

REPORT

For

Guard RFID Solutions Inc.

#140 – 766 Cliveden Place Delta, British Columbia V3M 6C7, Canada

Date:	04 March 2019
Report No.:	17680-1E
Revision No.:	2
Project No.:	17680
Equipment:	RFID TAG
Model No.:	PT-3BLF
FCC ID:	VZKPT3
IC ID.:	9937A-PT3

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

Unit 205 – 8291 92 ST., Delta, BC V4G 0A4, Canada Phone: 604-247-0444 Fax: 604-247-0442 www.labtestcert.com

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

TABLE OF CONTENTS

TEST REPORT_FCC 15.231 & RSS-210	3
Revision History.	
Device Under Test Description	4
Program details	
Description of Equipment Under Test and Variant Models	5
EUT Internal Operating Frequencies	6
Client Equipment Used During Test	
Software and Firmware	
Input/Output Ports	
Power Interface	
EUT Operation Modes	7
EUT Configuration Modes	7
Test Equipment Verified for function	
Measurement Uncertainty	
Result Summary	9
Summary of the operation of RF Transmission	
Test setup	
Reviewed Results	
Field Strength	
Test setup	
Measurement Procedure	-
Test Result	.16
Spurious Emissions (Unwanted Emissions)	
Test setup	
Measurement Procedure	
Test Result	
The Bandwidth of the emission	
Test setup	
Results	
Radiated Emissions	
Test setup	
Measurement Procedure	
Test Result	
Graphical Representation for Emission - Radiated 30kHz to 30MHz	
Graphical Representation for Emission - Radiated 30MHz to 1GHz	.28
Graphical Representation for Emission - Radiated 1 to 5GHz	.29
Antenna Requirement	
Results	.30

Page 2 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

TEST REPORT_FCC 15.231 & RSS-210		
Licence-Exempt Radio Apparatus: Category I Equipment		
Report Reference No	17680-1E	
Report Revision History:	 ✓ Rev. 0: 29 January 2019 ✓ Rev. 1: 27 February 2019, Corrected on Page 11. ✓ Rev. 2: 04 March 2019, Re-measured PRF & Peak Level. 	
Compiled by (+ signature)	Jeremy Lee	
Approved by (+ signature)	David Johanson	
Date of issue:	04 March 2019	
Total number of pages	30	
FCC Site Registration No.:	CA5970	
IC Site Registration No.:	5970A-2	
Testing Laboratory	LabTest Certification Inc.	
Address:	Unit 205 – 8291 92ST. Delta, B.C. V4G 0A4, Canada	
Applicant's name:	Guard RFID Solutions Inc.	
Address:	#140-766 Cliveden Place, Delta, BC, V3M 6C7, Canada	
Manufacture's Name	Same as Applicant	
Address:	Same as Applicant	
Test specification:		
Standards:	 FCC Part 15, Subpart C; December 20, 2018 IC RSS-210 Issue 9 August 2016 	
Test procedure:	 ANSI C63.10:2013 ANSI C63.4:2014 RSS-Gen, Issue 5, April 2018 	
Non-standard test method	N/A	
Test Report Form(s) Originator:	Jeremy Lee	
Master TRF:	1036_Rev2 – RF Report Template	
Test item description :		
Trade Mark:		

Page 3 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Model/Type reference:	PT-3BLF	
Serial Number:	000121 without Modification 000114 modified as turned on every 1 Second.	
FCC ID:	VZKPT3	
IC ID:	9937A-PT3	
Possible test case verdicts:		
- test case does not apply to the test object:	N/A	
- test object does meet the requirement:	P (Pass)	
- test object does not meet the requirement:	F (Fail)	
Testing:		
Date of receipt of test item:	24 January 2019	
Date (s) of performance of tests:	25 to 28 January 2019	

Revision History

Revision	Date	Reason For Change	Author(s)
0	29 Jan. 2019	First version	Jeremy Lee
1	27 Feb. 2019	Corrected on Page 11, marked N/A for FCC 15.231(a)(1) and FCC 15.231(a)(2).	Jeremy Lee
2	04 March 2019	Re-measured PRF and Peak Level	Jeremy Lee

Device Under Test Description

Application for:	RFID TAG
Operating Transmit Frequency:	433.92MHz
Operating Receive Frequency:	125kHz
Number of Channels:	1
Beacon Interval:	12 Seconds
Equipment mobility:	Yes
Operating condition:	-10 to +50 °C
Mass of equipment (g):	6.62
Dimension	28 mm X 14.5 mm
Nominal Voltages for:	_X_ stand-alone equipment combined (or host) equipment

Page 4 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Supply Voltage:	AC Amps _ 3.0V DC Amps
If DC Power:	 Internal Power Supply External Power Supply or AC/DC adapter X_ Battery Nickel Cadmium Alkaline, 4 X AA Nickel-Metal Hydride Lithium-Ion Other

Program details

Testing Facility by procedure:		
\square	All Testing:	LabTest Certification Inc.
Testing location/ address:		Unit 3128-20800 Westminster HWY, Richmond, B.C. V6V 2W3 Canada

Summary of testing:	
Tests performed (name of test and test clause): Radiated Field strength and Emissions	Testing location: In SAC, Richmond
The tests indicated in Test Summary were performed on the product constructed as described below. The test sections are the verbatim text from the actual data sheets used during the investigation. These	

The test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. LabTest does not make any claims of compliance for samples or variants which were not tested.

Description of Equipment Under Test and Variant Models

Description:

The PT-3BLF is an Active Tag for use on Patients. The tag transmits periodic Beacon messages used for tracking and location of the Tag in real time, and additionally includes a Low Frequency Receiver to be able to detect signals from Guard RFID's Tag Exciters.

The Tag can instantly detect a Tag Exciter at egress points, enabling Guard RFID's SafeGuard system to control doors so as to protect a tagged patient from leaving the perimeter.

