FCC 47 CFR PART 15 SUBPART E

TEST REPORT

For

Wireless Hotspot Gateway / Enterprise Access Point

Trade Name / Model:

Brand	Model	Product Description
4ipnet	EAP300	Enterprise Access Point
4ipnet	EAP305	Enterprise Access Point
4ipnet	EAP306	Enterprise Access Point
4ipnet	HSG300	Wireless Hotspot Gateway
Cipherium	A600	Enterprise Access Point
Cipherium	W1160	Wireless Hotspot Gateway
USC	A600	Enterprise Access Point
USC	W1160	Wireless Hotspot Gateway

Issued to

4IPNET, INC. 3F-3, No. 369, Fusing N. Rd., Taipei 105, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.
No. 11, Wu-Gong 6th Rd., Wugu Industrial Park,
Taipei Hsien 248, Taiwan (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com

Date of Issue: March 25, 2011

Page 1 Rev. 00

Date of Issue: March 25, 2011

TABLE OF CONTENTS

1. TE	ST RESULT CERTIFICATION	3
2. EU	T DESCRIPTION	4
3. TE	ST METHODOLOGY	6
3.1	EUT CONFIGURATION	6
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	
4. INS	STRUMENT CALIBRATION	9
4.1	MEASURING INSTRUMENT CALIBRATION	9
4.2	MEASUREMENT EQUIPMENT USED	
4.3	MEASUREMENT UNCERTAINTY	
5. FA	CILITIES AND ACCREDITATIONS	11
5.1	FACILITIES	11
5.2	EQUIPMENT	
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	
6. SE	TUP OF EQUIPMENT UNDER TEST	13
6.1	SETUP CONFIGURATION OF EUT	13
6.2	SUPPORT EQUIPMENT	
7. FC	CC PART 15 REQUIREMENTS	14
7.1	26 db emission bandwidth	14
7.2	PEAK POWER	23
7.3	BAND EDGES MEASUREMENT	
7.4	PEAK POWER SPECTRAL DENSITY	39
7.5	PEAK EXCURSION	50
7.6	RADIATED UNDESIRABLE EMISSION	
7.7	CONDUCTED UNDESIRABLE EMISSION	
7.8	POWERLINE CONDUCTED EMISSIONS	
7.9	FREQUENCY STABILITY	
APPEN	NDIX I RADIO FREQUENCY EXPOSURE	58
APPEN	NDIX II PHOTOGRAPHS OF TEST SETUP	58
APPEN	NDIX 1 - PHOTOGRAPHS OF EUT	

Date of Issue: March 25, 2011

1. TEST RESULT CERTIFICATION

Applicant: 4IPNET, INC.

3F-3, No. 369, Fusing N. Rd., Taipei 105, Taiwan, R.O.C.

Equipment Under Test: Wireless Hotspot Gateway / Enterprise Access Point

Trade Name / Model:

Brand	Model	Product Description
4ipnet	EAP300	Enterprise Access Point
4ipnet	EAP305	Enterprise Access Point
4ipnet	EAP306	Enterprise Access Point
4ipnet	HSG300	Wireless Hotspot Gateway
Cipherium	A600	Enterprise Access Point
Cipherium	W1160	Wireless Hotspot Gateway
USC	A600	Enterprise Access Point
USC	W1160	Wireless Hotspot Gateway

Date of Test: January 24 ~ March 21, 2011

APPLICABLE ST	TANDARDS
STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart E	No non-compliance noted

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by: Reviewed by:

Rex Lai Gina Lo Section Manager Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 3 Rev. 00

Gina Lo

2. EUT DESCRIPTION

Product	Wireless Hotspot Gateway / Enterprise Access Point					
		Brand	Model	P	roduct Description	1
		4ipnet	EAP300		terprise Access Poin	
		4ipnet	EAP305	En	terprise Access Poin	nt
75 1 N		4ipnet	EAP306	En	terprise Access Poin	nt
Trade Name /		4ipnet	HSG300	Wir	eless Hotspot Gatev	vay
Model Name		Cipherium	A600		terprise Access Poi	
		Cipherium	W1160	Wir	eless Hotspot Gatev	vay
		USC	A600	En	terprise Access Poin	nt
		USC	W1160	Wir	eless Hotspot Gatev	vay
Model Difference	All the	specification	and layou	t are i	dentical except they	come with
Middel Difference	differe	nt model nun	nbers for m	arketi	ing purposes.	
	APD /	WA-24E12				
Power Supply	I/P: 10	0-240V, 50-6	60Hz, 0.65 <i>A</i>	4		
	O/P: 12	2V, 2A				
			Mode		Frequency Range (MHz)	
Operating Frequency Range		1	IEEE 802.11a		5180 - 5220	
& Number of Channels	UNII I		.11n HT 20 MHz		5180 – 5220	
	IEEE 90	2.11a mode / 51	.11n HT 40 MHz		5190 ~ 5210	
Transmit Power						
	IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz: 12.31 dBm IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz: 11.51 dBm					
Modulation Technique	OFDM	(QPSK, BPS	SK, 16-QA	M, 64	I-QAM)	
	IEEE 8	02.11a mode	: 54, 48, 36	5, 24,	18, 12, 9, 6 Mbps	
	IEEE 802.11n HT 20 MHz mode: OFDM (6.50, 13.00, 19.50, 26.00,					
	39.00, 52.00, 58.50, 65.00, 78.00, 104.0, 117.0, 130.0,					
Transmit Data Rate	156.0, 175.5, 195.0Mbps)					
	IEEE 802.11n HT 40 MHz mode: OFDM (13.50, 27.00, 40.50,					
	54.00, 81.00, 108.0, 121.5, 135.0, 162.0, 216.				216.0,	
	243.0, 270.0, 324.0, 364.5, 405.0Mbps)					
	Antenna Type: Omni Antenna					
Antenna Specification	Antenna Gain: 5 dBi					
	Antenna Calculation for MIMO Mode:					
	$5 \text{ dBi} + 10 \log (3) = 9.7 \text{ dBi (Numeric gain: 9.3)}$					

Page 4 Rev. 00

Operation Frequency

UNLICENSED NATIONAL INFORM	IATION INFRASTRUCTURE (U-NII)
CHANNEL	MHz
36	5180
38	5190
40	5200
44	5220
46	5230

Date of Issue: March 25, 2011

Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>VZ9110001</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

Page 5 Rev. 00

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 Radiated testing was performed at an antenna to EUT distance 3 meters.

Date of Issue: March 25, 2011

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2 EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Ouasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 6 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: March 25, 2011

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 7 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: HSG300) had been tested under operating condition.

The EUT is a 3x3 configuration spatial MIMO (3Tx & 3Rx) without beam forming function that operate in triple TX chains and triple RX chains. The 3x3 configuration is implemented with three outside TX & RX chains (Chain 0, Chain 1 and Chain 2).

Date of Issue: March 25, 2011

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

IEEE 802.11a mode / 5180 ~ 5220MHz:

Channel Low (5180MHz), Channel High (5220MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz:

Channel Low (5180MHz), Channel High (5220MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz:

Channel Low (5190MHz) and Channel High (5210MHz) with 13.5Mbps data rate were chosen for full testing.

Page 8 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: March 25, 2011

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

	Condu	cted Emissions Test Site		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/02/2012

	Wugu 966 Chamber A				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/03/2011	
EMI Test Receiver	R&S	ESCI	100064	02/03/2012	
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/12/2012	
Pre-Amplifier	MITEQ	AFS44-00102650- 42-10P-44	1415367	11/19/2011	
Bilog Antenna	Sunol Sciences	JB3	A030105	10/06/2011	
Horn Antenna	EMCO	3117	00055165	01/12/2012	
Loop Antenna	EMCO	6502	8905/2356	06/10/2013	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Site NSA	CCS	N/A	N/A	12/26/2011	
Test S/W		EZ-EMC	(CCS-3A1RE)		

Conducted Emission room #1				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N.	SCHWARZBECK	NNLK 8121	8121-308	MAR. 08, 2012
TEST RECEIVER	Rohde & Schwarz	ESCS 30	100348	JUL. 13, 2011
BNC COAXIAL CABLE	CCS	BNC50	11	OCT. 04, 2011
Test S/W		,	04211c) (2.27)	

Page 9 Rev. 00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 2.01
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0606
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9979
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5790
3M Semi Anechoic Chamber / 8G~18G	+/- 2.5928
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7212
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9520

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All	measurement facilities used to collect the measurement data are located at
	No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
	No. 11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
	No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235
	No. 8, Jiu Ceng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan (R.O.C.) Tel: 886-6-580-2201 / Fax: 886-6-580-2202

Remark: The powerline emissions test items was tested at Compliance Certification Services Inc. (Sinhua u Lab.) The test equipments were listed in page 8 and the test data, please refer page 81-82.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 11 Rev. 00

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan TAF RSS-210, RSS-310 IDA TS SRD, AS/NZS 4 ETSI EN 300 440-1, ET ETSI EN 300 220-1, ET ETSI EN 301 489-1/3/7 FCC OET Bulletin 65 + EN 50360, EN 50361, E EN 50392, IEC 62209, 0 FCC Method –47 CFR I IEC / EN 61000-3-2, IE		LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Date of Issue: March 25, 2011

Page 12 Rev. 00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

Wugu Lab.

Ŀ	· •	ugu zuwi								
	No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord		
	1.	Notebook PC	DELL	PP19L	GK102 A00	QDS-BRCM1021	LAN Cable: Unshielded, 10m	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core		
	2.	USB Dongle	Transcend	JF V85	N/A	N/A	N/A	N/A		

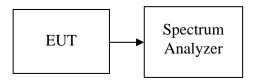
Tainan Lab.

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	R51	R33026	Power cable, unshd, 1.6m
2	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m
3	Flash Disk	Kingston	DTI/512	DoC	N/A
4	HUB	BARRICAD	SMC7008BR	DoC	Power cable, unshd, 1.6m

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev. 00


7. FCC PART 15 REQUIREMENTS

7.1 26 DB EMISSION BANDWIDTH

LIMIT

According to §15.303(c), for purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Compliance with the emissions limits is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 240kHz, VBW = 750kHz, Span = 50MHz, and Sweep = 1ms.
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.

Page 14 Rev. 00

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5180	21.895		
High	5220	22.433		

Test mode: IEEE 802.11n HT 20 MHz mode / $5180 \sim 5220 MHz$ / Chain 0

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5180	23.337		
High	5220	23.101		

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1

Channel	Frequency (MHz)	Bandwidth (MHz)	
Low	5180	23.304	
High	5220	22.711	

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5180	22.896		
High	5220	23.990		

Test mode: IEEE 802.11n HT 40 MHz mode / $5190 \sim 5210 \text{MHz}$ / Chain 0

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5190	46.638		
High	5210	45.962		

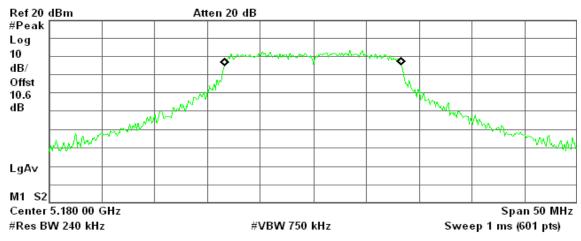
Test mode: IEEE 802.11n HT 40 MHz mode/ 5190 ~ 5210MHz / Chain 1

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5190	45.065		
High	5210	46.044		

Test mode: IEEE 802.11n HT 40 MHz mode/ 5190 ~ 5210MHz / Chain 2

Channel	Frequency (MHz)	Bandwidth (MHz)		
Low	5190	45.005		
High	5210	44.618		

Page 15 Rev. 00


Test Plot

<u>IEEE 802.11a mode / 5180 ~ 5220MHz</u>

CH Low

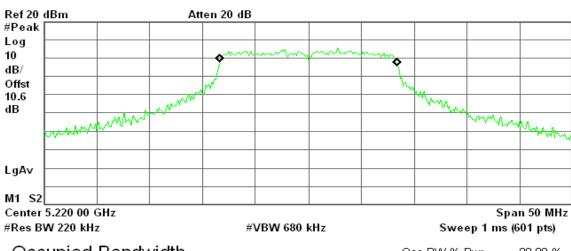
Agilent 14:22:53 Mar 2, 2011

R T

Occupied Bandwidth 16.6248 MHz

Occ BW % Pwr

99.00 %


x dB -26.00 dB

Transmit Freq Error -27.684 kHz x dB Bandwidth 21.895 MHz

CH High

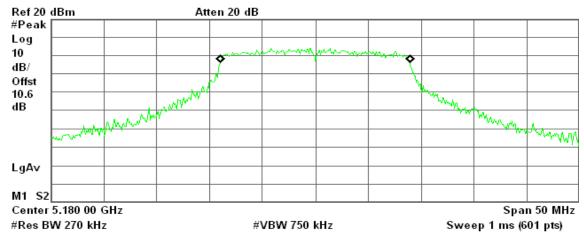
Agilent 14:28:22 Mar 2, 2011

R T

Occupied Bandwidth 16.6789 MHz Occ BW % Pwr 99.00 % -26.00 dB x dB

Transmit Freq Error 21.435 kHz x dB Bandwidth 22.433 MHz

> Page 16 Rev. 00

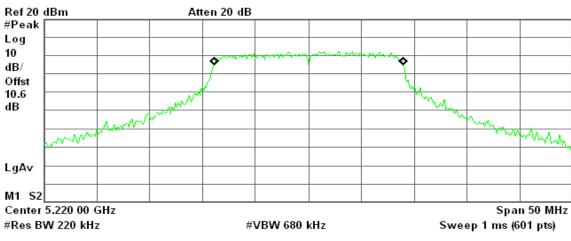

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 0

CH Low

Agilent 15:21:46 Mar 2, 2011

R T

Date of Issue: March 25, 2011


Occupied Bandwidth 17.7968 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -14.368 kHz x dB Bandwidth 23.337 MHz

