

REPORT

For

Guard RFID Solutions

#140 – 766 Cliveden Place Delta, British Columbia V3M 6C7, Canada

Date:	23 August, 2017
Report No.:	16459-1E
Revision No.:	1
Project No.:	16459
Model #:	E-Kanban Call Button(ECB)
FCC ID:	VZKECB
IC ID.:	9937A-ECB

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

Unit 205 – 8291 92 ST., Delta, BC V4G 0A4, Canada Phone: 604-247-0444 Fax: 604-247-0442 www.labtestcert.com

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

TABLE OF CONTENTS

TEST REPORT_FCC 15.231 & RSS-210	3
Device Under Test Description	
Program details	
Description of Equipment Under Test and Variant Models	5
EUT Internal Operating Frequencies	
Client Equipment Used During Test	
Software and Firmware	
Input/Output Ports	7
Power Interface	8
EUT Operation Modes	
EUT Configuration Modes	8
Test Equipment Verified for function	9
Measurement Uncertainty	
Result Summary	
Radiated Emissions for Digital Parts & Receiver	.10
Antenna Requirement	
Results	
AC Power Line Conducted Emissions	.12
Test Method	.12
Test Result	.12
Test Setup	.13
Measurement / Graphical Representation for Emission – Conducted Emissions	.14
Summary of the operation of RF Transmission	.16
Test setup	
Reviewed Results	
Field Strengths	.20
Test setup	.21
Measurement Procedure	.22
Test Result	
Spurious Emissions (Unwanted Emissions)	.23
Test setup	
Measurement Procedure	.28
Test Result	.28
Graphical Representation for Emission - Radiated 30kHz to 30MHz	
Radiated Emissions for Digital Parts and Receiver	.30
Test setup	
Measurement Results	.32
Test Result	
Graphical Representation for Emission - Radiated 30MHz to 1GHz	
The Bandwidth of the emission	.35
Test setup	
Results	
APPENDIX A: ISO 17025:2005 Accreditation Certificate	.38

Page 2 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

TEST REPORT_FCC 15.231 & RSS-210			
Periodic operation in the band 40.66-40.70 MHz and above 70 MHz / License-Exempt Radio Apparatus: Category I Equipment			
Report Reference No	16459-1E		
Report Revision History	 ✓ Rev. 0: 08 August 2017 ✓ Rev. 1: 23 August 2017, add test results of AC Power Line Emissions and Radiated emissions with AC Adapter. Revised Summary of the operation. 		
Compiled by (+ signature)	Jeremy Lee	0-10-2017 D	
Approved by (+ signature)	David Johanson	2016	
Date of issue:	23 August, 2017		
Total number of pages	41		
	·		
FCC Site Registration No.:	721268		
IC Site Registration No.:	5970A		
Testing Laboratory	LabTest Certification Inc.		
Address:	3128 – 20800 Westminster Hwy, Richmond, B.C. V6V2W3		
Applicant's name:	Guard RFID Solutions		
Address:	#140-766 Cliveden Place, Delta, BC, V3M 6C7, Canada		
Manufacture's Name	Same as Applicant		
Address:	Same as Applicant		
Test specification:			
Standards:	FCC15.231:2017 / RS	S-210, Issue 9, August 2016	
Test procedure:	 ANSI C63.10:2013 ANSI C63.4:2014 RSS-Gen, Issue 4, November 2014 		
Non-standard test method	N/A		
Test Report Form(s) Originator:	Jeremy Lee		
Master TRF:	1036_Rev2 – RF Report Template		
Test item description :			
Trade Mark:	Dieno		

Page 3 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Model/Type reference:	E-Kanban Call Button(ECB)
Serial Number:	000055
FCC ID	VZKECB
IC ID:	9937A-ECB
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	26 July 2017
Date (s) of performance of tests:	26 July to 03 August 2017 & 21 to 23 August 2017

Device Under Test Description

Application for:	Radio Frequency Identification (RFID)
Operating Transmit Frequency:	433.92MHz
Operating Receive Frequency:	433.92MHz
Beacon Interval:	6 Seconds
Equipment mobility:	Yes, but normally installed on Work Bench
Operating condition:	-20 to +50 °C
Mass of equipment (g):	141 without Batteries, 238 with Batteries
Dimension	127 mm X 79 mm X 31 mm
Nominal Voltages for:	_X_ stand-alone equipment combined (or host) equipment
Supply Voltage:	AC Amps 6V DC with Batteries 12V DC with AC/DC adapter

Page 4 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

If DC Power:	Internal Power Supply	
	X External Power Supply or AC/DC adapter	
	X Battery	
	□ Nickel Cadmium	
	🖂 Alkaline, 4 X AA	
	Nickel-Metal Hydride	
	Lithium-Ion	
	□ Other	

Program details

Testing procedure and testing location:			
\boxtimes	Testing Laboratory: LabTest Certification Inc.		
Testing location/ address		3128-20800 Westminster HWY, Richmond, B.C. V6V 2W3 Canada	

Summary of testing:	
Tests performed (name of test and test clause):	Testing location:
Radiated Field strength and Emissions	In SAC, Richmond
AC Power Line Conducted Emissions	In SAC, Richmond
The tests indicated in Test Summers were performed	i an the preduct constructed on departhed holow

The tests indicated in Test Summary were performed on the product constructed as described below. The test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. LabTest does not make any claims of compliance for samples or variants which were not tested.

Description of Equipment Under Test and Variant Models

Description:

The ECB is a call button intended for just-in-time parts replenishment to assembly lines in manufacturing operations (e-Kanban). Its true wireless nature enables easy deployment without need for wired power or communication lines. Alternately, a hard-wired power supply can be used if desired. The ECB has a large multi-color LED indicator which is constructed in such a way that it can be observed from a distance in the well-lit environments characteristic of a production line. Two large buttons enable workers to call for parts, and their robust construction allows for rough handling without fear of damage. Button functions are software configurable.

Page 5 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

The ECB communicates to the rest of GuardRFID system utilizing the same infrastructure as GuardRFID tags, and communication frequency used (433 MHz), ensures reliable 2-way communication in the most difficult RF conditions. A variety of LED flashing patterns, colors and buzzer annunciations enable the device to signal a wide spectrum of notifications, under full control of software application.

SPECIFICATIONS:

Part Number		61-10600
Transmit and Receive Frequency 433 MHz		433 MHz
User Interfaces		2 buttons Multi-color LED (red, green, yellow) Buzzer
Dowor Supply	Battery	4 x AA, 12 months battery life
Power Supply	Hard-Wired	12VDC
Beacon Interva	I	6 seconds
Sensors		Dry Contact Input
Dimensions 5.00" x 3.10" x 1.21" (127 x 79 x 31 mm)		5.00" x 3.10" x 1.21" (127 x 79 x 31 mm)
Weight		Without batteries: 141 g With batteries: 238 g
Operating Temperature -4° F to 122°F (-20		-4° F to 122°F (-20°C to 50°C)

Regulatory

Humidity

- Top view

- Bottom View

0 - 95% RH non-condensing

FCC, IC

Page 6 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

EUT Internal Operating Frequencies

Frequency (MHz)	Description	Frequency (MHz)	Description
0.032768	Y1, Ref. Clock for CC430	26	Y2, RF Clock for CC430
433.92	W3127, Transmitting Radio	-	-

Client Equipment Used During Test

Use*	Product Type	Manufacturer	Model	Comments
EUT	RFID	Guard RFID	ECB	-
SIM	AC/DC Adapter	CUI Inc.	EPSA120200U	Input: 120~240VAC, 50/60Hz, 0.8A Output: 12VDC, 2.0A
Abbreviations: EUT - Equipment Under Test, SIM - Simulator (Not Subjected to Test)				

Software and Firmware

Use*	Description	Version
EUT	Hardware	R1.05
EUT	Firmware	R1.0.0.b
Abbreviations: EUT - Equipment Under Test,		

Input/Output Ports

Port #	Name	Туре*	Cable Max. >3m	Cable Shielded	Comments						
0	DC Power In	DC Power In DC No No 12VDC In.									
*Note:	*Note: AC = AC Power Port DC = DC Power Port N/E = Non-Electrical										

Page 7 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Power Interface

Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
0	6	-	-	DC	-	4 X AA Batteries, New
1	12	-	-	DC	-	With AC/DC Adapter

EUT Operation Modes

Mode #	Description							
1	Keep transmitting Beacon Signal with new Batteries.							
2	Keep transmitting Beacon Signal with AC/DC Adapter.							

