

RF Exposure Evaluation

REPORT

For

Guard RFID Solutions Inc.

#140 – 766 Cliveden Place Delta, British Columbia V3M 6C7, Canada

Date: 05 January 2022

Project No.: 20665
FCC ID: VZKAT6
IC ID.: 9937A-AT6
Equipment: WiFi Asset Tag

Model No.: AT-6

Labtest Certification

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

ISO 17020 Accredited

ISO 17025 accredited

ISO 17065 Accredited

Unit 205 – 8291 92 ST., Delta, BC V4G 0A4, Canada Phone: 604-247-0444 Fax: 604-247-0442 www.labtestcert.com

Standard: FCC § 1.1310 - Radiofrequency radiation exposure limits

Specific absorption rate (SAR) shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in FCC § 1.1307(b) within the frequency range of 100 kHz to 6 GHz (inclusive). FCC 1.1310 states the criteria listed in table 1 below shall be used to evaluate the environmental impact of human exposure to RF radiation as specified in FCC § 1.1307(b) for uncontrolled Exposure for most devices. Portable devices shall be evaluated according to the provisions of FCC § 2.1093. Further information on evaluating compliance with these limits can be found in the FCC's OST/OET Bulletin Number 65, "Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation".

FCC § 1.1310 Table 1—Limits for Maximum Permissible Exposure (MPE)

(ii) Limits for General Population/Uncontrolled Exposure

Frequency (MHz)	Electric Field (V/m)	Magnetic Field (A/m)	Power Density (mW/cm²)	Averaging time (minutes)	
0.3-1.34	614	1.63	*100	30	
1.34-30	824/f	2.19/f	*180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1500	-	-	f/1500	30	
1500-100,000	-	-	1	30	

f = frequency in MHz

^{* =} Plane-wave equivalent power density

RF Exposure Evaluation

Description:

The Friis transmission formula is used to calculate the power density:

 $Pd = (Pout*G) / (4*\pi*R^2) = EIRP/(4*\pi*R^2)$

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

R = distance between observation point and center of the radiator in cm

 $EIRP = Equivalent \ isotopically \ radiated \ power \ (mW) = 10^{\ [(TX\ Power\ (dBm)\ +\ Ant\ Gain\ (dBi))/10]}$

For this method of calculation, this device's antenna must be mounted in a location that provides a distance of at least 20 cm to any person that may be in the area of the transmitter.

Calculation:

Information of the EUT is added in the below table.

Frequency (MHz)	Conducted Output Peak Power (dBm)	Max Antenna Gain (dBi)	Max EIRP (mW)	Power Density (mW/cm²)	Distance (cm)
2412-2462	4.6	2.17	4.75	0.000945	20

Conclusion:

From FCC § 1.1310 Table 1, the Maximum Power Density safe exposure level for General Population Uncontrolled Exposure of 30 minutes for the frequency range of 1500-100,000 MHz is 1 mW/cm 2 . Therefore, this EUT passes by (1 - 0.000945) = 0.999055 mW/cm 2 .