The PT-3BLF has a battery life of 12 months, and is waterproof so that patients can continue to wear them even when taking a bath, for example. The Tag is designed to be mounted on the patient's wrist, using a standard patient band.

Page 5 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested. None

EUT Internal Operating Frequencies

Frequency (MHz)	Description	Frequency (MHz)	Description
433.92	CC1150	26.0	Y2, Clock
0.032768	Y1, Clock	n/a	

Client Equipment Used During Test

Use*	Product Type	Manufacturer	Model	Comments
n/a				

Software and Firmware

Use*	Description	Version
n/a		

Input/Output Ports

Port #	Name	Туре*	Cable Max. >3m	Cable Shielded	Comments
n/a					

Power Interface

Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
1	3.0	n/p	n/p	DC	n/a	Internal Battery, New

Page 6 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

EUT Operation Modes

Mode #	Description						
1	Normal Mode (Outside 125kHz Field)						
	In this mode the PT3 tag is sending out a periodic beacon bursts. Each beacon message is approximately 800 µs long and consists of the tag's serial number and current status. Each burst is made up of 3 - 800 µs beacon messages (mentioned above) randomly spread over a 1 second period. The period between bursts is approximately 12 seconds. When transmitting at the 12 second rate the plain beacon will occasionally be replaced by longer messages that contain firmware revision information, temperature data, or additional tag status information.						
2	In Field Mode (Inside 125kHz Field)						
	The tag only operates in this mode when a Tag Exciter LF field can be seen by the LF receiver in the tag. In this mode the transmitted message becomes longer (approximately 1 mS) and the ID transmitted by the Tag Exciter gets added to the tag serial number and status data to form the data portion of the message. Other parameters with respect to burst length and randomization stay the same as in the normal mode transmissions, but the period between bursts is shortened to 12 seconds. The "In Field" mode transmissions are categorized into three distinct messages: 1.) Entering Field – Immediately upon detecting the Tag Exciter transmission the PT3 Tag indicates it has entered the Tag Exciter field by transmitting this message.						
	2.) Staying in Field- Once the entering field message has been sent the tag operates much like it does in normal mode. The beacon bursts continue at 12second intervals, while it is still in the field, the tag sends the staying in field message.						
	3.) Exiting Field – When the tag can no longer hear the Tag Exciter field (LF reception quiet for 2 seconds) it sends an "exiting field" message. The "Normal Mode" beacon periods (12 second periods) are re-synchronized to this event. This marks the point at which the tag returns to the normal mode of operation.						
	In general the "In Field Mode" is a special case of the "Normal Mode". The transmissions remain periodic, but are synchronized to the entry and exit events. The entering and exiting messages are asynchronous to the tag's internal timers.						
3	The EUT was modified to transmit the RF signal every 1 second for FCC/ISED testing.						

EUT Configuration Modes

Mode #		Description
1	Orthogonal X. Please see beside Photo.	United and the second s

Page 7 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

2	Orthogonal Y. Please see beside Photo.	Orthogonal Y
3	Orthogonal Z. Please see beside Photo.	Orthogonal Z

Test Equipment Verified for function

Model #	Description	Checked Function	Results
N9038A	Spectrum Analyzer	Frequency and Amplitude	Ref_siganl and checked OK.
SAS-542	Antenna, 30 to 300MHz	Checked structure	Normal – no damage.
SAS-510-2	Antenna, 300 to 1000MHz	Checked structure	Normal – no damage.
SAS-571	Antenna, 1 to 18GHz	Checked structure	Normal – no damage.
AL-130	Antenna, 9kHz to 30MHz	Checked structure	Normal – no damage.
JB1	Antenna, 30 to 2000MHz	Checked structure	Normal – no damage.

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty
Radiated Emission, 300 to 1000MHz w SAS-510-2	± 3.92 dB
Radiated Emission, 1 to 5GHz w SAS-571	± 5.19 dB
Radiated Emission, 30 to 1,000MHz w JB-1	± 4.13 dB
Temperature	± 0.94°C
Humidity	± 4.38%

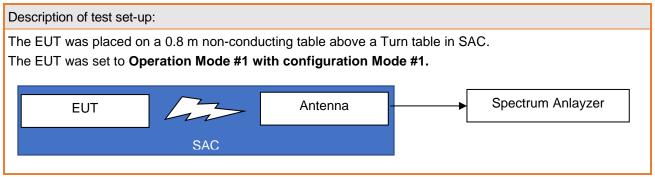
Uncertainty figures are valid to a confidence level of 95%.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Result Summary

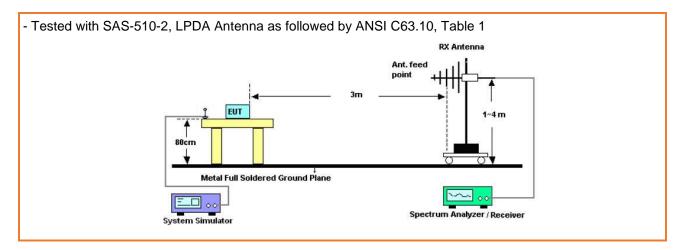
The Compliance Status is a judgment based on the direct measurements and calculated highest emissions to appropriate standard limits. Measurement uncertainty values, provided on calibration certificates, were not be used in the judgment of the final status of compliance.