EUT Configuration Modes

Mode #	Description
1	Orthogonal X
2	Orthogonal Y
3	Orthogonal Z
4	The EUT was set on table as Orthogonal X and connected an AC/DC Adapter to supply 12VDC via DC input connector.

Page 8 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Test Equipment Verified for function

Model #	Description	Checked Function	Results			
N9038A	Spectrum Analyzer	Frequency and Amplitude	Connected 50MHz and -20 dBm Ref_siganI and checked OK.			
JB1	Antenna, 30 to 2000MHz	Checked structure	Normal – no damage.			
SAS-571	Antenna, 1 to 18GHz	Checked structure	Normal – no damage.			
AL-130	Antenna, 9kHz to 30MHz	Checked structure	Normal – no damage.			

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty
Radiated Emission, 30 to 6,000MHz	± 4.95 dB
Conducted Measurements, 0.15 to 30MHz	± 3.50 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 9 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Result Summary

The Compliance Status is a judgment based on the direct measurements and calculated highest emissions to appropriate standard limits. Measurement uncertainty values, provided on calibration certificates, were not be used in the judgment of the final status of compliance.

FCC Part 15.231 and IC RSS-210									
Test Type	Regulation	Measurement Method	Result						
Antenna Requirement	15.203 & RSS-Gen	-	PASS						
AC Power Line Conducted Emissions	15.207(a) & RSS-Gen	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.2	PASS						
Summary of the operation of RF Transmission	15.231(a) & RSS-210, Annex A.1.1	-	PASS						
Field Strengths	15.231(b) & RSS-210, Annex A.1.2	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6	PASS						
Spurious Emissions (Unwanted Emissions)	15.231(b), 15.205, 15.209 & RSS-210, Annex A.1.2	ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6	PASS						
Radiated Emissions for Digital Parts & Receiver	FCC 15.109(a), Class(B) & ICES- 003	ANSI C63.4:2014	PASS						
The Bandwidth of the emission	15.231(c) & RSS-210, Annex A.1.3	ANSI C63.10:2013, Clause 6.9	PASS						

Page 10 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Antenna Requirement

Governing Doc	FCC 15.203 & RSS-GEN	Room Temperature (°C)	25.8
Basic Standard	-	Relative Humidity (%)	35
Test Location	Richmond	Barometric Pressure (kPa)	101.4
Test Engineer	Jeremy Lee	Date	26 July 2017
EUT Voltage	🖂 Batteries, 4 X AA		
Compliant 🖂	Compliant 🖂 Non-Compliant		ble 🗆

Results

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The EUT has fixed antenna, which accordance to the above sections, is considered sufficient to comply with the provisions of these sections. Please see EUT photo for details.

Page 11 of 41

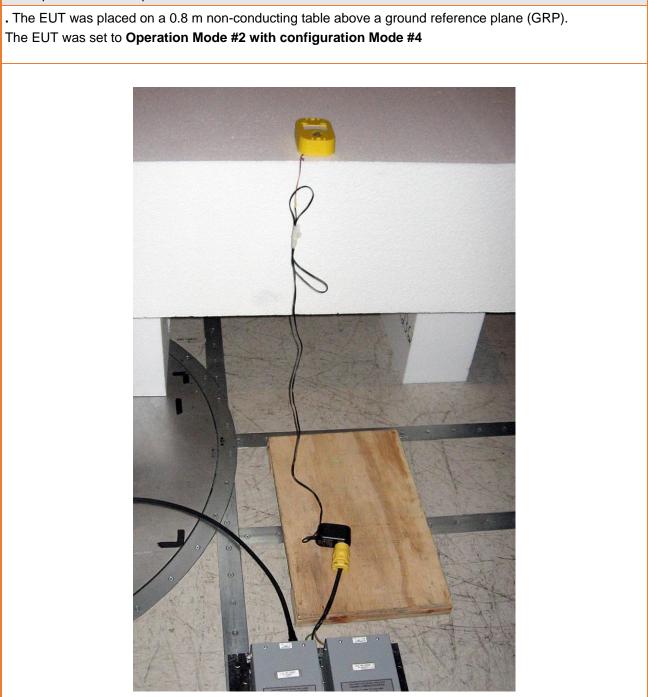
Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

AC Power Line Conducted Emissions

Governing Doc	FCC 15.207 & RSS-G	EN	Room Ter	nperature (25.2			
Basic Standard	ANSI C63.4		Relative H	lumidity (%	53.0			
Test Location	Richmond		Barometri	c Pressure	(kPa)	101.5		
Test Engineer	Jeremy Lee		Date			22 August 2017		
EUT Voltage	□ Batteries, 4 λ	(AA	\boxtimes	120VAC	@ 60Hz	:		
Test Equipment Used	st Equipment Used Manufacturer		lodel	Identifier		oration ate	Calibration due	
EMC Analyzer	KeySight	N	9038A	702	18-Apr-2017		18-Apr-2018	
LISN	Solar	8611-5	50-TS-10-N	377	01-Mar-2017		01-Mar-2018	
LISN	Solar	8611-5	50-TS-10-N	378	01-Ma	ar-2017	01-Mar-2018	
EMC Shielded Enclosure	USC	U	SC-26	374	N	CR	NCR	
AC Power Source	California Instruments	5	5001i	059	NCR		NCR	
Note) NCR = No Calibra	ation Required							
Frequency Range:	⊠ 150kHz-30MHz	□ 9-	150kHz					
Detector:	⊠ Peak	$\boxtimes Q$	uasi-Peak	\ge	Avera	ging		
RBW/VBW:	⊠ 9/30kHz	□ 20	00/300Hz					
Coupling device:	🛛 LISN 🛛 IS	N	🗆 Curr	ent Probe	□ C\	/P		
Arrangement of EUT:	☑ Table-top only	🗆 F	loor-standii	ng only 🛛	Rack	Mounted		
Compliant 🖂	Non-Comp	liant 🗆	Not Applicable 🗆					

Test Method

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially a scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, from 150 kHz to 30 MHz on each phase with the receiver in the peak mode. The measuring bandwidth was set up 9 kHz. Measurements were then made using CISPR16-1 quasi peak and averaging detectors when the peak readings were within 10dB of the Quasi-peak limit line.


