Analyzer Blue Tower Quasi-Peak Adapter	НР	85650A	2811A01279	CAL 4/13/07	4/13/09
Analyzer Blue Tower RF Preselector	HP	85685A	2926A00983	CAL 9/5/07	9/5/09
Analyzer Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/13/07	4/13/09
LISN	Electro- Metrics	ANS-25/2	2604	CAL 8/27/06	8/27/08
LISN	Electro- Metrics	EM-7820	2682	CAL 4/28/07	4/28/09
Antenna: Log-Periodic	Eaton	96005	1243	CAL 12/14/07	12/14/09
Antenna: Passive Loop	EMC Test Systems	EMCO 6512	9706-1211	CAL 4/27/08	4/27/10

TEST PROCEDURES

Power Line Conducted Interference: The procedure used was ANSI C63.4-2003 using a 50uH LISN. The spectrum was scanned from .15 to 30 MHz. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

Radiation Interference: The test procedure used was ANSI C63.4-2003 using an Agilent spectrum analyzer with preselector. In the frequency range 10 kHz to 30 MHz the RBW was 10 kHz and from 30-1000 MHz the RBW of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a micro volt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz.

Occupied Bandwidth: The measurements were made with the spectrum analyzer's resolution bandwidth (RBW) = 100kHz and the video bandwidth (VBW) = 3 MHz and the span set as shown on plot.

Formula Of Conversion Factors: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Pre-selector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz)	Meter Reading	+ ACF	+CL	= FS
33	20 dBµV	+ 10.36 dB/m	+0.40 dB	$=30.76 \text{ dB}\mu\text{V/m} @ 3\text{m}$

ANSI C63.4-2003 Measurement Procedures: The DUT was placed on a nonconducting table 80 cm above the ground plane with the DUT located in the center of the table. With the antenna vertical a preliminary scan was done at 1 meters distance, the DUT was moved to a 10.0-meter distance and the antenna height varied and also placed in a horizontal position. The frequency was scanned from 9.0 kHz to 1.0 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. The DUT was measured in three (3) orthogonal planes when necessary. When measurements are required below 30 MHz a loop antenna was employed.

RADIATION INTERFERENCE

Rules Part No.: 15.209

Requirements: Out-of-band emissions shall not exceed the level of the fundamental.

Frequency	Limits
9 to 490 kHz	2400/F (kHz) $\mu V/m$ measured @ 300 meters
490 to 1705 kHz	24000/F (kHz) μ V/m measured @ 30 meters
1705 kHz to 30 MHz	29.54 dBµV/m measured @ 30 meters
30 – 88 MHz	40.0 dBµV/m measured @ 3 meters
80 – 216 MHz	43.5 dBµV/m measured @ 3 meters
216 – 960 MHz	46.0 dBµV/m measured @ 3 meters
Above 960 MHz	54.0 dBµV/m measured @ 3 meters

Fundamental Limit:

 $2400/125=19.2 \text{ uV/m} @ 300 \text{ meters}= 20 \log(19.2) \text{ dB}\mu\text{V/m}= 25.67 40 \text{ dB/decade correction factor on the distance} 65.67 \text{ dB}\mu\text{V/m} @ 30 \text{ meters} 84.67 \text{ dB}\mu\text{V/m} @ 10 \text{ meters}$

Test Data:

Tuned	Emission	Meter	Ant.	Coax	Correction	Duty	Field	Margin
Frequency	Frequency	Reading	Polarity	Loss	Factor	Cycle	Strength	dB
MHz	MHz	dBµV	V/H	dB	dB/m	dB	dBµV/m	
0.125	0.125	7.8	Н	0.00	63.90	20	51.70	33.00
0.125	0.250	-2.8	Н	0.01	58.25	20	35.46	49.24
0.125	0.375	-6.6	Н	0.01	54.70	20	28.11	56.59
0.125	0.500	-4.0	Н	0.01	52.10	20	28.11	>20
0.125	0.625	0.0	Н	0.01	50.33	20	30.34	>20
0.125	0.750	4.5	Н	0.02	48.90	20	33.42	>20
0.125	0.875	2.1	Н	0.02	47.70	20	29.82	>20
0.125	1.000	8.7	Н	0.02	46.50	20	35.22	>20
0.125	1.125	13.9	Н	0.02	45.81	20	39.73	>20
0.125	1.250	6.5	Н	0.03	45.13	20	31.66	>20

