

Address

FCC ID: VYVBW0132-44B1 Report No.: 18220WC30244202 Page 1 of 33

FCC Test Report

Iton Technology Corp. **Applicant**

7 Floor East, Building C, Shenzhen International

: Innovation Center, No.1006 Shennan Rd. Futian

Dist, Shenzhen, China

Product Name BW0132-44B1

: Feb. 01, 2024 Report Date

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 2 of 33

Contents

arek anbore Ans							. ok
1. General Information	An	boyel		ο <u>··</u> ·····		o∤e¥	Arbate
General Information 1.1. Client Information	40°°°	b.,	, elt	Wpo _{ter} .	And		9:ئەسىيىيىن
1.2. Description of Device (EUT)		224			£	⁴ / ₀₀ ,	
1.3. Auxiliary Equipment Used Duri	ng lest	otek		24	*eK	botek	
1.4. Operation channel list 1.5. Description of Test Modes	<u> </u>	.e/			2:		ek .
1.6. Measurement Uncertainty	notek p	'upot			upoley	VUDA	
1.7. Test Summary		po//		4g			0
1.8. Description of Test Facility	Vipo,		٧٠٠٠٠٠٠٠٠٠٠٠٠	1046L	AUD		oie ^k
1.9. Disclaimer	bojek	Anbo	r				VII.
1.10. Test Equipment List			46.	47		ye/	_{ka} b10
2. Antenna requirement	Ano.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000.4			1
2.1. Conclusion	ek Aupe), b)	orek	9,000		And	<u>.</u> ئارئار
1.8. Description of Test Facility 1.9. Disclaimer	eot ^{ek}	upose.	An-	V	botek	Vupo.	~ 1:،بدید.
3.1 FUT Operation				-ak) 1:
3.2. Test Setup	AUD.	,otek	4nb		. k	ek	
3.3. Test Data	Kopo _{te} .	Ans		"Potek	Anbo		14
4. Occupied Bandwidth	kotok	Aupo,		olek	24	po _{fer}	<u>Anu</u> 1
4.1. EUT Operation	% %°	iek Aul	00,0	b1.	ek	Anborer	10
4.2. Test Setup	VII.	Y	, botek	AUD			
4.3 lest Data							. 1
Maximum Conducted Output Power. 5.1. EUT Operation	20010K	Pupoter.	Ano	, ok	wolek	Anb	18
5.1. EUT Operation	Mr.	anboten	Vup.		aoši		18 18 18
5.3. Test Data	Tupo _{te,}	Ant				, v	1
5.2. Test Setup 5.3. Test Data 6. Power Spectral Density 6.1. EUT Operation 6.2. Test Setup 6.3. Test Data 7. Emissions in non-restricted frequency	××	ek Anb			3 _/ /-	Popo _{ter}	1
6.1. EUT Operation)(otek	Mpore	Vin		obote)	1
6.2. Test Setup	ote. Au		botek	Anl			19الأعبر
6.3. Test Data	abotek	Popo,	b.,	(e)+	bote	VU _D	19
7. Emissions in non-restricted frequency	y bands	Apoier	Anbu		bote	<i>y</i>	<u></u> 20
7.1. EUT Operation	Vur.	ote)	k.	/po.		atek	
7.2. Test Setup	Vupo,	h	Helt.	Kupoter	VUL		2
7.3. Test Data	: <u>\</u>	7UD	<u>.</u>		½	Wp ₀	20
8. Band edge emissions (Radiated)	/k	ojek	upole	Ar.		Aupotek	2
8.1. EUT Operation	Dr	Yek.	anbote.	VUL			2
8.2. Test Setup	160ter	Yupa		ek	upoi		2
8.3. Test Data	7070K		Vu.		boite!		2
7.1. EUT Operation	/ 1GHz)	Motek	VU	bo.		rek	
9.1 FLIT Operation							
O. I. LOI Operation	b1.		48.c	$A_{U_{D_{n}}}$			24
9.2. Test Setup 9.3. Test Data							