CH High

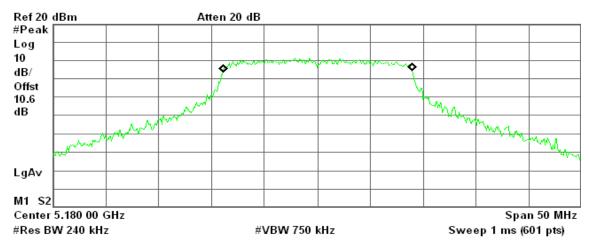
🔆 Agilent 15:29:47 Mar 2, 2011

R T

Occupied Bandwidth 17.7737 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 25.743 kHz x dB Bandwidth 23.101 MHz

Page 17 Rev. 00

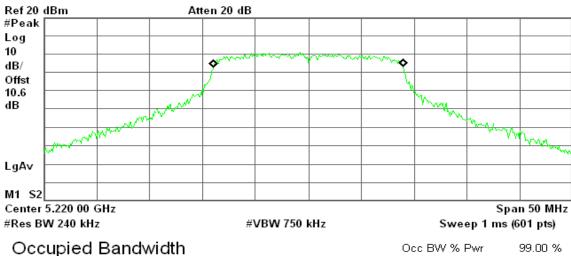

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1

CH Low

Agilent 16:46:17 Mar 2, 2011

R T

Date of Issue: March 25, 2011


Occupied Bandwidth 17.8131 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 35.939 kHz x dB Bandwidth 23.304 MHz

CH High

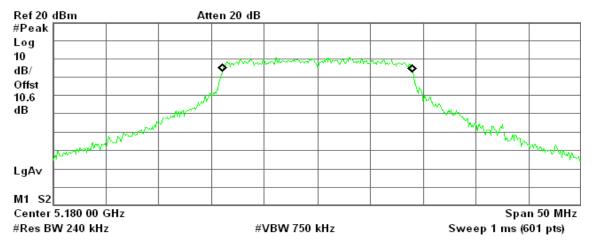
Agilent 16:33:58 Mar 2, 2011

R Т

17.7749 MHz

-26.00 dB x dB

Transmit Freq Error -485.712 Hz x dB Bandwidth 22.711 MHz


> Page 18 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

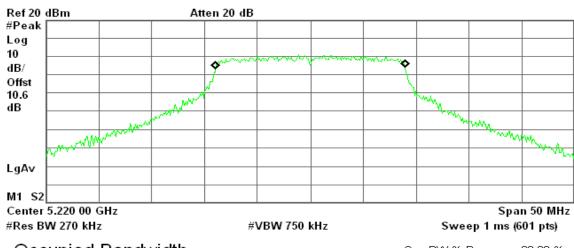
CH Low

* Agilent 17:16:29 Mar 2, 2011

RL

Occupied Bandwidth 17.8031 MHz Occ BW % Pwr 99.00 %

x dB -26.00 dB


Date of Issue: March 25, 2011

Transmit Freq Error 16.533 kHz x dB Bandwidth 22.896 MHz

CH High

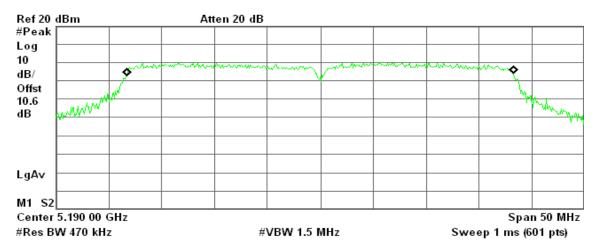
🕸 Agilent 17:22:11 Mar 2, 2011

R T

Occupied Bandwidth 17.8008 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 13.821 kHz x dB Bandwidth 23.990 MHz

Page 19 Rev. 00


IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 0

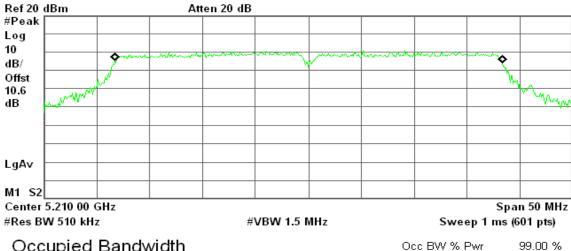
CH Low

🔆 Agilent 23:00:51 Mar 2, 2011

R T

Date of Issue: March 25, 2011

Occupied Bandwidth 36.4648 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -16.640 kHz x dB Bandwidth 46.638 MHz

CH High

Agilent 23:05:15 Mar 2, 2011

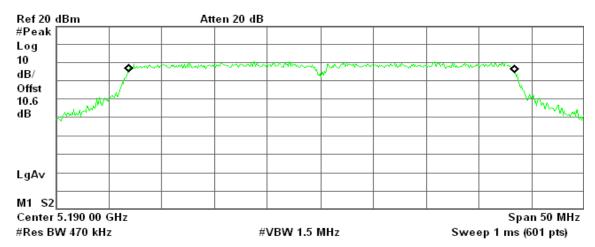
R T

Occupied Bandwidth 36.5924 MHz

x dB -26.00 dB

Transmit Freq Error 40.944 kHz x dB Bandwidth 45.962 MHz

Page 20 Rev. 00


IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 1

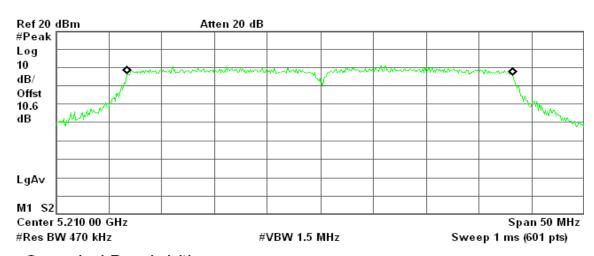
CH Low

🔆 Agilent 22:46:07 Mar 2, 2011

R T

Date of Issue: March 25, 2011

Occupied Bandwidth 36.4666 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 113.976 kHz x dB Bandwidth 45.065 MHz

CH High

Agilent 23:07:37 Mar 2, 2011

R T

Occupied Bandwidth 36.4224 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -20.499 kHz x dB Bandwidth 46.044 MHz

Page 21 Rev. 00


IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 2

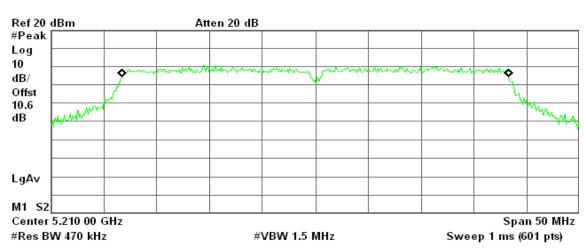
CH Low

🔆 Agilent 22:43:33 Mar 2, 2011

R T

Date of Issue: March 25, 2011

Occupied Bandwidth 36.4381 MHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 53.085 kHz x dB Bandwidth 45.005 MHz

CH High

Agilent 23:09:49 Mar 2, 2011

R T

Occupied Bandwidth 36.4972 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 28.671 kHz x dB Bandwidth 44.618 MHz

Page 22 Rev. 00

7.2 PEAK POWER

LIMIT

According to §15.407(a),

(1) For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.

Date of Issue: March 25, 2011

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The peak power shall not exceed the limit as follow:

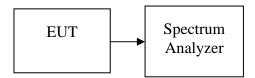
Specified Limit of the Peak Power

Test mode: IEEE 802.11a mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	26 dB Bandwidth (B) (MHz)	10 Log B (dB)	4+10 Log B (dBm)	Maximum Conducted Output Power Limit (dBm)
Low	5180	21.895	13.40	17.40	17.00
High	5220	22.433	13.50	17.50	17.00

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Chain 0 26 dB Bandwidth (B) (MHz)	Chain 1 26 dB Bandwidth (B) (MHz)	Chain 2 26 dB Bandwidth (B) (MHz)	10 Log B (dB)	4 + 10 Log B (dBm)	Maximum Conducted Output Power Limit (dBm)
Low	5180	23.337	23.304	22.896	13.68	17.68	17.00
High	5220	23.101	22.711	23.990	13.80	17.80	17.00


Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz

Channel		Frequency (MHz)	Chain 0 26 dB Bandwidth (B) (MHz)	Chain 1 26 dB Bandwidth (B) (MHz)	Chain 2 26 dB Bandwidth (B) (MHz)	10 Log B (dB)	4+10 Log B (dBm)	Maximum Conducted Output Power Limit (dBm)	
	Low	5190	46.638	45.065	45.005	16.68	20.68	17.00	

Page 23 Rev. 00

Test Configuration

The EUT was connected to a spectrum analyzer through a 50 Ω *RF cable.*

TEST PROCEDURE

Set span to encompass the entire emission bandwidth (EBW) of the signal.

Set RBW = 1 MHz / Set VBW = 3 MHz.

Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

TEST RESULTS

No non-compliance noted

Page 24 Rev. 00

Date of Issue: March 25, 2011

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Limit (dBm)	
Low	5180	16.55	17.00	
High	5220	16.59	17.00	

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	-	Total Maximum Conducted Output Power (dBm)	Limit (dBm)
Low	5180	7.31	7.33	7.76	12.24	13.30
High	5220	7.51	7.63	7.46	12.31	13.30

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz

Channel	Frequency (MHz)	Chain 0 Output Power (dBm)	Chain 1 Output Power (dBm)	-	Total Maximum Conducted Output Power (dBm)	Limit (dBm)
Low	5190	6.84	6.73	6.64	11.51	13.30
High	5210	6.67	6.62	6.72	11.44	13.30

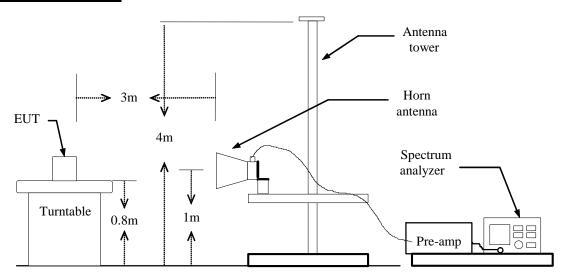
Remark:

Page 25 Rev. 00

^{1.} Total Output Power (w) = Chain 0 (10^{Output} Power 10^{1000}) + Chain 1 (10^{Output} Power 10^{1000}) + Chain 2 (10^{Output} Power 10^{1000})

^{2.} The maximum antenna gain is 9.7dBi; therefore the reduction due to antenna gain is 3.7dBi, so the limit is 13.3dBm.

7.3 BAND EDGES MEASUREMENT


LIMIT

According to §15.407(b),

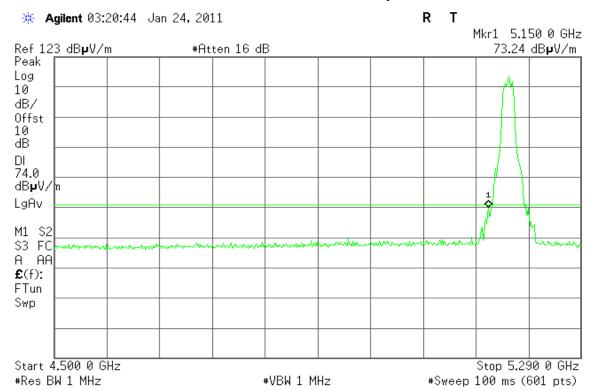
- (1) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Date of Issue: March 25, 2011

Test Configuration

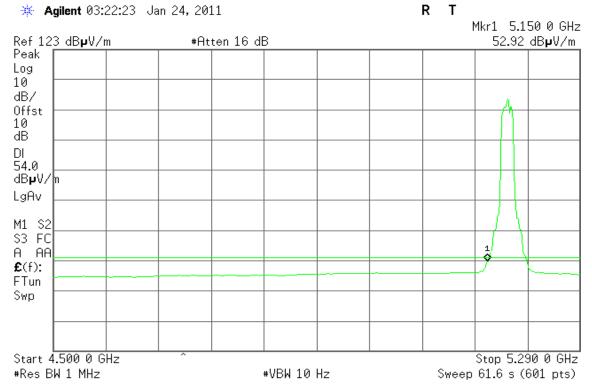
TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

Refer to attach spectrum analyzer data chart.

