FCC Test Report

Report No.: AGC00918151101FE04

FCC ID	:	VYVVTL-BC03
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	SIM Card Extender
BRAND NAME	:	ITON
MODEL NAME	:	VTL-BC03, VTL-BC01, VTL-BC02, VTL-BC04, VTL-BC05, VTL-BC06, VTL-BC07, VTL-BC08, VTL-BC09, VTL-BC10, VTL-BC11, VTL-BC12, VTL-BC13, VTL-BC14, VTL-BC15, VTL-BC16
CLIENT	:	ITON Technology Corp.
DATE OF ISSUE	:	Dec.21, 2015
STANDARD(S) TEST PROCEDURE(S)	:	FCC Part 22H & 24E Rules
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date Valid Version		Notes	
V1.0	/	Dec.21, 2015	Valid	Original Report	

TABLE OF CONTENTS

1.	VERIFICATION OF COMPLIANCE	5
2.	GENERAL INFORMATION	6
	2.1 PRODUCT DESCRIPTION	6
	2.2 RELATED SUBMITTAL(S) / GRANT (S)	7
	2.3 TEST METHODOLOGY	7
	2.4 TEST FACILITY	7
	2.5 MEASUREMENT INSTRUMENTS	8
	2.6 SPECIAL ACCESSORIES	8
	2.7 EQUIPMENT MODIFICATIONS	8
3.	SYSTEM TEST CONFIGURATION	9
	3.1 EUT CONFIGURATION	9
	3.2 EUT EXERCISE	9
	3.3 GENERAL TECHNICAL REQUIREMENTS	9
	3.4 CONFIGURATION OF EUT SYSTEM	10
4.	SUMMARY OF TEST RESULTS	11
5.	DESCRIPTION OF TEST MODES	11
6.	OUTPUT POWER	12
	6.1 CONDUCTED OUTPUT POWER	12
	6.2 RADIATED OUTPUT POWER	14
7.	PEAK-TO-AVERAGE RATIO	17
	7.1 MEASUREMENT METHOD	17
	7.2 PROVISIONS APPLICABLE	17
	7.3 MEASUREMENT RESULT	18
8.	OCCUPIED BANDWIDTH	19

Report No.: AGC00918151101FE02 Page 4 of 65

8.1 MEASUREMENT METHOD	19
8.2 PROVISIONS APPLICABLE	19
8.3 MEASUREMENT RESULT	19
Appendix A: BandWidth	
9.1 MEASUREMENT METHOD	26
9.2 PROVISIONS APPLICABLE	26
9.3 MEASUREMENT RESULT	26
APPENDIX B: BAND EDGES COMPLIANCE	
10.1 CONDUCTED SPURIOUS EMISSION	
APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL	
10.2 RADIATED SPURIOUS EMISSION	50
11. MAINS CONDUCTED EMISSION	
11.1 MEASUREMENT METHOD	54
11.2 PROVISIONS APPLICABLE	54
11.3 MEASUREMENT RESULT	55
12. FREQUENCY STABILITY	57
12.1 MEASUREMENT METHOD	57
12.2 PROVISIONS APPLICABLE	57
12.3 MEASUREMENT RESULT	58
Appendix D: Frequency Stability	
PHOTOGRAPHS OF TEST SETUP	62
PHOTOGRAPHS OF EUT	64

Applicant	ITON Technology Corp.	
Address	Room 201, 2nd Floor, Building 20, No 1006 Yitian Road, Futian District, Shenzhen, China	
Manufacturer	ITON Technology Corp. Branch Company	
Address	Floor 3, Building E,Weixinda Industrial Park, NO.95, Ainan Road, Longgang District, Shenzhen, Guangdong, China	
Product Designation	SIM Card Extender	
Brand name ITON		
Test Model	VTL-BC03	
Series Model	VTL-BC01, VTL-BC02, VTL-BC04, VTL-BC05, VTL-BC06, VTL-BC07, VTL-BC08, VTL-BC09, VTL-BC10, VTL-BC11, VTL-BC12, VTL-BC13,	
	VTL-BC14, VTL-BC15, VTL-BC16	
Difference description	All the same except for the model name.	
Date of Test	Dec.08, 2015 to Dec.10, 2015	
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-US-2.5G/RF	

1. VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2009 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E. The test results of this report relate only to the tested sample identified in this report.

Tested By	Matt Zhang	
	Matt Zhang(Zhang Liang)	Dec.21, 2015
Reviewed By	Borg sie	
	Bart Xie(Xie Xiaobin)	Dec.21, 2015
Approved By	Selya shory	
	Solger Zhang(Zhang Hongyi)	Dec.21, 2015
	Authorized Officer	Dec.21, 2013

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

Product Designation:	SIM Card Extender		
Hardware Version:	SM-9001-VER 1.3		
Software Version:	CORETEK02A_TRACKER_11C_BB.cfg		
Frequency Bands:	GSM 850 PCS 1900 (U.S. Bands)		
Trequency bands.	GSM 900 DCS 1800 (Non-U.S. Bands)		
Antenna:	PIFA Antenna(reference)		
Antenna gain:	1.0dBi(Max)		
Battery parameter:	DC3.7V/400mAh		
	30.28 dBm Maximum ERP measured for GSM 850		
	31.11 dBm Maximum Average Burst Power for GSM 850		
Output Power:	28.26 dBm Maximum EIRP measured for PCS 1900		
	28.21 dBm Maximum Average Burst Power for PCS 1900		
Single SIM Card:	The result for SIM1 is the worst case which was only recorded		
Extreme Vol. Limits:	DC 3.4 V to DC4.2 V (Nominal DC 3.7 V)		
Extreme Temp. Tolerance:	-10℃ to +50℃		
** Note: The High Voltage DC 4.2V and Low Voltage DC 3.4V were declared by manufacturer, The			

EUT could not operate normally with higher or lower voltage.

Other functions have been performed according to verification procedure except for MS function.

Note: This product without antenna shipment, antenna by custom, antenna gain reference antenna specification, the max gain is 1dBi.

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: VYVVTL-BC03** filing to comply with the FCC Part 22H and 24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI C 63.4: 2009; TIA/EIA 603 and FCC CFR 47 Rules of 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057. KDB 971168 D01 Power Meas License Digital Systems v02r01

2.4 TEST FACILITY

Site Dongguan Precise Testing Service Co., Ltd.		
Location Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,		
FCC Registration No. 371540		
Description The test site is constructed and calibrated to meet the FCC requirem documents ANSI C63.4:2009.		