Report No.: 18220WC30244202	FCC I	D: VYVB	3W0132-4	4B1	Page	3 of 33	3,000
10. Emissions in frequency bands (above 1G	iHz)	otek	Aupore.	Anubotek		otek	. 28
10.1. EUT Operation		botek	Aupore	ν. Σι.,	,eK	rupoter.	.28
186° 180°.		VII.	bote	Aup		r otel	. 29
10.3. Test Data	ojek	Vupor		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pojer	VUD.	. 30
APPENDIX I TEST SETUP PHOTOGRAPI	 Н	anbot ^{ic}	ar Aup.	y Y	botek	PUP,	. 33
APPENDIX II EXTERNAL PHOTOGRAPH		۲۰. د د د د د د د د د د د د د د د د د د د	atek a	nborc	V	K	. 33
APPENDIX III INTERNAL PHOTOGRAPH							33

FCC ID: VYVBW0132-44B1 Report No.: 18220WC30244202 Page 4 of 33

TEST REPORT

Iton Technology Corp. Applicant

Manufacturer Iton Technology Corp

BW0132-44B1 **Product Name**

BW0132-44B1 Test Model No.

BW0132-44B2, BW0132-44B3, BW0132-44B4, BW0132-44B5, BW0132 Reference Model No.

44B6, BW0132-44B7, BW0132-44B8

Trade Mark N/A

Input: 3.3V= Rating(s)

47 CFR Part 15.247

Test Standard(s) KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Nov. 16, 2023
Date of Test:	Nov. 16, 2023 ~ Jan. 09, 2024
	Nian Xiu Chen
Prepared By:	And ack photek Anbo k not
	(Nianxiu Chen)
otek Anbotek Anbotek Anbotek Anbotek Anbotek	Idward pan
Approved & Authorized Signer:	chotek Anbor Ar.
Anbotek Anbotek Anbotek Anbotek	(Edward Pan)

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 5 of 33

Revision History

Report Version	Description	Issued Date
Anbore R00 potek An	Original Issue.	Feb. 01, 2024
k Anborek Anborek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Anb
ore Ambotek Anbotek	Anbotek Anbotek Anbot	rek Anbotek Anbotek

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 6 of 33

1. General Information

1.1. Client Information

Applicant	: Iton Technology Corp.	hote
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China	in and
Manufacturer	: Iton Technology Corp.	
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China	
Factory	: Iton Technology Corp.	,tek
Address	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China	nbotel

1.2. Description of Device (EUT)

46, VUA.		ok ho, by, ak
Product Name	:	BW0132-44B1
Test Model No.	:	BW0132-44B1
Reference Model No.	:	BW0132-44B2, BW0132-44B3, BW0132-44B4, BW0132-44B5, BW0132-44B6, BW0132-44B7, BW0132-44B8 (Note: All samples are the same except the model number and module naming, so we prepare "BW0132-44B1" for test only.)
Trade Mark	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	DC 3.3V by USB to TTL Serial board
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A botek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40ek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK Andorek Andorek Andorek
Antenna Type	:	Dipole Antenna
Antenna Gain(Peak)	:	2.53dBi orek Anborek Anborek Anborek
Damanter 30"		

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 7 of 33

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
CH340 USB TO TTL UART	Mercury electronics technologies	MCS-71 Pro	Anbore. Anborek
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band:

- AV			DV.	160°	- aV	
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	10 note	2422	20	2442	30	2462
2404	tek 11 nb	2424	21	2444 AND	31 Anb	2464
2406	12	2426	22	2446	32	2466
2408	13	2428	23	2448	33	2468
2410	And 14 tek	2430	M24	2450	34	2470
2412	15	2432	25	2452	35	2472
2414	16	2434,000	26	2454	ek 36 Anbo	2474
o ^{del} 2416 M ^{bc}	17	2436	ofer 27 Ant	2456	o ^{tek} 37 M	2476
2418	18	2438	28	2458	38	2478
2420	Anbolto	2440	29	2460	39	2480
	(MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	(MHz) Channel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	(MHz) Channel (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	(MHz) Channel (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	(MHz) Charmer (MHz) Charmer (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	(MHz) Channel (MHz) Channel (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38