Page 26 Rev. 00


Band Edges (IEEE 802.11a mode / 5180 MHz)

Detector mode: Peak Polarity: Vertical

Detector mode: Average

Polarity: Vertical

Page 27 Rev. 00

Date of Issue: March 25, 2011

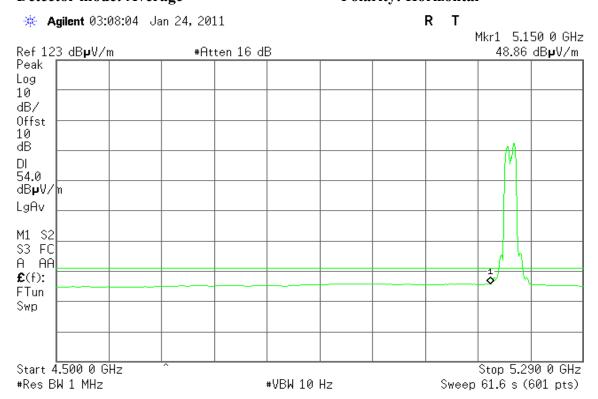
Stop 5.290 0 GHz

#Sweep 100 ms (601 pts)

Detector mode: Peak

Т R * Agilent 03:06:04 Jan 24, 2011 Mkr1 5.150 0 GHz Ref 123 dB**µ**V/m #Atten 16 dB 66.91 dB**µ**V/m Peak Log 10 dB/ Offst 10 dΒ DI 74.0 dB**p**V/þ LgAv M1 S2 Walmandyman S3 FC A AA **£**(f): FTun Swp

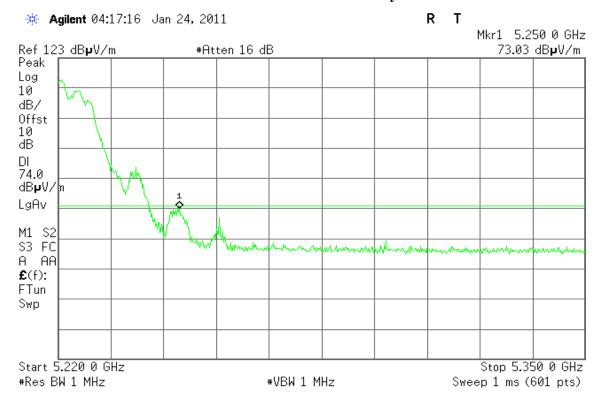
#VBW 1 MHz


Detector mode: Average

Start 4.500 0 GHz

#Res BW 1 MHz

Polarity: Horizontal

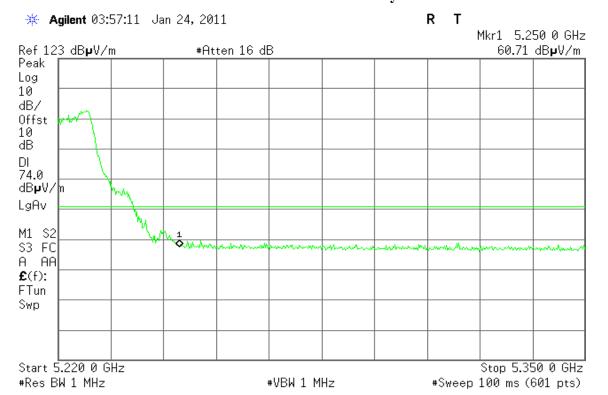

Polarity: Horizontal

Page 28 Rev. 00

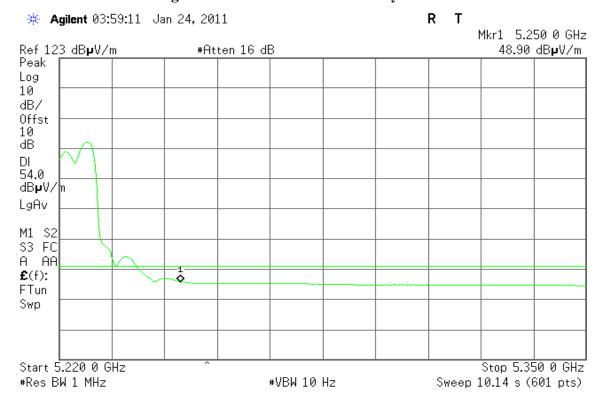

Band Edges (IEEE 802.11a mode / 5220 MHz)

Detector mode: Peak Polarity: Vertical

Detector mode: Average

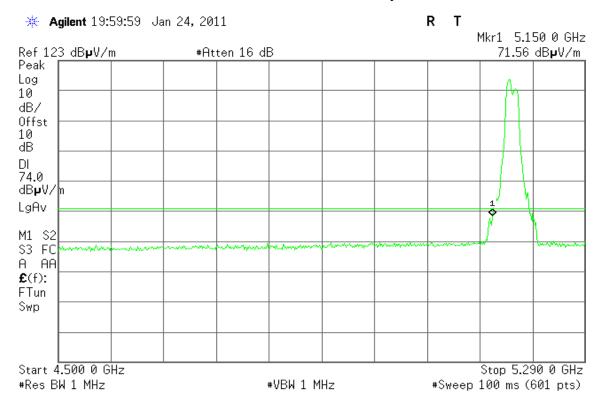

Polarity: Vertical

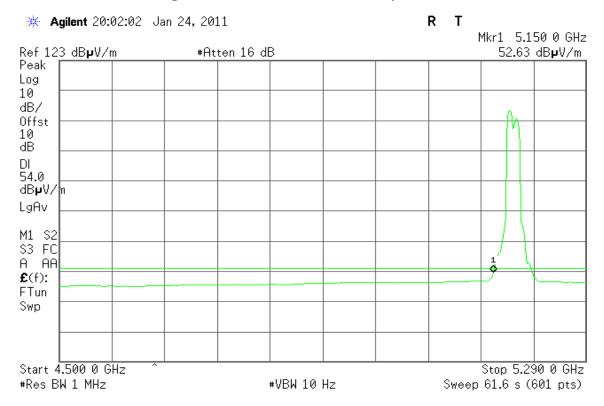
Page 29 Rev. 00


Date of Issue: March 25, 2011

Detector mode: Peak Polarity: Horizontal

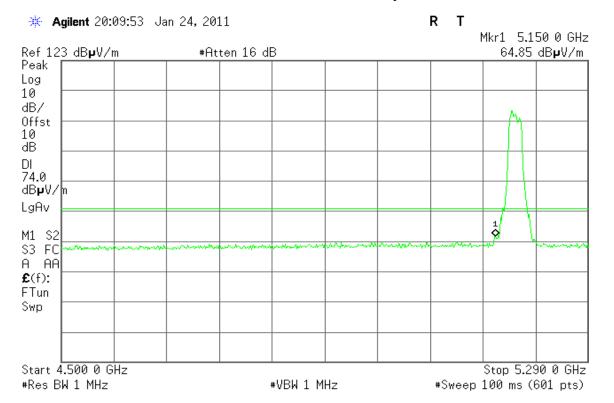
Detector mode: Average

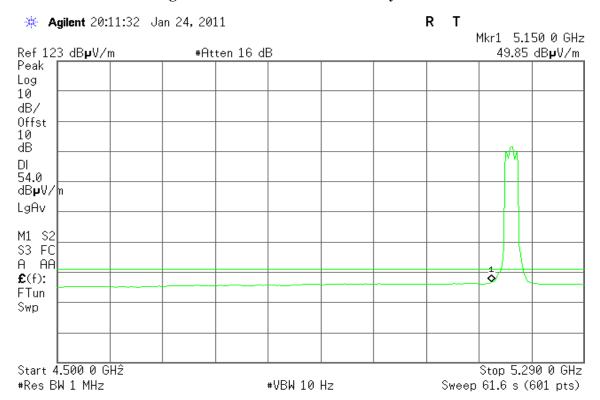

Polarity: Horizontal


Page 30 Rev. 00

Band Edges (IEEE 802.11n HT 20 MHz mode / 5180 MHz)

Detector mode: Peak Polarity: Vertical

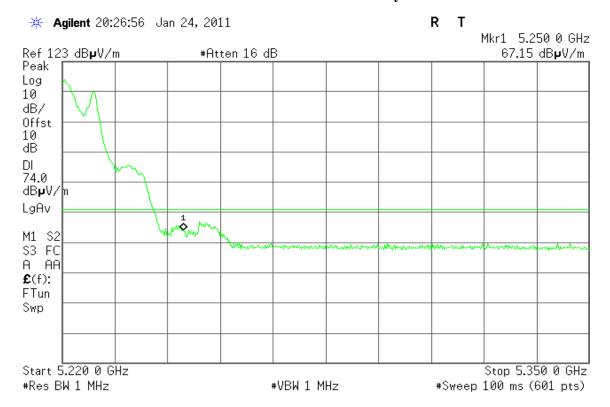

Detector mode: Average Polarity: Vertical


Page 31 Rev. 00

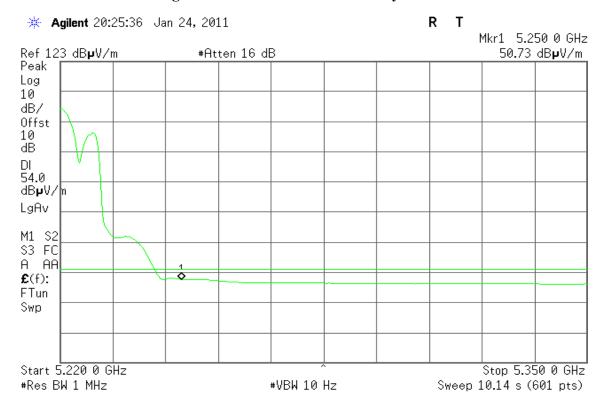
Date of Issue: March 25, 2011

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

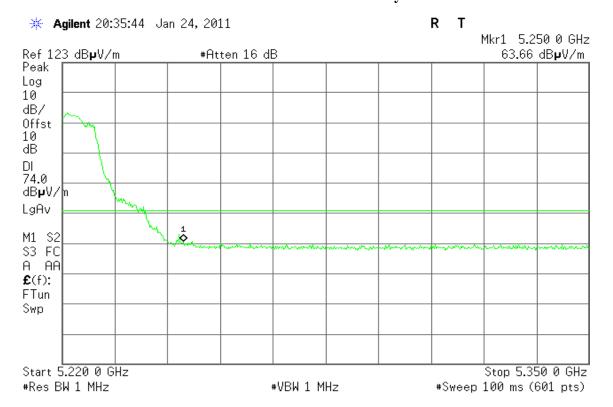


Page 32 Rev. 00

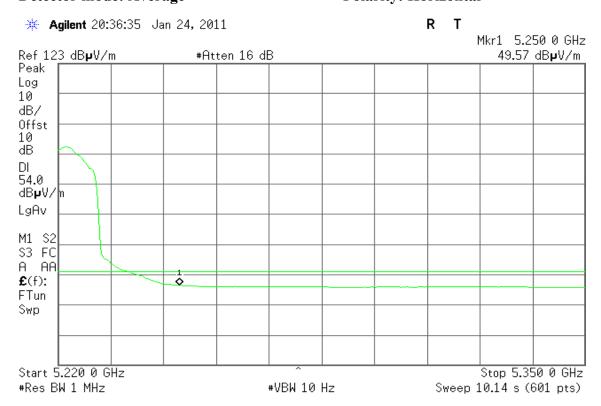

Date of Issue: March 25, 2011

Band Edges (IEEE 802.11n HT 20 MHz mode / 5220 MHz)

