NCL CALIBRATION LABORATORIES

Calibration File No.: PC-1608

Task No: ISL-PC-5784

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe Record of Calibration Body Manufacturer: APREL Laboratories **Model No.:** E-020 **Serial No.:** 266

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole Project No: BACL-5784

> **Calibrated:** 12th January 2015 **Released on:** 15th January 2015

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

Art Brennan, Quality Manager

Suite 102, 303 Terry Fox L OTTAWA, ONTARIO CANADA K2K 3J1 Division of APREL Lab TEL: (613) 435-8300 FAX: (613) 435-8306

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Calibration Method

Probes are calibrated using the following methods.

<800 MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>800 MHz

Waveguide* method to determine sensitivity in air and tissue *Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528:2013
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1:2006
 Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures - Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2:2010
 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- o D22-012-Tissue dielectric tissue calibration procedure
- o D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe SN 266 was a recalibration.

Ambient Temperature of the Laboratory:	22 °C +/- 1.5°C
Temperature of the Tissue:	21 °C +/- 1.5°C
Relative Humidity:	< 60%

Primary Measurement Standards

Instrument	Serial Number	Cal due date
Tektronix USB Power Meter	11C940	May 14, 2015
Agilent Signal Generator	MY45094463	Dec, 2015

Secondary Measurement Standards

Network Analyzer Anritsu 37347C	002106	Feb. 20, 2015
---------------------------------	--------	---------------

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy.

Art Brennan, Quality Manager

Dan Brooks, Test Engineer

NCL Calibration Laboratories

Division of APREL Inc.

Probe Summary

Probe Type:	E-Field Probe E020
Serial Number:	266
Frequency:	As presented on page 5
Sensor Offset:	1.56
Sensor Length:	2.5
Tip Enclosure:	Composite*
Tip Diameter:	< 2.9 mm
Tip Length:	55 mm
Total Length:	289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	1.2 μV/(V/m)²
Channel Y:	1.2 μV/(V/m)²
Channel Z:	1.2 μV/(V/m)²
Diode Compression Point:	95 mV

NCL Calibration Laboratories Division of APREL Inc.

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Standard Uncertainty (%)	Frequency Range (MHz)	Conversion Factor
450 H	Head	Х	Х	Х	X	Х
450 B	Body	Х	Х	Х	Х	Х
700 H	Head	Х	Х	Х	Х	Х
700 B	<mark>Body</mark>	<mark>56.12</mark>	<mark>0.92</mark>	<mark>3.5</mark>	<mark>±50</mark>	<mark>6.</mark> 6
835 H	Head	Х	Х	Х	Х	Х
<mark>835 B</mark>	<mark>Body</mark>	<mark>55.35</mark>	<mark>1.00</mark>	<mark>3.5</mark>	<u>±50</u>	<mark>6.8</mark>
900 H	Head	X	X	X	Х	X
900 B	<mark>Body</mark>	<mark>54.99</mark>	<mark>1.06</mark>	<mark>3.5</mark>	<u>±50</u>	<mark>6.7</mark>
1450 H	Head	X	X	X	Х	X
1450 B	Body	Х	Х	Х	Х	Х
1500 H	Head	Х	Х	Х	Х	Х
1500 B	Body	Х	Х	Х	Х	Х
1640 H	Head	Х	Х	Х	Х	Х
1640 B	Body	Х	Х	Х	Х	Х
1750 H	Head					
<mark>1750 B</mark>	<mark>Body</mark>	<mark>51.51</mark>	<mark>1.51</mark>	<mark>3.5</mark>	<mark>±75</mark>	<mark>5.6</mark>
1800 H	Head	Х	Х	Х	Х	Х
1800 B	Body	Х	Х	Х	Х	Х
1900 H	Head	Х	Х	Х	Х	Х
<mark>1900 B</mark>	<mark>Body</mark>	<mark>53.35</mark>	<mark>1.45</mark>	<mark>3.5</mark>	<mark>±75</mark>	<mark>5.4</mark>
2000 H	Head	X	Х	X	Х	X
2000 B	<mark>Body</mark>	<mark>53.07</mark>	<mark>1.57</mark>	<mark>3.5</mark>	±75	<mark>5.4</mark>
2100 H	Head	Х	Х	Х	Х	Х
2100 B	Body	Х	Х	Х	Х	Х
2300 H	Head	Х	Х	Х	Х	Х
2300 B	Body	Х	Х	Х	Х	Х
2450 H	Head	Х	Х	Х	Х	Х
2450B	<mark>Body</mark>	<mark>53.26</mark>	<mark>1.96</mark>	<mark>3.5</mark>	<mark>±75</mark>	<mark>4.9</mark>
3000 H	Head	Х	Х	Х	Х	Х
3000 B	Body	Х	Х	Х	Х	Х
3600 H	Head	Х	Х	Х	Х	Х
3600 B	Body	Х	Х	Х	Х	Х
5250 H	Head	X	X	X	X	X
<mark>5250 B</mark>	<mark>Body</mark>	<mark>47.54</mark>	<mark>5.23</mark>	<mark>3.5</mark>	<mark>±100</mark>	<mark>3.3</mark>
5600 H	Head	X	X	X	X	Х
<mark>5600 B</mark>	<mark>Body</mark>	<mark>46.49</mark>	<mark>5.73</mark>	<mark>3.5</mark>	<mark>±100</mark>	<mark>2.9</mark>
5800 H	Head	X	X	X	X	X
<mark>5800 B</mark>	<mark>Body</mark>	<mark>45.99</mark>	<mark>6.10</mark>	<mark>3.5</mark>	<mark>±100</mark>	<mark>3.4</mark>

Calibration for Tissue (Head H. Body B)

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Probe Calibration Uncertainty

Uncertainty component	Tolerance (± %)	Probability distribution	Divisor	Standard uncertainty (± %)
Incident or forward power	2.5	R	√3	1.44
Reflected power	2	R	√3	1.15
Liquid conductivity measurement	1	R	√3	0.58
Liquid permittivity measurement	1	R	√3	0.58
Liquid conductivity deviation	1.5	R	√3	0.87
Liquid permittivity deviation	1.5	R	√3	0.87
Frequency deviation	2.25	R	√3	1.30
Field homogeneity	2.5	R	√3	1.44
Field-probe positioning	2.5	R	√3	1.44
Field-probe linearity	1.55	R	√3	0.89
Combined standard uncertainty		RSS		3.50

Receiving Pattern Air

Isotropy Error Air

Isotropicity Tissue:

0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz	1 dB
Video Bandwidth at 1.02 KHz:	3 dB