1.5. Description of Test Modes

Pretest Modes			Descriptions
nbotek	TM1	upo,	Keep the EUT connect to AC power line and works in continuously transmitting mode (BLE 1M)
Anbote	TM2	Ambor	Keep the EUT connect to AC power line and works in continuously transmitting mode (BLE 2M)

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 8 of 33

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anborek Anborek
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Ann K Poles William	- tek app	
Test Items	Test Modes	Status
Antenna requirement	otek And Stek	ibotek P Ar
Conducted Emission at AC power line	Mode1,2	anbot P
Occupied Bandwidth	Mode1,2	An Prok
Maximum Conducted Output Power	Mode1,2	Photek
Power Spectral Density	Mode1,2	ek P Anbot
Emissions in non-restricted frequency bands	Mode1,2	ootek P An
Band edge emissions (Radiated)	Mode1,2	_{Anbot} eP
Emissions in frequency bands (below 1GHz)	Mode1,2	anb Piek
Emissions in frequency bands (above 1GHz)	Mode1,2	Photek
Note: P: Pass N: N/A, not applicable	tek Anbotek Anbote	*ek Aupor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 9 of 33

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC30244202 Page 10 of 33 FCC ID: VYVBW0132-44B1

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	tek /Anbotek	ek apotek

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density
Emissions in non-restricted frequency bands

450		- 104-1-11-11-104-111-1				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
140	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A nbo	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An4ote	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 11 of 33

Ote.	And	otek pupo.	N. ak	-bole.	VU _P	ysio
	edge emissions (Ra sions in frequency ba		Auporgoiek.	Anbotek	Aupoter.	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emissions in frequency bands (below 1GHz)									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date			
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11			
. 2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11			
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22			
Antotel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11			
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A nbot	N/A door	V Vupo,	Anbotek			

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 12 of 33

2. Antenna requirement

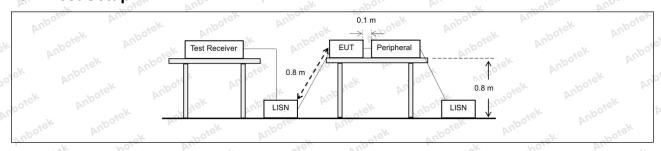
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a **Dipole Antenna** which permanently attached, and the best case gain of the antenna is **2.53 dBi**. It complies with the standard requirement.

Report No.: 18220WC30244202 Page 13 of 33

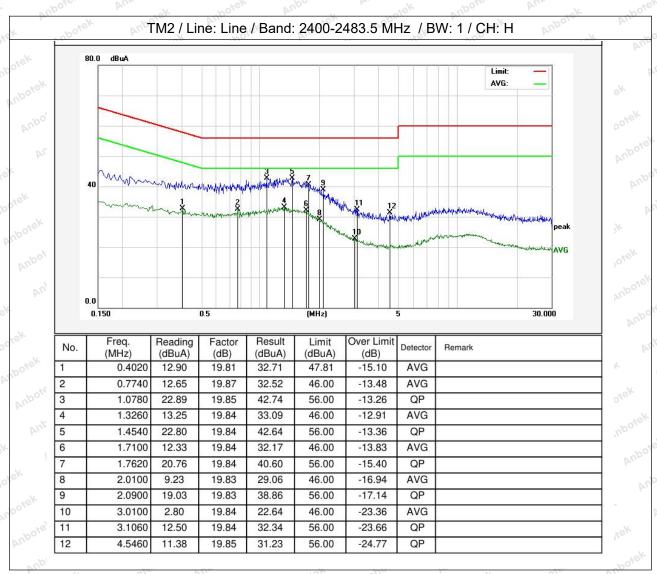

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage that my frequency or frequencient t exceed the limits in the f	nected to the at is conducted es, within the ollowing table, as
spotek Anboy	Frequency of emission (MHz)	Conducted limit (dBµV)	i atek
YII.	Anbore Anbore	Quasi-peak	Average
Aupor Ar.	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56. An	46
VII.	5-30 And 5	60	50 PER AND
k Aupor K Ai.	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2	Anbores.	Aug
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un		