2.5 MEASUREMENT INSTRUMENTS

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 4, 2015	July 3, 2016
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 4, 2015	July 3, 2016
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 4, 2015	July 3, 2016
RF Cable	SCHWARZBECK	AK9515E	96221	July 4, 2015	July 3, 2016
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 6, 2015	June 5, 2016
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 6, 2015	June 5, 2016
Spectrum analyzer	Agilent	E4407B	MY46185649	June 6, 2015	June 5, 2016
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 11, 2015	July 10, 2016
Spectrum Analyzer	Agilent	E4411B	MY4511453	July 4, 2015	July 3, 2016
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 7, 2015	July 6, 2016
RF Cable	SCHWARZBECK	AK9515H	96220	July 8, 2015	July 7, 2016
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 6, 2015	June 5, 2016
Artificial Mains Network	Narda	L2-16B	000WX31025	July 8, 2015	July 7, 2016
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 8, 2015	July 7, 2016
RF Cable	SCHWARZBECK	AK9515E	96222	July 4, 2015	July 3, 2016
Shielded Room	CHENGYU	843	PTS-002	June 6,2015	June 5,2016
COMMUNICATION TESTER	AGILENT	8960	GB46490550	July 25, 2015	July 24, 2016

2.6 SPECIAL ACCESSORIES

The battery and the charger, earphone supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

ltem Number	Ite	FCC Rules		
1	Output Dowor	Conducted	22.913(a) / 24.232 (b)	
I	Output Power	Radiated		
2	Peak-to-Average	Deck to Average Detic	24.232(d)	
2	Ratio	Peak-to-Average Ratio		
3	Spurious	Conducted Spurious Emission	2.1051 / 22.917 / 24.238	
3	Emission	Radiated Spurious Emission		
4	Mains Conducted Emission		15.107 / 15.207	
5	Frequency Stability		2.1055 /24.235	
6	Occupied Bandwidth		2.1049 (h)(i)	
7	Emission Bandwidth		22.917(b) / 24.238 (b)	
8	Band Edge		22.917(b) / 24.238 (b)	

3.3 GENERAL TECHNICAL REQUIREMENTS

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Note
1	SIM Card Extender	VTL-BC03	FCC ID: VYVVTL-BC03	EUT
2	Battery	403035	DC3.7V/400mAh	Accessory
3	USB Cable	VTL-BC03	N/A	Accessory

Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

ltem Number	lt	em Description	FCC Rules	Result
1	Output Dowor	Conducted Output Power	22.042(a)/24.022(b)	_
	1 Output Power	Radiated Output Power	22.913(a) / 24.232 (b)	Pass
2	Peak-to-Average	Deck to Average Datio	0.4. 000 (d)	Deee
2	Ratio	Peak-to-Average Ratio	24.232(d)	Pass
0	Courious Emission	Conducted Spurious Emission	2.1051/22.917/ 24.238	Pass
3	Spurious Emission	Radiated Spurious Emission	2.1051/22.917/ 24.238	
4	Mains	Conducted Emission	15.107 / 15.207	Pass
5	Fr	equency Stability	2.1055 /24.235	Pass
6	Occupied Bandwidth		2.1049 (h)(i)	Pass
7	En	nission Bandwidth	22.917(b) / 24.238 (b)	Pass
8		Band Edge	22.917(b) / 24.238 (b)	Pass

4. SUMMARY OF TEST RESULTS

5. DESCRIPTION OF TEST MODES

During the testing, the EUT (SIM Card Extender) was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSM and PCS frequency band.

Note: GSM modes have been tested during the test. The worst condition (GSM) be recorded in the test report if no other modes test data.

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for other modulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for both GSM band and PCS band.

6.1.2 PROVISIONS APPLICABLE

Conducted Output Power Limits for GSM 850 MHz				
Mode Power Step		Nominal Peak Power	Tolerance(dB)	
GSM	5	33 dBm (2W)	-2	

Conducted Output Power Limits for PCS 1900 MHz					
Mode	Power Step	Nominal Peak Power	Tolerance(dB)		
GSM	0	30 dBm (1W)	-2		

6.1.3 MEASUREMENT RESULT

Mode	Frequency	Reference	Peak	Toloranoo	Avg.Burst	Duty cycle	Frame
	(MHz)	Power	Power	Tolerance	Power	Factor(dB)	Power(dBm)
	824.2	33	32.43	-0.57	31.11	-9	22.11
GSM	836.6	33	32.35	-0.65	31.08	-9	22.08
	848.8	33	32.29	-0.71	31.06	-9	22.06

Test Result of Conducted Output Power for GSM 850 MHZ

Test Result of Conducted Output Power for PCS 1900 MHZ

Mode	Frequency (MHz)	Reference Power	Peak Power	Tolerance	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	30	29.47	-0.53	28.21	-9	19.21
GSM	1880	30	29.43	-0.57	28.17	-9	19.17
	1909.8	30	29.41	-0.59	28.15	-9	19.15

6.2 RADIATED OUTPUT POWER

6.2.1 MEASUREMENT METHOD

The measurements procedures specified in TIA-603C-2004 were applied.

- 1 In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2 The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 - Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 3 The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 4 From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 5 The EUT is then put into continuously transmitting mode at its maximum power level.
- 6 Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 7 This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 8 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi..

6.2.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Radiated Power Limits for GSM 850 MHZ (ERP)				
Mode Power Step Nominal Peak Power				
GSM	5	<=38.45 dBm (7W)		

Radiated Power Limits for PCS 1900 MHZ (E.I.R.P.)			
Mode Power Step Nominal Peak Power			
GSM	0	<=33 dBm (2W)	

6.2.3 MEASUREMENT RESULT

Radiated Power (ERP) for GSM 850 MHZ						
	Result					
Mode	Frequency	Power Step	Max. Peak ERP	Polarization	Conclusion	
			(dBm)	Of Max. ERP		
	824.2	5	30.28	Horizontal	Pass	
GSM	836.6	5	30.23	Horizontal	Pass	
	848.8	5	30.21	Horizontal	Pass	

Radiated Power (E.I.R.P) for PCS 1900 MHZ						
			Res			
Mode	Frequency	Power Step	Max. Peak Polarization		Conclusion	
			E.I.R.P.(dBm)	Of Max.		
				E.I.R.P.		
	1850.2	0	28.26	Horizontal	Pass	
GSM	1880.0	0	28.18	Horizontal	Pass	
	1909.8	0	28.13	Horizontal	Pass	

7. PEAK-TO-AVERAGE RATIO

7.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

7.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

7.3 MEASUREMENT RESULT

Modes	GSM850(GSM)			
Channel	128	190	251	
	(Low)	(Mid)	(High)	
Frequency (MHz)	824.2	836.6	848.8	
Peak-To-Average Ratio (dB)/GSM	1.32	1.27	1.23	

Modes	PCS 1900 (GSM)			
Channel	512	661	810	
Unamier	(Low)	(Mid)	(High)	
Frequency	1850.2	1880	1909.8	
(MHz)	1050.2	1000	1909.0	
Peak-To-Average Ratio (dB)/GSM	1.26	1.26	1.26	

8. OCCUPIED BANDWIDTH

8.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

8.2 PROVISIONS APPLICABLE

The occupied bandwidth (99%) shall not exceed 300 KHz.