Detector mode: Peak Polarity: Vertical

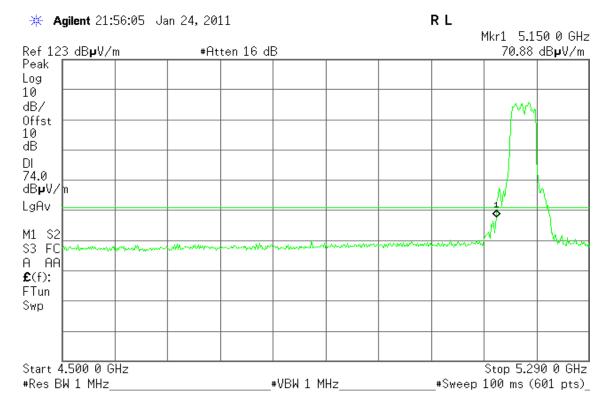


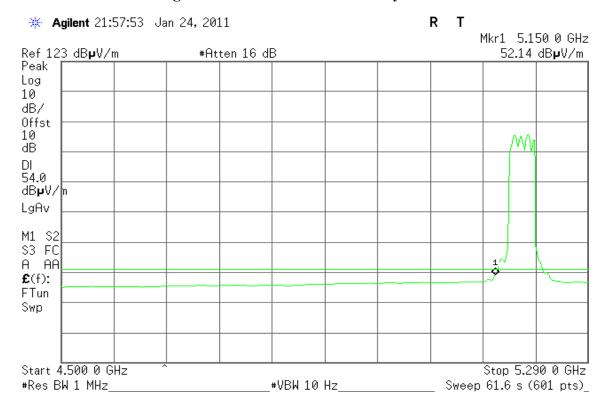
Detector mode: Average Polarity: Vertical



Page 33 Rev. 00

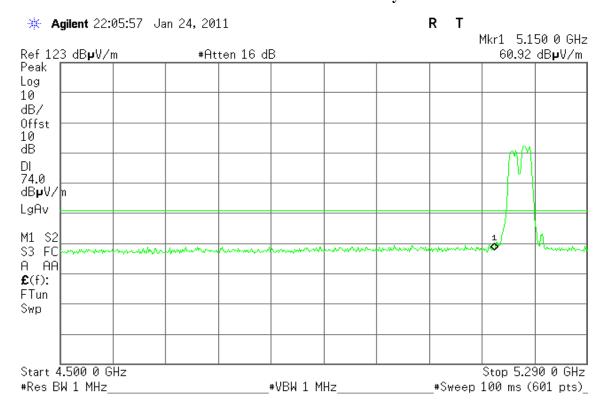
Detector mode: Peak Polarity: Horizontal


Polarity: Horizontal Detector mode: Average

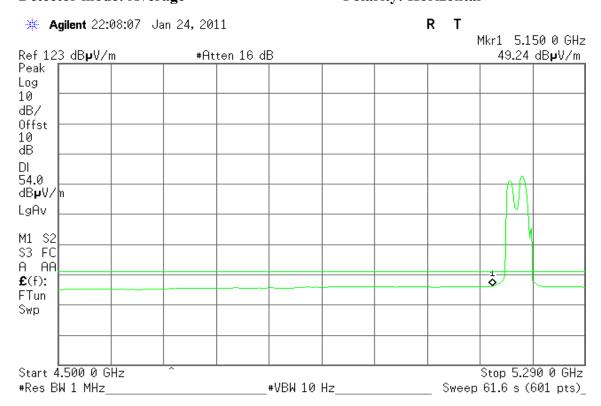

Page 34 Rev. 00

Band Edges (IEEE 802.11n HT 40 MHz mode / 5190 MHz)

Detector mode: Peak Polarity: Vertical

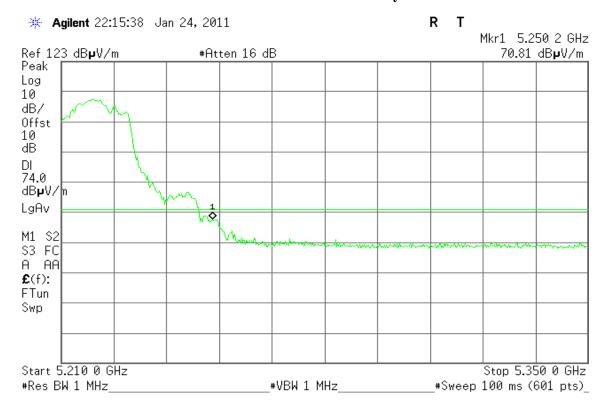


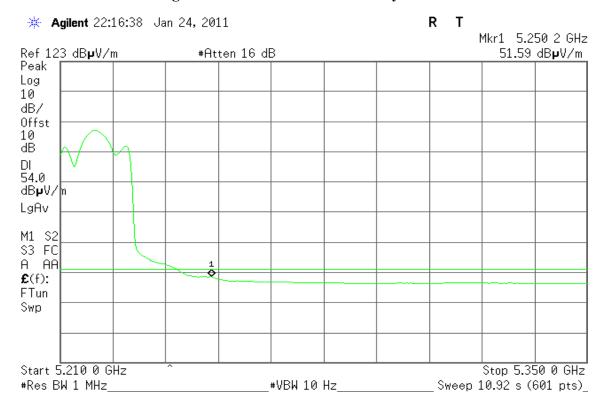
Polarity: Vertical Detector mode: Average



Page 35 Rev. 00

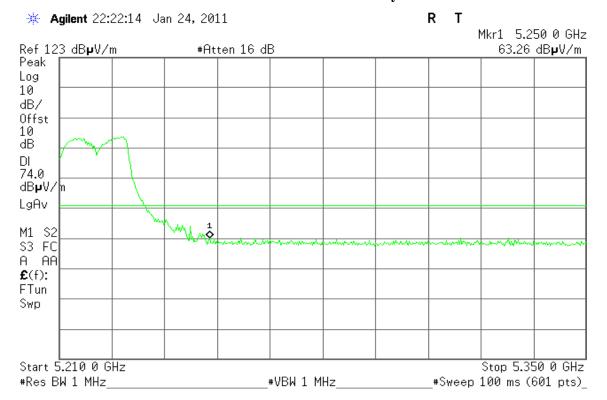
Detector mode: Peak Polarity: Horizontal


Polarity: Horizontal Detector mode: Average

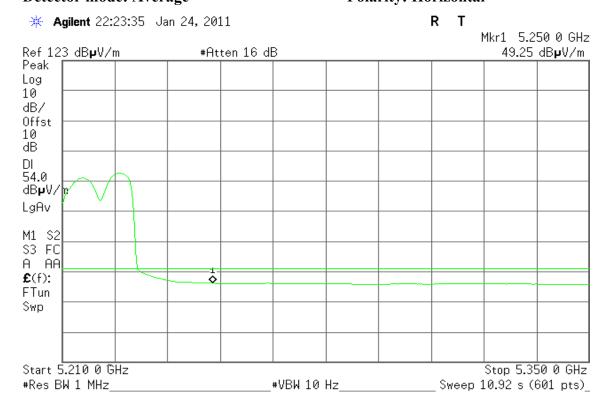

Page 36 Rev. 00

Band Edges (IEEE 802.11n HT 40 MHz mode / CH 5210 MHz)

Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical



Page 37 Rev. 00

Detector mode: Peak Polarity: Horizontal

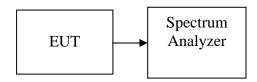
Detector mode: Average Polarity: Horizontal

Page 38 Rev. 00

7.4 PEAK POWER SPECTRAL DENSITY

LIMIT

According to §15.407(a),


(1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4dBm in any 1MHz band.

Date of Issue: March 25, 2011

(2) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11dBm in any 1MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Configuration

TEST PROCEDURE

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 1MHz, VBW = 3MHz, Span = 30MHz, Sweep=1ms
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed

TEST RESULTS

No non-compliance noted

Page 39 Rev. 00

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin	Result
Low	5180	0.143	4.00	-3.86	PASS
High	5220	0.121	4.00	-3.88	PASS

Date of Issue: March 25, 2011

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Chain 2 PPSD (dBm)	PPSD (dBm)	Limit (dBm)	Margin	Result
Low	5180	-9.552	-9.063	-9.032	-4.44	0.30	-4.74	PASS
High	5220	-9.822	-9.209	-9.514	-4.74	0.30	-5.04	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz

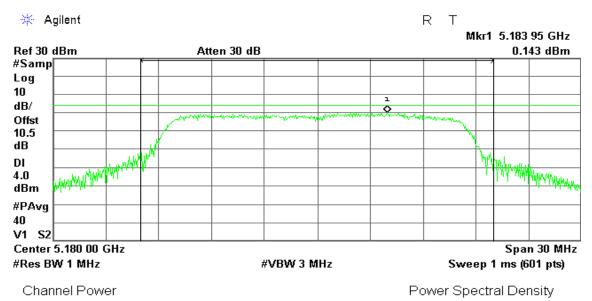
Channel	Frequency (MHz)	Chain 0 PPSD (dBm)	Chain 1 PPSD (dBm)	Chain 2 PPSD (dBm)	PPSD (dBm)	Limit (dBm)	Margin	Result
Low	5190	-13.596	-12.466	-12.919	-8.20	0.30	-8.50	PASS
High	5210	-13.377	-12.945	-13.393	-8.46	0.30	-8.76	PASS

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz with combiner

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin	Result
Low	5180	-4.010	0.30	-4.31	PASS
High	5220	-3.132	0.30	-3.432	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz with combiner

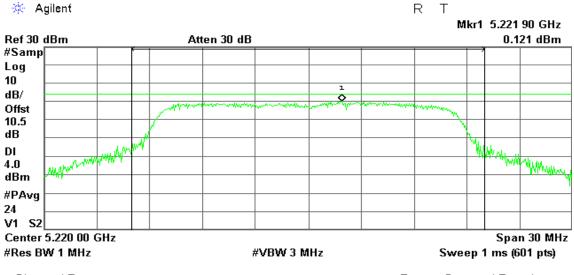
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin	Result
Low	5190	-6.829	0.30	-7.129	PASS
High	5210	-7.133	0.30	-7.433	PASS


Remark.

- 1. Total PPSD (dBm) = 10*LOG(10^(Chain 0 PPSD / 10)+10^(Chain 1 PPSD /10)+10^(Chain 2 PPSD /10))
- 2. The maximum antenna gain is 9.7 dBi; therefore the reduction due to antenna gain is 3.7 dBi, so the limit is 0.3dBm.

