FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Wireless LAN USB Adapter

Model: Wi-Queen, Wi-Prince

Trade Name: ARGtek

Issued to

ARGtek Communication Inc. 8F-9,No. 4, Lane 609,Sec.5, Chung Hsin Rd., San Chung City, Taipei Hsien 241, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang,
Taoyuan Hsien, (338) Taiwan, R.O.C.
http://www.ccsemc.com.tw
service@tw.ccsemc.com

Date of Issue: March 4, 2008

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Date of Issue: March 4, 2008

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE.	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	6
3.5	DESCRIPTION OF TEST MODES	7
4. IN	NSTRUMENT CALIBRATION	8
4.1	MEASURING INSTRUMENT CALIBRATION	8
4.2	MEASUREMENT EQUIPMENT USED	8
5. F	ACILITIES AND ACCREDITATIONS	9
5.1	FACILITIES	9
5.2	EQUIPMENT	
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	10
6. SI	ETUP OF EQUIPMENT UNDER TEST	11
6.1	SETUP CONFIGURATION OF EUT	11
6.2	SUPPORT EQUIPMENT	11
7. F	CC PART 15.247 REQUIREMENTS	12
7.1	6DB BANDWIDTH	12
7.2	PEAK POWER.	
7.3	AVERAGE POWER	
7.4	BAND EDGES MEASUREMENT	
7.5	PEAK POWER SPECTRAL DENSITY	
7.6	SPURIOUS EMISSIONS	
7.7	POWERLINE CONDUCTED EMISSIONS	68
APPE	NDIX I RADIO FREQUENCY EXPOSURE	71
APPE	NDIX II PHOTOGRAPHS OF TEST SETUP	72

1. TEST RESULT CERTIFICATION

Applicant: ARGtek Communication Inc.

8F-9,No. 4, Lane 609,Sec.5, Chung Hsin Rd., San Chung City, Taipei Hsien 241, Taiwan,R.O.C.

Date of Issue: March 4, 2008

Equipment Under Test: Wireless LAN USB Adapter

Trade Name: ARGtek

Model: Wi-Queen, Wi-Prince

Date of Test: January 28 ~ February 14, 2008

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart C	No non-compliance noted				
Deviation from Applicable Standard					
None					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by: Reviewed by:

Rex Lai Section Manager

Compliance Certification Services Inc.

Amanda Wu Section Manager

Compliance Certification Services Inc.

Page 3 Rev. 00

2. EUT DESCRIPTION

Product	Wireless LAN USB Adapter
Trade Name	ARGtek
Model Number	Wi-Queen, Wi-Prince
Model Discrepancy	Model Number: Wi-Queen for omni antenna, Model Number: Wi-Prince for printed antenna
Power Supply	Powered from host device.
Frequency Range	2412 ~ 2462 MHz
Transmit Power	IEEE 802.11b: 14.47 dBm (27.99mW) IEEE 802.11g: 14.88 dBm (30.76mW)
Modulation Technique	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: DSSS (CCK, DQPSK, DBPSK) + OFDM (QPSK, BPSK, 16-QAM, 64-QAM)
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps IEEE 802.11g: 54, 48, 36, 24, 18, 12, 11, 9, 6, 5.5, 2, 1 Mbps
Number of Channels	11 Channels
Antenna Specification	Omni Antenna / Gain: 5 dBi Printed Antenna / Gain: 2.61 dBi

Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>VYXARGTEK-0001</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 4 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: March 4, 2008

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

Page 5 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Date of Issue: March 4, 2008

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 6 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: Wi-Queen, Wi-Prince) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

Date of Issue: March 4, 2008

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

The USB slot could be in vertical and horizontal manner. After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

IEEE 802.11b mode:

Channel Low(2412MHz), Channel Mid(2437MHz) and Channel High(2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g mode:

Channel Low(2412MHz), Channel Mid(2437MHz) and Channel High(2462MHz) with 6Mbps data rate were chosen for full testing.

Page 7 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: March 4, 2008

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site					
Name of Equipment Manufacturer Model Serial Number Calibration Due					
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/29/2009	

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	09/11/2008		
Test Receiver	Rohde&Schwarz	ESCI	100064	11/30/2008		
Switch Controller	TRC	Switch Controller	SC94050010	05/04/2008		
4 Port Switch	TRC	4 Port Switch	SC94050020	05/04/2008		
Horn-Antenna	TRC	HA-0502	06	06/05/2008		
Horn-Antenna	TRC	HA-0801	04	06/20/2008		
Horn-Antenna	TRC	HA-1201A	01	08/12/2008		
Horn-Antenna	TRC	HA-1301A	01	08/12/2008		
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/29/2008		
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.		
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.		
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.		
Site NSA	CCS	N/A	FCC: 965860	09/25/2008		
SHE NSA			IC: IC 6106	09/23/2008		
Test S/W	LABVIEW (V 6.1)					

Remark: The measurement uncertainty is less than +/-2.0065dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Powerline Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver 9kHz-30MHz	Rohde & Schwarz	ESHS30	828144/003	11/19/2008		
Two-Line V-Network 9kHz-30MHz	Schaffner	NNB41	03/10013	06/12/2008		
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	04/01/2008		
Test S/W	LABVIEW (V 6.1)					

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 8 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at
No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The sites are constructed in conformance with the requirements of ANSLC63.7. ANSLC63.4 and

Date of Issue: March 4, 2008

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 9 Rev. 00

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency		Logo
USA	A2LA	EN 55011, EN 55014-1/2, CISPR 11, CISPR 14-1/2, EN 55022, EN 55015, CISPR 22, CISPR 15, AS/NZS 3548, VCCI V3 (2001), CFR 47, FCC Part 15/18, CNS 13783-1, CNS 13439, CNS 13438, CNS 13803, CNS 14115, EN 55024, IEC 801-2, IEC 801-3, IEC 801-4, IEC/EN 61000-3-2, IEC/EN 61000-3-3, IEC/EN 61000-4-2/3/4/5/6/8/11, EN 50081-1/ EN 61000-6-3, EN 50081-2/EN 61000-6-4, EN 50081-2/EN 61000-6-1: 2001	ACCREDITED TESTING CERT #0824.01
USA	FCC	3/10 meter Open Area Test Sites (93105, 90471) / 3M Semi Anechoic Chamber (965860) to perform FCC Part 15/18 measurements	93105, 90471 965860
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	TAF	EN 300 328, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS CISPR 22, CNS 13022-1, IEC 61000-4-2/3/4/5/6/8/11, CNS 13022-2/3	Testing Laboratory 0363
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	3/10 meter Open Area Test Sites (IC 2324C-3, IC 2324C-5) / 3M Semi Anechoic Chamber (IC 6106)	Canada IC 2324C-3 IC 2324C-5 IC 6106

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Page 10 Rev. 00

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Notebook PC	IBM	2672 (X31)	99РВТКВ	WLAN: ANO20030400LEG Bluetooth: ANO20020100MTN		AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
2.	Notebook PC	Sony	VGN-S44TP	28198080 8100339	WLAN: ETC094LPD0155 Bluetooth: ETC094LPD0156		AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core

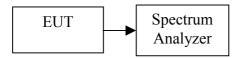
Date of Issue: March 4, 2008

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 11 Rev. 00

7. FCC PART 15.247 REQUIREMENTS


7.1 6DB BANDWIDTH

LIMIT

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Date of Issue: March 4, 2008

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 50 MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

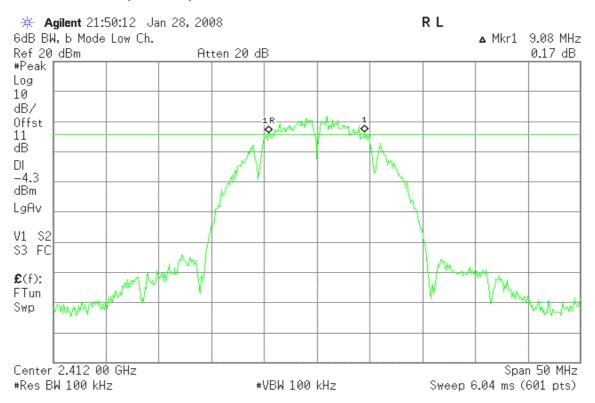
No non-compliance noted.

