

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 15.247(i) and 1.1307(b)(1) of this chapter.

EUT Specification

EUT	802.11b/g USB Dongle (ARG-U25g WLAN USB adapter)
Frequency band (Operating)	WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz
	\square WLAN: 5.18GHZ ~ 5.82GHZ / 5.50GHZ ~ 5.70GHZ
	Bluetooth: $2.402 \text{GHz} \sim 2.480 \text{ GHz}$
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
Exposure classification	\Box Occupational/Controlled exposure (S = 5mW/cm2)
	General Population/Uncontrolled exposure
	(S=1mW/cm2)
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	Tx/Rx diversity
Max. output power	IEEE 802.11b: 9.15dBm (8.22mW)
	IEEE 802.11g: 18.03 dBm (63.53mW)
Antenna gain (Max)	5 dBi (Numeric gain: 3.16)
Evaluation applied	MPE Evaluation*
	SAR Evaluation
	□ N/A

Remark:

- 1. The maximum output power is <u>18.03 dBm (63.53mW)</u> at <u>2437MHz</u> (with <u>3.16 numeric</u> antenna gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where
$$d = Distance$$
 in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm²

Maximum Permissible Exposure

EUT output power = 63.53 mW

Numeric Antenna gain = 3.16

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain S = Power density in mW/cm^2

 \rightarrow Power density = 0.03995 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)