Page 40 Rev. 00

Test Plot IEEE 802.11a mode / 5180 ~ 5220MHz


CH Low

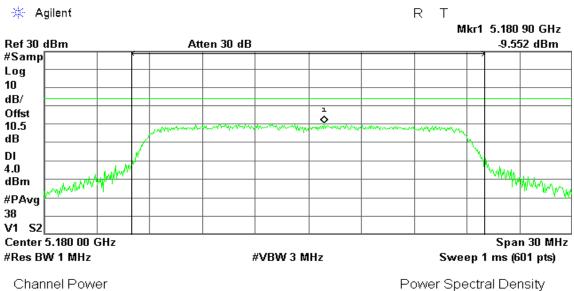
10.06 dBm /20.0000 MHz

-62.95 dBm/Hz

CH High

Channel Power

Power Spectral Density

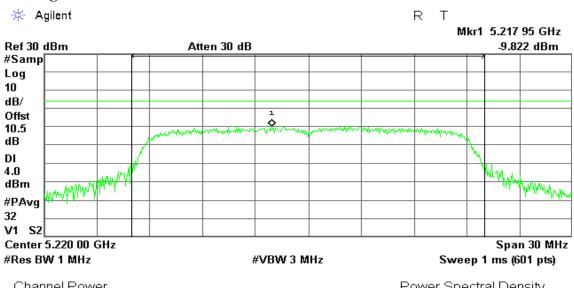

9.49 dBm /20.0000 MHz

-63.52 dBm/Hz

Page 41 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 0

CH Low



0.31 dBm /20.0000 MHz

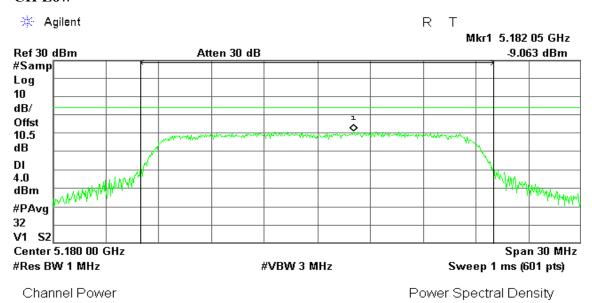
Power Spectral Density

-72.70 dBm/Hz

CH High

Channel Power

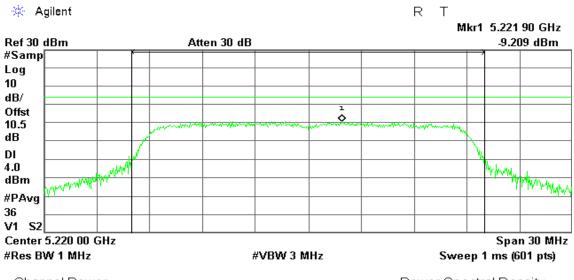
Power Spectral Density


-0.40 dBm /20.0000 MHz

-73.41 dBm/Hz

Page 42 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1


CH Low

1.03 dBm /20.0000 MHz

-71.98 dBm/Hz

CH High

Channel Power

Power Spectral Density

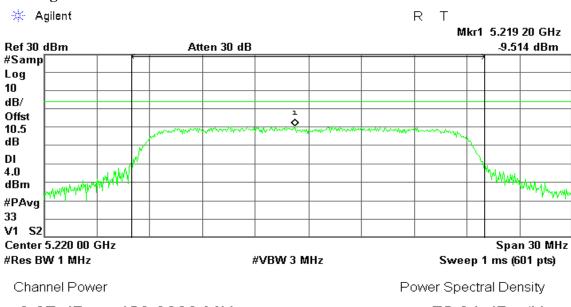
0.85 dBm /20.0000 MHz

-72.16 dBm/Hz

Page 43 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

CH Low

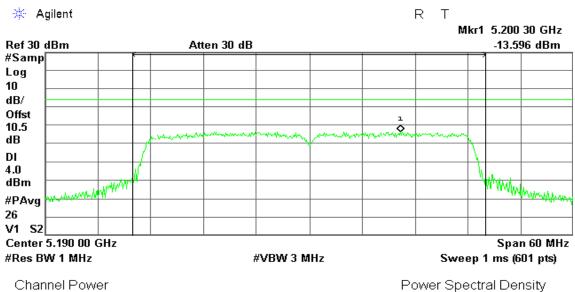


1.45 dBm /20.0000 MHz

Power Spectral Density

-71.56 dBm/Hz

CH High

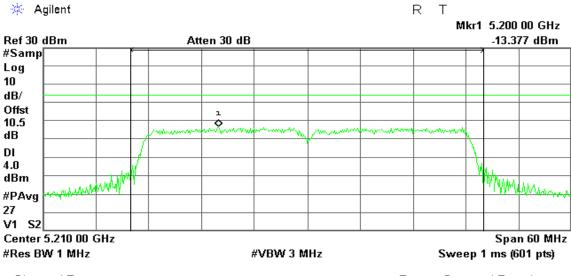

0.97 dBm /20.0000 MHz

-72.04 dBm/Hz

Page 44 Rev. 00

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 0

CH Low



0.93 dBm /40.0000 MHz

-75.09 dBm/Hz

Date of Issue: March 25, 2011

CH High

Channel Power

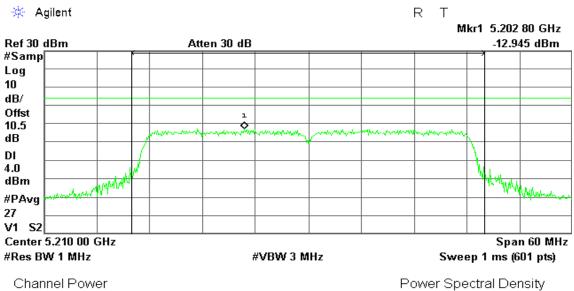
Power Spectral Density

-0.70 dBm /40.0000 MHz

-76.72 dBm/Hz

Page 45 Rev. 00

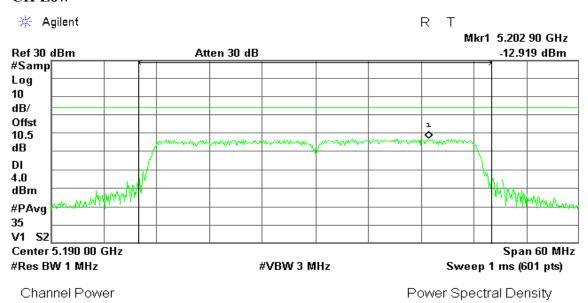
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 1


CH Low

0.45 dBm /40.0000 MHz

-75.57 dBm/Hz

CH High


-0.29 dBm /40.0000 MHz

-76.31 dBm/Hz

Page 46 Rev. 00

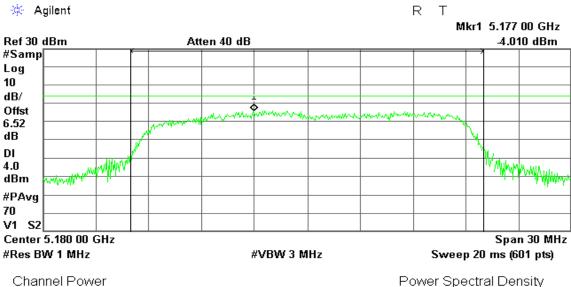
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 2

CH Low

1.06 dBm /40.0000 MHz

-74.96 dBm/Hz

CH High

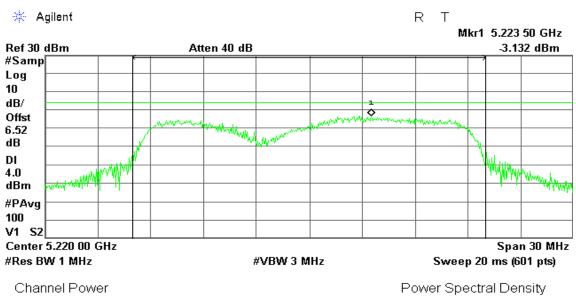

0.26 dBm /40.0000 MHz

-75.76 dBm/Hz

Page 47 Rev. 00

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz with combiner:

CH Low

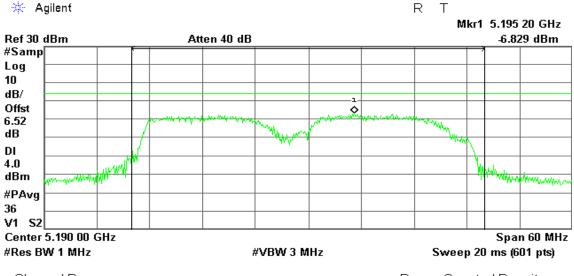


5.05 dBm /20.0000 MHz

o..... op oon at 2 onong

-67.96 dBm/Hz

CH High

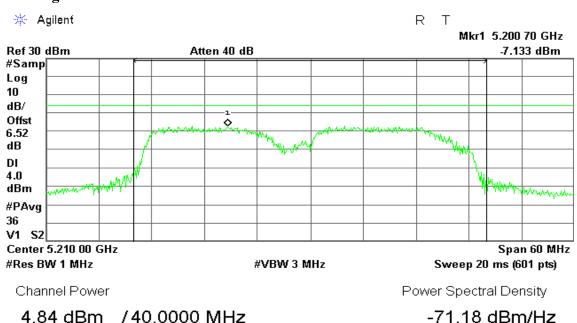

4.76 dBm /20.0000 MHz

-68.25 dBm/Hz

Page 48 Rev. 00

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz with combiner:

CH Low


Channel Power

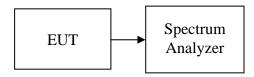
Power Spectral Density

/40.0000 MHz 4.99 dBm

-71.03 dBm/Hz

CH High

Page 49 Rev. 00


7.5 PEAK EXCURSION

LIMIT

According to §15.407(a)(6), the ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Date of Issue: March 25, 2011

Test Configuration

TEST PROCEDURE

The test is performed in accordance with <FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices> – Part 15, Subpart E, August 2002.

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum.
- 3. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth, Max. hold.
- 4. Trace B, Set RBW = 1MHz, VBW = 30kHz, Span > 26dB bandwidth, Max. hold.
- 5. Delta Mark trace A Maximum frequency and trace B same frequency.
- 6. Repeat the above procedure until measurements for all frequencies were complete.

TEST RESULTS

No non-compliance noted

Page 50 Rev. 00

Test Data

Test mode: IEEE 802.11a mode / 5180 ~ 5220MHz

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5180	8.51	13.00	-4.49	PASS
High	5220	9.18	13.00	-3.82	PASS

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 0

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5180	10.71	13.00	-2.29	PASS
High	5220	10.28	13.00	-2.72	PASS

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5180	11.56	13.00	-1.44	PASS
High	5220	11.61	13.00	-1.39	PASS

Test mode: IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

 		= 0 1/111E mode/ c100		,	
Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5180	11.84	13.00	-1.16	PASS
High	5220	10.86	13.00	-2.14	PASS

Page 51 Rev. 00

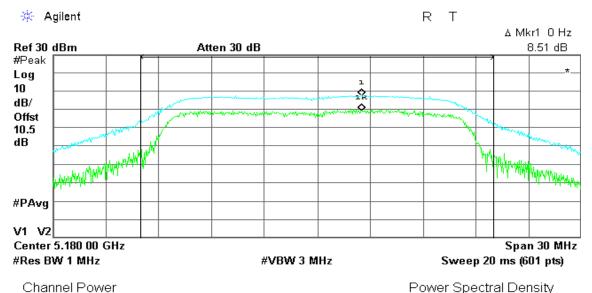
Test mode: IEEE 802.11n HT 40 MHz mode / $5190 \sim 5210 MHz$ / Chain 0

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5190	11.29	13.00	-1.71	PASS
High	5210	10.88	13.00	-2.12	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 1

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5190	11.06	13.00	-1.94	PASS
High	5210	11.46	13.00	-1.54	PASS

Test mode: IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 2


Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5190	11.48	13.00	-1.52	PASS
High	5210	10.96	13.00	-2.04	PASS

Page 52 Rev. 00

Test Plot

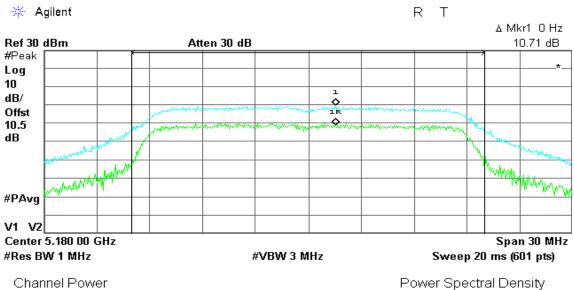
IEEE 802.11a mode / 5180 ~ 5220MHz

CH Low

16.55 dBm /20.0000 MHz

-56.46 dBm/Hz

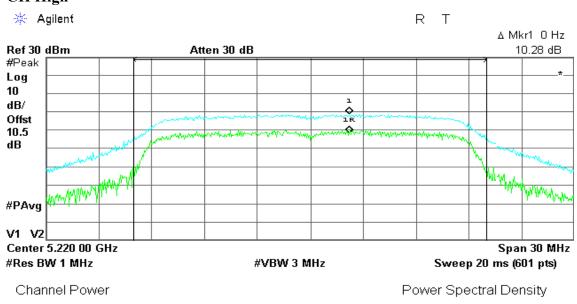
CH High


16.59 dBm /20.0000 MHz

-56.42 dBm/Hz

Page 53 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 0


CH Low

7.71 dBm /20.0000 MHz

-65.31 dBm/Hz

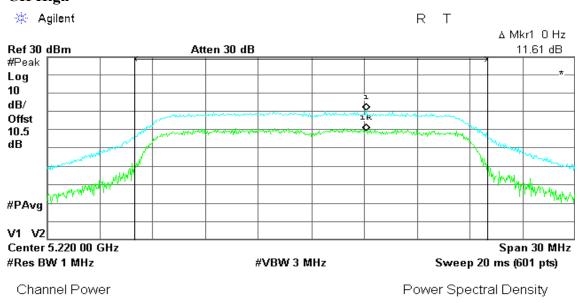
CH High

7.19 dBm /20.0000 MHz

-65.82 dBm/Hz

Page 54 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1


CH Low

7.99 dBm /20.0000 MHz

-65.02 dBm/Hz

CH High

8.04 dBm /20.0000 MHz

-64.97 dBm/Hz

Page 55 Rev. 00

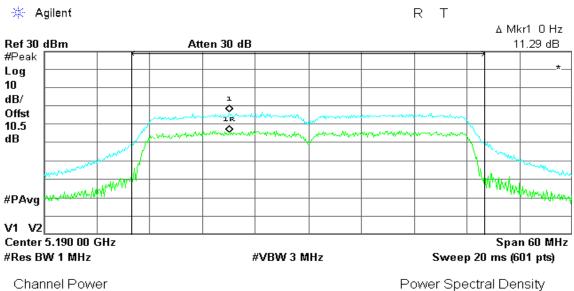
IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