Test Result

Conducted Emission (dBuV) = Measured Emission (dBuV) + Cable Loss(dB)+LISN(dB)

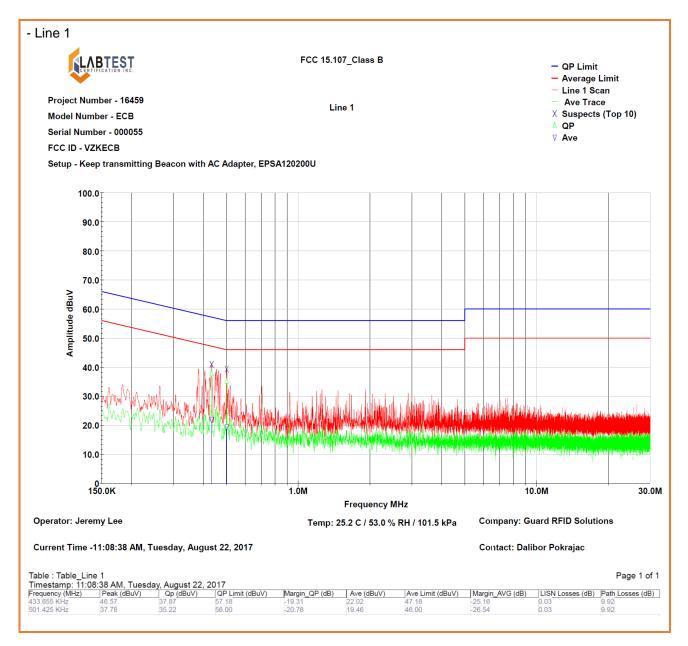
Page 12 of 41

Test Setup

Description of test set-up:

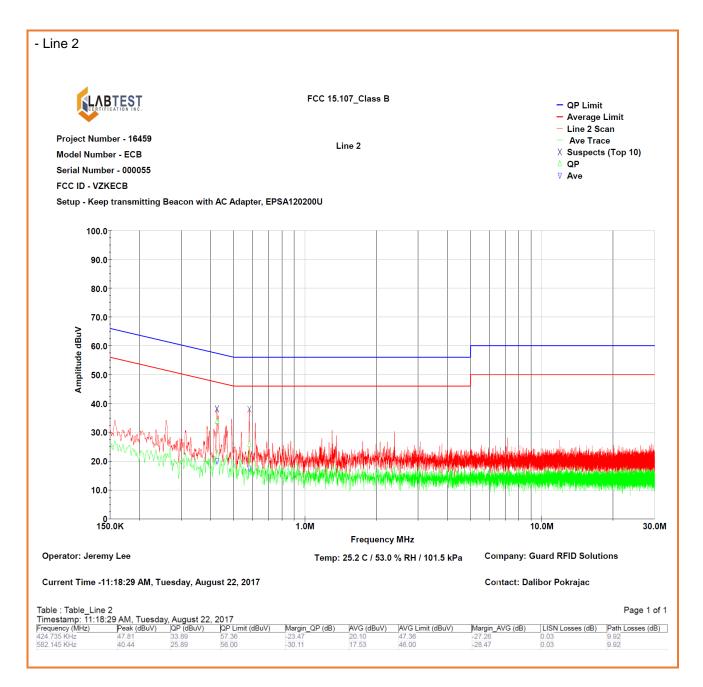
Client: Guard RFID Solutions

Report No.:16459-1E


Revision No.:1

Page 13 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.


Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Measurement / Graphical Representation for Emission – Conducted Emissions

Page 14 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 15 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Summary of the operation of RF Transmission

Governing Doc	FCC Part 15.231(a) & RS 210, Annex A.1	Room To	emperature	26.1				
Basic Standard	-	Relativ	e Humidity	(%)	53.0			
Test Location	Richmond		Barometr	ic Pressure	(kPa)	101.5		
Test Engineer	Jeremy Lee			Date	23 August 2017			
EUT Voltage	🛛 🛛 Batteries, 4 X AA	`						
Test Equipment Used	Manufacturer		Model	Identifier	Calib	oration	Calibration due	
Spectrum Analyzer	Keysight	١	V9038A	702	27-Ap	or-2017	27-Apr-2018	
LPDA Antenna	A.H.Systems	SA	AS-510-2	227B	08-Dec-2015		08-Decr-2017	
EMC Shielded Enclosure	USC	ι	JSC-26	374 NCR			NCR	
Note) NCR = No Calibra	ation Required							
Compliant 🖂	Non-Compliant 🗆		Not Applicable \Box					

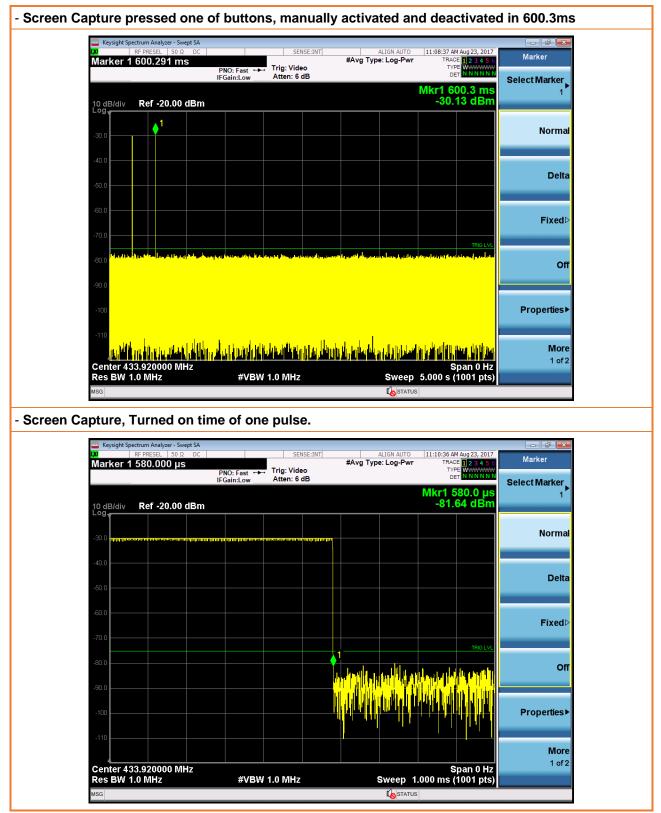
Test setup

Description of test set-up: The EUT was placed on a 0.8 m non-conducting table above a Turn table in SAC. The EUT was set to Operation Mode #1 with configuration Mode #1. EUT Antenna Spectrum Anlayzer SAC - Tested with SAS-510-2, LPDA Antenna as followed by ANSI C63.10, Table 1 Figure Sac Constrained by ANSI C63.10, Table 1

Page 16 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

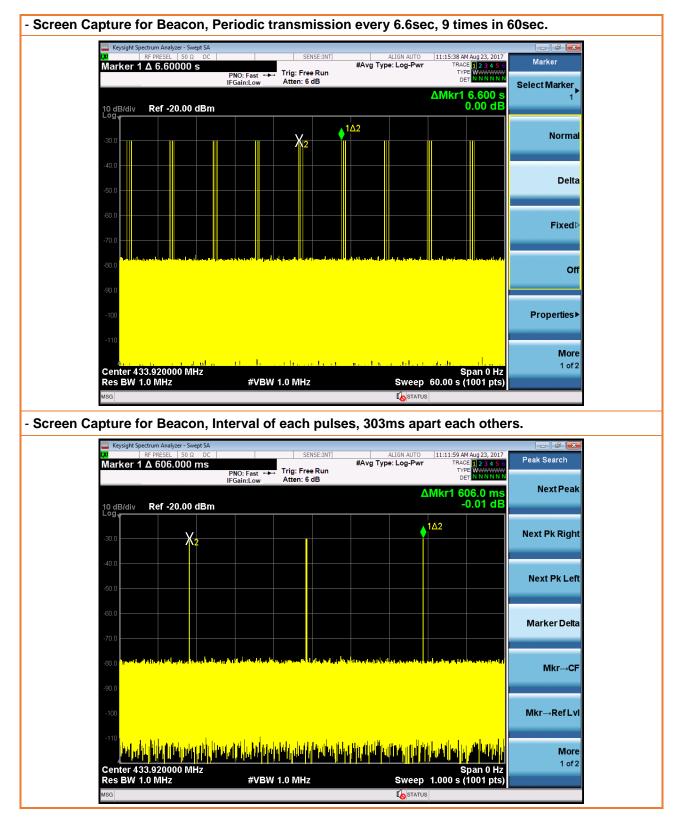
Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1