125 – 1250 kHz, measured at 10 meters

30-1000 MHz, Measured at 3 meters

Emission	Meter	Ant.	Coax	Correction	Field	
Frequency	Reading	Polarity	Loss	Factor	Strength	Margin
MHz	dBµV	V/H	dB	dB/m	dBµV/m	dB
32.40	25.1	V	0.41	11.13	36.64	3.36
43.05	21.4	V	0.47	10.14	32.01	7.99
46.89	24.8	V	0.48	10.49	35.77	4.23
46.96	24.8	V	0.48	10.50	35.78	4.22
56.00	23.0	V	0.52	10.98	34.50	5.50
59.91	17.4	Н	0.53	10.90	28.83	11.17
65.09	16.0	V	0.55	9.17	25.72	14.28
104.71	17.9	Н	0.65	11.58	30.13	13.37
108.04	19.4	Н	0.66	12.45	32.51	10.99
256.13	19.4	Н	1.01	12.75	33.16	12.86
272.18	18.3	Н	1.04	13.57	32.91	13.11

OCCUPIED BANDWIDTH

Rules Part No.: FCC Part 2.1049

Requirements: The field strength of any emissions appearing between the band edges below the level of the un-modulated carrier or to the general limits of 15.209, whichever permits the higher emission levels.

Test Data:

POWER LINE CONDUCTED INTERFERENCE

Rules Part No.: Part 15.207 Class B

Requirements:

Frequency	Quasi Peak Limits	Average Limits
(MHz)	(dBµV)	(dBµV)
0.15 – 0.5	66 – 56	56 – 46
0.5 - 5.0	56	46
5.0 - 30	60	50

Test Data: The attached plots represent the power line conducted emissions. Both sides of the line were observed.

QP/AVG	Frequency (kHz)	Emission (dBµV)	Limit (dBµV)
QP	163	49.94	65.31
QP	325	52.73	59.58
QP	486	48.07	56.24
QP	625	48.25	56.00
QP	810	49.23	56.00
QP	972	44.98	56.00
QP	1128	48.43	56.00
AVG	168	42.49	55.06
AVG	327	43.90	49.53
AVG	485	39.77	46.25
AVG	628	38.54	46.00
AVG	805	40.28	46.00
AVG	878	38.89	46.00
AVG	973	36.28	46.00
AVG	1128	39.51	46.00

POWERLINE CONDUCTED EMISSIONS – LINE 1

NOTES:

POWERLINE CONDUCTED -- LINE 1 GuardRFID -- FCC ID: SIGN POST

FCC 15.107 Mask Class B

QP/AVG	Frequency (kHz)	Emission (dBµV)	Limit (dBµV)
QP	169	47.94	65.01
QP	327	49.79	59.53
QP	489	43.59	56.18
QP	627	44.10	56.00
QP	812	44.43	56.00
QP	879	44.36	56.00
QP	975	39.17	56.00
QP	1138	43.26	56.00
AVG	162	40.47	55.36
AVG	326	39.67	49.55
AVG	486	34.40	46.24
AVG	624	33.48	46.00
AVG	810	34.23	46.00
AVG	874	34.02	46.00
AVG	973	30.34	46.00
AVG	1125	33.52	46.00

POWERLINE CONDUCTED EMISSIONS – LINE 2

NOTES:

POWERLINE CONDUCTED -- LINE 2 GuardRFID -- FCC ID: SIGN POST

FCC 15.107 Mask Class B

CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100-millisecond plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the DUT is on within 100 ms.

Long Pulse	
Short Pulse	
On Time	
Length of Pulse Train	
Total	

dB = 20*log(ON TIME)/PERIOD dB = 20*log(0.1) dB = 20*log(0.1) dB = -20

From the manufacturer:

Based on the following plots.

At the start of the TX cycle, there is 5.5ms Carrier Preamble (TX –on) followed by a guard gap of 1.5ms (TX-off); then followed by 26 bits (start (two bits), device ID (11 bits), data (6 bits) and CRC (7 bits).

Plot 1 shows the bit timing is 0.5ms. Plot 2 shows the bit on time is 0.33ms Plot 3 show the time between words. Plot 4 shows a typical word length. The data in a word can't be all 1's

Hence the total on time per cycle is $5.5\text{ms} + 26 \ge 0.33\text{ms} = 14.08 \text{ ms}$

Therefore the duty cycle is (14.08 ms/150 ms) = 9.38%.

We estimate based on a worst case word in any 100ms time period that we will be on less than 10%.