FCC Part 15.231 and IC RSS-21	0		
Test Type	Regulation	Measurement Method	Result
15.231			
Summary of the operation of RF Transmission	FCC Part 15.231(a) & IC RSS-210, A 1.1	N/A	Ρ
Field Strength	FCC Part 15.231(b) & IC RSS-210, A 1.2	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6	Ρ
Spurious Emissions (Unwanted Emissions)	FCC Part 15.231(b) & IC RSS-210, A 1.2	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6	Ρ
The Bandwidth of the emission	FCC Part 15.231(c) & IC RSS-210, A 1.3	ANSI C63.10:2013, Clause 6.9	Ρ
General			
AC Power Line Conducted Emissions	FCC 15.207(a) & RSS- Gen	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.2	N/A ¹⁾
Radiated Emissions-Intentional radiators	FCC 15.209(a) & RSS- Gen	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5	Ρ
Antenna Requirement	FCC 15.203 & RSS-Gen	-	Ρ


Note1): The EUT is operated by internal battery. This test was exempted by no connection to AC Power Line.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Governing Doc	FCC Part 15.231(a) & IC RSS-210, A 1.1		Room Temperature (°C)			21.6 °C		
Basic Standard	n/a		Relative	e Humidity	(%)	35.1 %		
Test Location	Richmond		Barometri	ic Pressure	(kPa)	1	103.4 kPa	
Test Engineer	Jeremy Lee			Date		25 J	anuary 2019	
EUT Voltage	🖂 3VDC, Interna	al Ba	attery, New		120	OVAC @	60Hz	
Test Equipment Used	Manufacturer		Model	Identifier	Calibration		Calibration due	
Spectrum Analyzer	Keysight		V9038A	702	26-Apr-2018		26-Apr-2019	
LPDA Antenna	A.H.Systems	SA	\S-510-2	227B	07-Feb-2018		07-Feb-2020	
Motion Controller	Sunol	S	SC104V	235A	IHC ¹		IHC ¹	
Antenna Tower	Sunol	T	WR95-4	235B	IHC ¹		IHC ¹	
Turn Table	Sunol		SM46C	235C	IF	HC ¹	IHC ¹	
EMC Shielded Enclosure	USC	ι	JSC-26	374	IHC ¹		IHC ¹	
RF Cable	MRO		n/a	n/a	IHC ²		IHC ²	
Note1) In House Calibrati Note2) In House Calibrati				·				
Compliant 🖂 Non-Compliant 🗆 Not Applicable 🗆								


Summary of the operation of RF Transmission

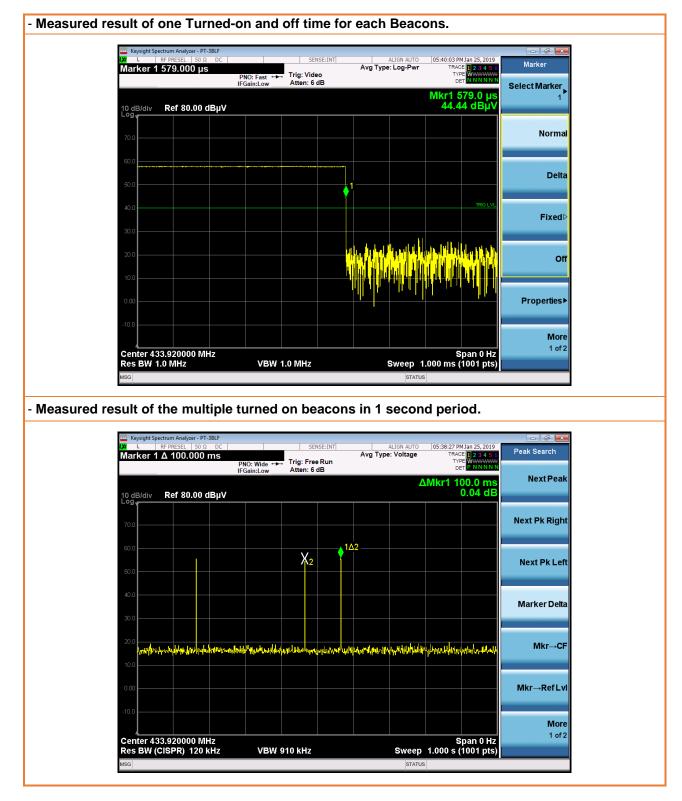
Test setup

Page 10 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Reviewed Results

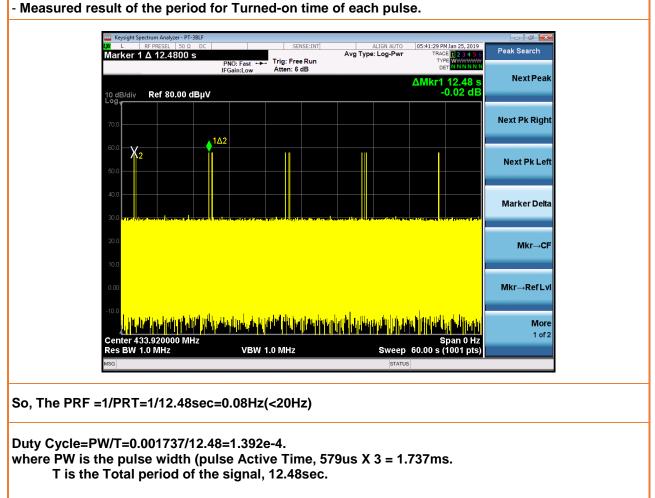
Rule Part No.	Description of Rule	Yes	No	N/A
FCC 15.231(a)	Continuous transmissions, voice, video and the radio control of toys are not permitted.			\boxtimes
FCC 15.231(a)	Data is permitted to be sent with a control signal.			\boxtimes
FCC 15.231(a)(1)	Manually operated			\boxtimes
FCC 15.251(a)(1)	Automatically deactivate within 5 seconds of being released			\boxtimes
FCC 15 221(a)(2)	Automatically operated			\boxtimes
FCC 15.231(a)(2)	Deactivate within 5 seconds after activation			\boxtimes
	Periodic transmission at regular predetermined intervals	\boxtimes		
FCC 15.231(a)(3)	Polling or supervision transmission, including data, to determine system integrity or transmitters used in security or safety applications requires no total duration of transmission not exceeding 2s/hr. ¹⁾²⁾³⁾	\boxtimes		
FCC 15.231(a)(4)	Radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition			\boxtimes
FCC 15.231(a)(5)	Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.			\boxtimes


Note1) The EUT was transmitted 579 μ s as one of Beacon Signal. Ideally, the maximum turning on time is 800 μ s.