Reviewed Results

Rule Part No.	Description of Rule	Yes	No	N/A
FCC 15.231(a)	Continuous transmissions, voice, video and the radio control of toys are not permitted.		\boxtimes	
FCC 15.231(a)	Data is permitted to be sent with a control signal.	\boxtimes		
FCC 15.231(a)(1) ¹	Manually operated	\boxtimes		
FCC 15.251(a)(1)	Automatically deactivate within 5 seconds of being released	\boxtimes		
$\Gamma_{00} = 15.021(a)(2)$	Automatically operated		\boxtimes	
FCC 15.231(a)(2)	Deactivate within 5 seconds after activation			\boxtimes
	Periodic transmission at regular predetermined intervals	\boxtimes		
FCC 15.231(a)(3) ²	Polling or supervision transmission, including data, to determine system integrity or transmitters used in security or safety applications requires no total duration of transmission not exceeding 2s/hr.	\boxtimes		
FCC 15.231(a)(4)	Radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition			\boxtimes
FCC 15.231(a)(5)	Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.			

Note1)The EUT is operating as manually when pressed one of PUSH Buttons or RFID detacted. When Activated Transmitter, there are three 580µs pulses were activated and deactivated after 600.3ms. Please see below screen capture, which wass deactivated transmitter within not more than 5sec.

Note2) The Beacon signal is turned on as Periodic transmission at regular predetermined interval, 6.6Sec. Therefore, the total turned on time in one hour is 580us X 3 pulses X 546 times(3600/6.6sec). It means 0.95s was turned on every 1 Hour. It is not exceeding 2s/hr.


Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

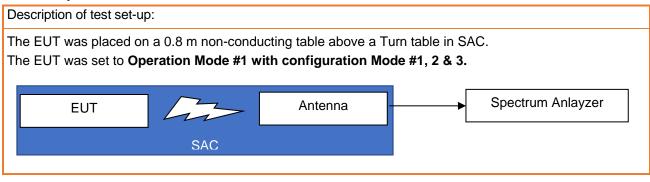
Page 18 of 41

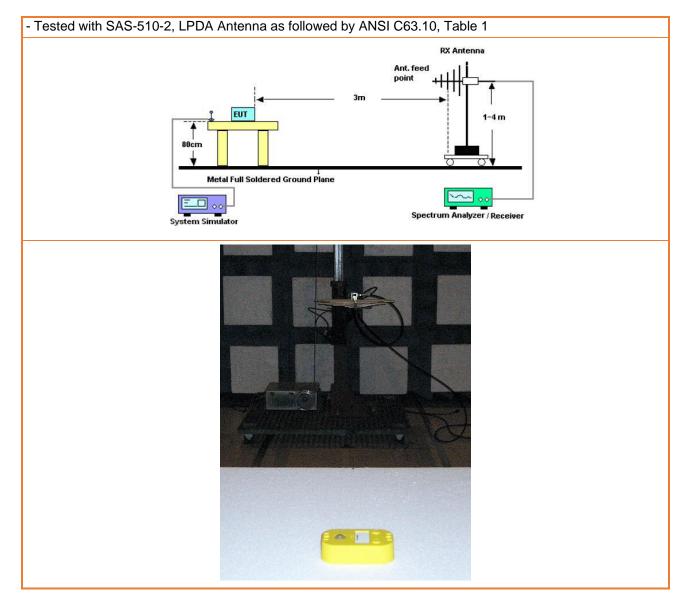
This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 19 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1


Field Strengths


Governing	Annex A.2				S-210,	Room Temperature (°C))	26.5	
Basic Standard ANSI C63.4:2014 & ANSI				1	Relative Humidity (%)				48.0		
Test Loca	tion	Rich	mond			E	Barometric	Pressure			101.5
Test Engir	neer	Jere	my Lee				Da	te		02 A	AUG. 2017
EUT Volta	age	\boxtimes	Batteries,	4 X AA	۱.						
Test Equipme	nt Used		Manufacture	er	Model		Identifier	Calibrati	on	Ca	libration due
Spectrum An	alyzer		Keysight		N9038A		702	27-Apr-20	017	2	7-Apr-2018
LPDA Ante	enna		A.H.System	S	SAS-510	-2	227B	08-Dec-2	015	08	3-Dec-2017
EMC Shielded E	nclosure		USC		USC-26		374	NCR ¹			NCR ¹
Note1) NCR =	No Calib	ratior	n Required, bi	ut NSA	was done a	at 20	16.				
Detector:			⊠ Peak		🛛 Qua	si-Pe	eak/AVG				
RBW/VBW:			⊠120/300k	Hz	□ 1/3MHz						
Type of Facility	/:		⊠ SAC			□ FSOATS □ in-situ					
Distance:			🛛 3meter		🗆 10m	□ 10meter □ 1meter					
Arrangement o	f EUT:		☐ Table-top only ☐ Floor-standing only ☐ Rack Mounted								
Frequency (MHz)	Orthog	onal	Detector	POL	Emissio (dBuV/i		Limit (dB)		argin dB)	l	Comments
	х		QP ¹	Н	76.04		80.83	2 4	1.79		PASS
	^		QP ¹	V	70.98	;	80.83	² 9	9.85		PASS
433.92	Y		QP ¹	Н	80.49)	80.83	² (0.34		PASS
433.92	r		QP ¹	V	71.80)	80.83	² 9	9.03		PASS
	~		QP ¹	Н	62.92	2	80.83	² 1	7.91		PASS
$Z = \frac{1}{2} $								PASS			
Note 1) Measu Note 2) Cconv											
Compliant 🖂		N	on-Compliant			Not	Applicable	e 🗆			
•											

Page 20 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Test setup

Page 21 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Measurement Procedure

This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A test was made with an Spectrum Analyzer, controlled by Test Software, Tile7!, at 433.92MHz with the Analyzer in the peak mode. The IF bandwidth was 120 kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using CISPR quasi peak(and Averaging for RSS-210) at each orthogonals. It was repeated again for three different Orthogonals as described in configuration mode. The numerical results are included herein to demonstrate compliance.