3.1. EUT Operation

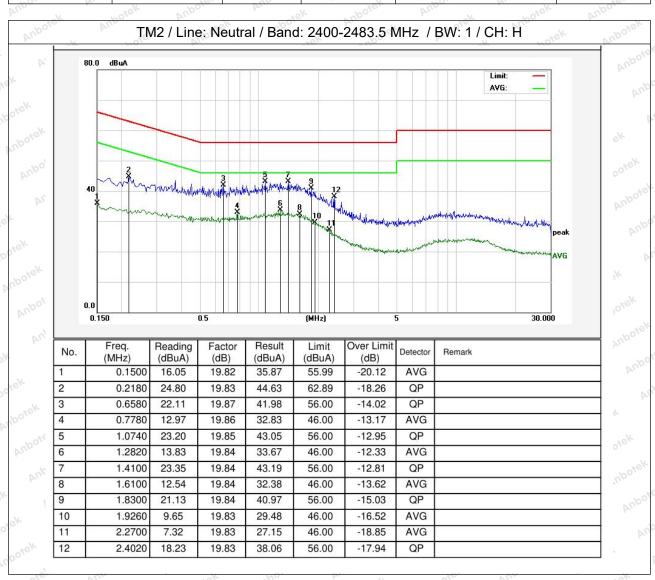
	Operating Envir	onment:	Aupore	- Wolek	Anbotek	Aupo,	Anborek.	Aupore
>°°	Test mode:	continuousl	ỳ transmittin	ig mode (BLE	1M)	AC power line		'k Vi Vupo
		continuousl	y transmittin	ig mode (BLE	2M)	bojek Anb		otek

3.2. Test Setup


Hotline

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 14 of 33

3.3. Test Data


Temperature: 24.5	5%C Moote F	Humidity: 5	52.3 %	Atmospheric Pressure:	101 kPa
-------------------	-------------	-------------	--------	-----------------------	---------

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 15 of 33

Temperature: 24.5 °C Humidity: 52.3 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 16 of 33

4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
nbotek Anbotek Anbotek Anbotek Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW].
Anbotek Anb	c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time.
potek Anbotek	f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the
Procedure:	envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
ek Anbotek Anbo	11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be
Anbotek Anbotek	employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function.
Anbotek Anbotek	When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.1. EUT Operation

7UOC	Operating Envi	ronment: And of the	Ans	anbotek	Anbo	. ek	sbotek	Anbore	
P.C.	est mode:	1: TX mode(BLE continuously tra 2: TX mode(BLE continuously tra	nsmitting mode E 2M): Keep the	(BLE 1M) EUT conne		Spotek			potek notek



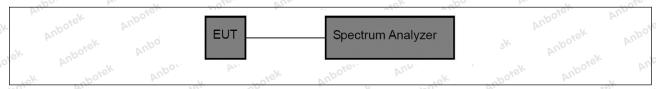
Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 17 of 33

4.2. Test Setup

4.3. Test Data

10	Tanàn araturas	25.1 °C	Llumpidite	4C 0/001	Atmoonbaria Drassura	101 kDa
	Temperature:	25.1 6	Humidity:	46 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 18 of 33


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

Operating Envir	onment:	abotek	Aupor	V.		Anboten	Anbo	*ek	200
Test mode:	1: TX mode(B continuously to 2: TX mode(B continuously to	ransmitting LE 2M): Ke	mode (BLE	1M) connect	Anbore				r V2

5.2. Test Setup

5.3. Test Data

Temperature:	25.1 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Report No.: 18220WC30244202 Page 19 of 33 FCC ID: VYVBW0132-44B1

6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

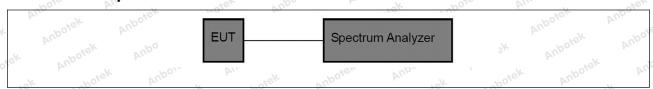
Operating En	vironment:			abotek		
Test mode:	1: TX mode(BLE continuously tran 2: TX mode(BLE continuously tran	smitting mode 2M): Keep th	e (BLE 1M) e EUT connec	Anbe	ak hote	
6.2. Test Se	otun obořek A	ipo, V.	woiek An	poter An	*ek	abotek p

6.2. Test Setup

6.3. Test Data

Trainight to the control of the cont	Temperature:	25.1 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa
--	--------------	---------	-----------	------	-----------------------	---------