CH Low

7.76 dBm /20.0000 MHz

-65.25 dBm/Hz

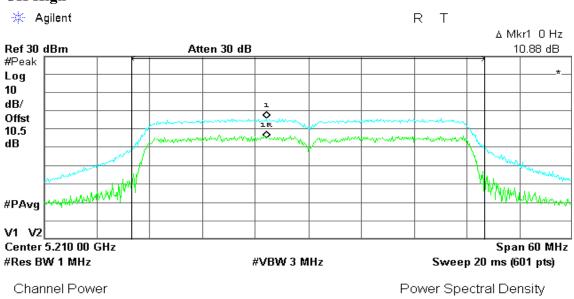
CH High


7.89 dBm /20.0000 MHz

-65.12 dBm/Hz

Page 56 Rev. 00

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 0


CH Low

6.85 dBm /40.0000 MHz

-69.17 dBm/Hz

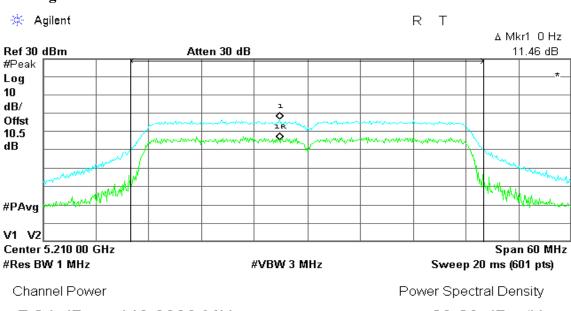
CH High


6.74 dBm /40.0000 MHz

-69.28 dBm/Hz

Page 57 Rev. 00

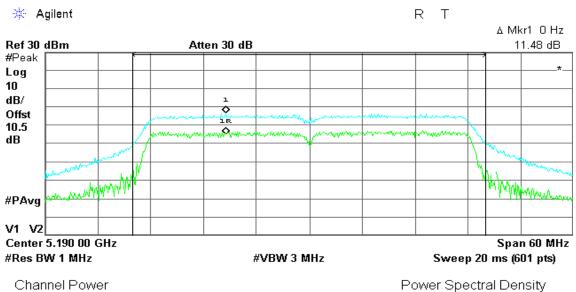
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 1


CH Low

7.38 dBm /40.0000 MHz

-68.64 dBm/Hz

CH High


7.34 dBm /40.0000 MHz

-68.69 dBm/Hz

Page 58 Rev. 00

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 2

CH Low

7.29 dBm /40.0000 MHz

-68.73 dBm/Hz

CH High

Page 59 Rev. 00

7.6 RADIATED UNDESIRABLE EMISSION

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

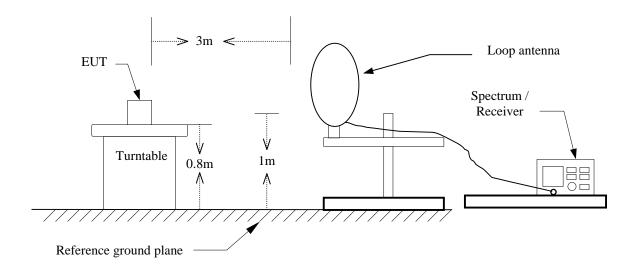
Date of Issue: March 25, 2011

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

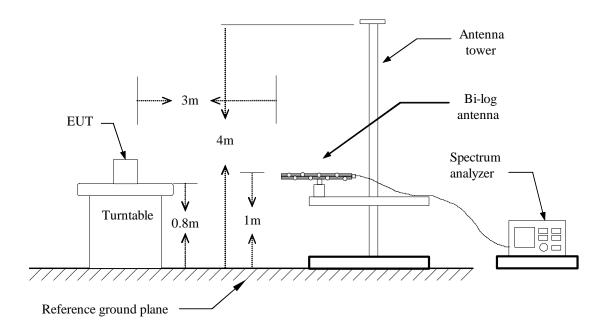
2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Page 60 Rev. 00

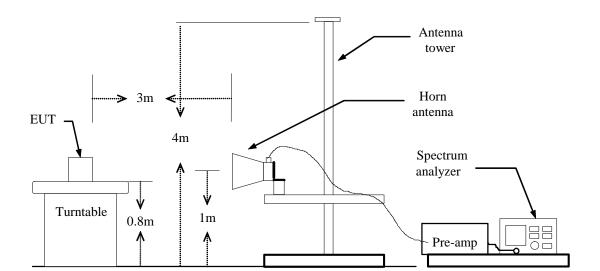


Report No.: T110117005-RP1


Date of Issue: March 25, 2011

Test Configuration

$9kHz \sim 30MHz$



30MHz~1GHz

Page 61 Rev. 00

Above 1 GHz

Page 62 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

Date of Issue: March 25, 2011

- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

Page 63 Rev. 00

Below 1 GHz

Operation Mode: Normal Link Test Date: March 21, 2011

Date of Issue: March 25, 2011

Temperature: 24°C **Tested by:** Ali Shu

Humidity: 48% RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
374.35	39.73	-7.58	32.15	46.00	-13.85	Peak	V
500.45	39.35	-5.14	34.21	46.00	-11.79	Peak	V
574.82	37.81	-4.27	33.54	46.00	-12.46	Peak	V
624.93	40.73	-3.48	37.26	46.00	-8.74	Peak	V
725.17	34.81	-2.18	32.63	46.00	-13.37	Peak	V
875.52	37.77	-0.73	37.03	46.00	-8.97	Peak	V
374.35	43.96	-7.58	36.37	46.00	-9.63	Peak	Н
574.82	36.48	-4.27	32.21	46.00	-13.79	Peak	Н
624.93	42.09	-3.48	38.61	46.00	-7.39	Peak	Н
675.05	39.08	-2.71	36.36	46.00	-9.64	Peak	Н
725.17	37.57	-2.18	35.39	46.00	-10.61	Peak	Н
875.52	34.69	-0.73	33.95	46.00	-12.05	Peak	Н

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result(dBuV/m) Quasi-peak\ limit(dBuV/m)$.

Page 64 Rev. 00

Above 1 GHz

Tx / IEEE 802.11a mode / 5180 ~ 5220MHz / **Test Date:** March 1, 2011 **Operation Mode:**

CH Low

Temperature: $24^{\circ}C$ Tested by: Ali Shu

Humidity: 48% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1306.67	57.90		-10.75	47.15		74.00	54.00	-6.85	Peak	V
1500.00	56.12		-10.55	45.57		74.00	54.00	-8.43	Peak	V
1666.67	56.11		-8.86	47.25		74.00	54.00	-6.75	Peak	V
2330.00	55.92		-4.57	51.35		74.00	54.00	-2.65	Peak	V
2660.00	53.05		-3.33	49.72		74.00	54.00	-4.28	Peak	V
N/A										
1310.00	58.05		-10.75	47.30		74.00	54.00	-6.70	Peak	Н
1496.67	58.91		-10.55	48.36		74.00	54.00	-5.64	Peak	Н
1666.67	57.20		-8.86	48.34		74.00	54.00	-5.66	Peak	Н
2330.00	53.65		-4.57	49.08		74.00	54.00	-4.92	Peak	Н
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- Data of measurement within this frequency range shown " --- " in the table above 4. means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result\ (dBuV/m) - Average\ limit\ (dBuV/m).$

Page 65 Rev. 00

Date of Issue: March 25, 2011

Operation Mode: Tx / IEEE 802.11a mode / 5180 ~ 5220MHz
Test Date: March 1, 2011

Temperature: 24°C Tested by: Ali Shu

Humidity: 48% RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1306.67	58.28		-10.75	47.53		74.00	54.00	-6.47	Peak	V
1333.33	58.41		-10.72	47.69		74.00	54.00	-6.31	Peak	V
1496.67	56.16		-10.55	45.60		74.00	54.00	-8.40	Peak	V
1666.67	56.89		-8.86	48.03		74.00	54.00	-5.97	Peak	V
2330.00	54.25		-4.57	49.68		74.00	54.00	-4.32	Peak	V
2663.33	52.76		-3.31	49.44		74.00	54.00	-4.56	Peak	V
1306.67	57.69		-10.75	46.94		74.00	54.00	-7.06	Peak	Н
1330.00	57.84		-10.73	47.11		74.00	54.00	-6.89	Peak	Н
1376.67	58.41		-10.68	47.73		74.00	54.00	-6.27	Peak	Н
1496.67	57.72		-10.55	47.16		74.00	54.00	-6.84	Peak	Н
1663.33	57.03		-8.89	48.14		74.00	54.00	-5.86	Peak	Н
2330.00	53.70		-4.57	49.13		74.00	54.00	-4.87	Peak	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result(dBuV/m) Average\ limit(dBuV/m)$.

Page 66 Rev. 00

Date of Issue: March 25, 2011

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / 5180 Test Date: March 1, 2011

Date of Issue: March 25, 2011

Temperature: 24°C Tested by: Ali Shu

Humidity: 48% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1496.67	57.59		-10.55	47.03		74.00	54.00	-6.97	Peak	V
1563.33	58.40		-9.91	48.50		74.00	54.00	-5.50	Peak	V
1666.67	58.38		-8.86	49.52		74.00	54.00	-4.48	Peak	V
2493.33	54.79		-3.90	50.89		74.00	54.00	-3.11	Peak	V
N/A										
1310.00	58.74		-10.75	47.99		74.00	54.00	-6.01	Peak	Н
1663.33	56.69		-8.89	47.80		74.00	54.00	-6.20	Peak	Н
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result(dBuV/m) Average\ limit(dBuV/m)$.

Page 67 Rev. 00

Operation Mode: Tx / IEEE 802.11n HT 20 MHz mode / 5180 ~ Test Date: March 1, 2011

Date of Issue: March 25, 2011

Temperature: 24°C Tested b

Temperature:24°CTested by: Ali ShuHumidity:48% RHPolarity: Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1176.67	60.48		-10.89	49.59		74.00	54.00	-4.41	Peak	V
1330.00	60.46		-10.73	49.73		74.00	54.00	-4.27	Peak	V
1560.00	58.21		-9.94	48.27		74.00	54.00	-5.73	Peak	V
1666.67	58.85		-8.86	49.99		74.00	54.00	-4.01	Peak	V
2496.67	59.66	38.26	-3.88	55.78	34.38	74.00	54.00	-19.62	AVG	V
N/A										
1250.00	57.53		-10.81	46.72		74.00	54.00	-7.28	Peak	Н
1496.67	57.32		-10.55	46.77		74.00	54.00	-7.23	Peak	Н
1666.67	57.35		-8.86	48.49		74.00	54.00	-5.51	Peak	Н
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result(dBuV/m) Average\ limit(dBuV/m)$.

Page 68 Rev. 00

Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / 5190 Test Date: March 1, 2011

Date of Issue: March 25, 2011

Temperature: 24°C **Tested by:** Ali Shu

Humidity: 48% RH Polarity: Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1330.00	57.93		-10.73	47.20		74.00	54.00	-6.80	Peak	V
1583.33	58.39		-9.70	48.68		74.00	54.00	-5.32	Peak	V
1666.67	58.84		-8.86	49.98		74.00	54.00	-4.02	Peak	V
2663.33	53.39		-3.31	50.08		74.00	54.00	-3.92	Peak	V
N/A										
1500.00	56.20		-10.55	45.65		74.00	54.00	-8.35	Peak	Н
1663.33	56.75		-8.89	47.86		74.00	54.00	-6.14	Peak	Н
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 69 Rev. 00

Operation Mode: Tx / IEEE 802.11n HT 40 MHz mode / 5190 ~ Test Date: March 1, 2011

5210MHz / CH High

Temperature: 24°C **Tested by:** Ali Shu **Humidity:** 48% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1173.33	58.90		-10.89	48.01		74.00	54.00	-5.99	Peak	V
1576.67	58.86		-9.77	49.09		74.00	54.00	-4.91	Peak	V
1666.67	58.00		-8.86	49.14		74.00	54.00	-4.86	Peak	V
N/A										
1500.00	58.92		-10.55	48.37		74.00	54.00	-5.63	Peak	Н
1523.33	59.23		-10.31	48.92		74.00	54.00	-5.08	Peak	Н
1666.67	56.03		-8.86	47.18		74.00	54.00	-6.82	Peak	Н
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. $Margin(dB) = Remark\ result(dBuV/m) Average\ limit(dBuV/m)$.

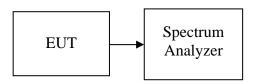
Page 70 Rev. 00

Date of Issue: March 25, 2011

7.7 CONDUCTED UNDESIRABLE EMISSION

LIMIT

According to 15.407(b),


(1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

Date of Issue: March 25, 2011

(2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

The provisions of §15.205 apply to intentional radiators operating under this section.

