

REPORT

For

Guard RFID Solutions Inc.

#140 – 766 Cliveden Place Delta, British Columbia V3M 6C7, Canada

Date:	January 13, 2016
Report No.:	13191-2E
Revision No.:	0
Project No.:	13191
Equipment:	RFID Tag
FCC ID:	VZKPT
IC ID.:	9937A-PT

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

3133-20800 Westminster Hwy, Richmond, BC V6V 2W3, Canada Phone: 604-247-0444 Fax: 604-247-0442 www.labtestcert.com

TABLE OF CONTENTS

Device Under Test Description	4
Frequencies	6
List of ancillary and/or support equipment provided by the applicant	6
Description of Interface Cables for Testing	
Software and Firmware	
Worst-case configuration and mode of operation during testing	6
Modifications Required for Compliance	6
Test Equipment Verified for function	
Measurement Uncertainty	
Markings	7
Test Summary	
AC Power Line Conducted Emission	
Test Limits	9
Test Results	9
Summary of the operation of RF Transmission	
Test Limits	
Reviewed Results	
Field Strength of Fundamental	
Test Limits	
Test Setup	
Setup Block Diagram	
Test Setup in Chamber	
Test Results	
Field Strength of Spurious Emissions	
Test Limits	.18
Test Setup	.19
Test Results	.19
Radiated Emission; Intentional Radiators	.28
Test Limits	
Test Setup	
Test Results	
The Bandwidth of the emission	
Test Limits	
Test Setup	.33
Test Results	
APPENDIX A: Test equipments used for tests	.35

Page 2 of 35

FCC Part 15: 2015/RSS-210, Issue 8			
Report reference No	13191-2E		
Report Revision History:	➢ Rev. 0: January 13, 2016		
Tested by (printed name and signature):	Jeremy LEE	a man	
Approved by (printed name and signature):	Kavinder Dhillon, Eng.L.	Kavirah Shillon	
Date of issue:	January 13, 2016		
Note: By signing this report, both the Testing Tecl 1.) Statement of Independence # 3014 (LabTest En 2.) Independence, Impartiality, and Integrity #1039 3.) Independence, Impartiality, and Integrity #1019	nployees), , clause 11 (Engineering Service Su	ibcontractors), or	
FCC Site Registration No.:	373387		
IC Site Registration No.:	5970A-2		
Test Site Location Name	LabTest Certification Inc.		
Address	3133 – 20800 Westminster Hwy, Richmond, B.C. V6V-2W3		
Applicant's Name	Guard RFID Solutions Inc.		
Address	#140-766 Cliveden Place, Delta, BC, V3M 6C7, Canada		
Manufacture's Name	Same as Applicant		
Address	Same as Applicant		
Test specification			
Standards	FCC15.231:2015 / RSS-2	210, Issue 8, December 2010	
Date Test sample received:	December 17, 2016		
Date of Testing	December 22 to 30, 2016		
Test item description			
Model number:	PT-1BLF		
Serial number:	: 009931 without Modification 009930 modified as turned on every 1 Second.		
FCC ID	VZKPT		
IC ID:	9937A-PT		
Rating(s):	Internal Battery		

Device Under Test Description

Particulars: test item vs. test requirements	
Application for	RFIDTAG
Operating Transmit Frequency	433.92MHz
Operating Receive Frequency	125kHz
Beacon Interval	10 Seconds
Equipment mobility	Yes
Operating condition	-10 to +50 °C
Mass of equipment (g)	6.62
Dimension	28 mm X 14.5 mm
Nominal Voltages for:	<pre>_X_ stand-alone equipment combined (or host) equipment test jig</pre>
Supply Voltage:	AC Amps 3V DCAmps
If DC Power:	 Internal Power Supply External Power Supply or AC/DC adapter X_ Battery Nickel Cadmium Alkaline Nickel-Metal Hydride Lithium-Ion Lead Acid (Vehicle regulated) Other
Test case verdicts	
Test case does not apply to the test object :	N/A
Test item does meet the requirement:	Pass
Test item does not meet the requirement:	Fail

Page 4 of 35

General product information:

The PT-1BLF is an Active Tag for use on Patients. The tag transmits periodic Beacon messages used for tracking and location of the Tag in real time, and additionally includes a Low Frequency Receiver to be able to detect signals from Guard RFID's Tag Exciters.

The Tag can instantly detect a Tag Exciter at egress points, enabling Guard RFID's SafeGuard system to control doors so as to protect a tagged patient from leaving the perimeter.

The PT-1BLF has a battery life of 12 months, and is waterproof so that patients can continue to wear them even when taking a bath, for example. The Tag is designed to be mounted on the patient's wrist, using a standard patient band.

SPECIFICATIONS:

	PT-1BLF	
Part Number	61-10100	
Transmit Frequency	433 MHz	
Receive Frequency	125 KHz	
Battery Life	12 months	
Beacon Interval	10 seconds	
Dimensions	1.1 x 0.57" (28 x 14.5 mm)	
Weight	6.62 gm	
Operating Temperature	14° F to 122°F (-10°C to 50°C)	
Humidity	0 – 100% - Waterproof	
Regulatory	FCC, IC, CE, UL-294	
Warranty	12 months	

Frequencies

Module	Signal	Frequencies (MHz)
CC1150	Transmitter RF	433.92
Y2	Clock	26.0
Y1	Clock	0.032768

List of ancillary and/or support equipment provided by the applicant

Model No.	Description	Manufacturer	Approvals/Standards
N/A			

Description of Interface Cables for Testing

Connected port	Cable Type	Cable length	Ferrite
N/A			

Software and Firmware

Description	Version
N/A	

Worst-case configuration and mode of operation during testing

The EUT was modified to transmit the RF signal every 1 second for FCC testing. Regularly, the RF will be turned on every 10 seconds.

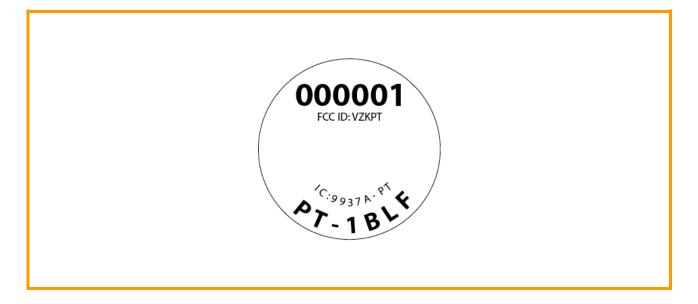
Modifications Required for Compliance

None.

Test Equipment Verified for function

Model #	Description	Checked Function	Results
E7405A	Spectrum Analyzer	Frequency and Amplitude	Connected 50MHz and -20 dBm Ref_siganl and checked OK.
8447D	Pre-Amplifier, 30 to 2,000MHz	Gain at 30 and 1,000MHz	Gains were normal.
8449B	Pre-Amplifier, 1 to 26.5GHz	Gain at 1 to 26.5GHz	Gains were normal.
JB1	Anatenna, 30 to 2000MHz	Checked structure	Normal – no damage.
SAS-571	Antenna, 1 to 18GHz	Checked structure	Normal – no damage.
Onset HOBO	Humidity/ Temperature Logger	Compared room Temp. and Hum. with another data logger	Working normally

Page 6 of 35


Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty(dB)
Conducted Measurements, 0.15 to 30MHz	± 3.46 dB
Radiated Measurements, 9kHz to 1,000MHz	± 4.91 dB

Uncertainty figures are valid to a confidence level of 95%.

Markings

Page 7 of 35

Test Summary

When configured and operated as specified in this report, the product was found to comply with the requirements as indicated below.