Note2) The EUT was turned on every 12sec.

Note3) The measured total duration of transmission is 521.1ms/hour. (579 µsx3)x300 times=521.1ms. Ideally, the maximum total duration of transmission in normal mode is 720ms/hour, which is less than 2s/hr.

Page 11 of 30


Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Page 12 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

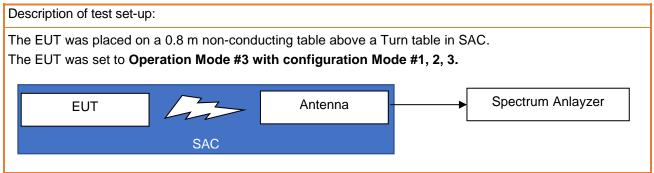
Duty Cycle Factor = 20 log Duty Cycle=20log1.392e-4=-77.13dB

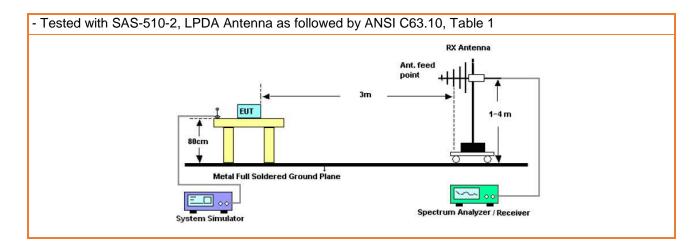
Page 13 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Field Strength


Governing DocFCC Part 15.231(b) & IC RSS-210, A 1.2Room Temperature (°C)Basic StandardANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6Relative Humidity (%)	20.4 °C						
Racic Standard Relative Humidity (%)							
	301 %						
Test Location Richmond Barometric Pressure (kPa)	102.5 kPa						
Test Engineer Jeremy Lee Date 04	March 2019						
EUT Voltage 🛛 3VDC, Internal Battery, New 🗌 120VAC @ 60H	łz						
Test Equipment Used Manufacturer Model Identifier Calibration	Calibration due						
Spectrum Analyzer Keysight N9038A 702 26-Apr-2018	26-Apr-2019						
LPDA Antenna A.H.Systems SAS-510-2 227B 07-Feb-2018	07-Feb-2020						
Motion Controller Sunol SC104V 235A IHC ¹	IHC ¹						
Antenna Tower Sunol TWR95-4 235B IHC ¹	IHC ¹						
Turn Table Sunol SM46C 235C IHC ¹	IHC ¹						
EMC Shielded Enclosure USC USC-26 374 IHC ¹	IHC ¹						
RF Cable MRO n/a n/a IHC ²	IHC ²						
Used Software 🛛 🖾 Tile 7! v7.3.0.6							
Used Template of Tile 7! _FCC_PT3_FUND.TIL	7! _FCC_PT3_FUND.TIL						
Note1) In House Calibration Ref. # 4 Note2) In House Calibration Ref. # 6							
Detector:							
RBW/VBW: 🛛 120/300kHz 🗆 1/3MHz							
Type of Facility:Image: SACImage: FSOATSImage: in-situ							
Distance: 🛛 3meter 🗆 10meter 🗆 1meter							
Arrangement of EUT: ⊠ Table-top only □ Floor-standing only □ Rack Mount	ted						
Frequency (MHz)OrthogonalDetectorPOLEmissions (dBuV/m)Limit3 (dBuV/m)Margin 	Comments						
Peak1 69.72 100.83 31.11	Р						
AVG ² H -7.41 80.83 88.24	Р						
X Peak ¹ V 75.11 100.83 25.72	Р						
AVG ² -2.02 80.83 82.85	Р						
433.92 H Peak ¹ H 75.98 100.83 24.85	Р						
433.92 AVG ² -1.15 80.83 81.98	Р						
Peak ¹ V 71.67 100.83 29.16	Р						
AVG ² -5.46 80.83 86.29	Р						
Z Peak ¹ H 75.03 100.83 25.80	P P						


Page 14 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

	Peak ¹	V	71.23	100.83	29.60	Р		
	AVG ²	V	-5.90	80.83	86.73	Р		
Note 1) Measued by Peak detector. Note 2) Calculated AVG Level AV= PK + Duty Cycle Fxactor (-77.13dB) Note 3) Converted from 11,000uV/m at 3 meter.								
Compliant 🖂	t \boxtimes Non-Compliant \Box Not Applicable \Box							

Test setup

Page 15 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Measurement Procedure

Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. A test was made with an Spectrum Analyzer, controlled by Test Software, Tile7!, at 433.92MHz with the Analyzer in the peak mode. The IF bandwidth was 120 kHz. To ensure that the maximum emission, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using peak detector at each orthogonals. It was repeated again for three different Orthogonals as described in configuration mode. The numerical results are included herein to demonstrate compliance.