8.3 MEASUREMENT RESULT

Appendix A: BandWidth

Test Results

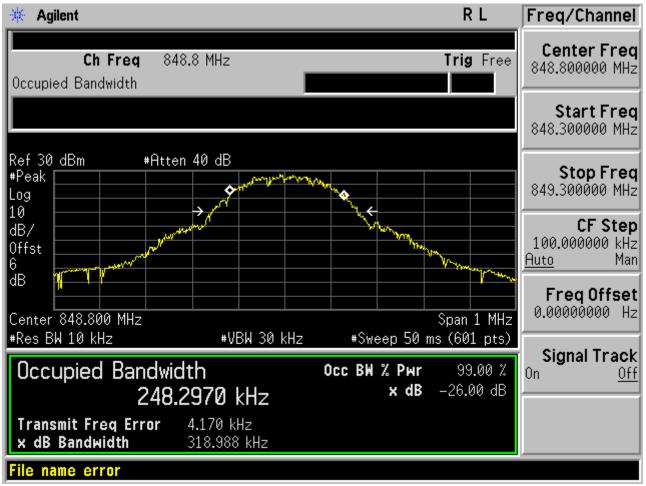
Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
		LCH	248.34	316.00	PASS
GSM850	GSM	MCH	247.86	315.79	PASS
	HCH	248.30	318.99	PASS	

Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
	Mode	Channel	(KHZ)	(KHZ)	
		LCH	246.63	315.36	PASS
GSM1900 GSM		MCH	248.10	319.84	PASS
		HCH	245.63	319.35	PASS

For GSM

Test Band=GSM850

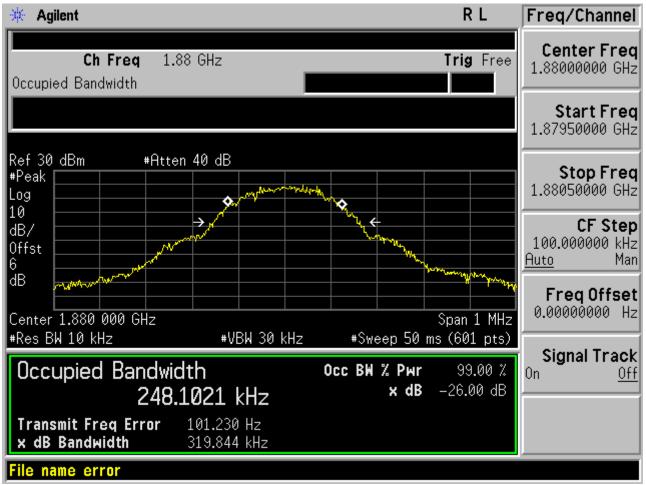
Test Mode=GSM


Test Channel=LCH

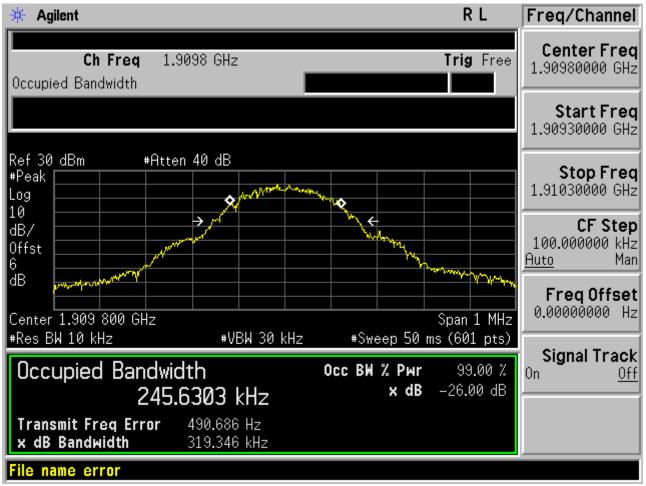
🔆 Agilent			RL	Freq/Channel
Ch Freq 824 Occupied Bandwidth	.2 MHz	Ti	rig Free	Center Freq 824.200000 MHz
				Start Freq 823.700000 MHz
Ref 30 dBm #Atten #Peak Log 10	40 dB	Martin Contraction		Stop Freq 824.700000 MHz
dB/ Offst			hermony	CF Step 100.000000 kHz <u>Auto</u> Man
dB Center 824.200 MHz			an 1 MHz	FreqOffset 0.00000000 Hz
*Res BW 10 kHz Occupied Bandwid 248 3	+VBW 30 kHz th 3403 kHz		601 pts) 99.00 % 6.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error	3.191 kHz 316.004 kHz			
File name error				

Test Channel=MCH

Test Channel=HCH


Test Band=GSM1900

Test Mode=GSM


Test Channel=LCH

Test Channel=MCH

Test Channel=HCH

9. BAND EDGE

9.1 MEASUREMENT METHOD

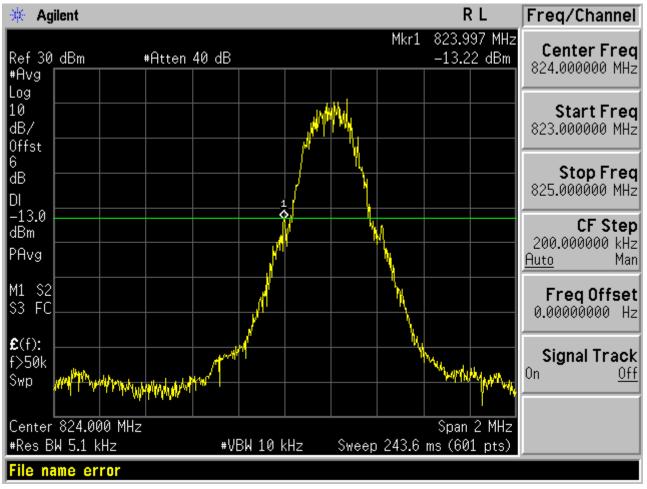
The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

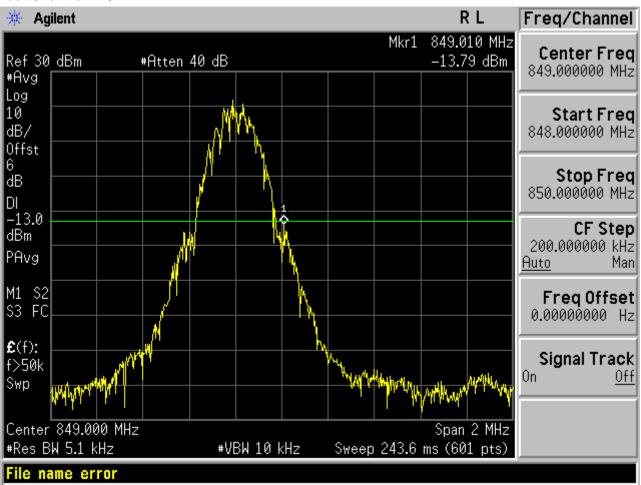
9.2 PROVISIONS APPLICABLE

as Specified in FCC rules of 22.917(b) and 24.238(b)

