

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4 : 2003

TEST REPORT (Class II Permissive Change Report)

For

802.11b/g CPE (Access Point)

Model : ARG-1705

Trade Name : ARGtek

Issued for

ARGtek Communication Inc.

8F-9,No. 4, Lane 609,Sec.5, Chung Hsin Rd., San Chung City, Taipei Hsien 241, Taiwan,R.O.C

Issued by

Compliance Certification Services Inc. Hsinchu Lab. NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

TEL: +886-3-5921698

FAX: +886-3-5921108

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

 FCC ID
 : VYXARGTEK-1000

 Refer No.
 : 80825002-RP1

 Report No.
 : 90323003-RP1

 Page
 2 of 35

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	04/10/2009	Initial Issue	All Page 35	Jason Chang

 FCC ID
 : VYXARGTEK-1000

 Refer No.
 : 80825002-RP1

 Report No.
 : 90323003-RP1

 Page
 3 of 35

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	
2. EUT DESCRIPTION	
2.1 DESCRIPTION OF EUT & POWER	5
2.2 DESCRIPTION OF CLASS II CHABNGE	5
3. DESCRIPTION OF TEST MODES	
4. TEST METHODOLOGY	
5. FACILITIES AND ACCREDITATIONS	
5.1 FACILITIES	
5.2 EQUIPMENT	
5.3 LABORATORY ACCREDITATIONS LISTINGS	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	7
6. CALIBRATION AND UNCERTAINTY	
6.1 MEASURING INSTRUMENT CALIBRATION	8
6.2 MEASUREMENT UNCERTAINTY	8
7. SETUP OF EQUIPMENT UNDER TEST	
8. RADIATED EMISSIONS	
8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	
8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	
8.4 RESTRICTED BAND EDGES	
8.5 POWERLINE CONDUCTED EMISSIONS	
APPENDIX SETUP PHOTOS	

1. TEST REPORT CERTIFICATION

Applicant	•	ARGtek Corporation	
Address	:	No. 8, Li-shing Road VII, Science-based Industrial	
		Park, Hsinchu, Taiwan R.O.C.	
Equipment Under Test	:	802.11b/g CPE (Access Point)	
Model	•	ARG-1705	
Trade Name	:	ARGtek	
Tested Date	•	March 10 ~ 14, 2009 ; March 23 ~ April 09, 2009	

APPLICABLE STANDARD			
STANDARD	TEST RESULT		
FCC Part 15 Subpart C AND ANSI C63.4:2003	No non-compliance noted		

Approved by:	Reviewed by:
Jason Charg.	· 檢測報告 57 Ch m
Jason Chang Team Leader of Hsinchu Laboratory Compliance Certification Services Inc.	課 専用章 Alad an Team/Leader of Hsinchu Laboratory E C C S C S C C S C C S C C S C C S C C S C C S C C C C S C C C C S C C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C C S C C C C S C C C S C C C S C C C C C S C C C C C S C C C C C S C C C C C S C C C C C S C C C C C S C

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	802.11b/g CPE (Access Point)
Model Number	ARG-1705
Frequency Range	IEEE 802.11b/g : 2412MHz to 2462MHz
T	IEEE 802.11b : 19.14dBm
Transmit Power	IEEE 802.11g : 16.17dBm
Channel Spacing	IEEE 802.11b/g : 5MHz
Channel Number	IEEE 802.11b/g : 11 Channels
Transmit Data Data	IEEE 802.11b : 11, 5.5, 2, 1 Mbps
I ransmit Data Kate	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps
Turne of Modulation	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)
Type of Wiodulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	by software / firmware
Antenna Type	Dipole Antenna, Antenna Gain : 5dBi.
Power Source	12VDC From Adapter for PoE

Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

2. This submittal(s) (test report) is intended for FCC ID: VYXARGTEK-1000 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. For more details, please refer to the User's manual of the EUT.

4. This report is modified from 80825002.

2.2 DESCRIPTION OF CLASS II CHABNGE

The major change filed under this application are :

ARG-1705 Outdoor AP Revise Description

- 1. Change inductor x 2 pcs to the other side.
- 2. With different case of aluminum shielded.
- 3. With external Omni Antenna added.
- 4. Add WLAN Cable.

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

1. For fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power and power spectral density of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

2. There are three channels have been tested as following :

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b : 11Mbps data rate (worst case) were chosen for full testing. IEEE 802.11g : 6 Mbps data rate (worst case) were chosen for full testing.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4:2003 and FCC CRF 47 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Rm.258, Bldg.17, NO.195, Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4:2003 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

FCC ID : VYXARGTEK-1000 Refer No. : 80825002-RP1 Report No. : 90323003-RP1 Page ___________7_____of _____35_____

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 0240 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5 GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	PC	HP	Hp pavilion t222d	TWL33001TS	DoC
2	Notebook PC	Compaq	N800V	5Y33KSQZM0W41YR	DoC

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. Setup all computers like the setup diagram.
- 2. Build up a connection between EUT and PC.
- 3. Notebook ping IP to EUT.
- 4. Start teat.