Test Type	Regulation	Measurement Method	Result
AC Power Line Conducted	15.207(a) RSS-Gen,	ANSI C63.4:2014 & ANSI	N/A ¹⁾
Emission	issue 4	C63.10:2013, Clause 6.2	IN/A
Field Strength of Fundamental	15.231, 15.205, 15.209	ANSI C63.4:2014 & ANSI	PASS
-Intentional radiator	& RSS-210	C63.10:2013, Clause 6.5 & 6.6	FA33
Field Strength of Spurious	15.231, 15.205, 15.209	ANSI C63.4:2014 & ANSI	PASS
Emissions -Intentional radiator	& RSS-210	C63.10:2013, Clause 6.5 & 6.6	FA33
Radiated Emissions-Intentional	15.209 and RSS-210	ANSI C63.4:2014 & ANSI	PASS
radiators	15.209 and R33-210	C63.10:2013, Clause 6.5	FA00
The Bandwidth of the emission	15.231 and RSS-210	ANSI C63.10:2013, Clause 6.9	PASS

Note1): The EUT is operated by internal battery. This test was exempted by no connection to AC Power Line.

Page 8 of 35

AC Power Line Conducted Emission

Test Date	December 20, 2015
Sample Number	3930
Tested By	Jeremy Lee

Test Limits

FCC 15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of emis- sion (MHz)	Conducted limit (dBµV)					
sion (MHz)	Quasi-peak	Average				
0.15–0.5 0.5–5 5–30	66 to 56* 56 60	56 to 46* 46 50				

*Decreases with the logarithm of the frequency.

Test Results

The test was exempted because there is no public utility (AC) power line connection.

Page 9 of 35

Summary of the operation of RF Transmission

Regulation	FCC15.231:2015
Intentional Radiating Frequency	433.92MHz
Sample Number	3929 & 3930
Reviewed By	Jeremy LEE

Test Limits

Section 15.231 Periodic operation in the band 40.66 - 40.70 MHz and above 70 MHz.

(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

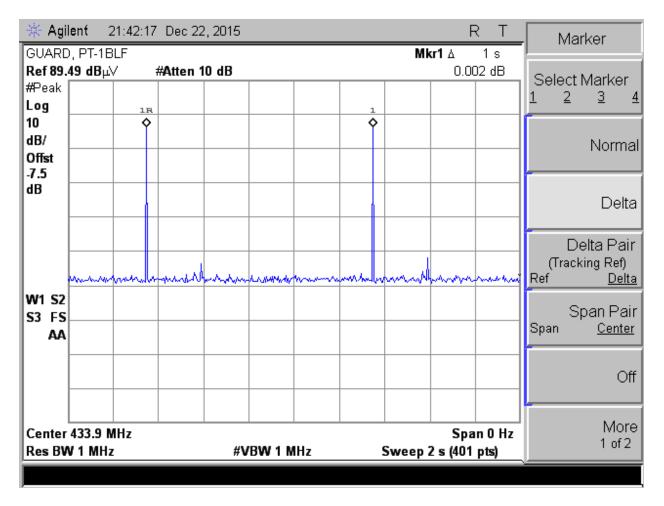
(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

N/A

Rule Part No.	Description of Rule	Yes	No	N/A
Pt 15.231(a)	Continuous transmission		Х	
Pt 15.231(a)	Control Signals		Х	
Pt 15.231(a)	Data transmission with control signal	Х		
Pt 15.231(a)(1)	Manually operated		Х	
	Automatically deactivate within 5 seconds of being released			Х
15.231(a)(2)	Automatically operated	Х		
	Deactivate within 5 seconds after activation	Х		
Pt 15.231(a)(3)	Periodic transmission at regular predetermined intervals	X*		

Reviewed Results Pass

Fail


Χ

Page 10 of 35

	Polling or supervision transmission, including data, to determine system integrity or transmitters used in security or safety applications requires no total duration of transmission not exceeding 2s/hr.	Х	
Pt 15.231(a)(4)	Operation involving fire, security, or safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.	Х	

*Tag transmits one 581µs pulse every 10 seconds.

- Measured result of the Automatic Turned-on and off time.

Page 11 of 35

🔆 Agilen		5 Dec 22, 2015			R T	Marker
GUARD, F Ref 89.49		#Atten 10 dB		м	kr1 580 μs 51.53 dBμV	
#Peak	чор					Select Marker
Log						1 2 3 4
10 dB/ Offst -7.5			~~~~~			Normal
dB				,		Delta
						Delta Pair (Tracking Ref) Ref <u>Delta</u>
W1 S2 S3 VS AA				Apr Marking	MAN AND AN	Span Pair _{Span <u>Center</u>}
						Off
Center 43 Res BW 1		#	VBW 1 MHz	Sweep 1	Span 0 Hz ms (401 pts)	More 1 of 2

- Measured result of the period for Automatic Turned-on time, in Static.

Page 12 of 35

Field Strength of Fundamental

Regulation	FCC15.231:2015
Intentional Radiating Frequency	433.92MHz
Temperature	21.0 °C
Relative Humidity	40.0 %
Barometric Pressure:	100.0 kPa
Test Date	December 22, 2015
Sample Number	3929
Calibrated Test Equipment (ID)	266, 272, 371, 516
Reference Equipment (ID) (Calibration not required)	374
Electrical Rating	Internal battery
Tested By	Jeremy LEE

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC 15.231:

(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Funda- mental fre- quency (MHz)	Field strength of funda- mental (microvolts/ meter)	Field strength of spurious emissions (microvolts/meter)
40.66– 40.70. 70–130 130–174 174–260 260–470 Above 470	2,250 1,250 1,250 to 3,750 3,750 13,750 to 12,500 12,500	225 125 125 to 375 375 1375 to 1,250 1,250

¹ Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

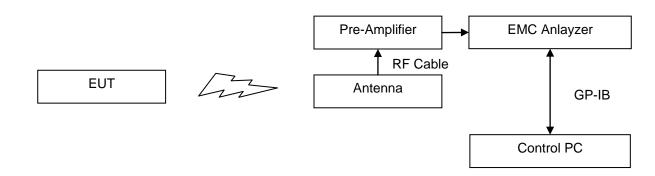
(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

Test Setup

The test was performed in accordance with FCC 15.31, 15.33, 15.35 and ANSI C63.10, 2013.

The test setup for Field Strength of Fundamental was shown in Figure - 1.

Page 13 of 35


a) The EUT was placed on non-conductive platform, 0.8meter high.

b) The EUT was set up on 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter.

c) The EUT was continually on its RF Transmitter. It was modified to transmit in 1000ms intervals for this testing.

d) It was measured with a receiver - Spectrum analyzer, was software controlled.

Setup Block Diagram

Test Setup in Chamber

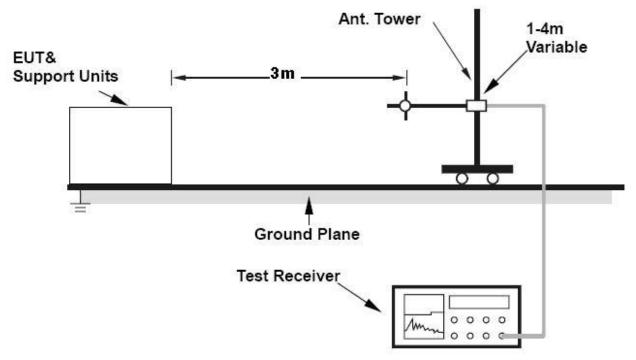


Figure – 1 Test setup for Radiated emissions in Chamber

Page 14 of 35

Test Results

Measured level (dBuV/m) = Quasi-Peak detected level (dBuV) + Cable Loss(dB) + Antenna Factor (dB/m) - Pre-amplifier's Gain (dB)

X Pass Fail N/A

Fundamental Frequency (MHz)	Limit (dBuV/m)	Measured (dBuV/m)	Margin (dB)	Orthogonal	Pol.	Results
433.92	00.02	63.43	17.40	Y	Н	PASS
433.92	80.83	61.16	19.67	Z	V	PASS

- Table of Field Strength of Fundamental, Orthogonal X; Quasi Peak Detecting, Antenna was used a JB1.