9.3 MEASUREMENT RESULT

APPENDIX B: BAND EDGES COMPLIANCE

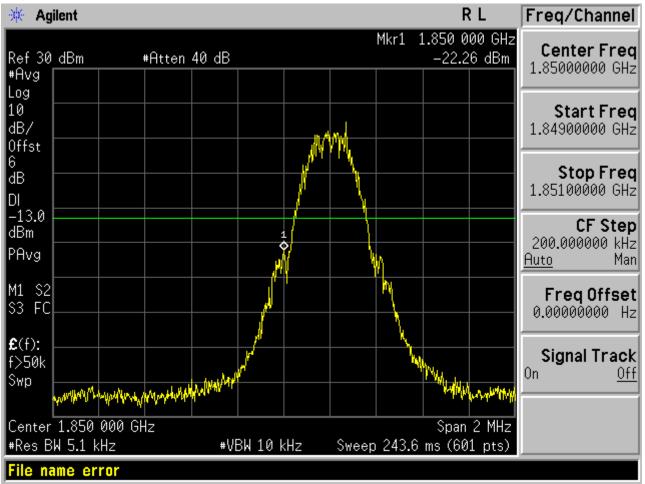

Test Results

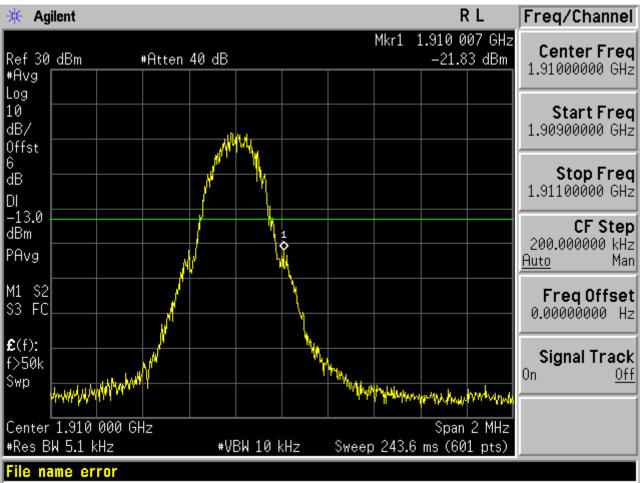

For GSM

Test Band=GSM850

Test Mode=GSM

Test Channel=LCH




Test Channel=HCH

Test Band=GSM1900

Test Mode=GSM

Test Channel=LCH

Test Channel=HCH

10. SPURIOUS EMISSION

10.1 CONDUCTED SPURIOUS EMISSION

10.1.1 MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT. 1, Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 9 GHz. 2, Determine EUT transmit frequencies: the following typical channels were chosen to conducted emissions testing.

Typical Channels for testing of GSM 850 MHz							
Channel	Frequency (MHz)						
128	824.2						
190	836.6						
251	848.8						

Typical Channels for testing of PCS 1900 MHz							
Channel Frequency (MHz)							
512	1850.2						
661	1880.0						
810	1909.8						

10.1.2 PROVISIONS APPLICABLE

On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

10.1.3 MEASUREMENT RESULT

APPENDIX C: SPURIOUS EMISSION AT ANTENNA TERMINAL

Test Results

Test Band=GSM850

Test Mode=GSM

Test Channel=LCH

🔆 Agilent				RL	Freq/Channel
#Avg	#Atten 40 dB			2 470.8 MHz -44.53 dBm	Center Freq 515.000000 MHz
Log 10 dB/ Offst					Start Freq 30.0000000 MHz
6 dB DI					Stop Freq 1.00000000 GHz
-13.0 dBm PAvg					CF Step 97.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS		2			FreqOffset 0.00000000 Hz
£ (f): FTun Swp	<u>harrad anti-ar an </u>				Signal Track On <u>Off</u>
Center 515.0 MHz #Res BW 1 MHz	#VE	SW 3 MHz	Sp #Sweep 100 ms	an 970 MHz (1000 pts)	
File name error					

🔆 Agilent				RL	Freq/Channel
Ref 33 dBm #Avg	#Atten 40	dB	Mł	(r1 4.121 GHz -38.41 dBm	Center Freq 5.00000000 GHz
Log 10 dB/ Offst					Start Freq 1.00000000 GHz
6 dB DI					Stop Freq 9.00000000 GHz
-13.0 dBm PAvg					CF Step 800.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS					FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track On <u>Off</u>
Center 5.000 G #Res BW 1 MHz		#VBW 3 MHz	#Sweep 100.5 r	Span 8 GHz ns (8190 pts)	
File name erro)r				

Test Channel=MCH

🔆 Agilent			RL	Freq/Channel
#Avg	ten 40 dB		464.0 MHz 4.65 dBm	Center Freq 515.000000 MHz
Log 10 dB/ Offst		1		Start Freq 30.0000000 MHz
6 dB DI				Stop Freq 1.00000000 GHz
-13.0 dBm PAvg				CF Step 97.0000000 MHz <u>Auto</u> Man
M1 S2 S3 FS	2			FreqOffset 0.00000000 Hz
£(f): FTun Swp				Signal Track On <u>Off</u>
Center 515.0 MHz #Res BW 1 MHz	#VBW 3 MHz	Spar #Sweep 100 ms (:	1 970 MHz 1000 pts)	
File name error				

Report No.: AGC00918151101FE02 Page 35 of 65

Mkr1 2.402 GHz ef 33 dBm *Atten 40 dB -34.92 dBm Log	🔆 Agiler	nt							F	₹ L	Freq/Channel
10 dB/ G Start Freq 0 dFfst G G Stop Freq 0 dB G G G 1 dG G G G 1 dG G G G 1 dG	#Avg	Bm	#Atten	40 dB				Mk			
6 dB Stop Freq 0 0 0 0 -13.0 0 0 0 dBm 0 0 0 0 PAvg 0 0 0 0 M1 S2 1 0 0 0 0 £(f): 0 0 0 0 0 0 Swp 0 0 0 0 0 0 0 Center 5.000 GHz #VBW 3 MHz #Sweep 100.5 ms (8190 pts) Signal Track 0 0	10 dB/										
dBm PAvg CF Step PAvg Auto Man M1 S2 ↓ ↓ Auto Man £(f): FTun Signal Track On Off Swp Center 5.000 GHz Span 8 GHz Span 8 GHz Span 8 GHz #Res BW 1 MHz #VBW 3 MHz #Sweep 100.5 ms (8190 pts) Freq 0 ffset	6 dB DI										Stop Freq 9.00000000 GHz
\$3 FS \$ 0.00000000 Hz £(f): FTun \$ Swp 0.00000000 Hz Center 5.000 GHz \$ #Res BW 1 MHz #VBW 3 MHz #Sweep 100.5 ms (8190 pts)	dBm										800.000000 MHz
FTun Swp Center 5.000 GHz #Res BW 1 MHz #VBW 3 MHz #Sweep 100.5 ms (8190 pts)	\$3 FS				ulu da sattiyas	و و و و و و و و و و و	daga, tekninga				
#Res BW 1 MHz #VBW 3 MHz #Sweep 100.5 ms (8190 pts)	FTun										
	#Res BW 1	1 MHz		#V	BW 3 M	Hz #	Sweep	100.5 m			