Test Result

Emission level (dBuV/m) = Detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

Page 16 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

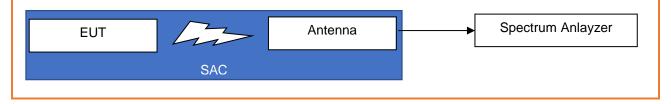
Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

		- (/						
Governing		C Part 15.231(b) C RSS-210, A 1.2			Room Temperature (°C)			19.6 °C			
Basic Stand		SI C63.4:2014 & ANSI 3.10:2013, Clause 6.5 & 6.6			Relative Humidity (%)			32.9 %			
Test Locat	tion	Richmond				Barom	etric Press	sure (kPa)		102.9 kPa	
Test Engin	Jeremy Lee	emy Lee			Date			28 January & 04 March 2019			
EUT Volta	ige	⊠ 3\	/DC, I	nternal	Battery	, New		□ 120VAC @ 60Hz			
Test Equipmer	nt Used	Manuf	acture	er	Model		Identifier	Calibration		Ca	ibration due
Spectrum An	alyzer	Key	sight		N9038A		702	26-Apr-2018		26	6-Apr-2019
LPDA Ante	nna	A.H.S	ystem	s	SAS-510-2		227B	07-Feb-2018		07	'-Feb-2020
Double-ridged Guide Horn Antenna		A.H.S	A.H.Systems		SAS-571		227C	18-Oct-2018		18	3-Oct-2020
Motion Controller		Su	Sunol		SC104V		235A	IHC ¹			IHC ¹
Antenna To	ower	Su	Sunol		TWR95-4		235B	IHC ¹			IHC ¹
Turn Table		Su	Sunol		SM46C		235C	IHC ¹			IHC ¹
EMC Shielded Enclosure		U	USC		USC-26		374	IHC ¹			IHC ¹
RF Cable		M	MRO		n/a		n/a	IHC ²			IHC ²
RF Cable		A.H. S	ystem	S	SAC-	26G-3	227D	IHC ²			IHC ²
RF Preamplifier		Agi	lent		84	49B	273	IHC ²			IHC ²
Used	d Softwar	е	⊠ Tile 7! v7.3.0.6								
Used Ten	Tile 7!	7! _FCC_PT3_2ND.TIL _FCC_PT3_SPURS.TIL									
Note1) In House Calibration Ref. # 4 & 5 Note2) In House Calibration Ref. # 6											
Detector:	🛛 Pe	⊠ Peak/AVG □ Quasi-Peak									
RBW/VBW:		⊠120	⊠120/300kHz ⊠ 1/3MHz(over 1G)								
Type of Facility:		🖂 SA	SAC FSOATS(over 1G) in-situ								
Distance:		⊠ 3n	⊠ 3meter □ 10meter □ 1meter								
Arrangement of EUT:		🖂 Ta				Floor-standing only					
Frequency (MHz)	Orthogo	onal Dete	ctor	tor POL		issions BuV/m)	Limi (dBuV/		largin (dB)		Comments
967.94	х	Pea	ak	V	4	8.48	80.83	3 3	32.25		Р
867.84	^	AV	G	V	2	1.29	60.83	3 3	89.54		Р
							2				

Spurious Emissions (Unwanted Emissions)

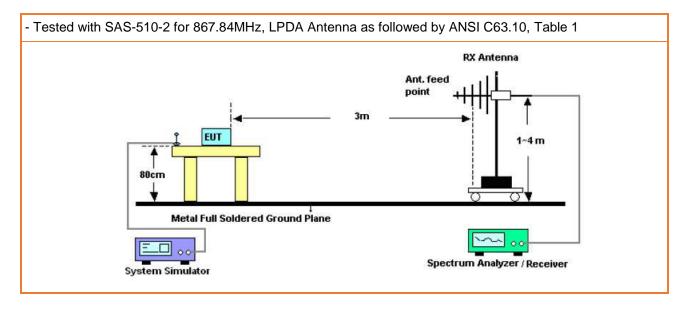
Page 17 of 30

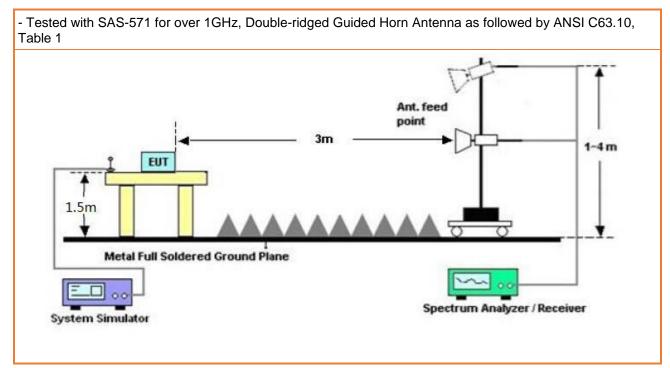
Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2