FCC ID : VYXARGTEK-1000 Refer No. : 80825002-RP1 Report No. : 90323003-RP1 Page <u>10</u> of <u>35</u>

8. RADIATED EMISSIONS

8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
SPECTRUM ANALYZER	AGILENT	E4446A	MY43360132	06/05/2009
EMI TEST RECEIVER	R & S	ESCI	100221	05/20/2009
BILOG ANTENNA	SCHWARZBECK	VULB	9168_249	09/17/2009
HORN ANTENNA	ETS LINDGREN	3117	00078732	05/19/2009
PRE-AMPLIFIER	EM	EM30265	07032612	05/21/2009
Band Reject FILTER	Micro-Tronics	BRM50702-01	021	N.C.R.
RF COAXIAL CABLE	HUBERSUHNER	SUCOFLEX 104PEA	SN31350	07/21/2009

The following test equipment is utilized in making the measurements contained in this report.

Remark: 1. Each piece of equipment is scheduled for calibration once a year. 2. N.C.R = No Calibration Request.

FCC ID : VYXARGTEK-1000 Refer No. : 80825002-RP1 Report No. : 90323003-RP1 Page <u>12</u> of <u>35</u>

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

FCC ID : VYXARGTEK-1000 Refer No. : 80825002-RP1 Report No. : 90323003-RP1 Page <u>13</u> of <u>35</u>

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/08
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	Normal operating	TEMP & Humidity	20.1°C, 64%

			Horizontal			
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
34.85	58.48	-31.13	27.35	40.00	-12.65	Peak
81.41	71.80	-36.20	35.60	40.00	-4.40	Peak
104.69	74.42	-35.64	38.78	43.50	-4.72	Peak
143.49	69.50	-31.43	38.07	43.50	-5.43	QP
151.25	70.10	-31.00	39.10	43.50	-4.40	QP
229.82	68.51	-32.00	36.51	46.00	-9.49	Peak
323.91	61.35	-27.85	33.49	46.00	-12.51	Peak
756.53	58.69	-20.70	37.99	46.00	-8.01	Peak
			Vertical			
Fraguanay						
(MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
(MHz) 30.00	Reading (dBµV) 67.10	Correction Factor (dB/m) -32.25	Result (dBµV/m) 34.85	Limit (dBµV/m) 40.00	Margin (dB) -5.15	Remark QP
Mequency (MHz) 30.00 33.88	Reading (dBμV) 67.10 69.60	Correction Factor (dB/m) -32.25 -31.35	Result (dBµV/m) 34.85 38.25	Limit (dBµV/m) 40.00 40.00	Margin (dB) -5.15 -1.75	Remark QP QP
Mequency (MHz) 30.00 33.88 64.92	Reading (dBμV) 67.10 69.60 72.00	Correction Factor (dB/m) -32.25 -31.35 -32.35	Result (dBµV/m) 34.85 38.25 39.65	Limit (dBµV/m) 40.00 40.00 40.00	Margin (dB) -5.15 -1.75 -0.35	Remark QP QP QP
MHz(MHz) 30.00 33.88 64.92 81.41	Reading (dBμV) 67.10 69.60 72.00 70.50	Correction Factor (dB/m) -32.25 -31.35 -32.35 -36.20	Result (dBµV/m) 34.85 38.25 39.65 34.30	Limit (dBµV/m) 40.00 40.00 40.00 40.00	Margin (dB) -5.15 -1.75 -0.35 -5.70	Remark QP QP QP QP QP
MHz 30.00 33.88 64.92 81.41 104.69	Reading (dBμV) 67.10 69.60 72.00 70.50 73.04	Correction Factor (dB/m) -32.25 -31.35 -32.35 -36.20 -35.64	Result (dBµV/m) 34.85 38.25 39.65 34.30 37.39	Limit (dBµV/m) 40.00 40.00 40.00 40.00 43.50	Margin (dB) -5.15 -1.75 -0.35 -5.70 -6.11	Remark QP QP QP QP QP Peak
MHz(MHz) 30.00 33.88 64.92 81.41 104.69 143.49	Reading (dBμV) 67.10 69.60 72.00 70.50 73.04 67.30	Correction Factor (dB/m) -32.25 -31.35 -32.35 -36.20 -35.64 -31.43	Result (dBµV/m) 34.85 38.25 39.65 34.30 37.39 35.87	Limit (dBµV/m) 40.00 40.00 40.00 40.00 43.50 43.50	Margin (dB) -5.15 -1.75 -0.35 -5.70 -6.11 -7.63	Remark QP QP QP QP Peak QP
MHz 30.00 33.88 64.92 81.41 104.69 143.49 231.76	Reading (dBμV) 67.10 69.60 72.00 70.50 73.04 67.30 67.03	Correction Factor (dB/m) -32.25 -31.35 -32.35 -36.20 -35.64 -31.43 -31.79	Result (dBµV/m) 34.85 38.25 39.65 34.30 37.39 35.87 35.24	Limit (dBµV/m) 40.00 40.00 40.00 40.00 43.50 43.50 46.00	Margin (dB) -5.15 -1.75 -0.35 -5.70 -6.11 -7.63 -10.76	Remark QP QP QP QP Peak QP Peak
MHz 30.00 33.88 64.92 81.41 104.69 143.49 231.76 432.55	Reading (dBμV) 67.10 69.60 72.00 70.50 73.04 67.30 67.03 61.58	Correction Factor (dB/m) -32.25 -31.35 -32.35 -36.20 -35.64 -31.43 -31.79 -26.31	Result (dBµV/m) 34.85 38.25 39.65 34.30 37.39 35.87 35.24 35.27	Limit (dBµV/m) 40.00 40.00 40.00 40.00 43.50 43.50 43.50 46.00 46.00	Margin (dB) -5.15 -1.75 -0.35 -5.70 -6.11 -7.63 -10.76 -10.73	Remark QP QP QP QP Peak QP Peak Peak