Test Result

Emission level (dBuV/m) = Detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

Page 22 of 41

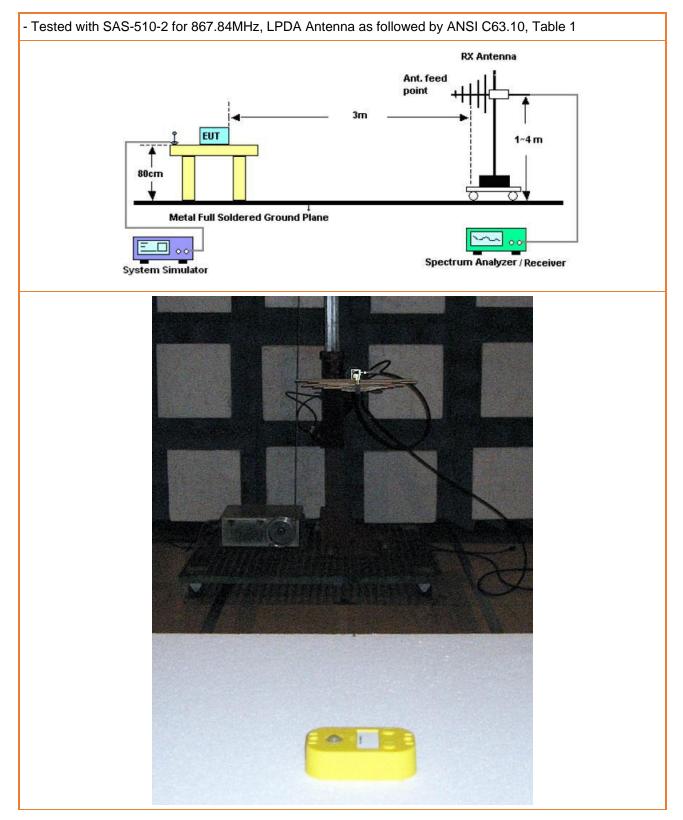
Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

•		•			,						
Governing	Doc		FCC Part 15.231(b), 15.205, 15.209 & RSS-210, Annex A.2				Room Temperature (°C)				26.5
Basic Stan	dard		ANSI C63.4:2014 & ANSI C63.10:2013, Clause 6.5 & 6.6				Relative H	umid	ity (%)	48.0	
Test Loca	tion	Rich	mond			Ba	arometric P	ressu	ure (kPa)		101.5
Test Engir	neer	Jere	my Lee				Da	ate		02	AUG. 2017
EUT Volta	age		Batteries,	4 X AA							
Test Equipme			Manufacture	er	Model		Identifier		alibration		libration due
Spectrum Ar			Keysight		N9038A		702		Apr-2017		7-Apr-2018
LPDA Ante			A.H.System	S	SAS-510	-2	227B	08-	Dec-2015	30	3-Dec-2017
Double-ridged Horn Ante			A.H.System	s	SAS-57	1	227C	22-	Sep-2016	22	2-Sep-2018
Loop Ante	nna		ComPower		AL-130		241	28-	Oct-2015	2	8-Oct-2017
EMC Shielded E	Inclosure		USC		USC-26	6	374		NCR ¹	NCR ¹	
RF Preamp	olifier		Agilent 844		8449B		273	NCR		NCR	
Note1) NCR =	No Calib	ratior	n Required, b	ut NSA	& sVSWR	was	done at 20	016.			
Detector:			⊠ Peak				si-Peak/AV	G			
RBW/VBW:			⊠9/30kHz				20/300kHz 🛛 1/3M				
Type of Facility	/:		⊠ SAC(30I	kHz to 1	,	()					
Distance:			⊠ 3meter								
Arrangement o	of EUT:		⊠ Table-to	p only		loo	r-standing	only	□ Rack N	/loun	ited
Frequency (MHz)	Orthog	onal	Detector	POL	Emissic (dBuV/		Limit (dB)		Margin (dB)	1	Comments
	V		QP	н	47.32	1	60.83	3	13.51		PASS
	Х		QP	V	47.05	1	60.83	3	13.78		PASS
867.84	Y		QP	Н	47.32	1	60.83	3	13.51		PASS
007.04	T		QP	V	47.06	1	60.83	3	13.77		PASS
	z		QP	Н	47.34	.1	60.83	3	13.49		PASS
	2		QP	V	47.34	1	60.83	3	13.49		PASS
1301.76	Y		Peak	Н	UNF ²	2	73.98	3	N/A ³		PASS
1001.70			AVG	н	UNF ²	2	53.98	8	N/A ³		PASS
2169.6	Y		Peak	н	UNF ²	2	80.83	3	N/A ³		PASS
2100.0			AVG	н	UNF ²	2	60.83	3	N/A ³		PASS
2603.52	Y		Peak	Н	UNF ²	2	80.83	3	N/A ³		PASS

Page 23 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

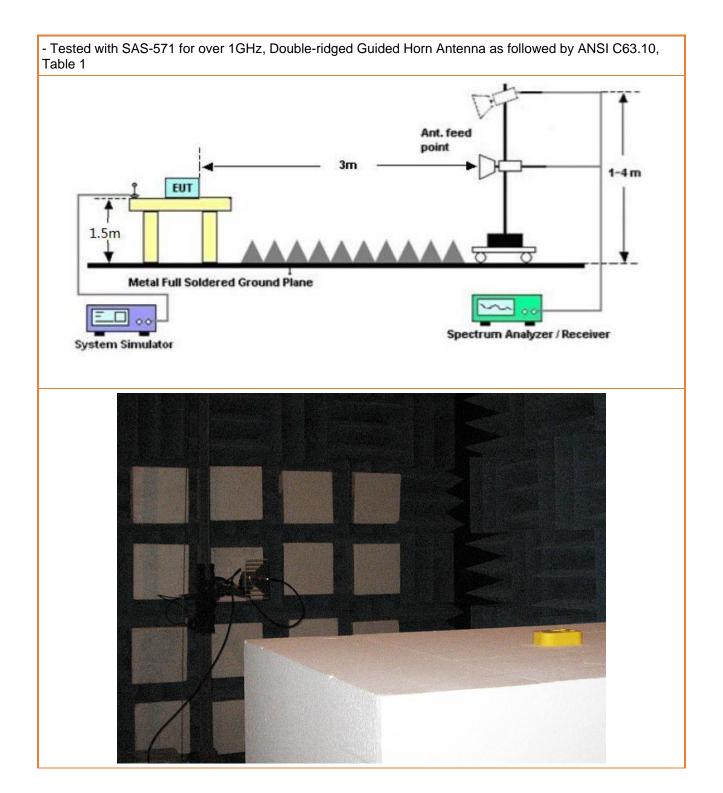
	AVG	н	UNF ²	60.83	N/A ³	PASS
V	Peak	н	UNF ²	80.83	N/A ³	PASS
ř	AVG	н	UNF ²	60.83	N/A ³	PASS
V	Peak	н	UNF ²	80.83	N/A ³	PASS
Ī	AVG	н	UNF ²	60.83	N/A ³	PASS
V	Peak	н	UNF ²	73.98	N/A ³	PASS
ř	AVG	н	UNF ²	53.98	N/A ³	PASS
V	Peak	н	UNF ²	73.98	N/A ³	PASS
ř	AVG	Н	UNF ²	53.98	N/A ³	PASS
	Y Y Y Y	Y Peak AVG Peak AVG AVG Y Peak AVG Y Peak	$\begin{array}{c} \mbox{Peak} & \mbox{H} \\ \mbox{AVG} & \mbox{H} \\ \mbox{Peak} & \mbox{H} \\ \mbox{Peak} & \mbox{H} \\ \mbox{Y} & \mbox{Peak} & \mbox{H} \\ \mbox{AVG} & \mbox{H} \\ \mbox{AVG} & \mbox{H} \\ \mbox{AVG} & \mbox{H} \\ \mbox{AVG} & \mbox{H} \\ \mbox{Peak} & \mbox{H} \end{array}$	$\begin{array}{c cccc} & & & & & \\ Peak & H & UNF^2 \\ \hline AVG & H & UNF^2 \\ \hline Peak & H & UNF^2 \\ \hline AVG & H & UNF^2 \\ \hline Y & \hline Peak & H & UNF^2 \\ \hline AVG & H & UNF^2 \\ \hline Peak & H & UNF^2 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Note 1) Measued by CISPR quasi-peak detector, all emissions were under noise floor. Note 2) UNF:Under Noise Floor, all emissions were under noise floor. Note 3) Cause of all emissions was under Noise Floor.