Test Data

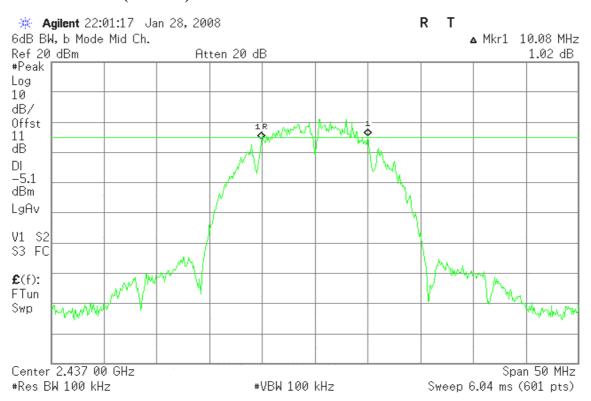
Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Result
Low	2412	9080	>500	PASS
Mid	2437	10080		PASS
High	2462	7080		PASS

Test mode: IEEE 802.11g

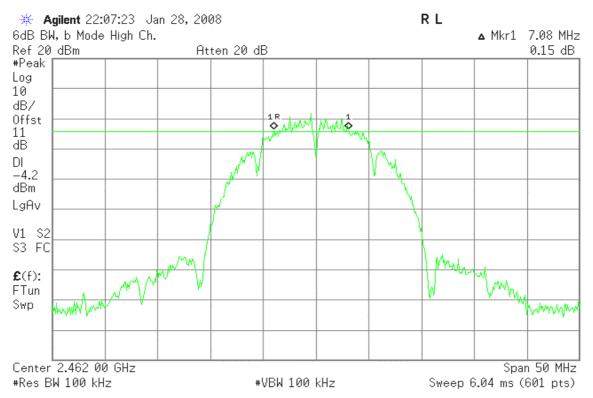

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Result
Low	2412	16330	>500	PASS
Mid	2437	16330		PASS
High	2462	16420		PASS

Page 12 Rev. 00

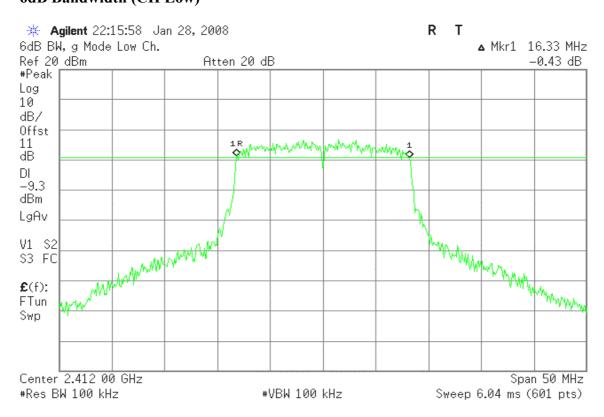

Test Plot

IEEE 802.11b

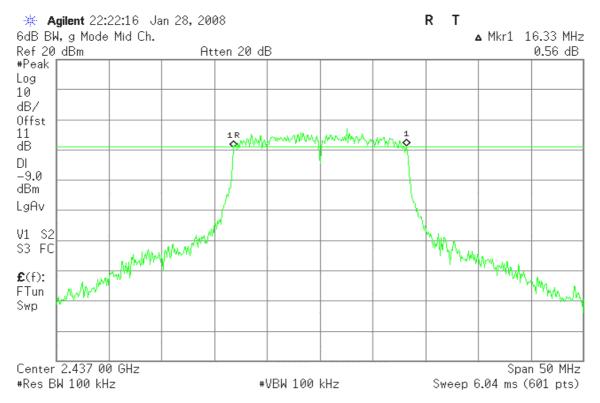
6dB Bandwidth (CH Low)



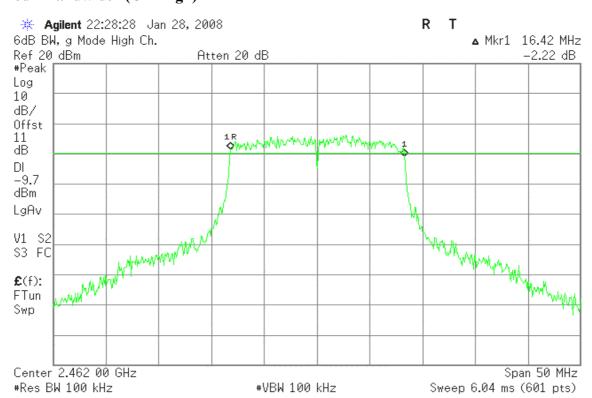
6dB Bandwidth (CH Mid)


Page 13 Rev. 00

6dB Bandwidth (CH High)


IEEE 802.11g

6dB Bandwidth (CH Low)



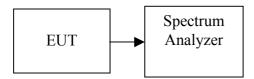
Page 14 Rev. 00

6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

Page 15 Rev. 00

7.2 PEAK POWER


LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

Date of Issue: March 4, 2008

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.

Page 16 Rev. 00

TEST RESULTS

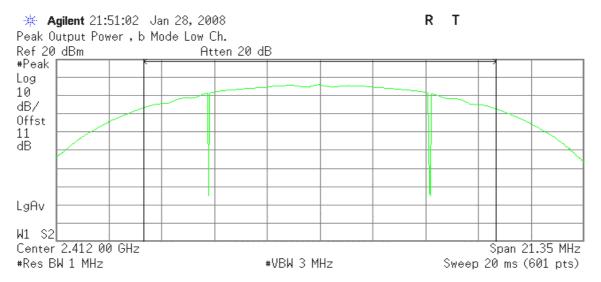
No non-compliance noted.

Test Data

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	14.19	0.0262		PASS
Mid	2437	14.05	0.0254	1.00	PASS
High	2462	14.47	0.0280		PASS

Test mode: IEEE 802.11g


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	14.31	0.0270		PASS
Mid	2437	14.88	0.0308	1.00	PASS
High	2462	14.04	0.0254		PASS

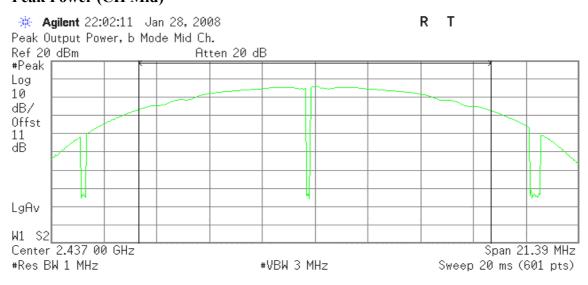
Page 17 Rev. 00

Test Plot

IEEE 802.11b

Peak Power (CH Low)

Channel Power


14.19 dBm /14.2310 MHz

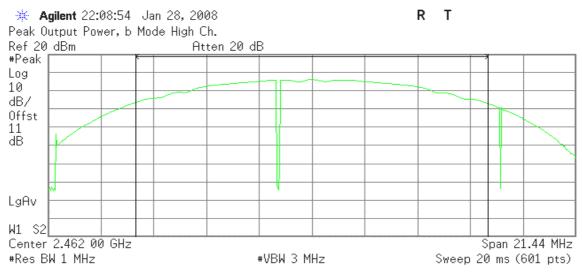
Power Spectral Density

-57.34 dBm/Hz

Date of Issue: March 4, 2008

Peak Power (CH Mid)

Channel Power


14.05 dBm /14.2610 MHz

Power Spectral Density

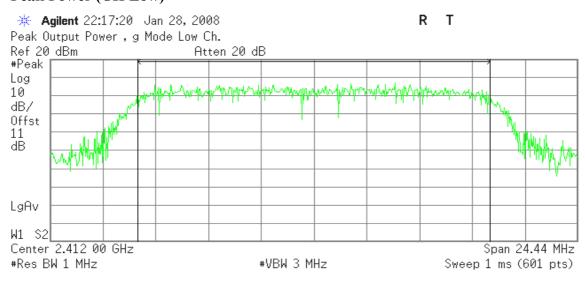
-57.49 dBm/Hz

Page 18 Rev. 00

Peak Power (CH High)

Channel Power

14.47 dBm /14.2920 MHz


Power Spectral Density

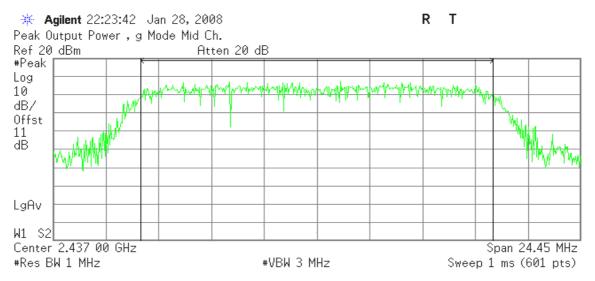
-57.08 dBm/Hz

Date of Issue: March 4, 2008

IEEE 802.11g

Peak Power (CH Low)

Channel Power


14.31 dBm /16.2910 MHz

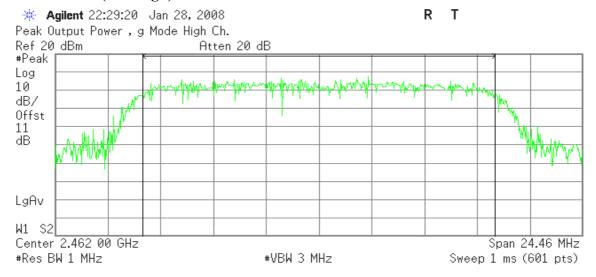
Power Spectral Density

-57.81 dBm/Hz

Page 19 Rev. 00

Peak Power (CH Mid)

Channel Power


14.88 dBm /16.2980 MHz

Power Spectral Density

-57.24 dBm/Hz

Date of Issue: March 4, 2008

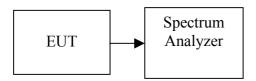
Peak Power (CH High)

Channel Power

14.04 dBm /16.3070 MHz

Power Spectral Density

-58.08 dBm/Hz


Page 20 Rev. 00

7.3 AVERAGE POWER

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the average power detection.