Remark:

1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.

2. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Margin (dB) = Remark result (dBuV/m) - Quasi-peak limit (dBuV/m).

8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/08
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Low)	TEMP & Humidity	21.2°C, 50%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4825.00	62.52	48.17	-4.55	57.97	43.62	74.00	54.00	-10.38	AVG
				Vertical					
Frequency (MHz)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
4825.00	64.87	50.45	-4.55	60.32	45.90	74.00	54.00	-8.10	AVG

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/01
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP & Humidity	21.2°C, 50%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4876.00	64.50	49.70	-4.42	60.08	45.28	74.00	54.00	-8.72	AVG
				Vertical		-			-
Frequency (MHz)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
4876.00	65.86	50.52	-4.42	61.44	46.10	74.00	54.00	-7.90	AVG

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/01
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11b TX (CH High)	TEMP & Humidity	21.2°C, 50%

	Horizontal								
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4927.00	52.99		-4.29	48.70		74.00	54.00	-5.30	Peak
				Vertical	l				
Frequency (MHz)	$ \begin{array}{c c} Frequency\\ (MHz) \end{array} \left(\begin{array}{c} Reading-PK\\ (dB\mu V) \end{array} \left(\begin{array}{c} Reading-AV\\ (dB\mu V) \end{array} \right) \left(\begin{array}{c} Correction\\ Factor\\ (dBm) \end{array} \right) \left(\begin{array}{c} Result-PK\\ (dB\mu V/m) \end{array} \left(\begin{array}{c} Result-AV\\ (dB\mu V/m) \end{array} \right) \left(\begin{array}{c} Limit-AV\\ (dB\mu V/m) \end{array} \right) \left(\begin{array}{c} Margin\\ (dB\mu V/m) \end{array} \right) \left(\begin{array}{c} Result-AV\\ (dB\mu V/m) \end{array} \right) \left(\begin{array}{c} Result-AV (dB\mu V/m) \end{array} $								
4927.00	55.99		-4.29	51.70		74.00	54.00	-2.30	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/01
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Low)	TEMP & Humidity	21.2°C, 50%

				Horizont	al				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2742.50	57.64		-8.49	49.15		74.00	54.00	-4.85	Peak
4825.00	54.22		-4.55	49.67		74.00	54.00	-4.33	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
2759.50	54.65		-8.47	46.19		74.00	54.00	-7.81	Peak
4825.00	53.83		-4.55	49.28		74.00	54.00	-4.72	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/01
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP & Humidity	21.2°C, 50%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4867.50	56.03		-4.44	51.58		74.00	54.00	-2.42	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4876.00	56.40		-4.42	51.98		74.00	54.00	-2.02	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/01
Model	ARG-1705	Test By	Rueyyan Lin
Test Mode	IEEE 802.11g TX (CH High)	TEMP & Humidity	21.2°C, 50%