LabTest Certification Inc. Field Strength of Fundamental FCC 15.231, 3 meters, Orthogonal X_Horizontal

Operator: Jeremy Lee

05:05:34 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFIDSolutions Inc

Contact: Dalibor Pokrajac

Company: Guard RFIDSolutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit	Margin	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
433.920 MHz	67.59	17.00	-24.51	60.08	80.83	20.75	100.3	202.4	Н	
T.: 21.0 C, H.	: 40.0 %, E	3.P.:100.0	kPa							
Project # - 13										
Model # - PT-18										
Serial # - 0099										
Sample # - 3929	9									
- Modified tu	rned on tim	ie to 1Sec.								

LabTest Certification Inc. Field Strength of Fundamental FCC 15.231, 3 meters, Orthogonal X_Vertical

Operator: Jeremy Lee

05:05:34 PM, Tuesday, December 22, 2015

Frequency	Measured	AntEactor	Pathloss	 Emission	limit	Margin	 T/T	Tower	Pol	
		dB/m	dB	dBuV/m	dBuV/m	dB		cm		
433.920 MHz	66.14	16.68	-24.51	58.30	80.83	22.53	270.3	109.8	V	
T.: 21.0 C, H.:	40.0 %, E	3.P.:100.0	kPa							
Project # - 131										
Model # - PT-1E										
Serial # - 0099										
Sample # - 3929	1									
Mand Claud Aven										
- Modified tur	nea on tim	ie to iSec.								

Page 15 of 35

- Table of Field Strength of Fundamental, Orthogonal Y; Quasi Peak Detecting, Antenna was used a JB1.

	LabTest Cert	ification lu	nc.
	Field Strength	n of Fundame	ental
FCC	15.231, 3 meters,	Orthogonal	Y_Horizontal

Operator: Jeremy Lee

06:03:33 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFIDSolutions Inc.

Contact: Dalibor Pokrajac

Company: Guard RFIDSolutions Inc.

		AntFactor dB/m 17.00	PathLoss _dB 24.51	_Emission _dBuV/m 63.43	_Limit _dBuV/m 80.83	Margin dB 17.40		Tower cm 193.2	Pol	
400.020 1012	10.04	17.00	24.01	00.40	00.00	17.40	10.0	100.2		
T.: 21.0 C, H.:	40.0 %, E	.P.:100.0	kPa							
Project # - 131	191									
Model # - PT-1E	BLF									
Serial # - 0099	30									
Sample # - 3929	9									
- Modified tur	ned on tim	ie to 1Sec.								

LabTest Certification Inc. Field Strength of Fundamental FCC 15.231, 3 meters, Orthogonal Y_Vertical

Operator: Jeremy Lee

05:41:50 PM, Tuesday, December 22, 2015

	Measured dBuV	_ AntFactor dB/m	PathLoss dB	_ _Emission dBuV/m	_ _Limit dBuV/m	Margin dB	T/T degree	_Tower	Po I	
433.920 MHz	64.09	16.68	-24.51	56.25	80.83	24.58	89.8	154.9	V	
T.: 21.0 C, H.:	40.0 %, B	B.P.:100.0	kPa							
Project # - 131	91									
Model # - PT-18										
Serial # - 0099										
Sample # - 3929										
<u> Modified tur</u>	ned on tim	ne to 1Sec.								

- Table of Field Strength of Fundamental, Orthogonal Z; Quasi Peak Detecting, Antenna was used a JB1.

LabTest Certification Inc. Field Strength of Fundamental FCC 15.231, 3 meters, Orthogonal Z_Horizontal

Operator: Jeremy Lee

07:10:24 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFIDSolutions Inc.

Frequency MHz 433.920 MHz		AntFactor dB/m 17.00	PathLoss dB -24.51	_Emission_ _dBuV/m _59.87	_Limit _dBuV/m _80.83	Margin dB 20.96	T/T degree 74.0	_Tower _cm _205.8	Po1	
T.: 21.0 C, H.:	40.0 %, E	B.P.:100.0	kPa							
Project # - 131										
Model # - PT-1E										
Serial # - 0099										
Sample # - 3929	9									
- Modified tur	ned on tim	e to 1Sec.								

LabTest Certification Inc. Field Strength of Fundamental FCC 15.231, 3 meters, Orthogonal Z_Vertical

Operator: Jeremy Lee

07:39:53 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFIDSolutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	 Limit	Margin] _T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	CM		
433.920 MHz	69.00	16.68	-24.51	61.16	80.83	19.67	359.5	107.6	V	
T.: 21.0 C, H.:	40.0 %, E	.P.:100.0	kPa							
Project # - 131	91									
Model # - PT-1E	LF									
Serial # - 0099	30									
Sample # - 3929										
- Modified tur	ned on tim	e to 1Sec.								

Field Strength of Spurious Emissions

Regulation	FCC15.231:2015
Intentional Radiating Frequency	433.92MHz
Temperature	21.0 °C
Relative Humidity	40.0 %
Barometric Pressure:	99.7 to 100.0 kPa
Test Date	December 22 to 23, 2015
Sample Number	3929
Calibrated Test Equipment (ID)	266, 227-3, 272, 273, 371
Reference Equipment (ID) (Calibration not required)	374, 516
Electrical Rating	Internal battery
Tested By	Jeremy LEE

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC 15.231:

(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Funda- mental fre- quency (MHz)	Field strength of funda- mental (microvolts/ meter)	Field strength of spurious emissions (microvolts/meter)
40.66– 40.70.	2,250	225
70–130	1,250	125
130–174	¹ 1,250 to 3,750	¹ 125 to 375
174–260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

¹ Linear interpolations.

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

FCC 15.205:

Page 18 of 35

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

Test Setup

The test was performed in accordance with FCC 15.31, 15.33, 15.35, 15.205, 15.209:2015 and ANSI C63.10: 2013.

The test setup for Field Strength of Spurious is shown in Figure - 1.

a) The EUT was placed on non-conductive platform, 0.8meter for under 1GHz and 1.5 meter high for over 1GHz.

b) The EUT was set up on 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter.

c) The EUT was continually on its RF Transmitter. It was modified to transmit in 1000ms intervals for this testing.

d) It was measured with a receiver - spectrum analyzer, was software controlled.

Test Results

Emission level (dBuV/m) = Average detected level (dBuV) + Cable Loss(dB) + Antenna Factor (dB/m) - Pre-amplifier's Gain (dB)

Harmonic Frequency (MHz)	Detector	Limit (dBuV/m)	Measured (dBuV/m)	Margin (dB)	Ortho- gonal	Pol.	Results
867.84	Quasi-Peak	60.83	25.71	35.12	Z	Н	PASS
1301.76	Peak	73.98	46.29	27.69	Х	Х	PASS
1301.76	Averaging	53.98	23.10	30.88	Z	V	PASS
1735.68	Peak	80.83	39.45	41.38	Х	V	PASS
1733.00	Averaging	60.83	24.44	36.39	Z	V	PASS
2160.60	Peak	80.83	59.85	20.98	Х	Х	PASS
2169.60	Averaging	60.83	24.89	38.94	Z	V	PASS
2606.25	Peak	80.83	61.56	19.27	Z	V	PASS
2000.25	Averaging	60.83	28.56	32.27	Z	V	PASS
3037.44	Peak	80.83	66.00	14.83	Y	V	PASS
3037.44	Averaging	60.83	30.74	30.09	Y	Н	PASS
2474.26	Peak	80.83	68.08	12.75	Х	V	PASS
3471.36	Averaging	60.83	31.07	29.76	Y	Н	PASS
2005 29	Peak	73.98	65.41	8.57	Х	Х	PASS
3905.28	Averaging	53.98	32.03	21.95	Y	Н	PASS

X	Pass	Fail	N/A
~	1 435	i un	

Page 19 of 35

4339.20	Peak	73.98	60.58	13.40	Х	V	PASS
4339.20	Averaging	53.98	31.46	22.52	Y	Н	PASS

- Field Strengt of Spurious Emission; 2nd harmonic, Orthogonal X, Quasi-peak Detecting, Antenna was used JB1.

LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal X_Horizontal

Operator: Jeremy Lee

05:32:08 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit	Margin	T/T	Tower	Pol	
		dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
867.840000 MHz	28.64	22.50	-26.19	24.95	60.83	35.88	45.0	149.7	Н	
T.: 21.0 C, H.:	.40.0 %, E	3.P.:100.0	kPa							
Project # - 131	91									
Model # - PT-1E										
Serial # - 0099										
Sample # - 3929	9									
- Modified tur	ned on tim	ne to 1Sec.								

LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal X_Vertical

Operator: Jeremy Lee

05:32:08 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit	Margin	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
867.840000 MHz	28.35	21.80	-26.19	23.96	60.83	36.87	144.8	109.8	V	
T.: 21.0 C, H.:	40.0 %, E	3.P.:100.0	kPa							
Project # - 131										
Model # - PT-1E	BLF									
Serial # - 0099										
Sample # - 3929	9									
- Modified tur	ned on tim	ne to 1Sec.								

- Field Strengt of Spurious Emission; 2nd harmonic, Orthogonal Y, Quasi-peak Detecting, Antenna was used JB1.

LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal Y_Horizontal

Operator: Jeremy Lee

05:55:28 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

requency	Measured] AntFactor	 PathLoss	 Emission	 Limit	 Margin		 Tower	 Po1	
MHz	dBuV	dB/m	dB	dBuV/m		dB	degree	cm		
367.840000 MHz	28.76	22.50	-26.19	25.07	60.83	35.76	209.8	159.9	Н	
Г.: 21.0 С, Н.:	40.0 %, E	.P.:100.0	kPa							
Project # - 131										
Nodel # - PT-1B										
Serial # - 0099										
Sample # - 3929										
- Modified tur	ned on tim	ie to 1Sec.								

Page 20 of 35

LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal Y_Vertical

Operator: Jeremy Lee

05:55:28 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit	Margin	_T/T	Tower	Pol	
	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	CM		
867.840000 MHz	28.33	21.80	-26.19	23.94	60.83	36.89	270.3	129.6	V	
T.: 21.0 C, H.:	40.0 %, E	3.P.:100.0	kPa							
Project # - 131	91									
Model # - PT-1B	LF									
Serial # - 0099	30									
Sample # - 3929										
- Modified tur	ned on tim	ne to 1Sec.								

- Field Strengt of Spurious Emission; 2nd harmonic, Orthogonal Z, Quasi-peak Detecting, Antenna was used JB1.

LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal Z_Horizontal

Operator: Jeremy Lee

07:21:29 PM, Tuesday, December 22, 2015

Frequency Measured AntFactor PathLoss Emission Limit Margin T/1 Tower Pol dBuV/m MHz dBuV dB/m dB dBuV/m dB degree CM 867.840000 MHz 100.8 29.40 22.50 -26.19 25.71 60.83 35.12 330.0 Ή T.: 21.0 C, H.: 40.0 %, B.P.:100.0 kPa . Project # - 13191 Model # - PT-1BLF Serial # - 009930 Sample # - 3929 - Modified turned on time to 1Sec

> LabTest Certification Inc. Field Strength of 2nd Harmonic FCC 15.231, 3 meters, Orthogonal Z_Vertical

Operator: Jeremy Lee

07:30:07 PM, Tuesday, December 22, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

										*
Frequency	Measured	AntFactor	PathLoss	Emission	Limit	Margin	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
867.840000 MHz	24.33	21.80	-26.19	19.94	60.83	40.89	149.8	101.1	V	
T.: 21.0 C, H.:	40.0 %, E	3.P.:100.0	kPa							
Project # - 131	91									
Model # - PT-18	LF									
Serial # - 0099	30									
Sample # - 3929										
- Modified tur	ned on tim	ie to 1Sec.								

Page 21 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal X, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal X, Horizontal

Operator: Jeremy Lee

04:23:28 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

		_]		J	_]	
Frequency	Measured	AntFactor	PathLoss	Emission	Limit_Peak	Margin_PK	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	53.55	24.76	-32.02	46.29	73.98	27.69	122.3	100.0	H	
1.735680 GHz	44.00	26.26	-31.68	38.58	80.83	42.25	121.3	133.1	H	
2.169600 GHz	62.83	28.21	-31.19	59.85	80.83	20.98	93.0	100.0	H	
2.603520 GHz	55.86	29.99	-29.71	56.13	80.83	24.70	109.0	100.0	H	
3.037440 GHz	64.12	31.20	-30.50	64.82	80.83	16.01	360.0	158.9	H	
3.471360 GHz	62.08	31.00	-30.16	62.92	80.83	17.91	360.0	123.4	H	
3.905280 GHz	62.42	32.48	-29.49	65.41	73.98	8.57	360.0	í 100.0	H	
4.339200 GHz	56.17	32.47	-28.97	59.67	73.98	14.31	360.0	100.0	H	
T.: 21.0 C, H.:	40.0 %, B	.P.:99.7 k	Pa							
Project # - 131	91									
Model # - PT-1B	LF									
Serial # - 0099	30									
Sample # - 3929										
- Modified tur	ned on tim	e to 1Sec.	L							
			1							