TEST RESULTS

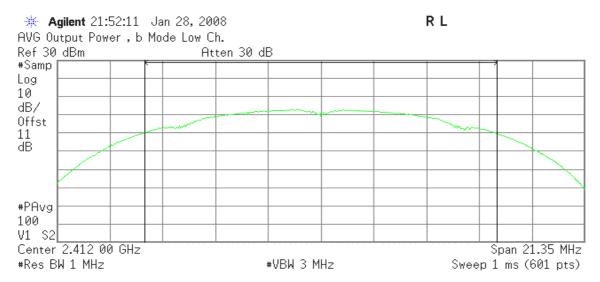
No non-compliance noted.

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	10.95
Mid	2437	10.88
High	2462	11.24

Test mode: IEEE 802.11g mode


Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	9.76
Mid	2437	10.21
High	2462	9.50

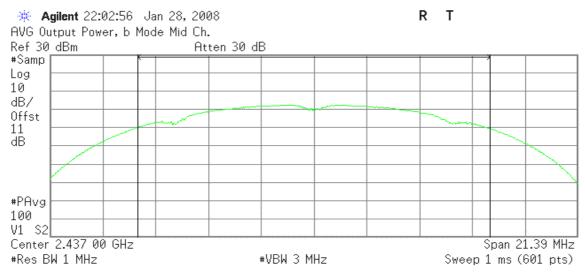
Page 21 Rev. 00

Test Plot

IEEE 802.11b

CH Low

Channel Power

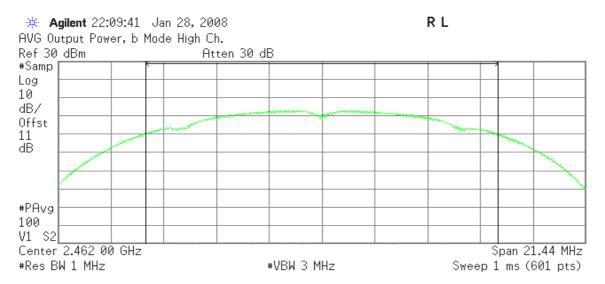

10.95 dBm /14.2310 MHz

Power Spectral Density

-60.58 dBm/Hz

Date of Issue: March 4, 2008

CH Mid


Channel Power

10.88 dBm /14.2610 MHz

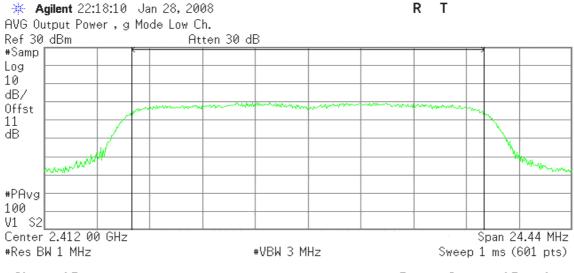
Power Spectral Density -60.66 dBm/Hz

Page 22 Rev. 00

CH High

Channel Power

11.24 dBm /14.2920 MHz


Power Spectral Density

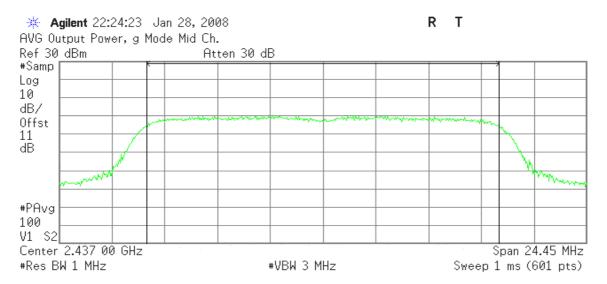
-60.31 dBm/Hz

Date of Issue: March 4, 2008

IEEE 802.11g

CH Low

Channel Power


9.76 dBm /16.2910 MHz

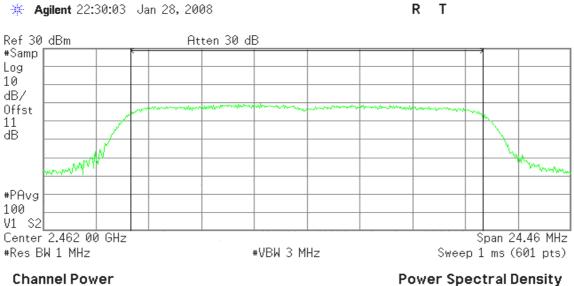
Power Spectral Density

-62.36 dBm/Hz

Page 23 Rev. 00

CH Mid

Channel Power


10.21 dBm /16.2980 MHz

Power Spectral Density

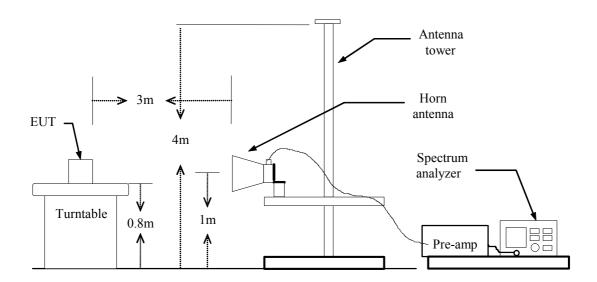
-61.91 dBm/Hz

Date of Issue: March 4, 2008

CH High

9.50 dBm /16.3070 MHz -62.63 dBm/Hz

Page 24 Rev. 00


7.4 BAND EDGES MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

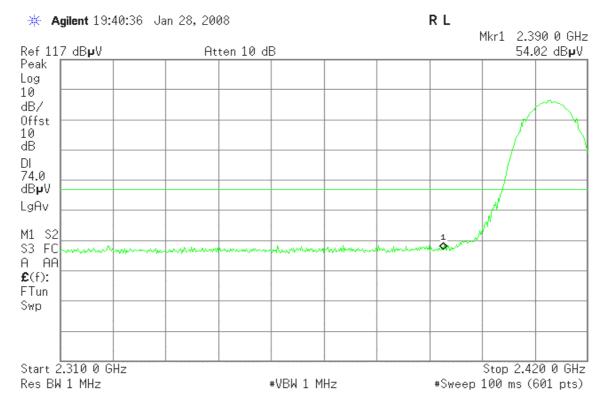
Date of Issue: March 4, 2008

Test Configuration

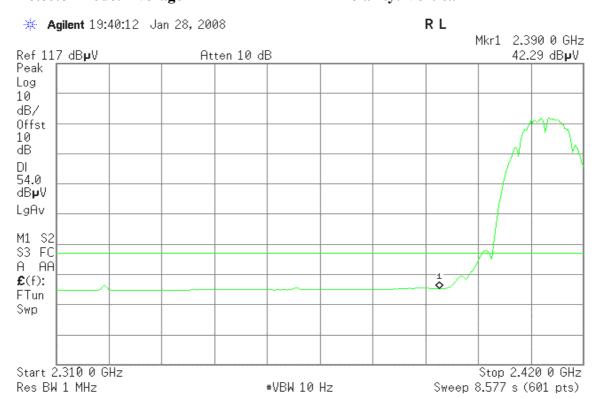
TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

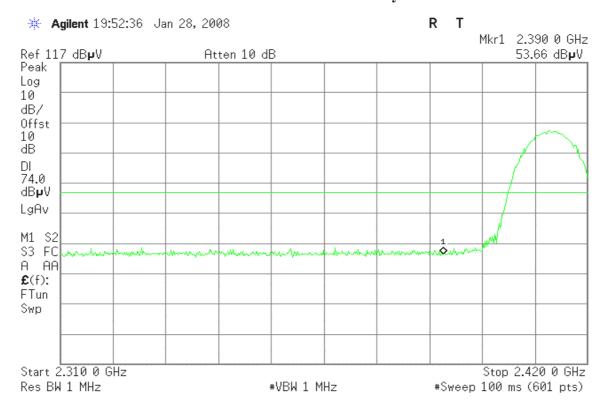

Refer to attach spectrum analyzer data chart.

Page 25 Rev. 00


Omni Antenna:

Band Edges (IEEE 802.11b / CH Low)