Test Channel=HCH

🔆 Agilent				RL	Freq/Channel
#Avg	#Atten 40 dB		Mkr	2 745.6 MHz -44.56 dBm �	Center Freq 515.000000 MHz
Log 10 dB/ Offst					Start Freq 30.0000000 MHz
6 dB DI					Stop Freq 1.00000000 GHz
-13.0 dBm PAvg					CF Step 97.0000000 MHz <u>Auto</u> Man
M1 S2 S3 FS			2		FreqOffset 0.00000000 Hz
£(f): FTun Swp	, , , , , , , , , , , , , , , , , , ,				Signal Track On <u>Off</u>
Center 515.0 MHz #Res BW 1 MHz	#VBW	3 MHz +	Sweep 100 ms	pan 970 MHz s (1000 pts)	
File name error					

🔆 Agilent				RL	Freq/Channel
Ref 33 dBm #Avg	#Atten 40 dB			244 GHz 49 dBm	Center Freq 5.00000000 GHz
Log 10 dB/ Offst					Start Freq 1.00000000 GHz
6 dB DI					Stop Freq 9.00000000 GHz
-13.0 dBm PAvg					CF Step 800.00000 MHz <u>Auto</u> Man
M1 S2 S3 FS		routes to estrone and population			FreqOffset 0.00000000 Hz
£(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Center 5.000 GHz #Res BW 1 MHz File name error	#VBk	↓3 MHz #Swe	Spar ep 100.5 ms (81	n 8 GHz 90 pts)	

Test Band=GSM1900

Test Mode=GSM

Test Channel=LCH

🔆 Agilent				R L	Freq/Channel
Ref 33 dBm #Avg	#Atten 40 dB		Mkr	1 469.8 MHz -44.65 dBm	Center Freq 515.000000 MHz
Log 10 dB/					Start Freq 30.0000000 MHz
Offst 6 dB DI					Stop Freq 1.00000000 GHz
-13.0 dBm PAvg					CF Step 97.0000000 MHz Auto Man
M1 S2 S3 FS					FreqOffset 0.00000000 Hz
£(f): FTun Swp		♦		<u></u>	Signal Track On <u>Off</u>
Center 515.0 MHz #Res BW 1 MHz		BW 3 MHz	S #Sweep 100 ms	pan 970 MHz s (1000 pts)	
File name error					

Report No.: AGC00918151101FE02 Page 39 of 65

🔆 Agilent				RL	Freq/Channel
Ref 33 dBm #Avg	#Atten 40 dB		Mk	r2 5.551 GHz -36.75 dBm	Center Freq 4.00000000 GHz
Log 1 10 dB/ Offst					Start Freq 1.00000000 GHz
6 dB DI					Stop Freq 7.00000000 GHz
-13.0 dBm PAvg					CF Step 600.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS			2 \$		Freq Offset 0.00000000 Hz
£(f): FTun Swp					Signal Track ^{On <u>Off</u>}
Center 4.000 GHz #Res BW 1 MHz File name error	#V	BW 3 MHz #\$	бweep 100.4 m	Span 6 GHz ıs (6200 pts)	

Report No.: AGC00918151101FE02 Page 40 of 65

🔆 Agi	lent				R	L	Freq/Channel
Ref 33 #Avg	dBm	#Atten 40 dB			Mkr1 13.36 -37.90		Center Freq 10.3000000 GHz
Log 10 dB/ Offst							Start Freq 7.00000000 GHz
6 dB DI							Stop Freq 13.6000000 GHz
-13.0 dBm PAvg							CF Step 660.00000 MHz <u>Auto</u> Man
M1 S2 S3 FS			a the same define to show the				Freq Offset 0.00000000 Hz
£ (f): - FTun Swp -							Signal Track ^{On <u>Off</u>}
# Res B∳	10.300 GHz √1 MHz	+V	BW 3 MHz	#Sweep 100	Span 6.0 .2 ms (6800		
File na	me error						

🔆 Ag	ilent								F	۲L	Freq/Channel
Ref 34 #Avg	dBm		#Atten	40 dB				Mkr:		83 GHz 6 dBm	Center Freq 16.8000000 GHz
Log 10 dB/ Offst											Start Freq 13.6000000 GHz
6 dB DI											Stop Freq 20.0000000 GHz
-13.0 dBm PAvg											CF Step 640.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS	din ten se des te	i je stala je							e en		FreqOffset 0.00000000 Hz
£ (f): FTun Swp											Signal Track On <u>Off</u>
	16.800 W 1 MH:			#V	вы з м	Hz #	Sweep	100.3 n		.4 GHz 0 pts)	
File na	ime eri	ror									

Test Channel=MCH

🔆 Agilent					RL	Freq/Channel
Ref 33 dBm #Avg	#Atten	40 dB		Mkr	1 467.9 MHz -44.60 dBm	Center Freq 515.000000 MHz
Log 10 dB/ Offst						Start Freq 30.0000000 MHz
6 dB DI						Stop Freq 1.00000000 GHz
-13.0 dBm PAvg						CF Step 97.0000000 MHz <u>Auto</u> Man
M1 S2 S3 FS						FreqOffset 0.00000000 Hz
£(f): FTun Swp	<u></u>			4,		Signal Track On <u>Off</u>
Center 515.0 #Res BW 1 MHz		#VBW 3 M	1Hz #Sw		pan 970 MHz s (1000 pts)	
File name err	or					

Report No.: AGC00918151101FE02 Page 43 of 65

🔆 Agilen	nt					RL	Freq/Channel
Ref 33 dE #Avg		#Atten 40 dB				3.760 GHz 38.63 dBm	Center Freq 4.00000000 GHz
Log 10 dB/ Offst							Start Freq 1.00000000 GHz
6 dB -13.0							Stop Freq 7.00000000 GHz
dBm PAvg							CF Step 600.00000 MHz <u>Auto Man</u>
M1 S2 S3 FS			2	an a statistica a stilla			FreqOffset 0.00000000 Hz
£(f): FTun Swp							Signal Track On <u>Off</u>
Center 4. #Res BW 1	1 MHz	#V	BW 3 MHz	#Sweep:	S 100.4 ms (pan 6 GHz 6200 pts)	
File name	e error						

Report No.: AGC00918151101FE02 Page 44 of 65

🔆 Ag	ilent								F	:L	Freq/Channel
Ref 33 #Avg	dBm	#A	tten 40) dB				Mkr:		55 GHz 6 dBm	Center Freq 10.3000000 GHz
Log 10 dB/ Offst											Start Freq 7.00000000 GHz
6 dB DI											Stop Freq 13.6000000 GHz
-13.0 dBm PAvg											CF Step 660.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS		The first of the				le i dime esta		des blande	ative electrony a		FreqOffset 0.00000000 Hz
£ (f): FTun Swp											Signal Track On <u>Off</u>
	10.300 (W 1 MHz	GHz		#V[3W 3 M	Hz #	Sweep	100.2 m		.6 GHz 0 pts)	
File na	ime erro	r									