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 20 of 33


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

×	Operating Envir	onment:	Ann	Anbotok	Anbo	Anbotek	Auporg	Δ//·
,d	Test mode:	continuous 2: TX mode	e(BLE 1M): Ke ly transmitting e(BLE 2M): Ke ly transmitting	mode (BLE ep the EUT	1M) connect to A	An		otek Er

7.2. Test Setup

7.3. Test Data

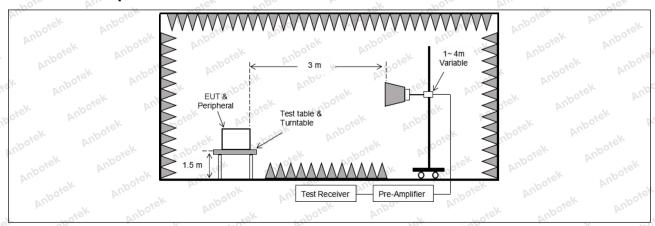
Temperature:	25.1 °C	-*c	Humidity:	46 %	Atmospheric Pressure:	101 kPa	

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 21 of 33

8. Band edge emissions (Radiated)

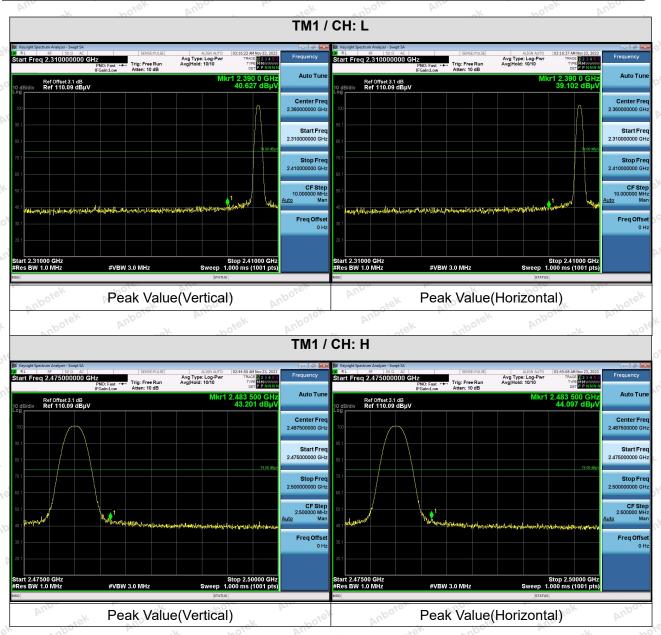
Test Requirement:	restricted bands, as defined	, In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the
k Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
O. Pr. Otek	0.009-0.490	2400/F(kHz)	300 Mboto
botek Anbo	0.490-1.705	24000/F(kHz)	30
All aboten	1.705-30.0	30	30
Anbo, Air	30-88	100 **	3,ek nbore
sbotek Anbo	88-216	150 **	3
Arm rek abore	216-960	200 **	3 poter And
Anbor	Above 960	500	3 rek and
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110–490 kHz and a section with the section of the emission limits of the emission limits shown employing a CISPR quasi-page 110–490 kHz and a section of the emission limits of the emission limits shown employing a CISPR quasi-page 110–490 kHz and a section of the emission of the emission limits of the emission of the emissio	ing under this section shall not be 2, 76-88 MHz, 174-216 MHz or othese frequency bands is permitt § 15.231 and 15.241. In the tighter limit applies at the being the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. red under other pand edges. measurements uency bands 9– ssion limits in
hotek Pupo	Pir	The poster August	· · · · · · · · · · · · · · · · · · ·
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		ak Anbo
Procedure:	ANSI C63.10-2020 section	6.10.5.2	or Arr.