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal X, Vertical

Operator: Jeremy Lee

04:23:28 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Measured	AntFactor	PathLoss	Emission	Limit_Peak	Margin_PK	T/T	Tower	Pol	
dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
51.59	24.78	-32.02	44.35	73.98	29.63	58.3	100.0	V	
44.93	26.19	-31.68	39.45	80.83	41.38	360.0	100.0	V	
54.64	28.18	-31.19	51.63	80.83	29.20	62.0	100.0	V	
51.74	30.03	-29.71	52.05	80.83	28.78	65.3	100.0	V	
64.93	31.22	-30.50	65.65	80.83	15.18	80.0	100.0	V	
67.26	30.98	-30.16	68.08	80.83	12.75	76.7	110.0	V	
60.88	32.50	-29.49	63.89	73.98	10.09	109.7	100.0	V	
57.08	32.47	-28.97	60.58	73.98	13.40	61.2	100.0	V	
: 40.0 %, B	.Р.:99.7 к	Pa							
BLF									
930									
9									
ned on tim	e to 1Sec.								
	dBuV 51.59 44.93 54.64 51.74 64.93 67.26 60.88 57.08 40.0 %, B 91 91 92 92 930	dBuV dB/m 51.59 24.78 44.93 26.19 54.64 28.18 51.74 30.03 64.93 31.22 67.26 30.98 60.88 32.50 57.08 32.47 40.0 %, B.P.:99.7 k 91 34.5	dBu/ dB/m dB 51.59 24.78 -32.02 44.93 26.19 -31.68 54.64 28.18 -31.19 51.74 30.03 -29.71 64.93 31.22 -30.50 67.26 30.98 -30.16 60.88 32.50 -29.49 57.08 32.47 -28.97 40.0 %, B.P.:99.7 kPa -30.50 91 -30.60 92 -30.50	dBuV dB/m dB dBuV/m 51.59 24.78 -32.02 44.35 44.93 26.19 -31.68 39.45 54.64 28.18 -31.19 51.63 51.74 30.03 -29.71 52.05 64.93 31.22 -30.50 65.65 67.26 30.98 -30.16 68.08 60.88 32.50 -29.49 63.89 57.08 32.47 -28.97 60.58 91	dBuV dB/m dB dBuV/m dBuV/m 51.59 24.78 -32.02 44.35 73.98 44.93 26.19 -31.68 39.45 80.83 54.64 28.18 -31.19 51.63 80.83 51.74 30.03 -29.71 52.05 80.83 64.93 31.22 -30.50 65.65 80.83 67.26 30.98 -30.16 68.08 80.83 60.88 32.50 -29.49 63.89 73.98 57.08 32.47 -28.97 60.58 73.98 91	dBuV dB/m dB dBuV/m dBuV/m dBuV/m dB 51.59 24.78 -32.02 44.35 73.98 29.63 44.93 26.19 -31.68 39.45 80.83 41.38 54.64 28.18 -31.19 51.63 80.83 29.20 51.74 30.03 -29.71 52.05 80.83 28.78 64.93 31.22 -30.50 65.65 80.83 15.18 67.26 30.98 -30.16 68.08 80.83 12.75 60.88 32.50 -29.49 63.89 73.98 10.09 57.08 32.47 -28.97 60.58 73.98 13.40 40.0 % B.P.:99.7 kPa	dBuV dB dBuV/m dBuV/m dBuV/m degree 51.59 24.78 -32.02 44.35 73.98 29.63 58.3 44.93 26.19 -31.68 39.45 80.83 41.38 360.0 54.64 28.18 -31.19 51.63 80.83 29.20 62.0 51.74 30.03 -29.71 52.05 80.83 15.18 80.0 64.93 31.22 -30.50 65.65 80.83 12.75 76.7 60.88 32.50 -29.49 63.89 73.98 10.09 109.7 57.08 32.47 -28.97 60.58 73.98 13.40 61.2 40.0 %, B.P.:99.7 kPa	dBuV dB dBuV/m dBuV/m dB degree cm 51.59 24.78 -32.02 44.35 73.98 29.63 58.3 100.0 44.93 26.19 -31.68 39.45 80.83 41.38 360.0 100.0 54.64 28.18 -31.19 51.63 80.83 29.20 62.0 100.0 51.74 30.03 -29.71 52.05 80.83 15.18 80.0 100.0 64.93 31.22 -30.50 65.65 80.83 15.18 80.0 100.0 67.26 30.98 -30.16 68.08 80.83 12.75 76.7 110.0 60.88 32.50 -29.49 63.89 73.98 10.09 109.7 100.0 57.08 32.47 -28.97 60.58 73.98 13.40 61.2 100.0 91	dBuV dB dB dBuV/m dB degree cm 51.59 24.78 -32.02 44.35 73.98 29.63 58.3 100.0 V 44.93 26.19 -31.68 39.45 80.83 41.38 360.0 100.0 V 54.64 28.18 -31.19 51.63 80.83 29.20 62.0 100.0 V 51.74 30.03 -29.71 52.05 80.83 28.78 65.3 100.0 V 64.93 31.22 -30.50 65.65 80.83 12.75 76.7 110.0 V 67.26 30.98 -30.16 68.08 80.83 12.75 76.7 100.0 V 60.88 32.50 -29.49 63.89 73.98 10.09 109.7 100.0 V 57.08 32.47 -28.97 60.58 73.98 13.40 61.2 100.0 V 91

Page 22 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal X, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal X, Horizontal

Operator: Jeremy Lee

04:23:28 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_AVG	Margin_AVG	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	29.62	24.76	-32.02	22.36	53.98	31.62	122.3	100.0	Н	
1.735680 GHz	29.45	26.26	-31.68	24.03	60.83	36.80	121.3	133.1	Н	
2.169600 GHz	27.87	28.21	-31.19	24.89	60.83	35.94	93.0	100.0	Н	
2.603520 GHz	28.01	29.99	-29.71	28.28	60.83	32.55	109.0	100.0	H	
3.037440 GHz	29.39	31.20	-30.50	30.09	60.83	30.74	360.0	158.9	H	
3.471360 GHz	29.82	31.00	-30.16	30.66	60.83	30.17	360.0	123.4	H	
3.905280 GHz	28.58	32.48	-29.49	31.57	53.98	22.41	360.0	100.0	H	
4.339200 GHz	27.53	32.47	-28.97	31.03	53.98	22.95	360.0	100.0	Н	
T.: 21.0 C, H.:	40.0 %, B	.P.:99.7 k	Pa							
Project # - 131	91									
Model # - PT-1E	BLF									
Serial # - 0099	30									
Sample # - 3929)									
- Modified tur	ned on tim	e to 1Sec.								

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal X, Vertical

Operator: Jeremy Lee

04:23:28 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Measured	AntFactor	PathLoss	Emission	Limit_AVG	Margin_AVG	T/T	Tower	Pol	
dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
30.18	24.78	-32.02	22.94	53.98	31.04	58.3	100.0	V	
29.32	26.19	-31.68	23.84	60.83	36.99	360.0	100.0	V	
27.56	28.18	-31.19	24.55	60.83	36.28	62.0	100.0	V	
28.06	30.03	-29.71	28.37	60.83	32.46	65.3	100.0	V	
29.50	31.22	-30.50	30.22	60.83	30.61	80.0	100.0	V	
29.80	30.98	-30.16	30.62	60.83	30.21	76.7	110.0	V	
28.58	32.50	-29.49	31.59	53.98	22.39	109.7	100.0	V	
27.66	32.47	-28.97	31.16	53.98	22.82	61.2	100.0	V	
: 40.0 %, E	.P.∶99.7 k	Pa							
191									
BLF									
930									
9									
rned on tim	e to 1Sec.								
	dBuV 30.18 29.32 27.56 29.50 29.50 29.80 27.66 27.66 27.66 40.0 %, E 191 930 930 9	dBuV dB/m 30.18 24.78 29.32 26.19 27.56 28.18 29.50 31.22 29.80 30.98 28.58 32.50 27.66 32.47 28.58 32.50 27.66 32.47 980 30.98 930 30	dBuV dB/m dB 30.18 24.78 -32.02 29.32 26.19 -31.68 27.56 28.18 -31.19 28.06 30.03 -29.71 29.50 31.22 -30.50 29.80 30.98 -30.16 28.58 32.50 -29.49 27.66 32.47 -28.97 40.0 %, B.P.:99.7 kPa	dBuV dB/m dB dBuV/m 30.18 24.78 -32.02 22.94 29.32 26.19 -31.68 23.84 27.56 28.18 -31.19 24.55 28.06 30.03 -29.71 28.87 29.50 31.22 -30.50 30.22 29.80 30.98 -30.16 30.62 28.58 32.50 -29.49 31.59 27.66 32.47 -28.97 31.16 29.60 30.98.7 kPa -31.66 29.61 32.47 -28.97 31.16 30.0 - - - 29.62 32.47 -28.97 31.16 30.93 - - - 30 - - - 300 - - - 300 - - - 300 - - - 300 - - -	dBuV dB/m dB dBuV/m dBuV/m 30.18 24.78 -32.02 22.94 53.98 29.32 26.19 -31.68 23.84 60.83 27.56 28.18 -31.19 24.55 60.83 29.50 31.22 -30.50 30.22 60.83 29.80 30.98 -30.16 30.62 60.83 29.80 30.98 -30.16 30.62 60.83 29.80 30.98 -30.16 30.62 60.83 29.60 32.47 -28.97 31.16 53.98 27.66 32.47 -28.97 31.16 53.98 27.66 32.47 -28.97 31.16 53.98 29.80 30.97 kPa 10.00 10.00 10.00 91 91 91 91 91 91 91 92 930 92 92 92 92 92 930 92 930 92 930 930 930 930 930 930 92<	dBuV dB/m dB dBuV/m dBuV/m dB 30.18 24.78 -32.02 22.94 53.98 31.04 29.32 26.19 -31.68 23.84 60.83 36.99 27.56 28.18 -31.19 24.55 60.83 36.28 28.06 30.03 -29.71 28.37 60.83 30.61 29.50 31.22 -30.50 30.22 60.83 30.21 28.58 32.50 -29.49 31.59 53.98 22.39 27.66 32.47 -28.97 31.16 53.98 22.82 27.66 32.47 -28.97 31.16 53.98 22.82 24.55 60.83 30.21 53.98 22.82 27.66 32.47 -28.97 31.16 53.98 22.82 240.0 %, B.P.:99.7 kPa 9 9 9 9 9 9 9 90 9 9 9 9 9 9 9 9	dBuV dB/m dB dBuV/m dBuV/m dBuV/m degree 30.18 24.78 -32.02 22.94 53.98 31.04 58.3 29.32 26.19 -31.68 23.84 60.83 36.29 360.0 27.56 28.18 -31.19 24.55 60.83 36.28 62.0 28.06 30.03 -29.71 28.37 60.83 30.61 80.0 29.50 31.22 -30.50 30.22 60.83 30.61 80.0 29.80 30.98 -30.16 30.62 60.83 30.21 76.7 28.58 32.50 -29.49 31.59 53.98 22.39 109.7 27.66 32.47 -28.97 31.16 53.98 22.82 61.2 40.0 %, B.P.:99.7 kPa	dBuV dB dB dBuV/m dB degree cm 30.18 24.78 -32.02 22.94 53.98 31.04 58.3 100.0 29.32 26.19 -31.68 23.84 60.83 36.29 360.0 100.0 27.56 28.18 -31.19 24.55 60.83 36.28 62.0 100.0 28.06 30.03 -29.71 28.37 60.83 30.61 80.0 100.0 29.50 31.22 -30.50 30.22 60.83 30.61 80.0 100.0 29.80 30.98 -30.16 30.62 60.83 30.21 76.7 110.0 28.58 32.50 -29.49 31.59 53.98 22.39 109.7 100.0 27.66 32.47 -28.97 31.16 53.98 22.82 61.2 100.0 27.66 32.47 -28.97 31.16 53.98 22.82 61.2 100.0 30.0 - - - - - - - - - -<	dBuV dB dB dBuV/m dB degree cm 30.18 24.78 -32.02 22.94 53.98 31.04 58.3 100.0 V 29.32 26.19 -31.68 23.84 60.83 36.29 360.0 100.0 V 27.56 28.18 -31.19 24.55 60.83 36.28 62.0 100.0 V 28.06 30.03 -29.71 28.37 60.83 30.61 80.0 100.0 V 29.50 31.22 -30.50 30.22 60.83 30.61 80.0 100.0 V 29.80 30.98 -30.16 30.62 60.83 30.21 76.7 110.0 V 28.58 32.50 -29.49 31.59 53.98 22.39 109.7 100.0 V 27.66 32.47 -28.97 31.16 53.98 22.82 61.2 100.0 V 191