Report No.: AGC00918151101FE02 Page 45 of 65

🔆 Ag	ilent								F	≀ L	Freq/Channel
Ref 34 #Avg	dBm		#Atten	40 dB				Mkri		23 GHz '3 dBm	Center Freq 16.8000000 GHz
Log 10 dB/ Offst											Start Freq 13.6000000 GHz
6 dB DI											Stop Freq 20.0000000 GHz
-13.0 dBm PAvg											CF Step 640.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS	a data a dag	iletien for som	in , di in , data	a shi ka sha sha s		Maria produces	a an	an a state of the	a di Briangala di		Freq Offset 0.00000000 Hz
€(f): FTun Swp											Signal Track On <u>Off</u>
Center #Res B				#V	BW 3 M	Hz #	Sweep	100.3 m		.4 GHz 0 pts)	
File na	ime er	ror									

Test Channel=HCH

🔆 Agilent				RL	Freq/Channel
Ref 33 dBm #Avg	#Atten 40 dB		Mkı	r1 378.6 MHz -44.50 dBm	Center Freq 515.000000 MHz
Log 10 dB/ Offst					Start Freq 30.0000000 MHz
6 dB DI					Stop Freq 1.00000000 GHz
-13.0 dBm PAvg					CF Step 97.0000000 MHz <u>Auto</u> Man
M1 S2 S3 FS					FreqOffset 0.00000000 Hz
£(f): FTun Swp		<u></u>			Signal Track On <u>Off</u>
Center 515.0 MHz #Res BW 1 MHz		BW 3 MHz	*Sweep 100 m	opan 970 MHz s (1000 pts)	
File name error					

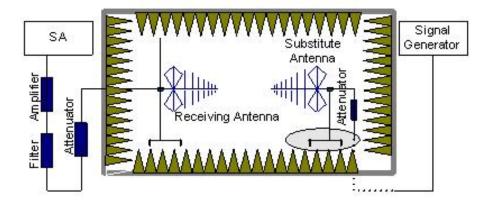
🔆 Agilent								F	۲L	Freq/Channel
Ref 33 dBm #Avg		#Atten	40 dB				Mk		29 GHz 0 dBm	Center Freq 4.00000000 GHz
Log 10 dB/ Offst										Start Freq 1.00000000 GHz
6 dB DI										Stop Freq 7.00000000 GHz
-13.0 dBm PAvg										CF Step 600.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS			Net al and	and an effect of the second of			2 \$			FreqOffset 0.00000000 Hz
£(f): FTun Swp										Signal Track ^{On <u>Off</u>}
Center 4.000 #Res BW 1 MH	łz		#V	BW 3 M	Hz #	Sweep	100.4 m		6 GHz 0 pts)	
File name e	rror									

Report No.: AGC00918151101FE02 Page 48 of 65

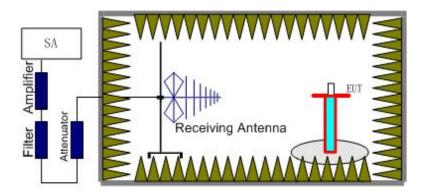
🔆 Ag	ilent								F	₹ L	Freq/Channel
Ref 33 #Avg	dBm	:	#Atten	40 dB				Mkr:		16 GHz 1 dBm	Center Freq 10.3000000 GHz
Log 10 dB/ Offst											Start Freq 7.00000000 GHz
6 dB DI											Stop Freq 13.6000000 GHz
-13.0 dBm PAvg											CF Step 660.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS									an determine		Freq Offset 0.00000000 Hz
£(f): F⊤un Swp											Signal Track On <u>Off</u>
	10.300 W 1 MH:			#V	вы з м	Hz #	Sweep	100.2 m		.6 GHz 0 pts)	
File na	ame eri	or									

Report No.: AGC00918151101FE02 Page 49 of 65

🔆 Ag	ilent								F	۲L	Freq/Channel
Ref 34 #Avg	dBm		#Atten	40 dB				Mkr:		130 GHz 57 dBm	Center Freq 16.8000000 GHz
Log 10 dB/ Offst											Start Freq 13.6000000 GHz
6 dB DI											Stop Freq 20.0000000 GHz
-13.0 dBm PAvg											CF Step 640.000000 MHz <u>Auto</u> Man
M1 S2 S3 FS									i, title galill		FreqOffset 0.00000000 Hz
€(f): FTun Swp											Signal Track On <u>Off</u>
Center #Res B				#V	BW 3 M	Hz #	Sweep	100.3 m		6.4 GHz 10 pts)	
File na	ime er	ror									


10.2 RADIATED SPURIOUS EMISSION

10.2.1 MEASUREMENT METHOD


The measurements procedures specified in TIA-603C-2004 were used for testing. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238. The measurements were performed on all modes(GSM) at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for both GSM band and PCS band.

The procedure of radiated spurious emissions is as follows:

a) Pre-calibration With pre-calibration method, the Radiated Spurious Emissions(RSE) is calculated as, RSE=Rx(dBuV)+CL(dB)+SA(dB)+Gain(dBi)-107(dBuV to dBm) The SA is calibrated using following setup.

b) EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the test item for emission measurements. The height of receiving antenna is 0.8m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the test item and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth.

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS band (1850.2 MHz, 1880 MHz and 1909.8 MHz) ,GSM850 band (824.2MHz, 836.6MHz, 848.8MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks.

The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below: Power=P_{Mea}+A_{Rpl}

10.2.2 PROVISIONS APPLICABLE

(a) On any frequency outside a IMOBOnsee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

	The Worst Test Results for Channel 128 / 824.2 MHz												
Frequency(MHz)	ency(MHz) Power(dBm)		PMea(dBm)	Limit (dBm)	Polarity								
1648.00	-41.52	-5.01	-46.53	-13.00	Horizontal								
1752.00	-42.83	-2.18	-45.01	-13.00	Vertical								
2472.00	-42.64	3.46	-39.18	-13.00	Horizontal								
9086.00	-42.29	2.79	-39.50	-13.00	Horizontal								

10.2.3 MEASUREMENT RESULT

	The Worst Test Results for Channel 190/836.6 MHz											
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity							
1673.00	-43.17	-3.22	-46.39	-13.00	Horizontal							
1903.00	-42.28	-0.24	-42.52	-13.00	Vertical							
9089.00	-44.34	3.98	-40.36	-13.00	Vertical							

	The Worst Test Results for Channel 251/848.8 MHz												
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity								
1698.00	-46.27	-2.26	-48.53	-13.00	Horizontal								
1888.50	-46.69	-3.12	-49.81	-13.00	Vertical								
2131.00	-47.51	-1.74	-49.25	-13.00	Vertical								
9089.00	-45.33	8.46	-36.87	-13.00	Horizontal								

	The Worst Test Results for Channel 512/1850.2 MHz											
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)		Polarity							
1999.00	-46.53	9.5	-37.03	-13.00	Horizontal							
3700.00	-47.81	8.74	-39.07	-13.00	Horizontal							
12950.40	-44.43	11.56	-32.87	-13.00	Vertical							
17919.60	-44.85	17.89	-26.96	-13.00	Vertical							