V	Peak	Н	48.49	80.83	32.34	Р	
ř	AVG	н	21.30	60.83	39.53	Р	
7	Peak	V	48.18	80.83	32.65	Р	
Z	AVG	V	20.99	60.83	39.84	Р	
7	Peak	V	36.26	73.98	41.72	Р	
Z	AVG	V	20.74	53.98	20.74	Р	
Х	Peak	Н	36.73	80.83	44.10	Р	
Х	AVG	Н	23.06	60.83	37.77	Р	
х	Peak	Н	36.74	80.83	44.09	Р	
	AVG	н	24.36	60.83	36.47	Р	
Z	Peak	V	36.73	80.83	44.10	Р	
	AVG	V	23.70	60.83	37.13	Р	
Х	Peak	Н	63.11	80.83	17.72	Р	
Z	AVG	V	27.00	60.83	33.83	Р	
Z	Peak	V	37.27	80.83	43.56	Р	
Х	AVG	н	25.01	60.83	35.82	Р	
Х	Peak	Н	39.68	73.98	34.30	Р	
	AVG	Н	28.26	53.98	25.72	Р	
Z	Peak	V	45.02	73.98	28.96	Р	
Х	AVG	Н	25.58	53.98	28.40	Р	
ant 🖂	Non-C	ompliant		Not Applicable 🗆			
	X X Z X Z Z X X X X Z X	Y AVG Z Peak AVG Peak Z Peak X AVG X AVG X AVG X AVG X AVG X AVG X Peak X AVG X AVG X AVG	Y AVG H Z Peak V AVG V AVG V Z Peak V Z Peak V X Peak V X Peak H X Peak V Z Peak V X Peak H Z Peak H Z Peak V X AVG H	Y AVG H 21.30 Z Peak V 48.18 AVG V 20.99 Z Peak V 36.26 AVG V 20.74 X Peak H 36.73 X Peak H 23.06 X AVG H 23.06 X AVG H 23.06 X AVG H 23.06 X Peak H 36.73 X AVG H 23.06 X Peak H 36.74 X Peak H 36.73 X Peak H 24.36 Z Peak V 36.73 X Peak V 36.73 X Peak V 23.70 X Peak H 63.11 Z Peak V 37.27 X AVG	Y AVG H 21.30 60.83 Z Peak V 48.18 80.83 AVG V 20.99 60.83 Z Peak V 36.26 73.98 Z Peak V 20.74 53.98 X Peak H 36.73 80.83 X Peak H 36.73 80.83 X Peak H 36.74 80.83 X AVG H 23.06 60.83 X Peak H 36.73 80.83 X AVG H 24.36 60.83 Z Peak V 36.73 80.83 Z Peak V 23.70 60.83 Z AVG V 23.70 60.83 Z Peak H 63.11 80.83 Z Peak V 37.27 80.83 Z Peak V <td>YAVGH21.30$60.83$$39.53$ZPeakV$48.18$$80.83$$32.65$AVGV$20.99$$60.83$$39.84$ZPeakV$36.26$$73.98$$41.72$AVGV$20.74$$53.98$$20.74$XPeakH$36.73$$80.83$$44.10$XPeakH$36.73$$80.83$$44.10$XPeakH$23.06$$60.83$$37.77$PeakH$23.06$$60.83$$36.47$XPeakH$23.70$$60.83$$36.47$ZPeakV$36.73$$80.83$$44.10$XPeakH$63.11$$80.83$$44.10$ZPeakH$63.11$$80.83$$17.72$ZAVGV$27.00$$60.83$$33.83$ZPeakH$25.01$$60.83$$35.82$XAVGH$28.26$$53.98$$25.72$ZPeakV$45.02$$73.98$$28.96$XAVGH$25.58$$53.98$$28.40$</td>	YAVGH21.30 60.83 39.53 ZPeakV 48.18 80.83 32.65 AVGV 20.99 60.83 39.84 ZPeakV 36.26 73.98 41.72 AVGV 20.74 53.98 20.74 XPeakH 36.73 80.83 44.10 XPeakH 36.73 80.83 44.10 XPeakH 23.06 60.83 37.77 PeakH 23.06 60.83 36.47 XPeakH 23.70 60.83 36.47 ZPeakV 36.73 80.83 44.10 XPeakH 63.11 80.83 44.10 ZPeakH 63.11 80.83 17.72 ZAVGV 27.00 60.83 33.83 ZPeakH 25.01 60.83 35.82 XAVGH 28.26 53.98 25.72 ZPeakV 45.02 73.98 28.96 XAVGH 25.58 53.98 28.40	

Test setup

Description of test set-up:


The EUT was placed on a 0.8 m for under 1GHz and 1.5m for over 1GHz non-conducting table above a Turn table in SAC.


The EUT was set to Operation Mode #3 with configuration Mode #1, 2 & 3.

Page 18 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Page 19 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Measurement Procedure

This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A test was made with an Spectrum Analyzer, controlled by Test Software, Tile7!, for all Harmonics UP TO 10th with the Analyzer in the peak mode. The IF bandwidth was 120 kHz(under 1GHz) and 1MHz(over 1GHz). To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using CISPR quasi peak(under 1GHz) and Averaging (over 1GHz). It was repeated again for three different Orthogonals as described in configuration mode. The numerical results are included herein to demonstrate compliance. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Test Result

Emission level (dBuV/m) = Detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

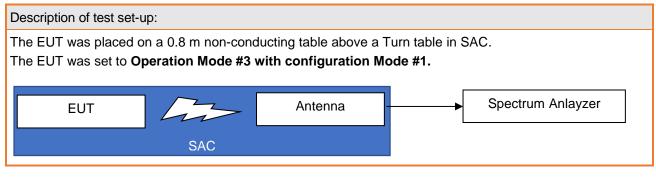
Page 20 of 30

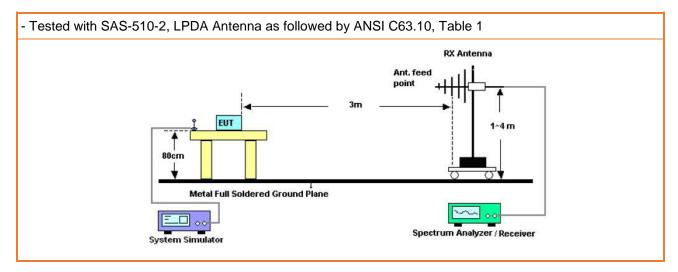
Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Governing Doc		FCC Part 15.231(c) & IC RSS-210, A 1.3				Room Temperature (°C)		
Basic Standard	ANSI C63.1	ANSI C63.10:2013, Clause 6.9			Relative Hu	35.1 %		
Test Location	Richmond	Richmond			Barometric	103.4 kPa		
Test Engineer	Jeremy Lee	Jeremy Lee				te	25 January 2019	
EUT Voltage	⊠ 3V	☐ 3VDC, Internal Battery, Ne				60Hz		
Test Equipment Us	ed Manufa	acturer	Model		Identifier	Calibration	Calibration due	
Spectrum Analyze	er Keys	sight	N9038A		702	26-Apr-2018	3 26-Apr-2019	
LPDA Antenna	A.H.Sy	rstems	SAS-510-2		227B	07-Feb-201	8 07-Feb-2020	
Motion Controller	r Su	nol	SC104V		235A	IHC ¹	IHC ¹	
Antenna Tower	Su	nol	TWR95-4		235B	IHC ¹	IHC ¹	
Turn Table	Su	nol	SM46C		235C	IHC ¹	IHC ¹	
EMC Shielded Enclos	ure US	SC	USC-26		374	IHC ¹	IHC ¹	
RF Cable	MF	RO	n/a		n/a	IHC ²	IHC ²	
Note1) In House Ca Note2) In House Ca								
Frequency(MHz)	Test Method	Bandwidth(kl	(kHz) Li		t(kHz)	Margin(kHz) Comments	
433.92	20dB ¹	709.00) <)84.8	375.80	Р	
	99% ²	676.12	< 1)84.8	408.68	Р	