Compliant 🖂	Non Compliant 🗆	Net Applieghle	
	Non-Compliant 🗆	Not Applicable 🗆	

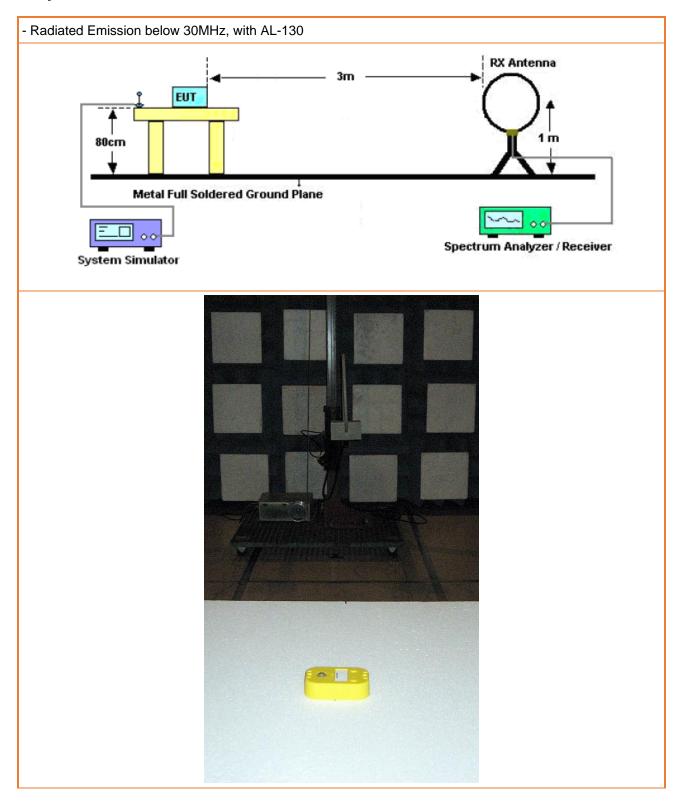
Test setup

Description of test set-up:						
The EUT was placed on a 0.8 m for under 1GHz and 1.5m for over 1GHz non-conducting table above a Turn table in SAC.						
The EUT was set to Operation Mode #1 with configuration M	The EUT was set to Operation Mode #1 with configuration Mode #1, 2 & 3.					
EUT Antenna	Spectrum Anlayzer					
SAC						


Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 25 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.


Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 26 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

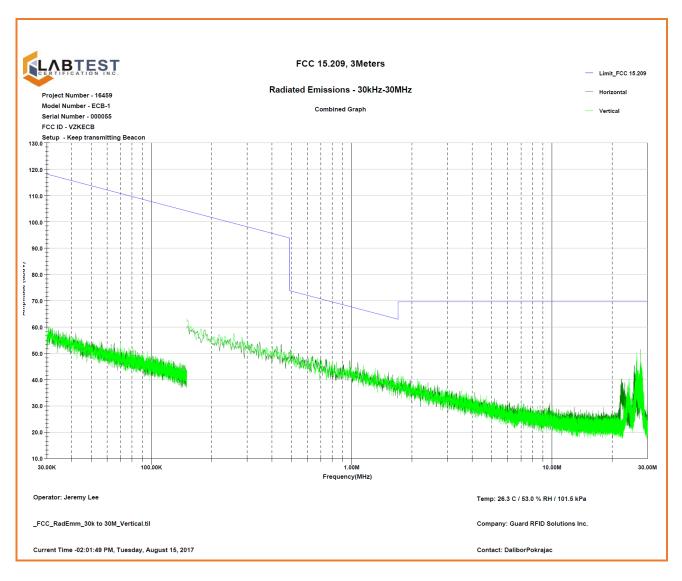
Page 27 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Measurement Procedure

This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.


A test was made with an Spectrum Analyzer, controlled by Test Software, Tile7!, for all Harmonics with the Analyzer in the peak mode. The IF bandwidth was 120 kHz(under 1GHz) and 1MHz(over 1GHz). To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Measurements were then made using CISPR quasi peak(under 1GHz) and Averaging (over 1GHz). It was repeated again for three different Orthogonals as described in configuration mode. The numerical results are included herein to demonstrate compliance. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Test Result Emission level (dBuV/m) = Detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

Page 28 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

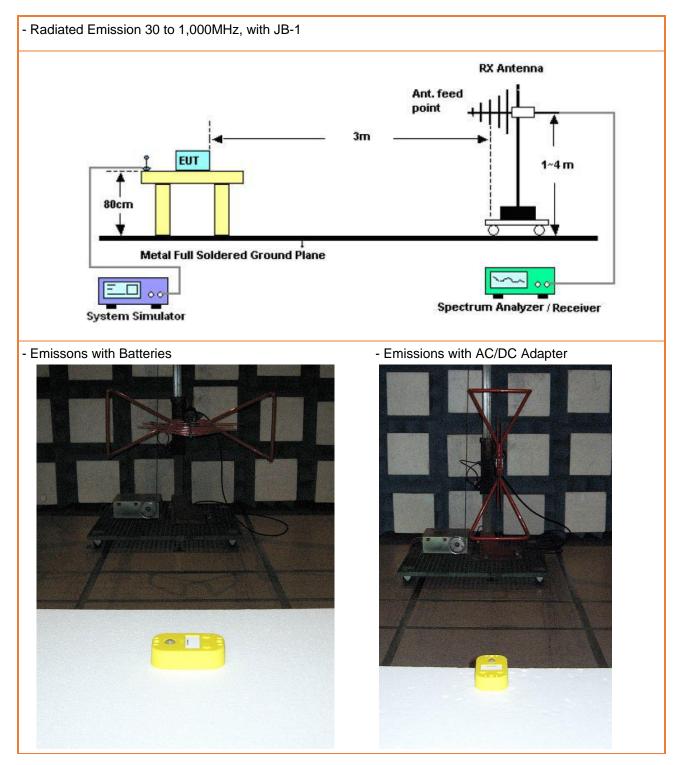
Graphical Representation for Emission - Radiated 30kHz to 30MHz

Page 29 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Radiated Emissions for Digital Parts and Receiver


Governing Doc	FCC 15.109(a) & ICES- 003	Room Ter	Room Temperature (°C)			25.2 & 26.3	
Basic Standard	ANSI C63.4:2014	Relative H	lumidity (%)		53.0	
Test Location	Richmond	Barometri	c Pressure	(kPa)	10	1.4 & 101.5	
Test Engineer	Jeremy Lee	Date			03 & 2	2 August 2017	
EUT Voltage	🛛 🛛 Batteries, 4 X AA	⊠ 1	20VAC @	60Hz			
Test Equipment Used	Manufacturer	Model	Identifier	Calik	oration	Calibration due	
Spectrum Analyzer	KeySight	N9038A	702	18-Apr-2017		18-Apr-2018	
Broadband Antenna	Sunol	JB1	371	29-Mar-2016		29-Mar-2018	
AC Power Source	California Instrument	5001i	059	NCR		NCR	
EMC Shielded Enclosure	USC	USC-26	374	NCR ¹		NCR ¹	
Note1) NCR = No Calibi	ration Required, but NSA	was done at 2	016.				
Frequency Range:	⊠ 30kHz-30MHz	⊠ 30-1000N	1Hz		1-6GHz		
Detector:	☑ Peak (for Prescan)	🛛 Quasi-Pe	ak(for Form	nal)			
RBW/VBW:	⊠ 9/30kHz	⊠ 120/300k	Hz		1/3MHz		
Type of Facility:	⊠ SAC	□ FSOATS	□ FSOATS		🗆 in-situ		
Distance:	⊠ 3meter	10meter	□ 10meter □		1meter		
Arrangement of EUT:	☑ Table-top only	□ Floor-star	□ Floor-standing only		Rack Mo	unted	
Classification:	⊠ Class B	Class A					
Compliant 🖂	Non-Compliant		Not Ap	plicable	e 🗆		