8.1. EUT Operation


300	Operating Envir	onment:	Anbotek	Aupo	-hotel	k Aupon	Arra	rek no
P ₁	ret mode:	1: TX mode(BLE continuously tran 2: TX mode(BLE continuously tran	smitting m 2M): Keep	ode (BLE 11 the EUT co	M) onnect to A	O		

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 22 of 33

8.2. Test Setup



Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 23 of 33

8.3. Test Data

Temperature: 25.1 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

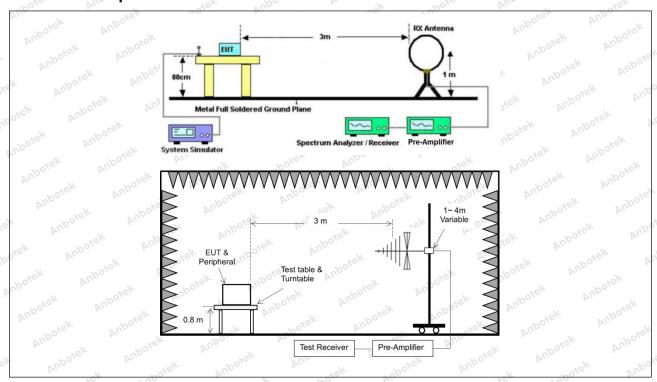
Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 24 of 33

9. Emissions in frequency bands (below 1GHz)

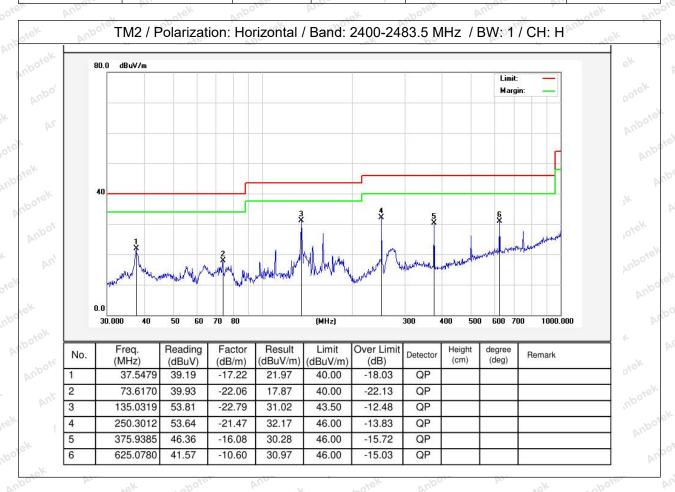
Test Requirement:	restricted bands, as defin radiated emission limits s	pecified in § 15.209(a)(see § 15	
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 Mport
ofer Ande	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30° Ack	30
	30-88	100 **	3 ok noon
anboren Anbe	88-216	150 **	AT 3
	216-960	200 **	3 pore An
	Above 960	500 Solek Andrew	3
Test Limit: Arbotek Ar	intentional radiators opera frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not IHz, 76-88 MHz, 174-216 MHz o	be located in the or 470-806 MHz.
Test Limit; otek Anbotek	intentional radiators operafrequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on these frequency bands is perm	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek Anborek	intentional radiators operafrequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about the emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are bar	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on these frequency bands is perm §§ 15.231 and 15.241. IVE, the tighter limit applies at the in the above table are based of i-peak detector except for the fred above 1000 MHz. Radiated emsed on measurements employing in 6.6.4	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

9.1. EUT Operation


300	Operating Envir	onment:	Anbotek	Aupo	-hotel	k Aupon	Arra	rek no
P ₁	ret mode:	1: TX mode(BLE continuously tran 2: TX mode(BLE continuously tran	smitting m 2M): Keep	ode (BLE 11 the EUT co	M) onnect to A	O		

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 25 of 33

9.2. Test Setup

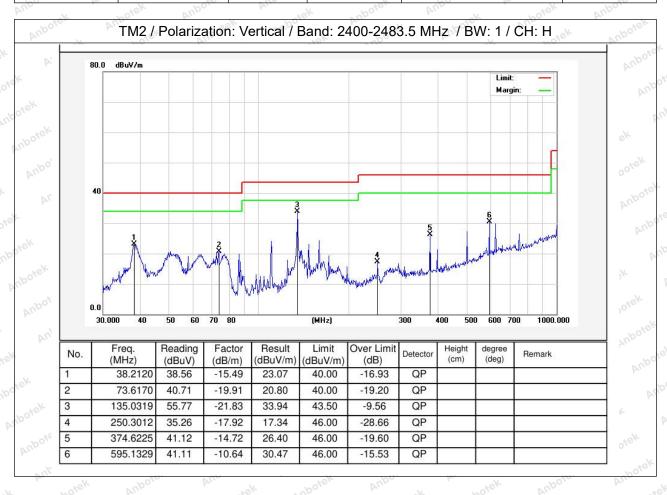


Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 26 of 33

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature:	24.5 °C	Humidity:	50 %	Atmospheric Pr	essure: 101 kPa



Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 27 of 33

Temperature: 24.5 °C Humidity: 50 % Atmospheric Pressure: 101 kPa

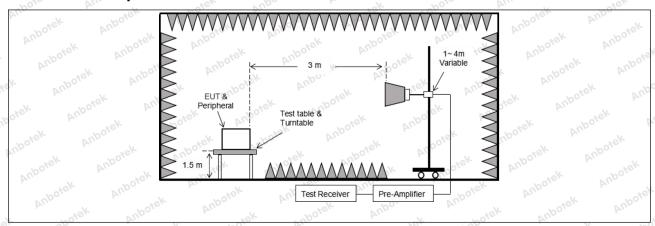
Note:Only record the worst data in the report.

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 28 of 33

10. Emissions in frequency bands (above 1GHz)

Test Requirement:		ons which fall in the restricted background by with the radiated emission 5(c)).	
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o. W. Potek	0.009-0.490	2400/F(kHz)	300 Mbon
"upous Yun	0.490-1.705	24000/F(kHz)	30
botek Anbore	1.705-30.0	30	30
Yu. "ek "potek	30-88	100 **	3 ek
Anbor Air	88-216 216-960	150 ** 200 **	3
r upotek Aupo.	Above 960	500	3
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a	ing under this section shall not be z, 76-88 MHz, 174-216 MHz or these frequency bands is permitted as 15.231 and 15.241. In the tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ted under other pand edges. measurements quency bands 9–ssion limits in
potek Pupo, h	18k 190, by	O O PEK Spokek Pupo	V NOTOK
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		er Aupotek
Procedure:	ANSI C63.10-2020 section	6.6.4	DOL VIE

10.1. EUT Operation


oile	Operating Envir	onment:	vupo _{tek}	Anbo	-hoie	ik Aupor	Arra	siek no
10,00	Test mode:	1: TX mode(BLE continuously tran 2: TX mode(BLE continuously tran	smitting m 2M): Keep	ode (BLE 11 the EUT co	M) onnect to A	, b.,		Anboier

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 29 of 33

10.2. Test Setup

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 30 of 33

10.3. Test Data

Temperature: 24.5 °C Hu	umidity: 50 % Atmos	pheric Pressure: 101 kPa
-------------------------	---------------------	----------------------------

	POL VILLE	· · · · · · · · · · · · · · · · · · ·	TMO / CUL-	¥**	-h ⁰ 10	by.	
TM2 / CH: L							
Peak value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4804.00	29.59	15.27	44.86	74.00	-29.14	Vertical	
7206.00	29.46	18.09	47.55	74.00	-26.45	Vertical	
9608.00	30.70	23.76	54.46	74.00	-19.54	Vertical	
12010.00	Aupole * Al	49:	abotek Anb	74.00	otek Anboti	Vertical	
14412.00	*Upo*sk	Anbo	hotek P	74.00	rick on	Vertical	
4804.00	29.16	15.27	44.43	74.00	-29.57	Horizontal	
7206.00	30.40	18.09	48.49	74.00	-25.51	Horizontal	
9608.00	28.60	23.76	52.36	74.00	-21.64	Horizontal	
12010.00	otek * Aupo	-k 20	iek Vupote	74.00	. nbotek	Horizontal	
14412.00	woick* An	boye Vun	sek spc	74.00	K Kote	Horizontal	
Average value:							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization	
4804.00	17.86	15.27	33.13	54.00	-20.87	Vertical	
7206.00	18.51	18.09	36.60	54.00	-17.40	Vertical	
9608.00	20.17	23.76	43.93	54.00	-10.07	Vertical	
12010.00	1010×	Aupoter Au	, ek	54.00	A Pro-	Vertical	
14412.00	And *ek	abotek	Anbo. A	54.00	ipotes And	Vertical	
4804.00	17.49	15.27	32.76	54.00	-21.24	Horizontal	
7206.00	19.43	18.09	37.52	54.00	-16.48	Horizontal	
9608.00	18.11 noote	23.76	41.87	54.00	-12.13	Horizontal	
12010.00	** * *	otek Aupor	N 20%	54.00	Aug. "ek	Horizontal	
14412.00	4 ×	otek ant	Oter And	54.00	ek Aupor	Horizontal	