Page 23 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal Y, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal Y, Horizontal

Operator: Jeremy Lee

09:50:54 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	_ Limit_Peak	Margin_PK ⁻	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	51.71	24.76	-32.02	44.45	73.98	29.53	82.5	104.9	Н	
1.735680 GHz	44.50	26.26	-31.68	39.08	80.83	41.75	324.0	100.0	H	
2.169600 GHz	56.08	28.21	-31.19	53.10	80.83	27.73	54.7	100.0	Н	
2.603520 GHz	48.56	29.99	-29.71	48.83	80.83	32.00	98.2	100.0	H	
3.037440 GHz	61.55	31.20	-30.50	62.25	80.83	18.58	360.0	100.0	H	
3.471360 GHz	62.08	31.00	-30.16	62.92	80.83	17.91	9.2	123.2	H	
3.905280 GHz	56.07	32.48	-29.49	59.06	73.98	14.92	225.0	154.3	H	
4.339200 GHz	53.64	32.47	-28.97	57.14	73.98	16.84	204.3	100.0	Н	
T.: 21.0 C, H.	: 40.0 %, B	.P.:99.7 k	Pa							
Project # - 13	191									
Model # - PT-1	BLF									
Serial # - 009	930									
Sample # - 392	9									
- Modified tu	rned on tim	e to 1Sec.								

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal Y, Vertical

Operator: Jeremy Lee

05:25:54 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_Peak	Margin_PK	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	52.79	24.78	-32.02	45.55	73.98	28.43	100.0	100.0	V	
1.735680 GHz	43.84	26.19	-31.68	38.36	80.83	42.47	98.0	100.0	V	
2.169600 GHz	60.51	28.18	-31.19	57.50	80.83	23.33	158.7	152.7	V	
2.603520 GHz	55.78	30.03	-29.71	56.09	80.83	24.74	137.5	171.2	V	
3.037440 GHz	65.28	31.22	-30.50	66.00	80.83	14.83	293.5	131.5	V	
3.471360 GHz	66.49	30.98	-30.16	67.31	80.83	13.52	269.7	100.0	V	
3.905280 GHz	62.35	32.50	-29.49	65.36	73.98	8.62	327.2	111.0	V	
4.339200 GHz	56.87	32.47	-28.97	60.37	73.98	13.61	4.7	100.0	V	
T.: 21.0 C, H.:	40.0 %, E	3.P.:99.7 k	Pa							
Project # - 131	91									
Model # - PT-1E	ŠLF									
Serial # - 0099	30									
Sample # - 3929)									
- Modified tur	ned on tim	ie to 1Sec.								

Page 24 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal Y, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal Y, Horizontal

Operator: Jeremy Lee

09:50:54 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

]]	_			J				
Frequency	Measured	AntFactor	PathLoss	Emission	Limit_AVG	Margin_AVG	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	29.78	24.76	-32.02	22.52	53.98	31.46	82.5	104.9	Н	
1.735680 GHz	29.48	26.26	-31.68	24.06	60.83	36.77	324.0	100.0	Н	
2.169600 GHz	27.48	28.21	-31.19	24.50	60.83	36.33	54.7	100.0	H	
2.603520 GHz	27.81	29.99	-29.71	28.08	60.83	32.75	98.2	100.0	H	
3.037440 GHz	30.04	31.20	-30.50	30.74	60.83	30.09	360.0	100.0	H	
3.471360 GHz	30.23	31.00	-30.16	31.07	60.83	29.76	9.2	123.2	H	
3.905280 GHz	29.04	32.48	-29.49	32.03	53.98	21.95	225.0	154.3	H	
4.339200 GHz	27.96	32.47	-28.97	31.46	53.98	22.52	204.3	100.0	H	
T.: 21.0 C, H.:	40.0 %, B	.P.:99.7 k	Pa							
Project # - 131	91									
Model # - PT-1E	BLF									
Serial # - 0099	30									
Sample # - 3929)									
- Modified tur	ned on tim	, ie to 1Sec.								
1	1	1	1	1	1	1		1	1	1

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal Y, Vertical

Operator: Jeremy Lee

05:25:54 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

]	_		_					
Frequency	Measured	AntFactor	PathLoss	Emission	Limit_AVG	Margin_AV	GT/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	30.21	24.78	-32.02	22.97	53.98	31.01	100.0	100.0	V	
1.735680 GHz	29.35	26.19	-31.68	23.87	60.83	36.96	98.0	100.0	V	
2.169600 GHz	27.28	28.18	-31.19	24.27	60.83	36.56	158.7	152.7	V	
2.603520 GHz	27.85	30.03	-29.71	28.16	60.83	32.67	137.5	171.2	V	
3.037440 GHz	29.47	31.22	-30.50	30.19	60.83	30.64	293.5	131.5	V	
3.471360 GHz	29.77	30.98	-30.16	30.59	60.83	30.24	269.7	100.0	V	
3.905280 GHz	28.51	32.50	-29.49	31.52	53.98	22.46	327.2	111.0	V	
4.339200 GHz	27.55	32.47	-28.97	31.05	53.98	22.93	4.7	100.0	V	
T.: 21.0 C. H.:	: 40.0 %, B	.P.:99.7 k	Pa							
Project # - 13	191									
Model # - PT-18	BLF									
Serial # - 0099	930									
Sample # - 3929										1
- Modified tur	ned on tim	e to 1Sec.	L							
				-		-		-		