Horizontal									
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4927.00	50.11		-4.29	45.82		74.00	54.00	-8.18	Peak
				Vertical	l				
Frequency (MHz)	Reading-PK (dBµV)	Reading-AV (dBµV)	Correction Factor (dB/m)	Result-PK (dBµV/m)	Result-AV (dBµV/m)	Limit-PK (dBµV/m)	Limit-AV (dBµV/m)	Margin (dB)	Remark
4927.00	49.48		-4.29	45.19		74.00	54.00	-8.81	Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 3. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 4. Result = Reading + Correction Factor Margin = Result – Limit Remark Peak = Result(PK) – Limit(AV) Remark AVG = Result(AV) – Limit(AV)

8.4 RESTRICTED BAND EDGES

Detector mode : Average						Po	olarity	y : Hoi	rizontal
		CI	H Low (802.1	1b M	ODE)			
🔆 Agile	ent						RΤ		
Dof 107 /	NR.U	+0	++an 20 dE	>				Mkr3 2.	.385 9 GHz 3 18 AB.U
Peak		" []		,	1		1	4,	
Log –								_	
10 📙					ļ				
dB/									
Offst									5
dB									
								1	
54.0								2	
dBµV ⊨							-	×/	- V
LgAv 📙					<u> </u>	<u> </u>			
M1 S2									
Start 2.3	10 0 GHz	·	~					Stop 2.	425 0 GHz
#Res BW :	1 MHz			ŧVBW 10	Hz		Sweep	8.967 s (1001 pts)
Marker 1 2	Trace (1) (1)	Type Freq Frog	X f 2.411 2.499	ixis 0 GHz 0 GHz		Amplit 87.45 d	ude BµV Bull		
3		Freq	2.385	9 GHz		43.18 d	ВµV		

Detector mode	ity : Vertical				
	CH Hig	gh (802.1	1b MOD	DE)	
🔆 Agilent				Т	Marker
Ref 127 dB µ V Peak	#Atten 20 dB		Mkr3	2.486 80 GHz 50.79 dBµV	Select Marker 1 2 <u>3</u> 4
10 dB/					Normal
10 dB DI					Delta
54.0 dBµV LgAv			éé		Delta Pair (Tracking Ref) Ref <u>▲</u>
Start 2.450 00 GHz #Res BW 1 MHz Marker Trace	#VBW Type	10 Hz S X Axis	^ Stop Sweep 3.899	2.500 00 GHz s (1001 pts) Amplitude	Span Pair Span <u>Center</u>
$ \begin{array}{cccc} 1 & (1) \\ 2 & (1) \\ 3 & (1) \end{array} $	Freq 2. Freq 2. Freq 2.	.464 20 GHz .483 50 GHz .486 80 GHz		90.56 dBµV 49.98 dBµV 50.79 dBµV	Off
					More 1 of 2
Copyright 2000-2	003 Agilent Tech	nologies			

Detector mode : Average						Po	larit	y : H	lori	zontal	
			CI	H Low	(802.	11g M	ODE)				
₩ А	gilent						I	RТ			
R⊖f 12	7 dBuV		#A	tten 20 di	3				Mkr1	2.4	17 7 GHz 47 dBuV
Peak	/ GDFV									∨1.	
Log									_		
10											
dB/											
Offst											1
10 JD									~		~
ab Di											
UI 54 0											
34.0 dB u V									2 0		
							3		M		
LYHV							Y				
M1 S2											
Start 2	2.310 0 0	SHz	^						Stop	2.42	25 0 GHz
#Res B	W 1 MHz				#VBW 10	Hz		Sweep	o 8.967	's (6	601 pts)
Mark	er Tra	ace	Type	Х	Axis		Amplitu	ıde			
1	(1 (1	2	Freq Freq	2.417	7 GHz 0 GHマ		84.47 dE	βμV ΣπΠ			
3	(1	6	Freq	2.390	0 GHz		43.94 dE	,μν 3μV			

FCC ID : VYXARGTEK-1000 Refer No. : 80825002-RP1 Report No. : 90323003-RP1 Page ______ of _____35___

8.5 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)			
	Quasi-peak	Average		
0.15 - 0.5	66 to 56	56 to 46		
0.5 - 5	56	46		
5 - 30	60	50		

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/13/2009	
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	10/14/2009	
TEST RECEIVER	R & S	ESHS30	838550/003	02/02/2010	
PULSE LIMIT	R & S	ESH3-Z2	100117	09/23/2009	
N TYPE COAXIAL CABLE	BELDEN	8268 M17/164	003	09/13/2009	

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4:2003.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

TEST RESULTS

No non-compliance noted

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/09
Model Name	ARG-1705	Test By	Vic Lin
Test Mode	Normal operating	TEMP & Humidity	23.3°C, 55%

Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

Product Name	802.11b/g CPE (Access Point)	Test Date	2009/04/09
Model Name	ARG-1705	Test By	Vic Lin
Test Mode	Normal operating	TEMP & Humidity	23.3°C, 55%

NEUTRAL

Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value