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 31 of 33

				hotek	Anbor	rek
			ГМ2 / СН: М			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	29.14	15.42	44.56	74.00	-29.44	Vertical
7320.00	29.43	18.02	47.45	74.00	-26.55	Vertical
9760.00	30.20	23.80	54.00	74.00	-20.00	Vertical
12200.00	ek * nbotek	Anbo.	hotek	74.00	And	Vertical
14640.00	* * *	tek Aupote	Pur Vie	74.00	Vupo.	Vertical
4880.00	28.97	15.42	44.39	74.00	-29.61	Horizontal
7320.00	30.27	18.02	48.29	74.00	-25.71 pot	Horizontal
9760.00	28.32	23.80	52.12	74.00	-21.88	Horizontal
12200.00	* * otek	Anbore	And	74.00	Yupo.	Horizontal
14640.00	A.* Otek	nbotek	Aupo.	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	17.95	15.42	33.37	54.00	-20.63	Vertical
7320.00	18.37	18.02	36.39	54.00	-17.61	Vertical
9760.00	20.02	23.80	43.82	54.00	-10.18	Vertical
12200.00	k ¥upor	N Diek	anboter	54.00	aborek	Vertical
14640.00	otek * Anboti	And	sk spojek	54.00	k, hotek	Vertical
4880.00	17.60	15.42 nbo	33.02	54.00	-20.98	Horizontal
7320.00	19.78	18.02 An	37.80	54.00	-16.20	Horizontal
9760.00	18.41	23.80	42.21	54.00	11.79 M	Horizontal
12200.00	Anbroten	Anb rek	botek	54.00	-otek D	Horizontal
14640.00	* botek	Anbo	D. C. C.	54.00	And	Horizontal

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 32 of 33

EL VUD	riek .	"upo,	VII.	-poter	Aup	ate ^K
		٦	ГМ2 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	29.27	15.58	44.85	74.00	-29.15 NO	Vertical
7440.00	29.59	17.93	47.52	74.00	-26.48	Vertical
9920.00	30.90	23.83	54.73	74.00	-19.27	Vertical
12400.00	* ~ otek	anbore.	And	74.00	Aupo,	Vertical
14880.00	* Vup	iek upołek	Aupo.	74.00	Aupore	Vertical
4960.00	29.11	15.58	44.69	74.00	-29.31	Horizontal
7440.00	30.48	17.93	48.41	74.00	-25.59	Horizontal
9920.00	28.70	23.83	52.53	74.00	-21.47	Horizontal
12400.00	Anb * * ek	abotek	Aupo,	74.00	Aupote, Au	Horizontal
14880.00	V.Apo.	Notek Notek	Anbores	74.00	abotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	19.07	15.58	34.65	54.00	-19.35	Vertical
7440.00	19.64	17.93	37.57	54.00	-16.43	Vertical
9920.00	20.67	23.83	44.50	54.00	-9.50	Vertical N
12400.00	* * sboick	Aupor	hotek	54.00	Aug	Vertical
14880.00	* * "0"	sk Aupotor	Aug	54.00	Vupo,	Vertical
4960.00	18.78	15.58	34.36	54.00	-19.64	Horizontal
7440.00	20.58	17.93	38.51 M	54.00	-15.49	Horizontal
9920.00	18.56	23.83	42.39	54.00	-11.61	Horizontal
12400.00	* tek	Anbores	Vur.	54.00	po, by	Horizontal
14880.00	An*	* Upotek	Aupo.	54.00	Anboto	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC30244202 FCC ID: VYVBW0132-44B1 Page 33 of 33

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