Page 25 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal Z, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal Z, Horizontal

Operator: Jeremy Lee

10:38:11 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_Peak	Margin_PK	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	52.59	24.76	-32.02	45.33	73.98	28.65	170.0	100.0	Н	
1.735680 GHz	44.27	26.26	-31.68	38.85	80.83	41.98	137.3	156.8	Н	
2.169600 GHz	55.44	28.21	-31.19	52.46	80.83	28.37	237.0	100.0	Н	
2.603520 GHz	52.69	29.99	-29.71	52.96	80.83	27.87	167.5	100.0	Н	
3.037440 GHz	52.51	31.20	-30.50	53.21	80.83	27.62	159.7	100.0	Н	
3.471360 GHz	63.51	31.00	-30.16	64.35	80.83	16.48	162.0	100.0	Н	
3.905280 GHz	60.83	32.48	-29.49	63.82	73.98	10.16	286.0	119.5	Н	
4.339200 GHz	56.58	32.47	-28.97	60.08	73.98	13.90	251.3	104.9	Н	
T.: 21.5 C, H.:	40.3 %, E	8.P.∶99.6 k	Pa							
Project # - 131	91									
Model # - PT-1E	BLF									
Serial # - 0099	30									
Sample # - 3929	9									
- Modified tur	ned on tim	ie to 1Sec.								

LabTest Certification Inc. Field Strength of Spurious, Peak Detector FCC 15.231, 3 meters, Orthogonal Z, Vertical

Operator: Jeremy Lee

11:27:07 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_Peak	Margin_PK	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	CM		
1.301760 GHz	50.67	24.78	-32.02	43.43	73.98	30.55	191.3	100.0	V	
1.735680 GHz	44.20	26.19	-31.68	38.72	80.83	42.11	360.0	147.5	V	
2.169600 GHz	60.96	28.18	-31.19	57.95	80.83	22.88	264.5	100.0	V	
2.603520 GHz	61.25	30.03	-29.71	61.56	80.83	19.27	283.3	100.0	V	
3.037440 GHz	54.75	31.22	-30.50	55.47	80.83	25.36	250.0	100.0	V	
3.471360 GHz	62.57	30.98	-30.16	63.39	80.83	17.44	256.8	100.0	V	
3.905280 GHz	57.92	32.50	-29.49	60.93	73.98	13.05	129.0	100.0	V	
4.339200 GHz	56.45	32.47	-28.97	59.95	73.98	14.03	43.3	100.0	V	
T.: 21.5 C, H.:	40.3 %, E	3.P.:99.6 k	Pa							
Project # - 13	191									
Model # - PT-1E	BLF									
Serial # - 0099	930									
Sample # - 3929	9									
- Modified tur	ned on tim	ne to 1Sec.								

Page 26 of 35

- Field Strengt of Spurious Emissions; 3rd to 10th harmonics, Orthogonal Z, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal Z, Horizontal

Operator: Jeremy Lee

10:38:11 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_AVG	<u>Margin_</u> AVG	т/т	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m		dB		cm		
1.301760 GHz	30.36		-32.02	23.10	53.98	30.88	170.0	100.0	Н	
1.735680 GHz	29.86	26.26	-31.68	24.44	60.83	36.39	137.3	156.8	Н	
2.169600 GHz	27.87	28.21	-31.19	24.89	60.83	35.94	237.0	100.0	Н	
2.603520 GHz	28.29	29.99	-29.71	28.56	60.83	32.27	167.5	100.0	Н	
3.037440 GHz	28.01	31.20	-30.50	28.71	60.83	32.12	159.7	100.0	H	
3.471360 GHz	29.48	31.00	-30.16	30.32	60.83	30.51	162.0	100.0	Н	
3.905280 GHz	28.41	32.48	-29.49	31.40	53.98	22.58	286.0	119.5	Н	
4.339200 GHz	27.62	32.47	-28.97	31.12	53.98	22.86	251.3	104.9	Н	
<u>T.: 21.5 C, H.</u>	40.3 %, E	3 <mark>.P.:99.6 k</mark>	Pa							
Project # - 13										
Model # - PT-1E										
Serial # - 0099	930									
Sample # - 3929	9									
- Modified tur	ned on tim	ie to 1Sec.								
1		1	1	1		1				1

LabTest Certification Inc. Field Strength of Spurious, AVG Detector FCC 15.231, 3 meters, Orthogonal Z, Vertical

Operator: Jeremy Lee

11:27:07 PM, Wednesday, December 23, 2015

Contact: Dalibor Pokrajac Company: Guard RFID Solutions Inc.

Frequency	Measured	AntFactor	PathLoss	Emission	Limit_AVG	Margin_AVG	T/T	Tower	Pol	
MHz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	degree	cm		
1.301760 GHz	30.13	24.78	-32.02	22.89	53.98	31.09	191.3	100.0	V	
1.735680 GHz	29.52	26.19	-31.68	24.04	60.83	36.79	360.0	147.5	V	
2.169600 GHz	27.40	28.18	-31.19	24.39	60.83	36.44	264.5	100.0	V	
2.603520 GHz	27.44	30.03	-29.71	27.75	60.83	33.08	283.3	100.0	V	
3.037440 GHz	27.97	31.22	-30.50	28.69	60.83	32.14	250.0	100.0	V	
3.471360 GHz	29.21	30.98	-30.16	30.03	60.83	30.80	256.8	100.0	V	
3.905280 GHz	28.33	32.50	-29.49	31.34	53.98	22.64	129.0	100.0	V	
4.339200 GHz	27.45	32.47	-28.97	30.95	53.98	23.03	43.3	100.0	V	
T.: 21.5 C, H.	40.3 %, B	.P.:99.6 k	Pa							
Project # - 13	191									
Model # - PT-18	BLF									
Serial # - 0099	930									
Sample # - 3929	9									
- Modified tu	ned on tim	e to 1Sec.								

Radiated Emission; Intentional Radiators

Regulation	FCC15.209:2015
Intentional Radiating Frequency	433.92MHz
Temperature	20.8 to 21.3 °C
Relative Humidity	41.0 to 43.0 %
Barometric Pressure:	102.1 to 102.2 kPa
Test Date	December 29 & 30
Sample Number	3930
Calibrated Test Equipment (ID)	241, 266, 272, 371
Reference Equipment (ID) (Calibration not required)	374, 516
Electrical Rating	Internal battery
Tested By	Jeremy LEE

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC 15.209:

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

The test was performed in accordance with FCC 15.109, FCC 15.31, FCC 15.33, FCC 15.35, and ANSI C63.4, 2014.

Test procedure is based on the FCC15.31(a)(3) - Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2014: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This

Page 28 of 35

incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

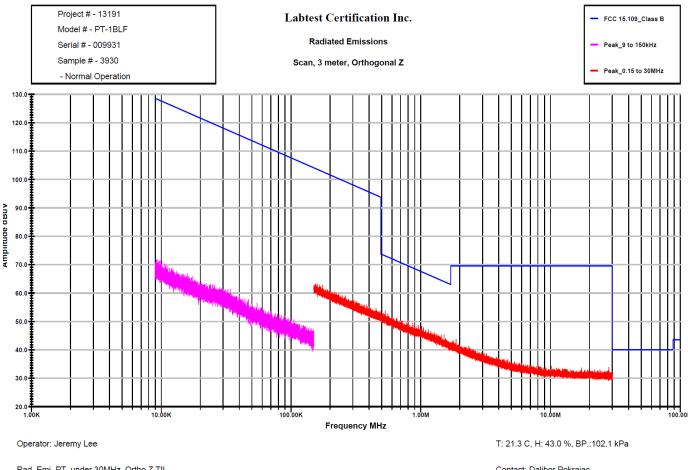
The EUT was placed on a 0.8-meter high nonconductive platform that was placed directly onto a flush mounted turntable in EMC Shielded Enclosure. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It was measured with a receiver – EMC analyzer, which was controlled by special EMC software, TILE4. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.