The Bandwidth of the emission

Note 1) referenced by FCC 15.231(c), "The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier."


Note 2) referenced by RSS-210, Annex A.3, " The 99% bandwidth of momentarily operated devices shall be less or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz."


Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆

Page 21 of 30

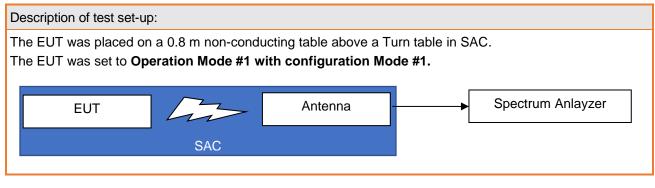
Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

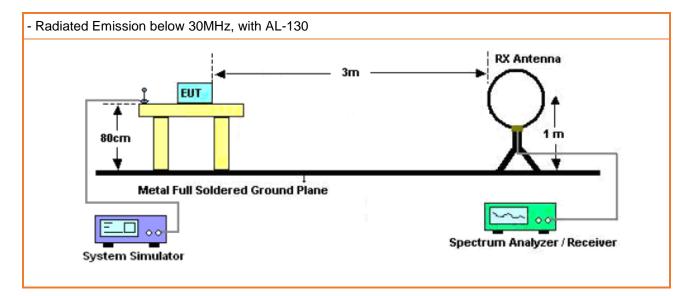
Test setup

Results

Page 22 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

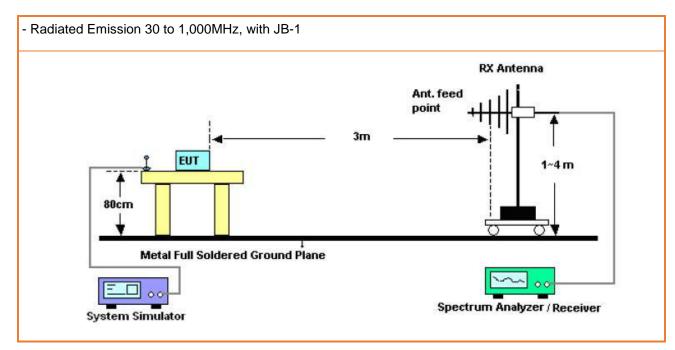

Radiated Emissions

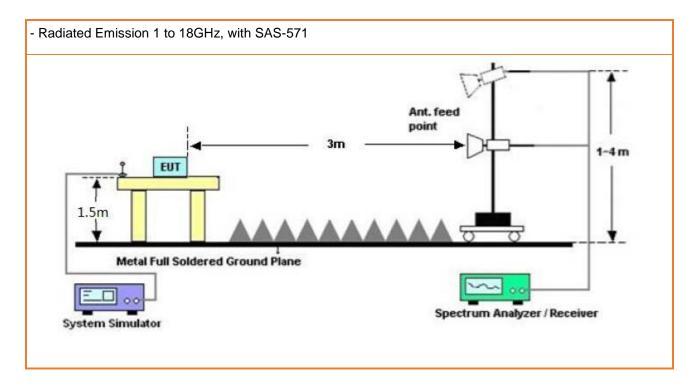

Governing Doc	FCC 15.209(a) & RSS- Gen			Room Temperature (°C)			20.4 to 21.4 °C	
Basic Standard	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5			Relative Humidity (%)			33.2 to 34.8 %	
Test Location	Richmond	Richmond		Barometric Pressure (I		(kPa)	102.8	3 to 103.5 kPa
Test Engineer	Jeremy Lee	Э		Date			25 & 28 January 2019	
EUT Voltage	⊠ 3	VDC, Internal	Bat	ttery, New 🛛 120'		VAC @ 60Hz		
Test Equipment Used	Manuf	acturer		Model	Identifier	Calibration		Calibration due
Spectrum Analyzer	Key	Sight	١	V9038A	702	26-Apr-2018		26-Apr-2019
BiConical Antenna	A.H.S	/stems	S	AS-542	227A	12-Mar-2018		12-Mar-2020
LPDA Antenna	A.H.Sy	/stems	SA	AS-510-2	227B	07-Feb-2018		07-Feb-2020
Double-ridged Guide Horn Antenna	A.H.Systems		S	AS-571	227C	18-Oct-2018		18-Oct-2020
Broadband Antenna	Sunol			JB1	967	12-Oct-2018		12-Oct-2020
Loop Antenna	ComPower			AL-130	241	11-Nov-2017		11-Nov-2019
Motion Controller	Sunol		S	SC104V	235A	IHC ¹		IHC ¹
Antenna Tower	Sunol		Т	WR95-4	235B	IHC ¹		IHC ¹
Turn Table	Sunol		ç	SM46C	235C	IHC ¹		IHC ¹
EMC Shielded Enclosure	USC		ι	JSC-26	374	IHC ¹		IHC ¹
RF Cable	MRO			n/a	n/a	IHC ²		IHC ²
Attenuator	Mini-circuit		U	NAT-6+	n/a	IHC ²		IHC ²
RF Cable	A.H. S	ystems	SA	C-26G-3	227D	IHC ²		IHC ²
RF Preamplifier	Agi	lent		8449B	273	IHC ²		IHC ²
Used Softwar	e	⊠ Tile 7! v7.3.0.6						
Used Template of	Tile 7!							
Note1) In House Calibration Ref. # 4 & 5 Note2) In House Calibration Ref. # 6								
Frequency Range:	⊠ 9kHz-30MHz		\boxtimes	⊠ 30-1000MHz ⊠			1-5GHz	
Detector:	☑ Peak (for Prescan)] Quasi-Peak(for Formal)				
RBW/VBW:	⊠ 9/30kHz		\boxtimes	⊠ 120/300kHz		□ 1/3MHz		
Type of Facility:	⊠ SAC		\boxtimes			🗆 in-situ		
Distance:	⊠ 3meter			10meter		□ 1meter		
Arrangement of EUT:	☐ Table-top only] Floor-standing only			□ Rack Mounted	
Compliant 🖂 Non-Compliant					Not A	pplicab	le 🗆	