	The Worst Tes	t Results for	Channel 661/1	1880.0 MHz	
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
2000.50	-45.87	9.7	-36.17	-13.00	Vertical
9399.00	-44.29	11.6	-32.69	-13.00	Vertical
13160.40	-45.18	14.89	-30.29	-13.00	Horizontal
15039.60	-44.61	13.87	-30.74	-13.00	Vertical
17941.20	17941.20 -47.42		-27.66	-13.00	Horizontal
	The Worst Tes	t Results for	Channel 810/1	1909.8 MHz	
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
2000.00	-44.51	10.02	-34.49	-13.00	Vertical
9548.50	-48.44	11.3	-37.14	-13.00	Horizontal
13367.40	-47.63	12.4	-35.23	-13.00	Horizontal
15277.80	-53.27	18.03	-35.24	-13.00	Vertical
17931.60	-46.62	19	-27.62	-13.00	Horizontal

Note: ARpl= Factor=Antenna Factor+ Cable loss-Amplifier gain.

The "Factor" value can be calculated automatically by software of measurement system.

Below 30MHZ no Spurious found and The GSM modes is the worst condition.

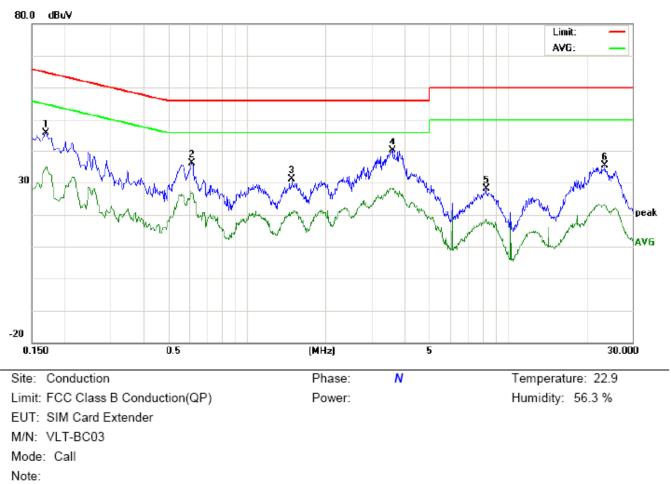
11. MAINS CONDUCTED EMISSION

11.1 MEASUREMENT METHOD

The measurement procedure specified in ANSI C63.4-2009 was used for testing. Conducted Emission was measured with travel charger.

11.2 PROVISIONS APPLICABLE

Frequency of Emission (MHz)	Conducted Limit(dBuV)				
	Quasi-Peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			
*Decreases with the logarithm of the frequency.					
*The lower limit shall apply at the transition frequ	uency.				


11.3 MEASUREMENT RESULT

Note:

80.0 dBuV Limit: AVG: 30 5 peak AVG -20 30.000 0.150 0.5 [MHz] 5 Site: Conduction Phase: L1 Temperature: 22.9 Limit: FCC Class B Conduction(QP) Power: Humidity: 56.3 % EUT: SIM Card Extender M/N: VLT-BC03 Mode: Call

LINE CONDUCTED EMISSION - L1

Reading_Level Correct Measurement Margin Limit Freq. (dBuV) Factor (dBuV) (dBuV) (dB) P/F Comment No. (MHz) Peak QP AVG dB Peak QP AVG QP AVG QP AVG 0.1740 36.57 24.93 46.76 35.12 64.76 54.76 -18.00 -19.64 1 10.19 Ρ 2 0.2140 33.81 22.38 10.23 44.04 32.61 63.04 53.04 -19.00 -20.43 Ρ 36.97 3 0.6140 26.65 18.10 10.32 28.42 56.00 46.00 -19.03 -17.58 Ρ 18.01 40.87 56.00 -15.13 -17.54 Ρ 4 3.8820 30.42 10.45 28.46 46.00 5 7.42 Ρ 8.7100 17.46 10.29 27.75 17.71 60.00 50.00 -32.25 -32.29 6 21.9100 28.75 15.24 10.12 38.87 25.36 60.00 50.00 -21.13 -24.64 Ρ

LINE CONDUCTED EMISSION - N

No.	No. Freq.		Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1700	35.65		24.80	10.18	45.83		34.98	64.96	54.96	-19.13	-19.98	Р	
2	0.6140	25.69		16.53	10.32	36.01		26.85	56.00	46.00	-19.99	-19.15	Р	
3	1.4940	20.66		10.15	10.38	31.04		20.53	56.00	46.00	-24.96	-25.47	Р	
4	3.6180	29.53		18.01	10.49	40.02		28.50	56.00	46.00	-15.98	-17.50	Р	
5	8.2660	17.67		8.33	10.34	28.01		18.67	60.00	50.00	-31.99	-31.33	Р	
6	23.5980	25.14		13.25	10.11	35.25		23.36	60.00	50.00	-24.75	-26.64	Р	

Note: The GSM850 mode is the worst condition.

12. FREQUENCY STABILITY

12.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1 , Measure the carrier frequency at room temperature.
- 2 , Subject the EUT to overnight soak at -10 $^\circ$ C.

3 , With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900, channel 190 for GSM850 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4 , Repeat the above measurements at 10° C increments from -10° C to $+50^{\circ}$ C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

5 , Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

6 , Subject the EUT to overnight soak at +50 $^{\circ}$ C.

7 , With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8 , Repeat the above measurements at 10° C increments from +50°C to -10°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

9 , At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

12.2 PROVISIONS APPLICABLE

12.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.4VDC and 4.2VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

12.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

12.3 MEASUREMENT RESULT

Appendix D: Frequency Stability

Test Results

Frequency Error vs. Voltage:

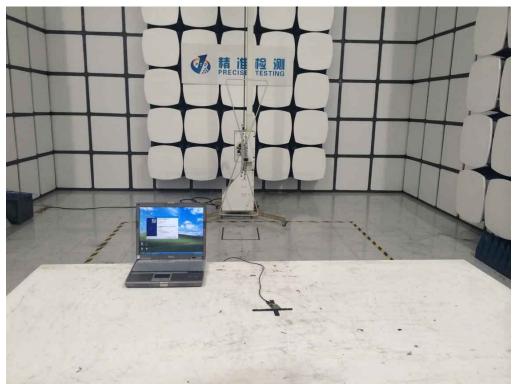
Test Band	Test Mode	Test Channel	Test Temp.	Test Volt. (V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			TN	3.4	-32.16	-0.04	±2.5	PASS
		LCH	TN	3.7	-30.41	-0.04	±2.5	PASS
			TN	4.2	-33.58	-0.04	±2.5	PASS
			TN	3.4	-31.96	-0.04	±2.5	PASS
GSM 850	GSM	MCH	TN	3.7	-23.57	-0.03	±2.5	PASS
			TN	4.2	-30.03	-0.04	±2.5	PASS
			TN	3.4	-28.28	-0.03	±2.5	PASS
		НСН	TN	3.7	-30.67	-0.04	±2.5	PASS
			TN	4.2	-29.38	-0.03	±2.5	PASS