Detector mode: Peak Polarity: Vertical

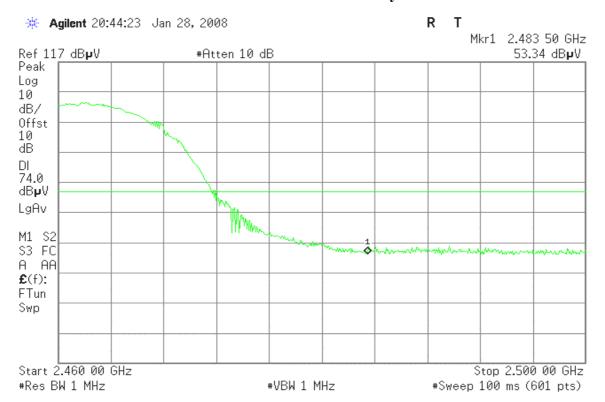


Detector mode: Average Polarity: Vertical

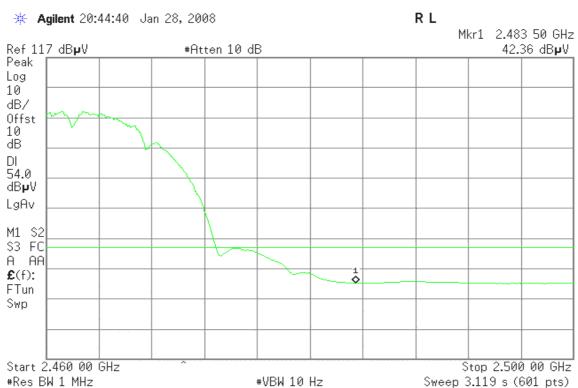
Page 26 Rev. 00

Detector mode: Peak Polarity: Horizontal

Polarity: Horizontal

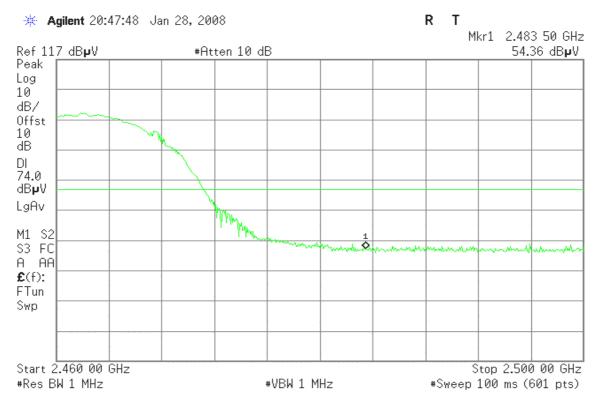

Detector mode: Average

R * Agilent 19:52:53 Jan 28, 2008 Mkr1 2.390 0 GHz Ref 117 dBpV 41.83 dB**µ**V Atten 10 dB Peak Log 10 dB/ Offst 10 dΒ DΙ 54.0 dB₽V LgAv M1 S2 S3 FC A AA £(f): FTun Swp Start 2.310 0 GHz Stop 2.420 0 GHz Res BW 1 MHz #VBW 10 Hz Sweep 8.577 s (601 pts)


Page 27 Rev. 00

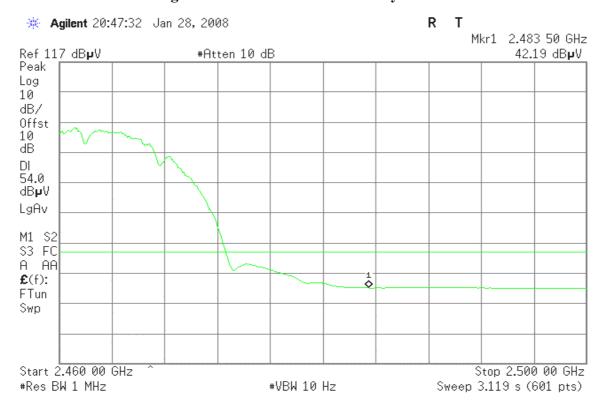
Band Edges (IEEE 802.11b / CH High)

Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical

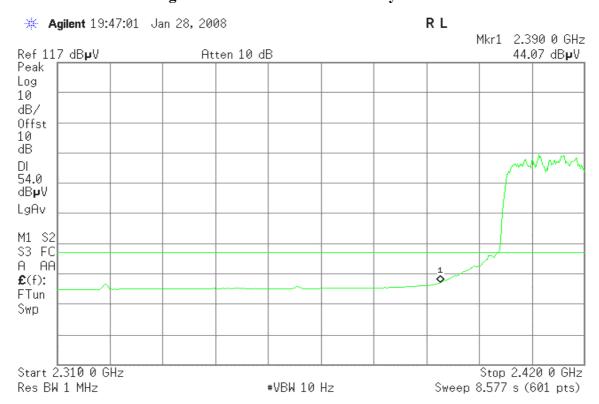
Page 28 Rev. 00


Detector mode: Peak Polarity: Horizontal

Detector mode: Average

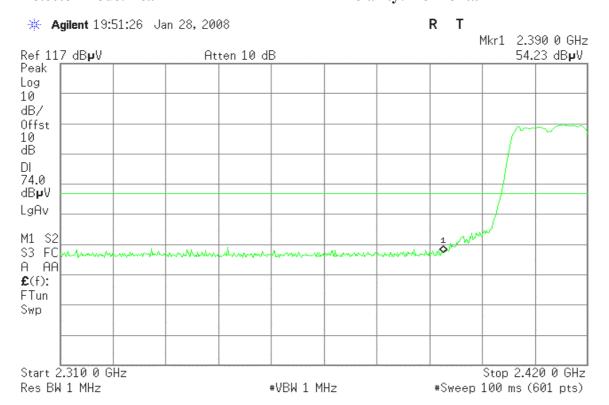
Polarity: Horizontal

Date of Issue: March 4, 2008


Page 29 Rev. 00

Band Edges (IEEE 802.11g / CH Low)

Detector mode: Peak Polarity: Vertical

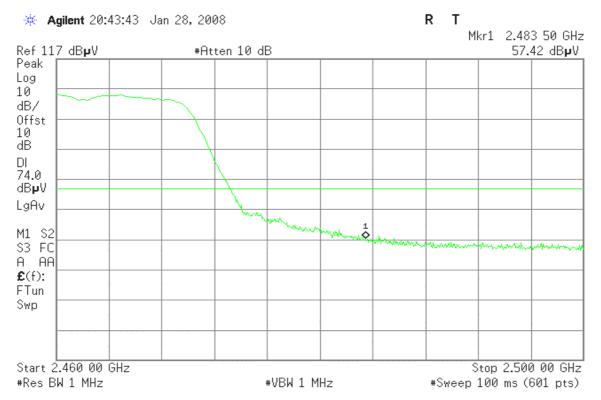


Detector mode: Average Polarity: Vertical

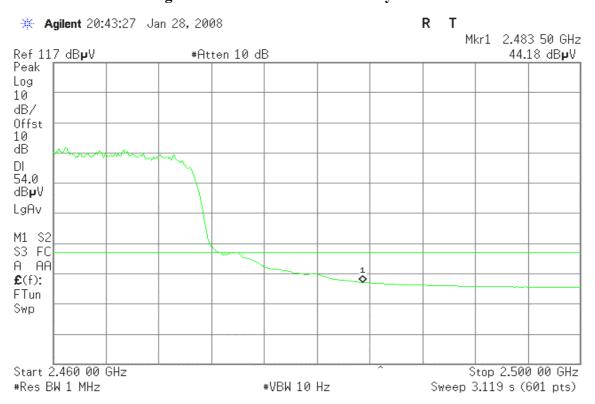
Page 30 Rev. 00

Detector mode: Peak Polarity: Horizontal

Polarity: Horizontal

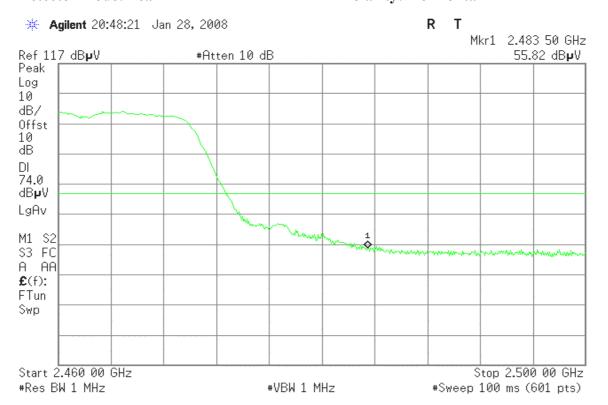

Detector mode: Average

R * Agilent 19:51:10 Jan 28, 2008 Mkr1 2.390 0 GHz Ref 117 dBpV 42.48 dB**µ**V Atten 10 dB Peak Log 10 dB/ Offst 10 dΒ DΙ 54.0 dB₽V LgAv M1 S2 S3 FC A AA _1-♦ £(f): FTun Swp Start 2.310 0 GHz Stop 2.420 0 GHz Res BW 1 MHz #VBW 10 Hz Sweep 8.577 s (601 pts)


Page 31 Rev. 00

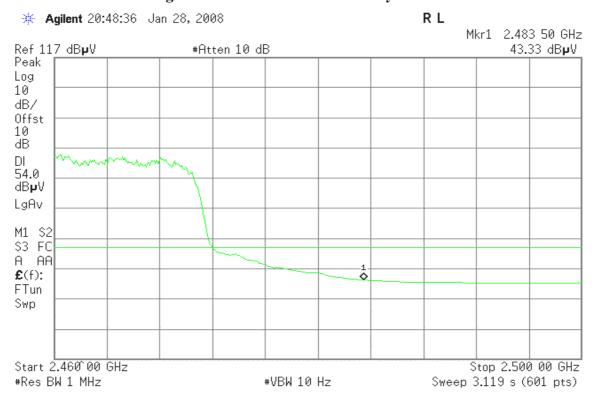
Band Edges (IEEE 802.11g / CH High)

Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical

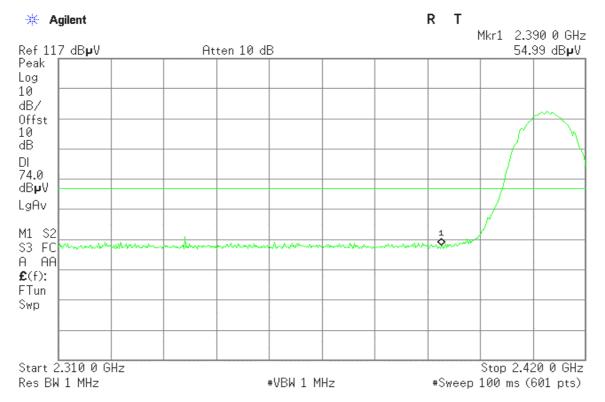
Page 32 Rev. 00


Detector mode: Peak Polarity: Horizontal

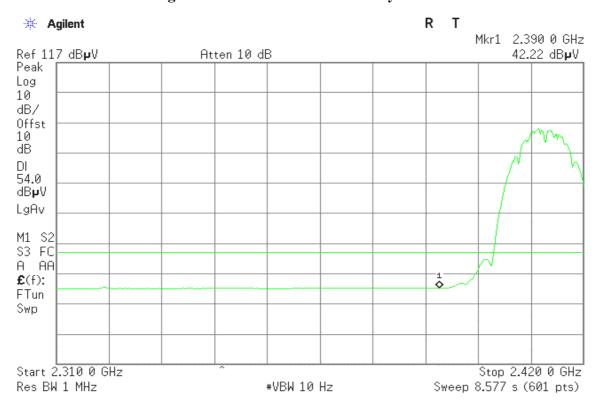
Detector mode: Average

Polarity: Horizontal

Date of Issue: March 4, 2008

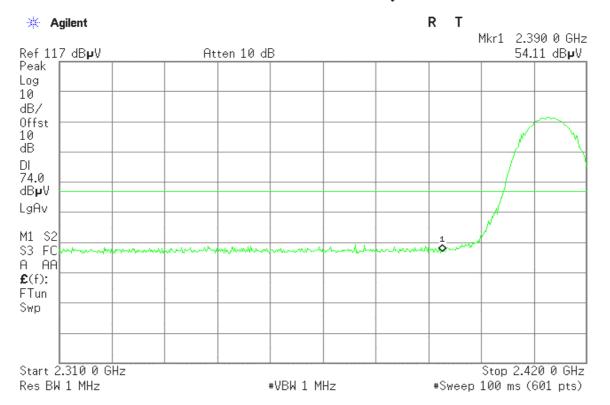


Page 33 Rev. 00

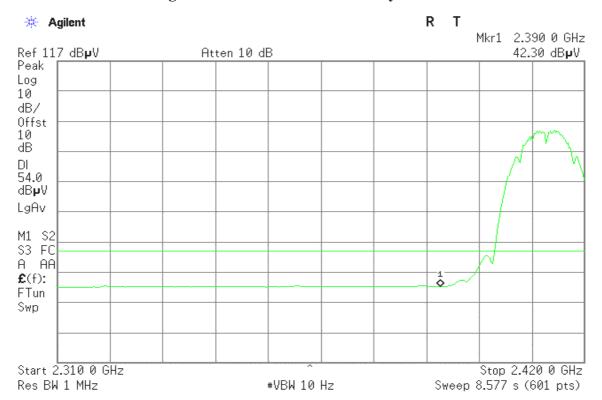

Printed Antenna:

Band Edges (IEEE 802.11b / CH Low)

Detector mode: Peak Polarity: Vertical



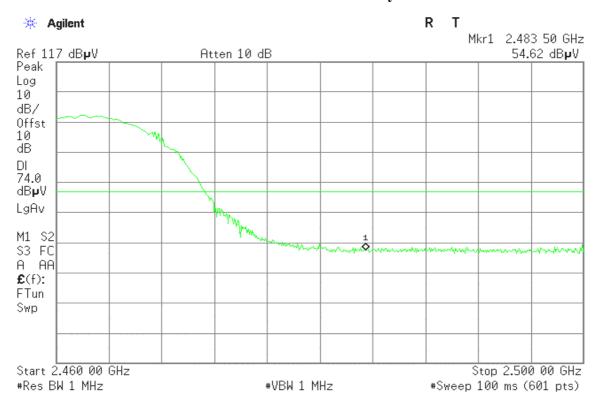
Detector mode: Average Polarity: Vertical



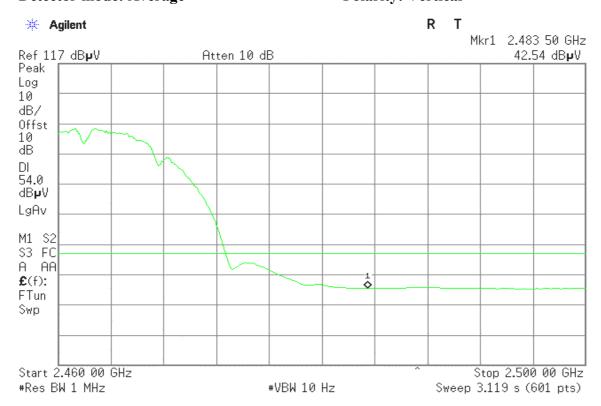
Page 34 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

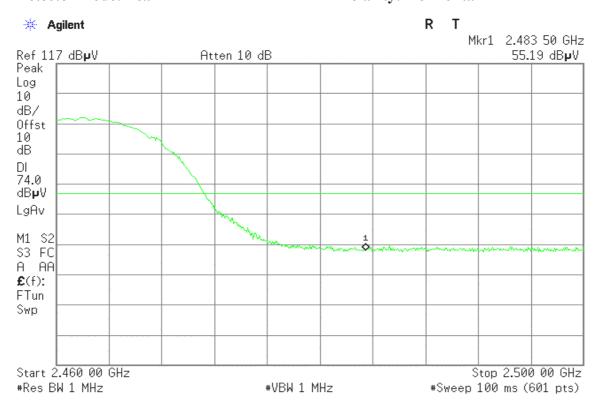


Page 35 Rev. 00

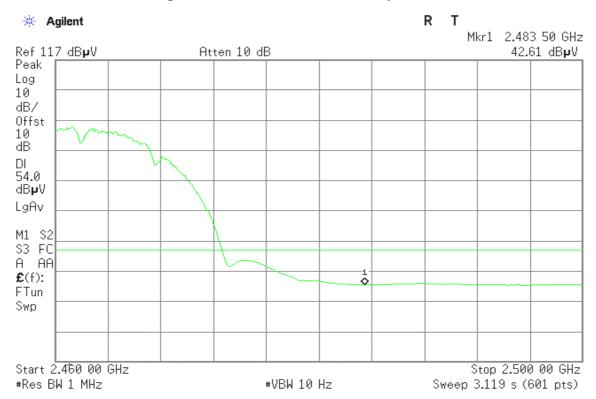

P1 FCC ID: VYXARGTEK-0001 Date of Issue: March 4, 2008

Band Edges (IEEE 802.11b / CH High)

Detector mode: Peak Polarity: Vertical

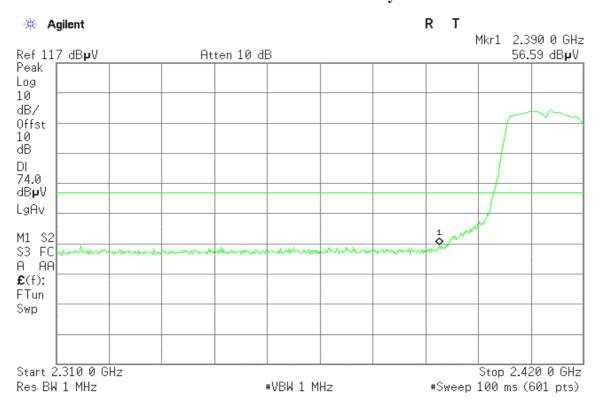


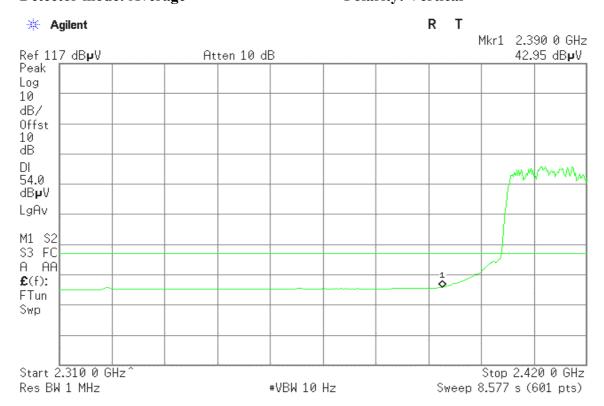
Detector mode: Average Polarity: Vertical



Page 36 Rev. 00

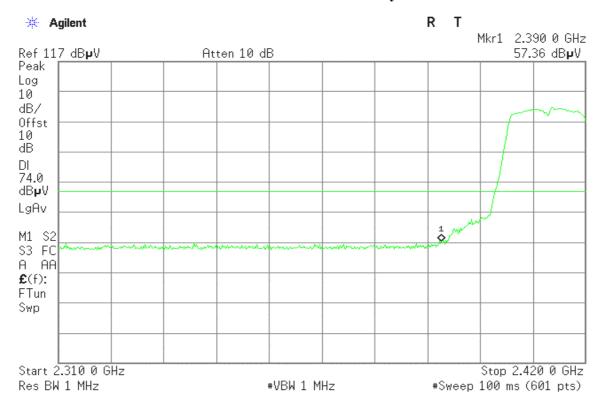
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal

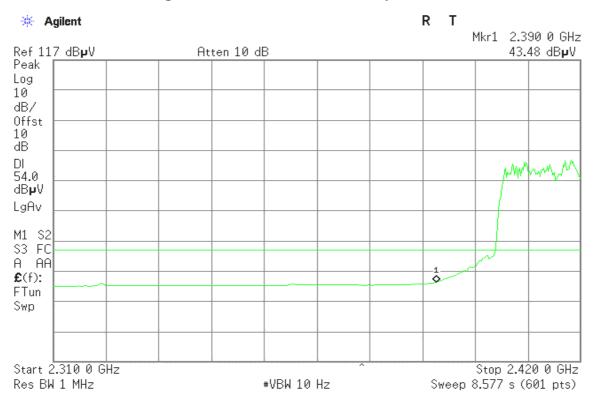

Page 37 Rev. 00

Band Edges (IEEE 802.11g / CH Low)

Detector mode: Peak Polarity: Vertical

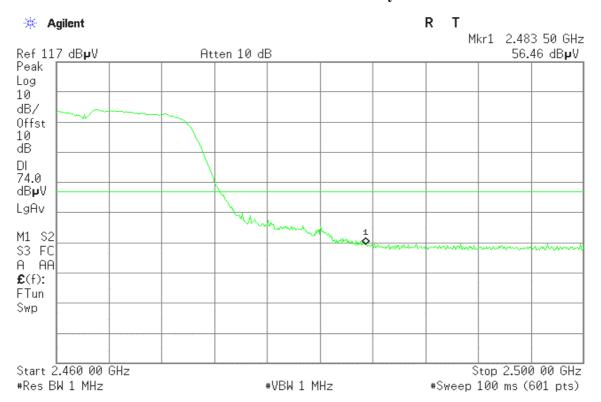


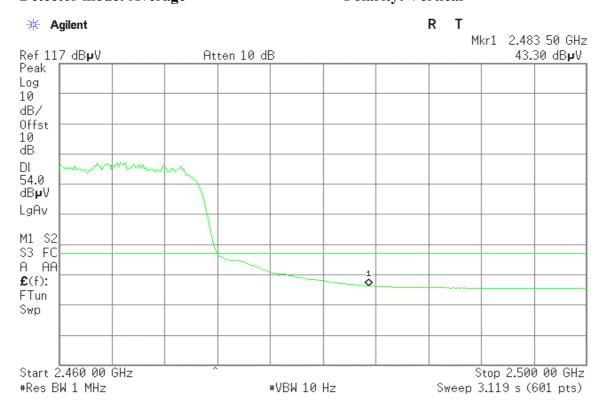
Detector mode: Average Polarity: Vertical



Page 38 Rev. 00

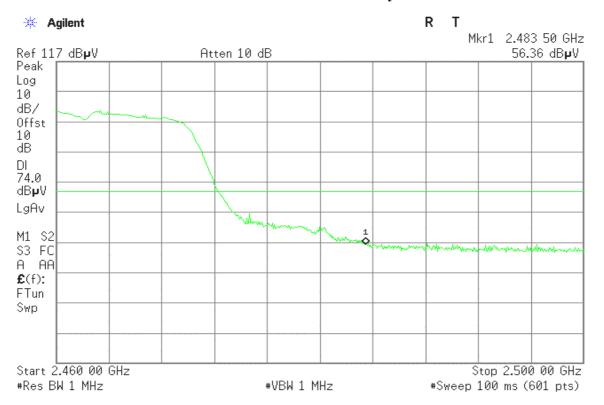
Detector mode: Peak Polarity: Horizontal


Detector mode: Average Polarity: Horizontal

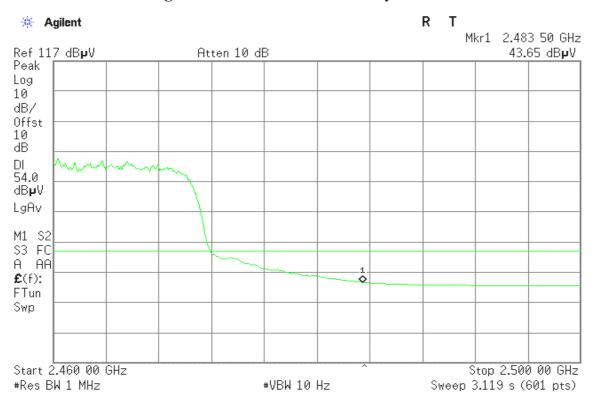

Page 39 Rev. 00

Band Edges (IEEE 802.11g / CH High)

Detector mode: Peak Polarity: Vertical



Detector mode: Average Polarity: Vertical



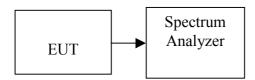
Page 40 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

Page 41 Rev. 00

7.5 PEAK POWER SPECTRAL DENSITY


LIMIT

1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: March 4, 2008

2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.

 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3 kHz, VBW = 10 kHz, Span = 300 kHz, Sweep = 100 s
- 3. Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

Page 42 Rev. 00

TEST RESULTS

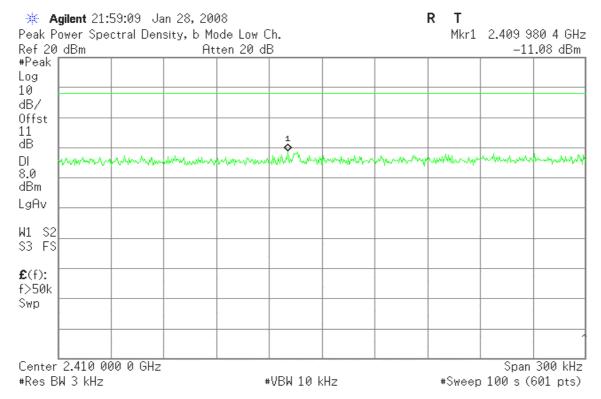
No non-compliance noted.

Test Data

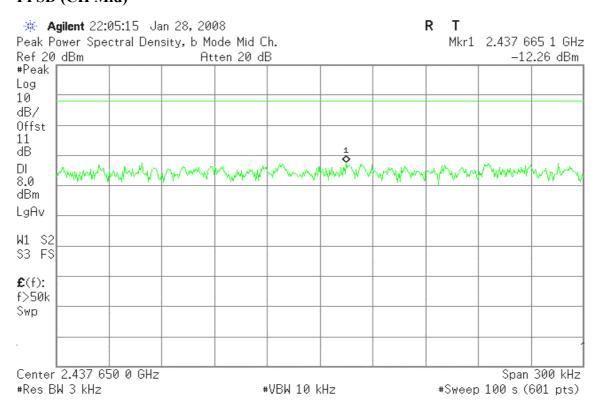
Test mode: IEEE 802.11b

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-11.08		PASS
Mid	2437	-12.26	8.00	PASS
High	2462	-7.55		PASS

Test mode: IEEE 802.11g

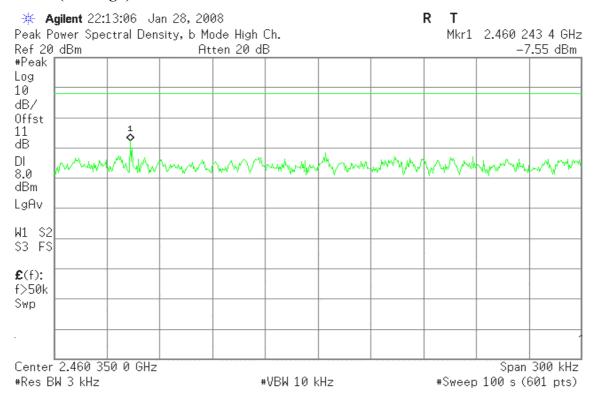

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-17.09		PASS
Mid	2437	-16.27	8.00	PASS
High	2462	-17.00		PASS

Page 43 Rev. 00

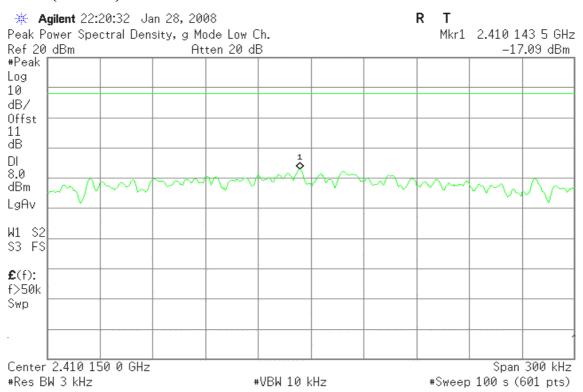

Test Plot

IEEE 802.11b

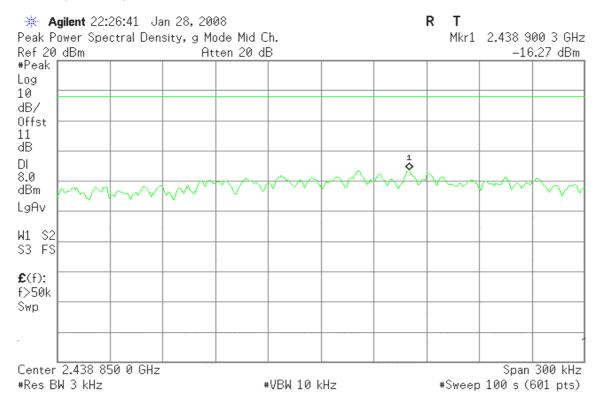
PPSD (CH Low)