Tests were performed to determine the worst orientation of the EUT. With the EUT positioned in worst case of operation, emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- The EUT was set up as per the test configuration to simulate typical actual usage per the user's manual.
- The EUT was set on the maximum operating; the EUT was setup to continuing operating as a worst case.
- > The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 9kHz(150kHz to 30MHz) and 120kHz(30 to 1,000MHz)
 - VBW ≥ RBW
 - Sweep = Auto
 - Detecting Method = Peak Detector

Test Results

Emission level (dBuV/m) = Quasi-Peak detected level (dBuV) + Cable Loss (dB) + Antenna Factor (dB/m)


X Pass Fail N/A

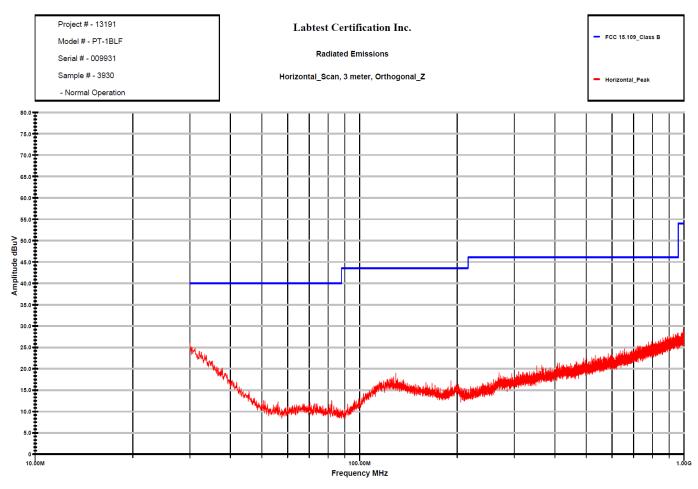
Frequency	Limit	Measured	Margin	Pol. Of	Results
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	Antenna	
123.0594	43.52	19.81	23.71	V	PASS

Note *) All measuerd levels were detected by Peak Detector.

Page 29 of 35

- Graph of Radiated Emissions: 150kHz to 30MHz, Peak detecting, 10 seconds beacon, Antenna was used AL-130.

Rad_Emi_PT_under 30MHz_Ortho Z.TIL


02:26:30 PM, Wednesday, December 30, 2015

Contact: Dalibor Pokrajac

Company: Guard RFID Solutions Inc.

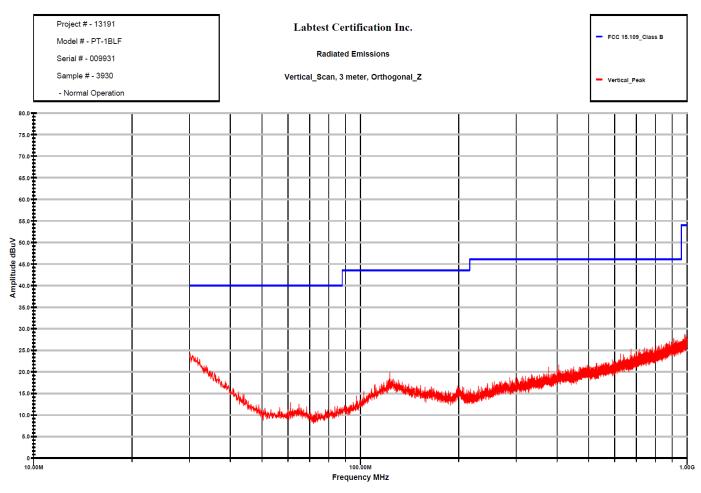
Page 30 of 35

- Graph of Radiated Emissions: 30 to 1,000MHz, Peak detecting, 10 seconds beacon, Antenna was used JB1, Horizontal.

Operator: Jeremy Lee

Rad_Emi_PT_Ortho Z.TIL

10:58:07 AM, Tuesday, December 29, 2015


T: 20.8 C, H: 41.0 %, BP.:102.2 kPa

Contact: Dalibor Pokrajac

Company: Guard RFID Solutions Inc.

Page 31 of 35

- Graph of Radiated Emissions: 30 to 1,000MHz, Peak detecting, 10 seconds beacon, Antenna was used JB1, Vertical.

Operator: Jeremy Lee

Rad_Emi_PT_Ortho Z.TIL

11:17:25 AM, Tuesday, December 29, 2015

T: 20.8 C, H: 41.0 %, BP.:102.2 kPa

Contact: Dalibor Pokrajac

Company: Guard RFID Solutions Inc.

Page 32 of 35

The Bandwidth of the emission

Regulation	FCC15.231: 2015
Temperature	20.8 °C
Relative Humidity	34.0 %
Barometric Pressure:	102.8 kPa
Test Date	December 23, 2015
Sample Number	3931
Calibrated Test Equipment (ID)	266, 272, 371
Reference Equipment (ID) (Calibration not required)	374, 516
Electrical Rating	Internal battery
Tested By	Jeremy LEE

Use the barometric pressure reported at: <u>http://www.theweathernetwork.com/weather/cabc0248</u>

Test Limits

FCC 15.231:

(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

Test Setup

The test was performed in accordance with ANSI C63.10: 2013.

The setup for Bandwidth of the emission measurements is shown in Figure - 1.

- a) The EUT was placed on non-conducting platform.
- b) It was measured with a receiver spectrum analyzer via Antenna.

Test Results

X	Pass	Fail	N/A		
Cent	er Frequency (MHz)	Limit(<0.2	25%, kHz)	Measured(kHz)	Results
	433.92	< 10	84.8	592.5	PASS

🔆 Agi		9 Dec 22, 2015			R	Т	Marker
), PT-1BLF 49 dB µV	#Atten 10 dB		M	kr1 ∆ 592.50 k 0.075		,
#Peak					0.073		Select Marker
Log							1 2 3 4
10 dB/ Offst -7.5			mm			_	Normal
dB		M N					Delta
	MMM	yer -			Mary	1	Delta Pair (Tracking Ref) Ref <u>Delta</u>
M1 S2 S3 FS AA						_	Span Pair Span <u>Center</u>
							Off
	433.9 MHz W 30 kHz	VE	W 30 kHz	Swee	Span 1.5 ep 5 ms (401 p		More 1 of 2

- Measured result of the Bandwidth of the emission(20dBc method).

Page 34 of 35

ID No.	Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date	Calibration Certificate No:	Calibration Laboratory
227-3	Horn Antenna	A.H. Systems	SAS-571	936	31-Jul-2014	31-Jul-2016	1407300211	Liberty Labs
241	Active Loop Antenna	AL-130	Com- Power	17075	28-Oct-2015	28-Oct-2017	151020- 114249-d3931f	Liberty Labs
266	Humidity/ Temperature Logger	Onset HOBO	U14-001	2436907	23-Jan-2014	23-Jan-2016	890824060	Techmaster
272	EMC Analyzer	Agilent	E7405A	US41110263	09-Jun-2015	09-Jun-2016	1-6977926962- 1	Keysight
273	RF Preamplifier	Agilent	8449B	3008A02264	N/A	N/A	N/A	N/A
371	EMC Broadband Antenna	Sunol	JB1	A022012	17-Mar-2014	17-Mar-2016	1403130381	Liberty Labs
374	EMC Shielded Enclosure	USC	USC-26	111811	N/A	N/A	N/A	N/A
516	Pre-Amplifier	Agilent	AT8447D	2944A10969	N/A	N/A	N/A	N/A

APPENDIX A: Test equipments used for tests

END OF REPORT