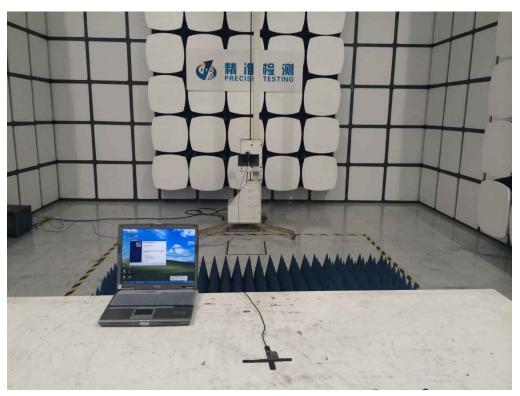
Report No.: AGC00918151101FE02 Page 59 of 65

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt. (V)	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict		
		LCH	TN	3.4	-43.39	-0.02	±2.5	PASS		
			LCH	LCH	LCH	TN	3.7	-27.83	-0.02	±2.5
			TN	4.2	-48.36	-0.03	±2.5	PASS		
			TN	3.4	-34.87	-0.02	±2.5	PASS		
GSM 1900	GSM	МСН	MCH	MCH	TN	3.7	-32.80	-0.02	±2.5	PASS
			TN	4.2	-23.96	-0.01	±2.5	PASS		
			TN	3.4	-36.35	-0.02	±2.5	PASS		
		НСН	TN	3.7	-27.18	-0.01	±2.5	PASS		
			TN	4.2	-33.84	-0.02	±2.5	PASS		

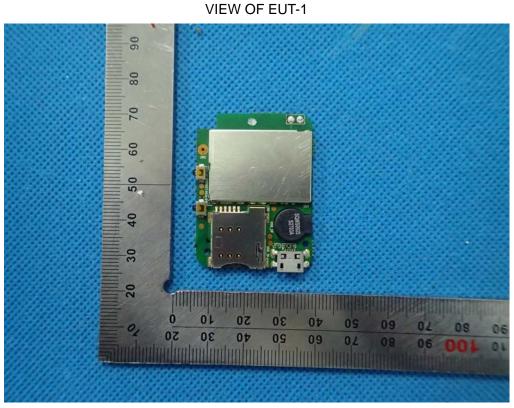
Frequency Error vs. Temperature:

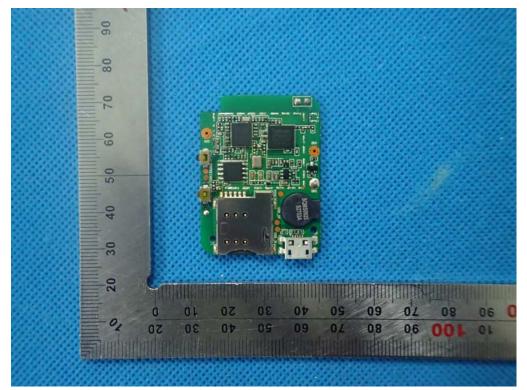
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Volt.	Temp	(Hz)	(ppm)	(ppm	
)	
			VN	-10	-27.12	-0.03	±2.5	PASS
			VN	0	-21.95	-0.03	±2.5	PASS
			VN	10	-24.60	-0.03	±2.5	PASS
GSM850	GSM	LCH	VN	20	-35.32	-0.04	±2.5	PASS
			VN	30	-33.90	-0.04	±2.5	PASS
			VN	40	-29.90	-0.04	±2.5	PASS
			VN	50	-30.15	-0.04	±2.5	PASS
			VN	-10	-31.58	-0.04	±2.5	PASS
			VN	0	-31.64	-0.04	±2.5	PASS
			VN	10	-26.09	-0.03	±2.5	PASS
GSM850	GSM	MCH	VN	20	-23.44	-0.03	±2.5	PASS
			VN	30	-28.35	-0.03	±2.5	PASS
			VN	40	-30.61	-0.04	±2.5	PASS
			VN	50	-31.45	-0.04	±2.5	PASS
			VN	-10	-27.06	-0.03	±2.5	PASS
			VN	0	-26.41	-0.03	±2.5	PASS
			VN	10	-30.74	-0.04	±2.5	PASS
GSM850	GSM	НСН	VN	20	-29.06	-0.03	±2.5	PASS
			VN	30	-25.18	-0.03	±2.5	PASS
			VN	40	-30.35	-0.04	±2.5	PASS
			VN	50	-26.86	-0.03	±2.5	PASS

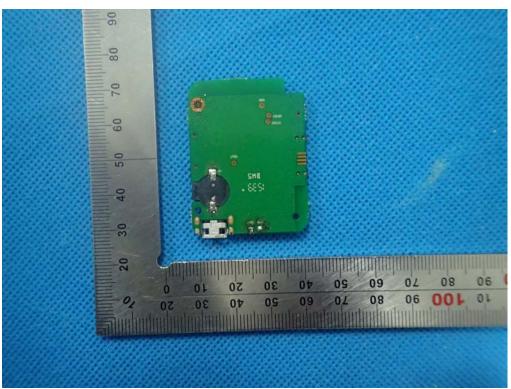

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm	Verdict
			VN	-10	-37.13	-0.02) ±2.5	PASS
			VN	0	-35.71	-0.02	±2.5	PASS
			VN	10	-32.48	-0.02	±2.5	PASS
GSM	GSM	LCH	VN	20	-37.90	-0.02	±2.5	PASS
1900			VN	30	-35.84	-0.02	±2.5	PASS
			VN	40	-36.29	-0.02	±2.5	PASS
			VN	50	-29.32	-0.02	±2.5	PASS
			VN	-10	-32.87	-0.02	±2.5	PASS
		МСН	VN	0	-38.94	-0.02	±2.5	PASS
0014			VN	10	-34.22	-0.02	±2.5	PASS
GSM	GSM		VN	20	-34.55	-0.02	±2.5	PASS
1900			VN	30	-37.26	-0.02	±2.5	PASS
			VN	40	-30.87	-0.02	±2.5	PASS
			VN	50	-36.29	-0.02	±2.5	PASS
			VN	-10	-32.41	-0.02	±2.5	PASS
			VN	0	-26.73	-0.01	±2.5	PASS
GSM			VN	10	-31.90	-0.02	±2.5	PASS
1900	GSM	НСН	VN	20	-32.93	-0.02	±2.5	PASS
1900			VN	30	-24.99	-0.01	±2.5	PASS
			VN	40	-31.64	-0.02	±2.5	PASS
			VN	50	-29.38	-0.02	±2.5	PASS


Report No.: AGC00918151101FE02 Page 62 of 65

PHOTOGRAPHS OF TEST SETUP CONDUCTED EMISSION


RADIATED SPURIOUS EMISSION


CONDUCTED MEASUREMENTS



PHOTOGRAPHS OF EUT

VIEW OF EUT-2

VIEW OF EUT-3

----END OF REPORT----