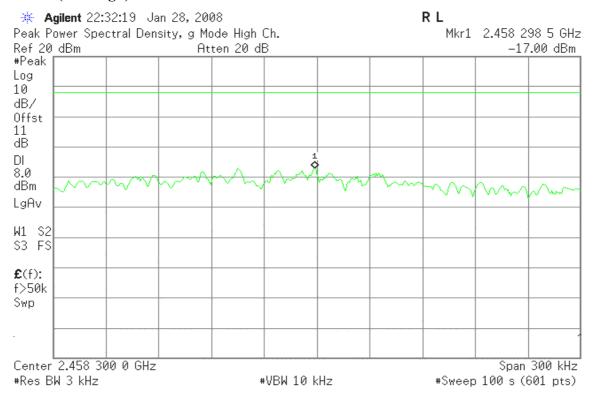
PPSD (CH Mid)


Page 44 Rev. 00

PPSD (CH High)


IEEE 802.11g

PPSD (CH Low)

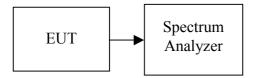


Page 45 Rev. 00

PPSD (CH Mid)

PPSD (CH High)

7.6 SPURIOUS EMISSIONS


7.6.1 Conducted Measurement

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: March 4, 2008

Test Configuration

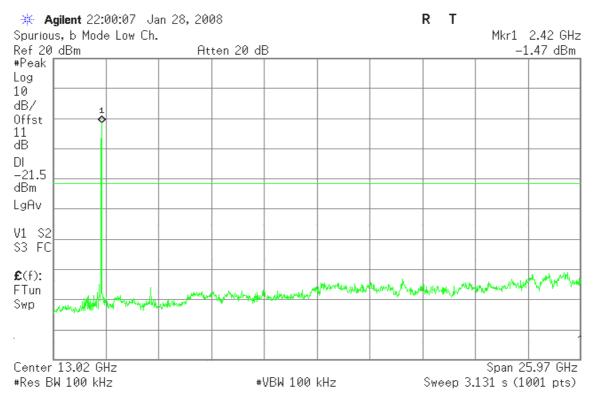
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

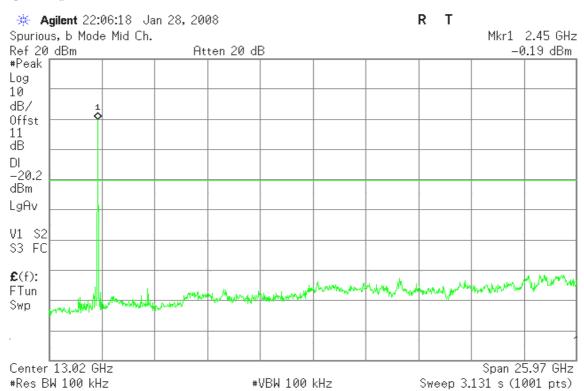
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

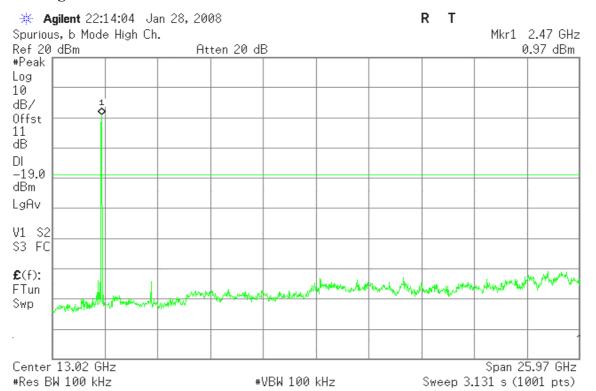

No non-compliance noted.

Page 47 Rev. 00

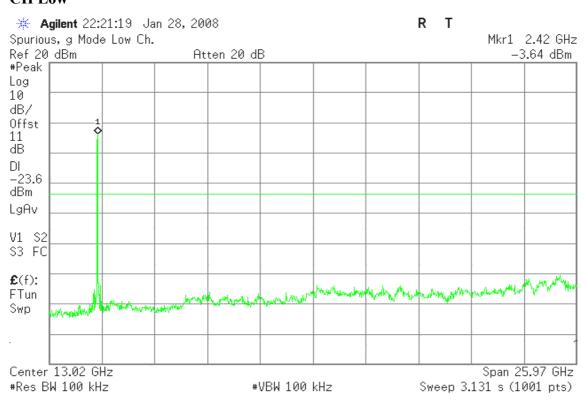

Test Plot

IEEE 802.11b

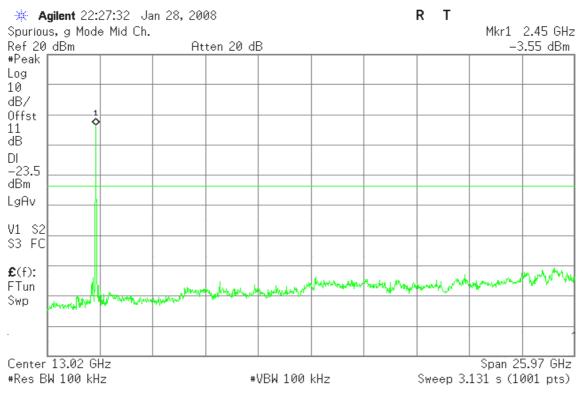
CH Low



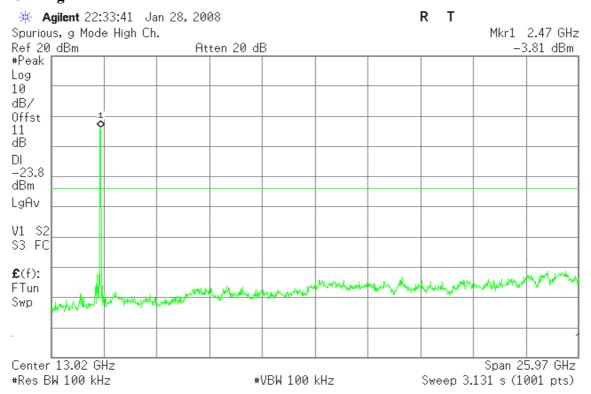
CH Mid


Page 48 Rev. 00

CH High


IEEE 802.11g

CH Low



Page 49 Rev. 00

CH Mid

CH High

Page 50 Rev. 00

7.6.2 RADIATED EMISSIONS

LIMIT

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

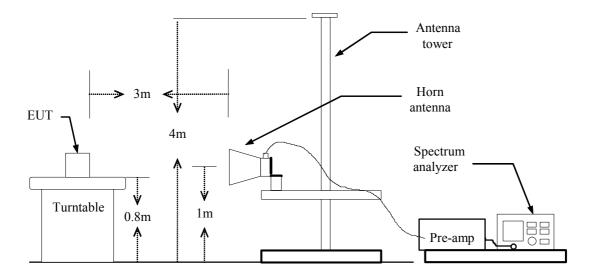
Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Date of Issue: March 4, 2008

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


Page 51 Rev. 00

Test Configuration

Below 1 GHz

Above 1 GHz

Page 52 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

Date of Issue: March 4, 2008

- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 53 Rev. 00

TEST RESULTS

No non-compliance noted.

Below 1GHz

Omni Antenna:

Operation Mode: Normal Link **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
36.47	V	42.53	-10.49	32.05	40.00	-7.95	Peak
180.35	V	46.49	-15.29	31.20	43.50	-12.30	Peak
288.67	V	43.20	-12.69	30.51	46.00	-15.49	Peak
576.43	V	36.60	-6.19	30.41	46.00	-15.59	Peak
670.20	V	42.21	-4.83	37.37	46.00	-8.63	Peak
720.32	V	39.12	-4.30	34.82	46.00	-11.18	Peak
36.47	Н	41.10	-10.49	30.61	40.00	-9.39	Peak
240.17	Н	45.33	-14.62	30.71	46.00	-15.29	Peak
288.67	Н	46.82	-12.69	34.13	46.00	-11.87	Peak
576.43	Н	37.71	-6.19	31.52	46.00	-14.48	Peak
864.20	Н	34.80	-2.50	32.30	46.00	-13.70	Peak
880.37	Н	34.99	-2.31	32.69	46.00	-13.31	Peak

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Page 54 Rev. 00

Printed Antenna:

Operation Mode: Normal Link **Test Date:** February 14, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
88.20	V	51.07	-19.33	31.75	43.50	-11.75	Peak
199.75	V	48.16	-13.37	34.79	43.50	-8.71	Peak
455.18	V	48.72	-8.51	40.20	46.00	-5.80	Peak
576.43	V	42.91	-6.19	36.72	46.00	-9.28	Peak
665.35	V	38.81	-4.93	33.88	46.00	-12.12	QP
717.08	V	39.79	-4.41	35.39	46.00	-10.61	Peak
38.08	Н	41.81	-11.60	30.21	40.00	-9.79	Peak
202.98	Н	45.28	-13.93	31.36	43.50	-12.14	Peak
455.18	Н	38.20	-8.51	29.69	46.00	-16.31	Peak
720.32	Н	36.68	-4.30	32.39	46.00	-13.61	Peak
864.20	Н	35.42	-2.50	32.92	46.00	-13.08	Peak
930.48	Н	32.31	-1.41	30.89	46.00	-15.11	Peak