Test Configuration

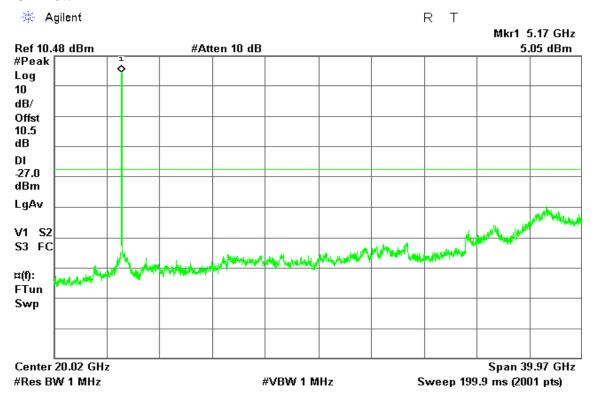
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

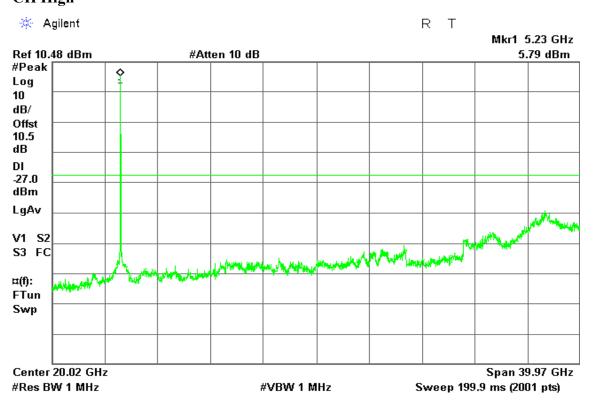
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

Measurements are made over the 20 GHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS


No non-compliance noted

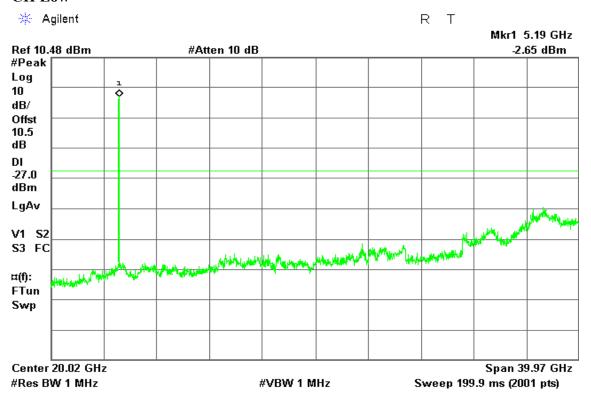
Page 71 Rev. 00


Test Plot

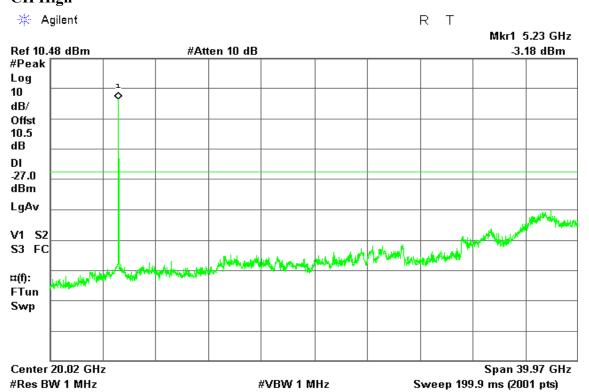
IEEE 802.11a mode / 5180 ~ 5220MHz

CH Low

CH High

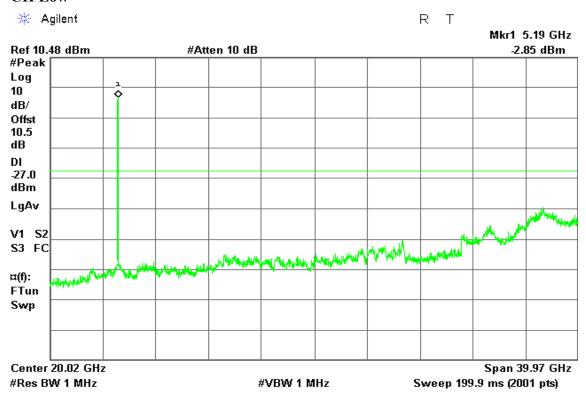


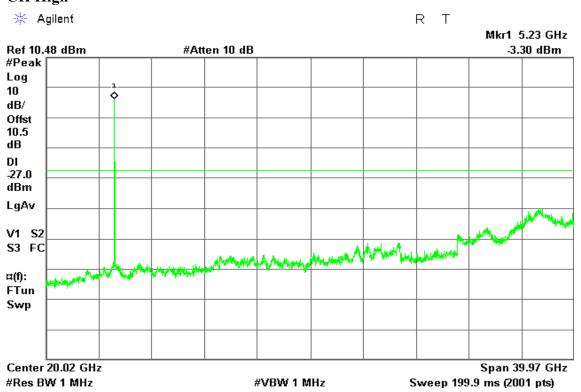
Page 72 Rev. 00


Report No.: T110117005-RP1 FCC ID: VZ9110001 Date of Issue: March 25, 2011

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 0

CH Low

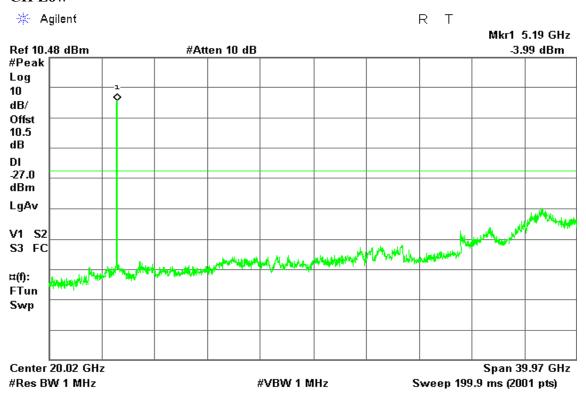

CH High


Page 73 Rev. 00

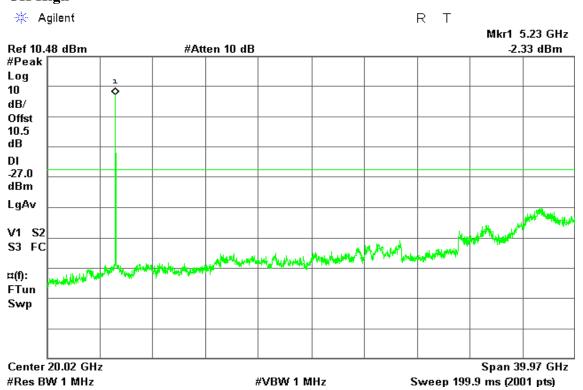
IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 1

CH Low

CH High


Page 74 Rev. 00

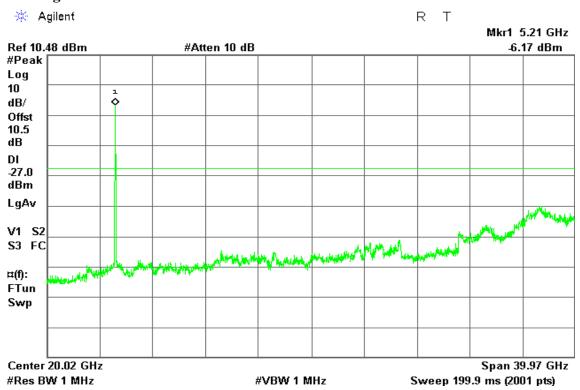
Date of Issue: March 25, 2011


FCC ID: VZ9110001 Date of Issue: March 25, 2011

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / Chain 2

CH Low

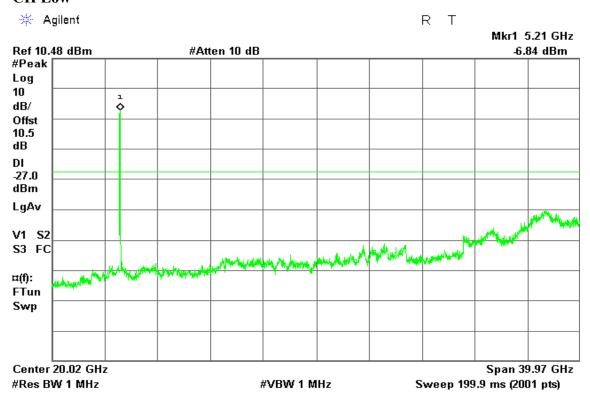
CH High


Page 75 Rev. 00

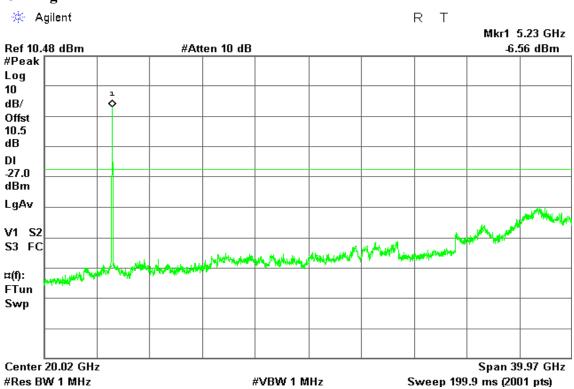
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 0

CH Low

CH High



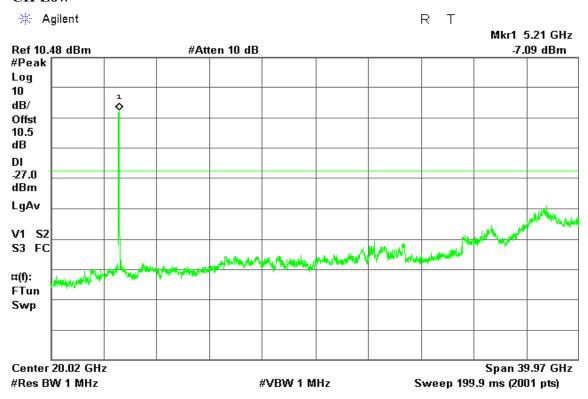
Page 76 Rev. 00


Z9110001 Date of Issue: March 25, 2011

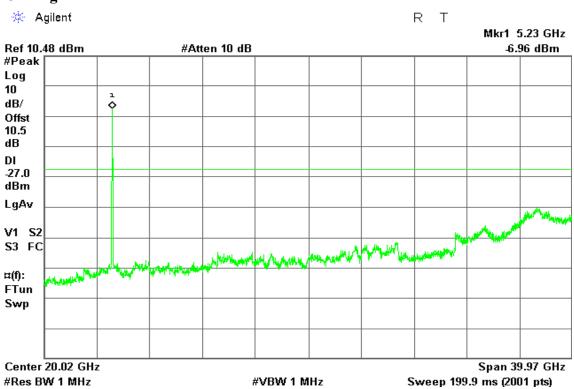
IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 1

CH Low

CH High

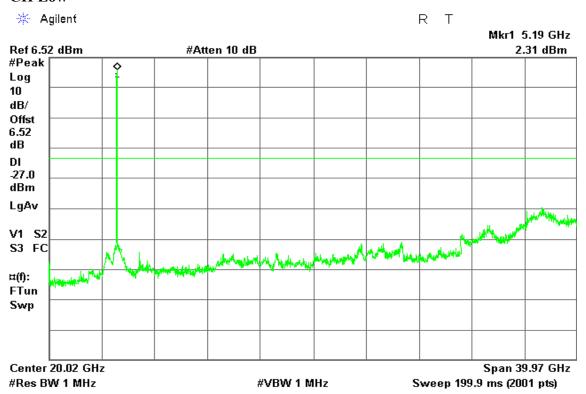


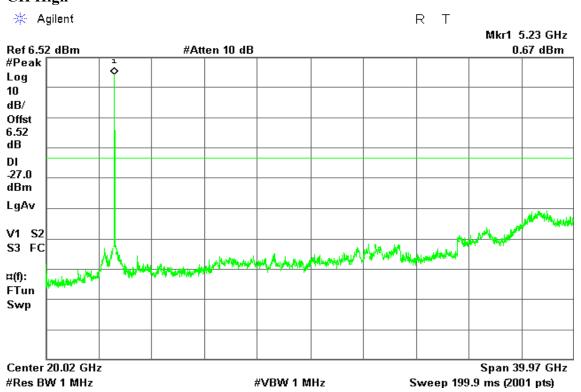
Page 77 Rev. 00


FCC ID: VZ9110001 Date of Issue: March 25, 2011

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / Chain 2

CH Low

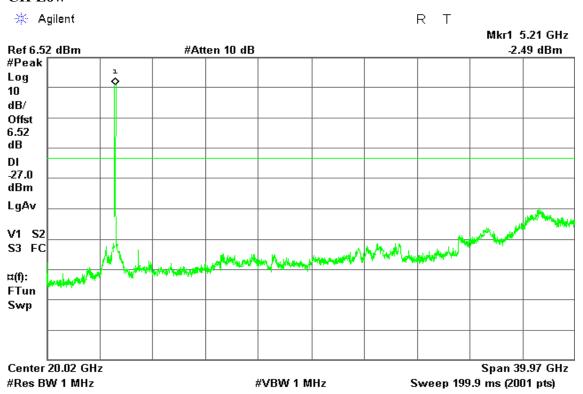

CH High


Page 78 Rev. 00

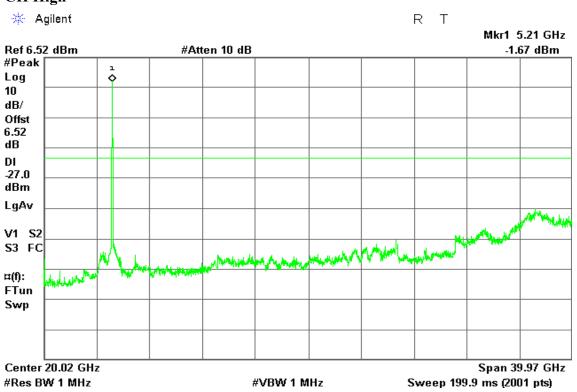
IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz / with combiner