Test setup

Description of test set-up:					
The EUT was placed on a 0.8 m non-conducting table above a Turn table in SAC. The EUT was set to Operation Mode #1 with configuration Mode #1 for Battery Operated and Operation Mode #2 with configuration Mode #4 with AC/DC adapter.					
EUT	Antenna	Spectrum Anlayzer			
SAC					

Page 30 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 31 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Measurement Results

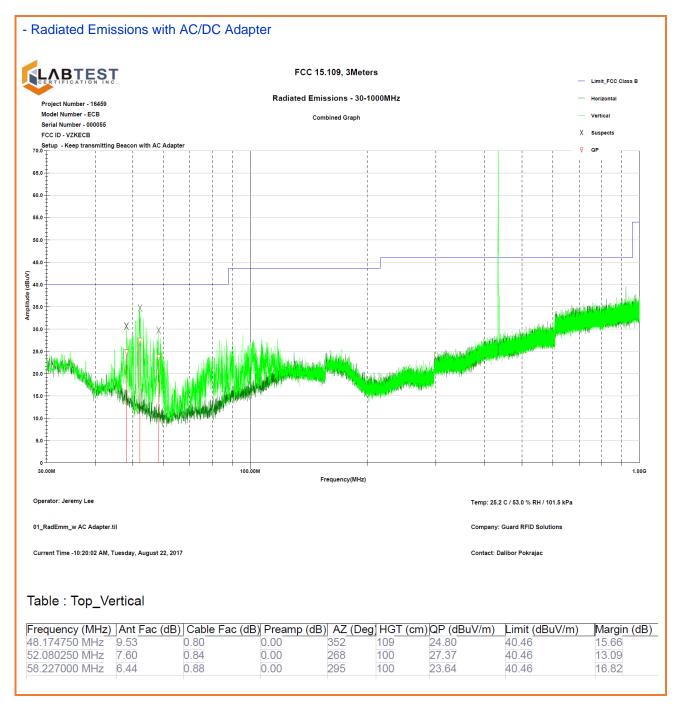
This test measures the radiating levels from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified by positioning a broadband receive antenna three meter from the EUT.

A scan was made with an EMC Analyzer, controlled by EMC Test Software, Tile7!, from 30kHz to 1,000 MHz with the receiver in the peak mode. The receiver IF bandwidth was 9/120 kHz and scan step was about 3/30kHz. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. Under 30MHz was only tested at 1meter height and Antenna was changed both polarization, Horizontal and Vertical. Measurements were then made using CISPR quasi peak when the peak readings were within 10dB of the limit line. The numerical results are included herein to demonstrate compliance.

Test Result

Emission level (dBuV/m) = Quasi-Peak detected level (dBuV) +Cable Loss (dB) + Antenna Factor (dB/m)

Page 32 of 41


Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Graphical Representation for Emission - Radiated 30MHz to 1GHz

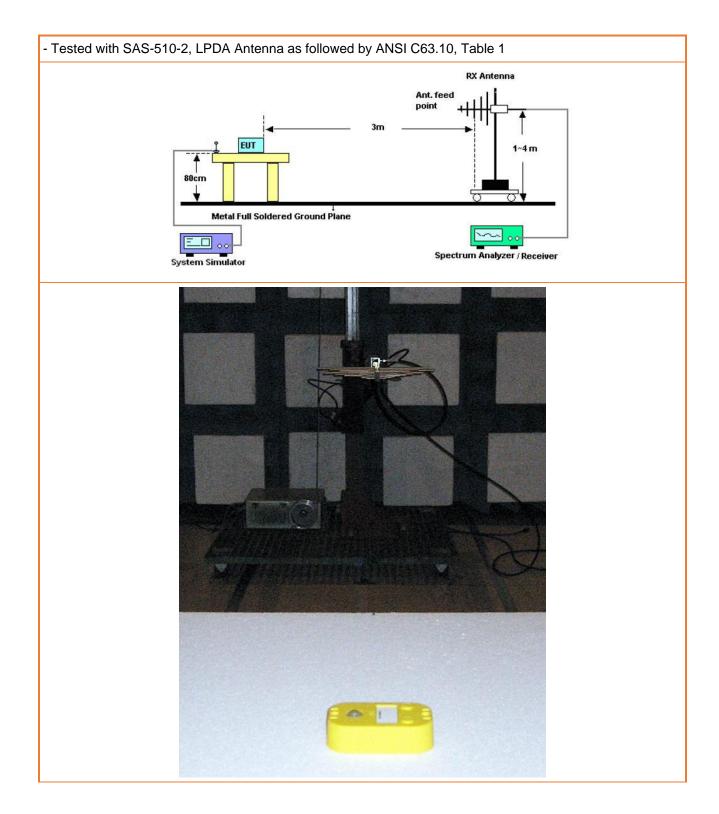
Page 33 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 34 of 41

Client: Guard RFID Solutions Report No.:16459-1E Revision No.:1

Governing Doc	FCC Part 15 Annex A.3	FCC Part 15.231(c) & RSS-210, Annex A.3		R	Room Temperature (°C)		25.8	
Basic Standard	ANSI C63.10	ANSI C63.10:2013, Clause 6.9			Relative Hu	midity (%)	35	
Test Location	Richmond				Barometric	Pressure	101.4	
Test Engineer	Jeremy Lee				Da	te	24 May 2017	
EUT Voltage	⊠ Batt	eries, 4 X AA	A					
					11.00			
Test Equipment Use			Mode		Identifier	Calibration	Calibration due	
Spectrum Analyzer		-	N9038		702	27-Apr-2017	27-Apr-2018	
LPDA Antenna	A.H.Sy	stems	SAS-51)-2	227B	08-Dec-2015	08-Decr-2017	
EMC Shielded Enclosu	ure US	SC	USC-2	6	374	NCR	NCR	
Note) NCR = No Cal	ibration Require	d						
Frequency(MHz)	Test Method	Bandwidth	(kHz)	Limit(kHz)		Margin(kHz)	Comments	
433.92	20dB ¹	20dB ¹ 961.4		10	84.8	123.4	PASS	
455.92	99% ²	1040.8	3	10	84.8	40	PASS	
Note 1) referenced by FCC 15.231(c), "The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier." Note 2) referenced by RSS-210, Annex A.3, "The 99% bandwidth of momentarily operated devices shall be less or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz."								
Compliant 🛛 Non-Compliant 🗆 Not Applicable 🗆								
Test setup								
Description of test set	-up:							
The EUT was placed The EUT was set to (0				n SAC.		


The Bandwidth of the emission

The EUT was set to Operation Mode #1 with configuration Mode #1.