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Page 55 Rev. 00

Above 1 GHz

Omni Antenna:

Operation Mode: TX / IEEE 802.11b / CH Low Test Date: January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1276.67	V	59.87		-10.34	49.53		74.00	54.00	-4.47	Peak
4825.00	V	49.29		0.55	49.85		74.00	54.00	-4.15	Peak
N/A										
1696.67	Н	59.25		-8.02	51.23		74.00	54.00	-2.77	Peak
4825.00	Н	49.56		0.55	50.11		74.00	54.00	-3.89	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 56 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1670.00	V	59.05		-8.28	50.77		74.00	54.00	-3.23	Peak
N/A										
1613.33	Н	59.60		-8.85	50.75		74.00	54.00	-3.25	Peak
4875.00	Н	47.93		0.60	48.53		74.00	54.00	-5.47	Peak
6275.00	Н	46.48		2.58	49.07		74.00	54.00	-4.93	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 57 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH High **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1346.67	V	59.93		-10.22	49.70		74.00	54.00	-4.30	Peak
4925.00	V	45.30		0.65	45.95		74.00	54.00	-8.05	Peak
N/A										
1273.33	Н	60.86		-10.34	50.51		74.00	54.00	-3.49	Peak
4925.00	Н	47.86		0.65	48.51		74.00	54.00	-5.49	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 58 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1413.33	V	60.82		-10.12	50.70		74.00	54.00	-3.30	Peak
N/A										
1373.33	Н	60.56		-10.18	50.38		74.00	54.00	-3.62	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 59 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1610.00	V	59.05		-8.88	50.17		74.00	54.00	-3.83	Peak
N/A										
1670.00	Н	60.07		-8.28	51.79		74.00	54.00	-2.21	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 60 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH High **Test Date:** January 28, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1573.33	V	58.40		-9.25	49.16		74.00	54.00	-4.84	Peak
N/A										
1573.33	Н	60.75		-9.25	51.51		74.00	54.00	-2.49	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 61 Rev. 00

Printed Antenna:

Operation Mode: TX / IEEE 802.11b / CH Low Test Date: February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
V	59.83		-8.48	51.34		74.00	54.00	-2.66	Peak
Н	60.33		-10.12	50.22		74.00	54.00	-3.78	Peak
Н									Peak
	(H/V) V	H 60.33	H 60.33	H 60.3310.12	H 60.3310.12 50.22	H 60.3310.12 50.22	Ant. Pol. (H/V) (dBuV) (dBuV) (dBuV) (dBuV/m) (d	Ant. Pol. (H/V) (dBuV) (dBuV) (dBuV) (dBuV/m) (d	Ant. Pol. (H/V) (Peak) (dBuV) (Average) (dBuV) Factor (dB/m) (Peak) (dBuV/m) (Average) (dBuV/m) (Average) (dBuV/m) (Margin (dB) V 59.83 -8.48 51.34 74.00 54.00 -2.66 H 60.33 -10.12 50.22 74.00 54.00 -3.78

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 62 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH Mid **Test Date:** February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1616.67	V	60.44		-8.81	51.62		74.00	54.00	-2.38	Peak
4875.00	V	45.65		0.60	46.25		74.00	54.00	-7.75	Peak
N/A										
1560.00	Н	60.03		-9.38	50.65		74.00	54.00	-3.35	Peak
4875.00	Н	48.92		0.60	49.52		74.00	54.00	-4.48	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 63 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH High **Test Date:** February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1230.00	V	60.79		-10.42	50.38		74.00	54.00	-3.62	Peak
4925.00	V	45.74		0.65	46.39		74.00	54.00	-7.61	Peak
N/A										
1623.33	Н	59.48		-8.75	50.73		74.00	54.00	-3.27	Peak
4925.00	Н	48.00		0.65	48.65		74.00	54.00	-5.35	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 64 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Low **Test Date:** February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1546.67	V	60.08		-9.51	50.57		74.00	54.00	-3.43	Peak
N/A										
1366.67	Н	60.82		-10.19	50.63		74.00	54.00	-3.37	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 65 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Mid **Test Date:** February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1633.33	V	60.29		-8.65	51.64		74.00	54.00	-2.36	Peak
N/A										
1583.33	Н	59.93		-9.15	50.78		74.00	54.00	-3.22	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 66 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH High **Test Date:** February 12, 2008

Date of Issue: March 4, 2008

Temperature: 25°C **Tested by:** Steven Young

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1600.00	V	60.40		-8.98	51.42		74.00	54.00	-2.58	Peak
N/A										
1586.67	Н	60.49		-9.11	51.38		74.00	54.00	-2.62	Peak
N/A	11	00.47		-7.11	31.30		74.00	34.00	-2.02	1 cak
IN/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 67 Rev. 00

7.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to $\S15.207(a)$, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Date of Issue: March 4, 2008

Frequency Range (MHz)	Limits (dBµV)					
(MILL)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page 68 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Date of Issue: March 4, 2008

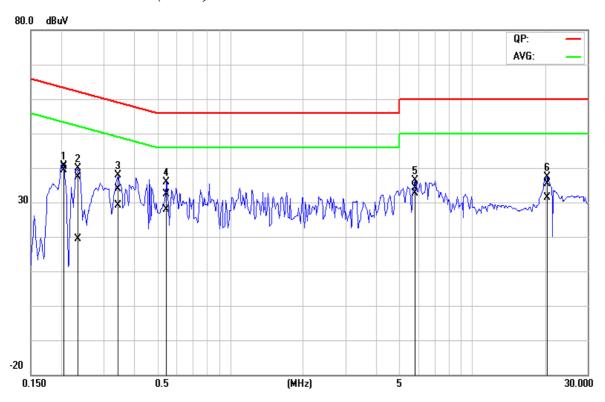
Test Data

Operation Mode: Normal Link **Test Date:** January 28, 2008

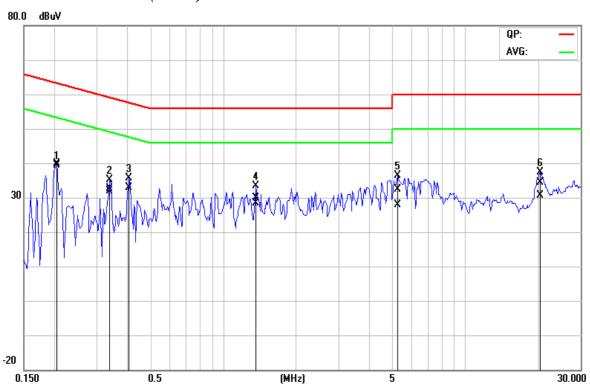
Temperature: 22°C **Tested by:** Steven Young

Humidity: 45% RH

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.2050	40.19	39.29	0.11	40.30	39.40	63.41	53.41	-23.11	-14.01	L1
0.2350	37.20	19.30	0.10	37.30	19.40	62.27	52.27	-24.97	-32.87	L1
0.3412	33.94	29.04	0.06	34.00	29.10	59.17	49.17	-25.17	-20.07	L1
0.5488	32.30	27.90	0.00	32.30	27.90	56.00	46.00	-23.70	-18.10	L1
5.8200	33.97	32.47	0.13	34.10	32.60	60.00	50.00	-25.90	-17.40	L1
20.4757	34.80	30.80	0.50	35.30	31.30	60.00	50.00	-24.70	-18.70	L1
0.2050	39.69	39.19	0.11	39.80	39.30	63.41	53.41	-23.61	-14.11	L2
0.3413	32.54	31.84	0.06	32.60	31.90	59.17	49.17	-26.57	-17.27	L2
0.4100	32.97	32.87	0.03	33.00	32.90	57.65	47.65	-24.65	-14.75	L2
1.3701	29.90	28.50	0.00	29.90	28.50	56.00	46.00	-26.10	-17.50	L2
5.2740	32.19	27.89	0.11	32.30	28.00	60.00	50.00	-27.70	-22.00	L2
20.4864	33.80	30.10	0.50	34.30	30.60	60.00	50.00	-25.70	-19.40	L2


Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10 kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz;
- 4. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$


Page 69 Rev. 00

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 70 Rev. 00

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Date of Issue: March 4, 2008

EUT Specification

EUT	Wireless LAN USB Adapter
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	IEEE 802.11b: 14.47 dBm (27.99mW) IEEE 802.11g: 14.88 dBm (30.76mW)
Antenna gain (Max)	Omni Antenna / Gain: 5 dBi (Numeric gain: 3.16) Printed Antenna / Gain: 2.61 dBi (Numeric gain: 1.82)
Evaluation applied	
 antenna gain.) DTS device is not subject to recompliance. For mobile or fixed location to 	outine RF evaluation; MPE estimate is used to justify the ransmitters, no SAR consideration applied. The maximum even if the calculation indicates that the power density

TEST RESULTS

No non-compliance noted.

Remark: Please refer to the separated SAR report.

Page 71 Rev. 00