CH Low

CH High


Page 79 Rev. 00

Date of Issue: March 25, 2011


FCC ID: VZ9110001 Date of Issue: March 25, 2011

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz / with combiner

CH Low

CH High

Page 80 Rev. 00

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Date of Issue: March 25, 2011

Frequency Range	Lim (dB _l	
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

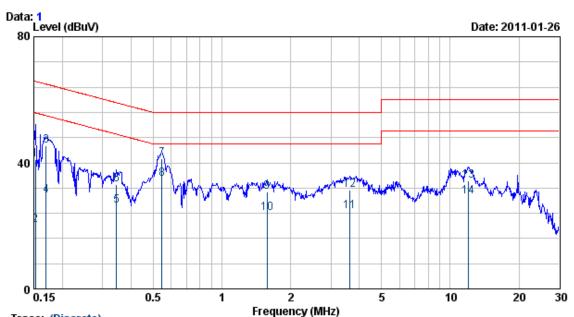
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Page 81 Rev. 00

Test Data

EUT:802.11a/b/g/n Router & Access Point Power: 120V/60Hz

M/N:BR51N1 Test mode: Normal Operation


POL: NEUTRAL Temp.: 22 Humidity: 55%

ENGINEER : Shiang.Su

REMARK1:

Trace: ([Discrete)
-----------	-----------

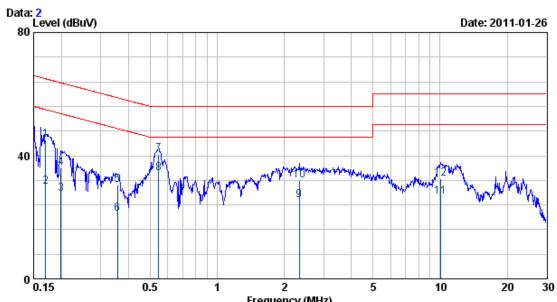
 	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

i Fa	SN Cable ctor Loss B dB	Meter Reading dBuV	Measured Level dBuV	Limits dBuV	Over Limits dBuV	 Detector
0.152 8. 0.169 8. 0.169 8. 0.345 8. 0.345 8. 0.546 8. 0.546 8. 1.577 8. 1.577 8. 3.642 8. 3.642 8. 12.060 8.	64 0.01 64 0.01 64 0.01 64 0.01 65 0.01 65 0.01 65 0.02 65 0.02 63 0.02 63 0.02 69 0.02 86 0.09	32.49 11.55 36.65 20.81 17.65 24.35 32.62 22.13 15.24 15.91 22.59 25.44 20.23	41.14 20.20 45.30 29.46 26.31 33.01 41.29 34.89 23.89 24.62 31.30 34.40 29.19	65.87 55.87 64.99 54.99 49.09 59.09 56.00 46.00 46.00 46.00 60.00 50.00	-24.73 -35.67 -19.68 -25.52 -22.78 -26.08 -14.71 -11.11 -25.22 -22.11 -21.38 -24.70 -25.60 -20.81	QP AVERAGE QP AVERAGE AVERAGE QP AVERAGE QP AVERAGE QP QP QP

REMARKS:1.Level(dBuV)=Read Level(dBuV)+LISN Factor(dB)+Cable loss(dB) 2.Over Limit value(dB)=Level(dBuV)-Limit Line(dBuV)

Page 82 Rev. 00

EUT:802.11a/b/g/n Router & Access Point Power: 120V/60Hz


M/N:BR51N1 Test mode: Normal Operation

POL: LINE Temp.: 22 Humidity: 55%

ENGINEER : Shiang.Su

REMARK1:

.....

Trace:	(Discrete)
--------	------------

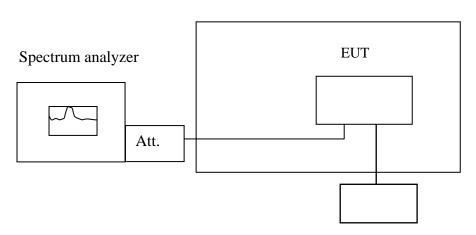
•	•	٠	ч		٠	•••	٠.	y	١,			-	•																							
 _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	

Freq. MHz	LISN Facto dB	Cabl or Loss dB		ng Level	d Limits dBuV	Over Limits dBuV	 Detector
0.169 0.199 0.199 0.358 0.358 0.546 0.546 2.334 2.334 10.019	8.64 8.65 8.65 8.65 8.65 8.65 8.65 8.64 8.91 8.91	0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02	21.11 18.81 27.28 21.68 12.51 31.86 125.70 16.94 23.39	45.27 29.76 27.47 35.94 30.34 21.17 40.51 34.37 25.60 32.05 26.54 32.54	64.99 54.99 53.67 63.67 58.78 48.78 56.00 46.00 46.00 56.00	-19.71 -25.22 -26.20 -27.73 -28.44 -27.61 -15.49 -11.63 -20.40 -23.95 -23.46 -27.46	QP AVERAGE AVERAGE QP QP QP AVERAGE AVERAGE QP AVERAGE QP

REMARKS:1.Level(dBuV)=Read Level(dBuV)+LISN Factor(dB)+Cable loss(dB) 2.Over Limit value(dB)=Level(dBuV)-Limit Line(dBuV)

Page 83 Rev. 00

7.9 FREQUENCY STABILITY


LIMIT

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Test Configuration

Temperature Chamber

Date of Issue: March 25, 2011

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

Page 84 Rev. 00

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Date of Issue: March 25, 2011

TEST RESULTS

No non-compliance noted.

IEEE 802.11a mode / 5180 ~ 5220 MHz:

CH Low

Operating Frequency: 5180 MHz											
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result							
50	110	5180.010144	5150~5250	Pass							
40	110	5180.010046	5150~5250	Pass							
30	110	5179.979911	5150~5250	Pass							
20	110	5179.989333	5150~5250	Pass							
10	110	5179.986031	5150~5250	Pass							
0	110	5179.974087	5150~5250	Pass							
-10	110	5179.976610	5150~5250	Pass							
-20	110	5179.986716	5150~5250	Pass							

	Operating Frequency: 5180 MHz												
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result									
	99	5179.974216	5150~5250	Pass									
20	110	5179.994645	5150~5250	Pass									
	121	5179.97024	5150~5250	Pass									

Page 85 Rev. 00

CH High

Operating Frequency: 5220 MHz										
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result						
50	110	5219.972898	5150~5250	Pass						
40	110	5220.006537	5150~5250	Pass						
30	110	5220.014948	5150~5250	Pass						
20	110	5219.974646	5150~5250	Pass						
10	110	5219.978765	5150~5250	Pass						
0	110	5219.980063	5150~5250	Pass						
-10	110	5219.975894	5150~5250	Pass						
-20	110	5219.983963	5150~5250	Pass						

Date of Issue: March 25, 2011

Operating Frequency: 5220 MHz												
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result								
	99	5220.019453	5150~5250	Pass								
20	110	5219.985162	5150~5250	Pass								
	121	5220.004851	5150~5250	Pass								

Page 86 Rev. 00

IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220 MHz:

CH Low

Operating Frequency: 5180 MHz											
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result							
50	110	5179.990508	5150~5250	Pass							
40	110	5179.987865	5150~5250	Pass							
30	110	5180.018633	5150~5250	Pass							
20	110	5180.017691	5150~5250	Pass							
10	110	5179.985172	5150~5250	Pass							
0	110	5179.983014	5150~5250	Pass							
-10	110	5179.987853	5150~5250	Pass							
-20	110	5179.972503	5150~5250	Pass							

Date of Issue: March 25, 2011

Operating Frequency: 5180 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
20	99	5180.001412	5150~5250	Pass
	110	5180.003362	5150~5250	Pass
	121	5179.983447	5150~5250	Pass

Page 87 Rev. 00

CH High

Operating Frequency: 5220 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
50	110	5219.9771	5150~5250	Pass
40	110	5219.978438	5150~5250	Pass
30	110	5219.973224	5150~5250	Pass
20	110	5219.9771	5150~5250	Pass
10	110	5219.978438	5150~5250	Pass
0	110	5219.973224	5150~5250	Pass
-10	110	5219.9771	5150~5250	Pass
-20	110	5219.978438	5150~5250	Pass

Date of Issue: March 25, 2011

Operating Frequency: 5220 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
	99	5219.9771	5150~5250	Pass
20	110	5219.978438	5150~5250	Pass
	121	5219.973224	5150~5250	Pass

Page 88 Rev. 00

IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210 MHz:

CH Low

Operating Frequency: 5190 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
50	110	5189.974316	5150~5250	Pass
40	110	5189.987707	5150~5250	Pass
30	110	5189.987703	5150~5250	Pass
20	110	5189.990419	5150~5250	Pass
10	110	5189.985652	5150~5250	Pass
0	110	5189.980812	5150~5250	Pass
-10	110	5189.989749	5150~5250	Pass
-20	110	5189.98708	5150~5250	Pass

Date of Issue: March 25, 2011

Operating Frequency: 5190 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
20	99	5190.012688	5150~5250	Pass
	110	5189.9932	5150~5250	Pass
	121	5190.019132	5150~5250	Pass

Page 89 Rev. 00

CH High

Operating Frequency: 5210 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
50	110	5209.986203	5150~5250	Pass
40	110	5209.980552	5150~5250	Pass
30	110	5209.989614	5150~5250	Pass
20	110	5210.019921	5150~5250	Pass
10	110	5209.972782	5150~5250	Pass
0	110	5210.017391	5150~5250	Pass
-10	110	5210.018018	5150~5250	Pass
-20	110	5209.986683	5150~5250	Pass

Date of Issue: March 25, 2011

Operating Frequency: 5210 MHz				
Environment Temperature (°C)	Voltage (V)	Measured Frequency (MHz)	Limit Range	Test Result
20	99	5209.990728	5150~5250	Pass
	110	5209.9845	5150~5250	Pass
	121	5209.974513	5150~5250	Pass

Page 90 Rev. 00

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Date of Issue: March 25, 2011

EUT Specification

EUT	Wireless Hotspot Gateway / Enterprise Access Point
Frequency band (Operating)	 □ WLAN: 2.412GHz ~ 2.462GHz □ WLAN: 5.15GHz ~ 5.250GHz □ Bluetooth: 2.402 GHz ~ 2.482 GHz □ Others:
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others:
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	IEEE 802.11a mode / 5180 ~ 5220MHz: 16.59 dBm (45.60mW) IEEE 802.11n HT 20 MHz mode / 5180 ~ 5220MHz: 12.31 dBm (17.02mW) IEEE 802.11n HT 40 MHz mode / 5190 ~ 5210MHz: 11.51 dBm (14.15mW)
Antenna gain (Max)	5 dBi (Numeric gain: 3.16)
	MIMO Mode: 5 dBi + 10 log (3) = 9.7 dBi (Numeric gain: 9.3)
Evaluation applied	MPE Evaluation* SAR Evaluation N/A
Remark: The maximum output power is	s <u>16.59dBm (45.60mW)</u> at <u>5220MHz</u> (with <u>9.3 numeric antenna gain</u> .)

TEST RESULTS

No non-compliance noted.

Page 91 Rev. 00

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

 $S = Power\ density\ in\ milliwatts\ /\ square\ centimeter$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW/cm2

Page 92 Rev. 00

Maximum Permissible Exposure

IEEE 802.11a mode:

EUT output power = 45.60mW

Numeric Antenna gain = 3.16

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

 \rightarrow Power density = 0.02867 mW/cm2

IEEE 802.11n HT 20 MHz mode:

EUT output power = 17.02mW

Numeric Antenna gain = 9.3

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

 \rightarrow Power density = 0.0315mW/cm2

IEEE 802.11n HT 40 MHz mode:

EUT output power = 14.15mW

Numeric Antenna gain = 9.3

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

 \rightarrow Power density = 0.0262 mW/cm2

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)

Page 93 Rev. 00