Page 35 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Page 36 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Results

Kowight Sp	ectrum Analyzer - Occ	unied DW/					(
Keysight Spi	RF 50 Ω	·	SENSE:INT		ALIGN AUTO	06:42:02 PM Jul 26, 2017		
x dB -20.			Center Freg: 433.9750	00 MHz	ALIGN AUTO	Radio Std: None	Mea	as Setup
хав-20	.00 ав		Trig: Free Run	Avg Hold	1:>10/10	Ruulo Sta. Hone		
	PREAMP	#IFGain:Low	#Atten: 20 dB			Radio Device: BTS	Avg	Hold Num
							0	10 Off
10 dB/div	Ref -25.0	0 dBm					<u>On</u>	OII
-35.0			MMM.					AvaMada
		N/V	1 L ~ h	vi .				Avg Mode
-45.0		m. Amp M	PV.	1 Mh	1		Exp	Repeat
-55.0		MM M		"\p#	ha Mh		-	
-65.0	Mypromp			r	W) N			
-75.0	᠂ᡯᢣᡧᢢᡗ᠅᠂᠂ᡟ					╺╺╴╴╎╎╴╎╹┶╢╜╴┤		
-85.0 😽 🖊 🖊							1	
-95.0						_		
-105							% of O	BW Power
-115								99.00 %
Center 4						Span 3 MHz		our Dof
Res BW	27 kHz		VBW 270 kH	Z		Sweep 4.933 ms		ower Ref
0			Total Po		40.0	dBm		otal Power
Occu	pied Band			Jwer	-10.9	ubili		
		1.0408 M⊦	Z					x dB
Trane	mit Eroa Err	or -14.052 k	Hz % of OB		or 00	.00 %		-20.00 dB
	mit Freq Err				ei 99	.00 %		
x dB E	Bandwidth	961.4 k	Hz x dB		-20.0	00 dB		
								More
								1 of 2
MSG					STATUS			

Page 37 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

APPENDIX A: ISO 17025:2005 Accreditation Certificate

CERTIFICATE OF ACCREDITATION

ANSI-ASQ National Accreditation Board

500 Montgomery Street, Suite 625, Alexandria, VA 22314, 877-344-3044

This is to certify that

Labtest Certification, Inc. 3128, 20800 Westminster HWY Richmond B.C. V6V 2W3

has been assessed by ANAB and meets the requirements of international standard

ISO/IEC 17025:2005

while demonstrating technical competence in the field of

TESTING

Refer to the accompanying Scope of Accreditation for information regarding the types of tests to which this accreditation applies.

<u>AT-2033</u> Certificate Number

ANAB Approval

Certificate Valid: 08/07/2017-03/04/2018 Version No. 004 Issued: 08/07/2017

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Page 38 of 41

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Labtest Certification, Inc.

3128, 20800 Westminster HWY Richmond, B.C. V6V 2W3 Kavinder Dhillon Ruben Ugarte Phone: 604-247-0444 kdhillon@labtestcert.com ruben Ugarte@labtestcert.com www.labtestcert.com

TESTING

Validto: March 4, 2018

Certificate Number: A T-2033

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Device Examples Scope of Accreditation		Comments		
Unintentional Radiators (FCC Part	 ANSI C63 4-2014 				
15, Subpart B)					
Industrial, Scientific, and Medical	 FCC MP-5, (February 1986) 				
Equipment (FCC Part 18)	X X ALALA				
 Consumer ISM equipment 					
Intentional Radiators	 ANSI C63.10-2013 				
(FCC Part 15 Subpart C)					
UPCS(FCC Part 15, Subpart D)	 ANSI C63.17-2013 				
 Unlicensed Personal 					
Communication Systems devices					
U-NII without DFS Intentional	 ANSI C63.10-2013 	KD B Publication 789033			
Radiators (FCC Part 15, Subpart E)					
 Unlicensed National Information 					
Infrastructure Devices (U-NII					
without DFS)					
U-NII with DFS Intentional	 FCC KD B Publication 				
Radiators (FCC Part 15 Subpart E)	905462 D02 UNII DFS				
 Unlicensed National Information 	Compliance Procedures New				
Infrastructure U-NII) Devices with	Rules v01 (April 8,2016)				
Dynamic Frequency Selection (DFS)					
UWB Intentional Radiators (FCC	 ANSI C63.10-2013 				
Part 15, Subpart F)					
•Ultra-wideband Operation					
BPL Intentional Radiators (FCC Part	 ANSI C63.10-2013 				
15, Subpart G)					
 Access Broadband Over Power 					
Line (Access BPL)					
White Space Device Intentional	 ANSI C63.10-2013 				
Radiators (FCC Part 15, Subpart H)					
 White Space Devices 					

Version 003 Issued: 08/07/2017

www.anab.org

Pagel of 8

Page 39 of 41

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments	
Commercial Mobile Services (FCC Licensed Radio Service Equipment) •Part 22 (celhular) •Part 24	 ANSI/TIA-603-D TIA-102.CAAA-D 	KDB Publication 971168		
•Part 25 (non-microwave) •Part 27				
General Mobile Radio Services (FCC Licensed Radio Service Equipment) •Part 22 (non-celhilar) •Part 90 (non-microwave) •Part 95	 ANSI/TIA-603-D TIA-102.CAAA-D 		Microwave Frequencies, as used in this part, refers to frequencies of 890 MHz and above.	
•Part 97 •Part 101 (non-microwave)				
Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment) •Part 96	ANSI/TIA-603-D TIA-102.CAAA-D	KD B Publication 971168		
Maritime and Aviation Radio Services (FCC Licensed Radio Service Equipment) •Part 80	ANSL/TIA-603-D			
•Part 87 Microwave and Millimeter Bands Radio Services (FCC Licensed Radio Service Equipment)	ANSI/TIA-603-D TIA-102.CAAA-D			
•Part 25 •Part 74 •Part 90 (90 Y, 90 Z, D SRC) •Part 101				
Broadcast Radio Services (FCC Licensed Radio Service Equipment) •Part 73 •Part 74 (non-microwave)	 ANSI/TIA-603-D TIA-102.CAAA-D 			
RF Exposure •Devices subject to SAR requirements	 IEEE 3td 1528⁷⁷⁴-2013 	KD B Publication 865664 KD B Publication 447498		
Hearing Aid Compatibility (Part 20) •HAC for Commercial mobile services	 ANSI C63.19-2007; or ANSI C63.19-2011 			

Version 003 Issued: 08/07/2017

www.anab.org

Page 40 of 41

Page 2 of 8

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client:Guard RFID Solutions Report No.:16459-1E Revision No.:1

Testing performed in support of FCC DoC and Certification approval procedures

Type of Device Examples	Scope of Accreditation	Supporting FCC Guidance	Comments
Signal Boosters (Part 20) •Wideband Consumer signal boosters •Provider-specific signal boosters •Industrial signal boosters	 FCC KD B Publication 935210 D03 Signal Booster Measurements v04(February 12,2016) FCC KD B Publication 935210 D04 Provider Specific Booster Measurements v02 (February 12,2016) FCC KD B Publication 935210 D05 Indus Booster Basic Meas v0 Ir01 (February 12,2016) 		

Electromagnetic Compatibility (EMC)

Test Method	Test Specification(s)	Range	Comments
Unintentional Radiators	AN SI C63.4-2003 AN SI C63.4-2009		
Radiated and Conducted Emissions	AN SI C63.4:2014; FCC 0 ST/MP-05 (1986); ICES-001(2006); ICES-003(2013); ICES-003(2016); ICES-005(2009); CISPR 16-1-1(2015); CISPR 16-1-2(2014); CISPR 16-1-3(2006); CISPR 16-2-3(2014); CISPR 16-2-2(2010); CISPR 16-2-3(2014); EN 55016-1-2(2014); EN 55016-1-2(2014); EN 55016-1-3(2006); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-2(2011); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); EN 55016-2-3(2014); UCCI V-3 (up to 6 GHz); VCCI V-5; CNS 13438	9 kHz to 40 GHz	

Version 003 Issued: 08/07/2017

www.anab.org

Page 3 of 8

END OF REPORT

Page 41 of 41