Page 23 of 30

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Test setup





Page 24 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Page 25 of 30

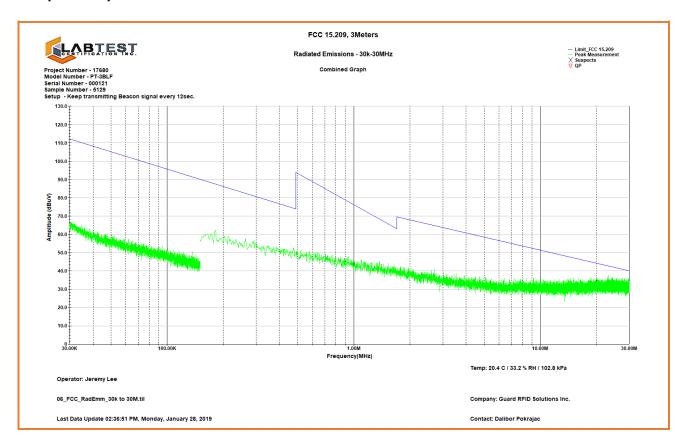
This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Measurement Procedure

This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, from 30kHz to 1,000 MHz with the receiver in the peak mode. The receiver IF bandwidth was 9/120 kHz and scan step was about 3/30kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Under 30MHz was only tested at 1meter height and Antenna was changed both polarization, Horizontal and Vertical. Measurements were then made using CISPR quasi peak when the peak readings were within 10dB of the limit line. The numerical results are included herein to demonstrate compliance.

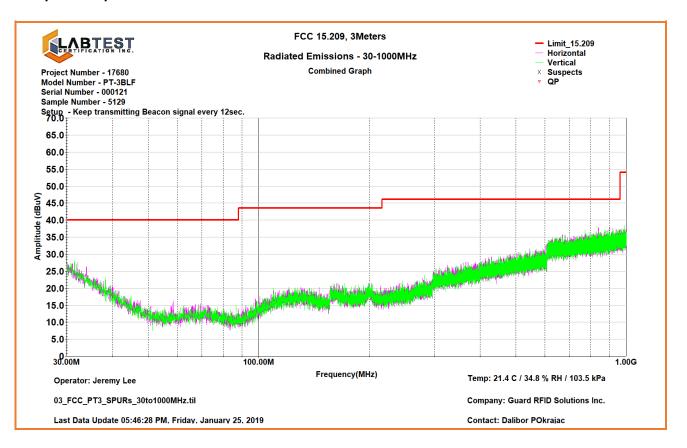

Test Result

Emission level (dBuV/m) = Quasi-Peak detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

Page 26 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

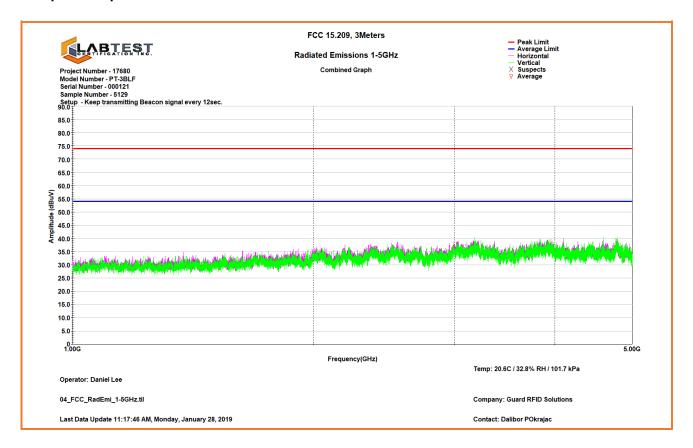


Graphical Representation for Emission - Radiated 30kHz to 30MHz

Page 27 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2



Graphical Representation for Emission - Radiated 30MHz to 1GHz

Page 28 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Graphical Representation for Emission - Radiated 1 to 5GHz

Page 29 of 30

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Guard RFID Solutions Inc. Report No.:17680-1E Revision No.:2

Antenna Requirement

Governing Doc	FCC 15.203 & RSS-Gen	Room Temperature (°C)	21.6 °C		
Basic Standard	N/A	Relative Humidity (%)	35.1 %		
Test Location	Richmond	Barometric Pressure (kPa)	103.4 kPa		
Test Engineer	Jeremy Lee	Date	25 January 2019		
EUT Voltage	3VDC, Internal Batt	ery, New 🗌 120V	AC @ 60Hz		
Compliant 🖂	Non-Compliant 🗆	Not Applicab	le 🗆		

Results

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The EUT has Internal antenna on PCB, which accordance to the above sections, is considered sufficient to comply with the provisions of these sections. Please see EUT photo for details.

END OF REPORT

Page 30 of 30