

262

8266A-MCU Wireless-12/09

ATmega128RFA1

TCNTn and the OCRnx. Note that when working with fixed TOP values, the unused bits
are masked to zero when any of the OCRnx Registers are written. As the third period
shown in Figure 18-8 illustrates, changing the TOP actively while the Timer/Counter is
running in the phase correct mode can result in an asymmetrical output. The reason for
this can be found in the update time of the OCRnx Register. Since the OCRnx update
occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of
the falling slope is determined by the previous TOP value, while the length of the rising
slope is determined by the new TOP value. When these two values are not equal the
two slopes of the period will differ in length. The difference in length gives the
asymmetrical result of the output.

It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.

In phase correct PWM mode, the compare units allow generating PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to 2 will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COMnx1:0 to 3 (see Table 18-4
on page 256). The actual OCnx value will only be visible on the port pin if the data
direction of the port pin is set to output (DDR_OCnx). The PWM waveform is generated
by setting (or clearing) the OCnx Register at the compare match between OCRnx and
TCNTn when the counter increments, and by clearing (or setting) the OCnx Register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM
frequency of the output fOCnxPCPWM when using phase-correct PWM can be calculated
with the following equation:

)2

/_

TOPN

f
f

OIclk

OCnxPCPWM
⋅⋅

=

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11)
and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

18.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation (PWM) mode (WGMn3:0 = 8
or 9) provides a high resolution phase and frequency correct PWM waveform
generation option. The phase and frequency correct PWM mode is, like the phase
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly
from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting
Compare Output mode, the Output Compare (OCnx) is cleared on the compare match
between TCNTn and OCRnx while up-counting, and set on the compare match while
down-counting. In inverting Compare Output mode, the operation is inverted. The dual-
slope operation gives a lower maximum operation frequency compared to the single-
slope operation. However these modes are preferred for motor control applications due
to the symmetric feature of the dual-slope PWM modes.

The main difference between the phase correct and the phase and frequency correct
PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register,
(see Figure 18-8 on page 261 and Figure 18-9 on page 263).

 263

8266A-MCU Wireless-12/09

 ATmega128RFA1

The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICRn or OCRnA. The minimum resolution allowed is 2 bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16 bit (ICRn or OCRnA set to MAX). The PWM
resolution RPFCPWM in bits can be calculated with the following equation:

)2log(

)1log(+
=

TOP
RPFCPWM

In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA
(WGMn3:0 = 9). The counter has then reached TOP and changes the count direction.
The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for
the phase correct and frequency correct PWM mode is shown in Figure 18-9 below.
The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is
used to define TOP. The TCNTn value is shown in the timing diagram as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

Figure 18-9. Phase and Frequency Correct PWM Mode Timing Diagram

OCRnx/TOP Updateand

TOVn Interrupt Flag Set

(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

The Timer/Counter Overflow Flag (TOVn) is set at the timer clock cycle when the
OCRnx Registers are updated with the double-buffered value (at BOTTOM). The OCnA
or ICFn Flag is set after TCNTn has reached TOP when either OCRnA or ICRn is used
for defining the TOP value. The Interrupt Flags can then be used to generate an
interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx.

As Figure 18-9 shows the output generated is, in contrast to the phase correct mode,
symmetrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the
length of the rising and the falling slopes will always be equal. This gives symmetrical
output pulses and is therefore frequency correct.

264

8266A-MCU Wireless-12/09

ATmega128RFA1

The definition of TOP with the ICRn Register works well when using fixed TOP values.
Combined with ICRn the OCRnA Register is available for generating a PWM output on
OCnA. However, if the base PWM frequency is actively changed by modifying the TOP
value, using the OCRnA as TOP is clearly a better choice due to its double buffer
feature.

In phase and frequency correct PWM mode, the compare units allow generating PWM
waveforms on the OCnx pins. Setting the COMnx1:0 bits to 2 will produce a non-
inverted PWM. An inverted PWM output can be generated by setting the COMnx1:0 to
3 (see Table 18-4 on page 256). The actual OCnx value will only be visible at the port
pin if the data direction of the port pin is set to output (DDR_OCnx). The PWM
waveform is generated by setting (or clearing) the OCnx Register at the compare match
between OCRnx and TCNTn when the counter increments, and by clearing (or setting)
the OCnx Register at compare match between OCRnx and TCNTn when the counter
decrements. The PWM frequency of the output fOCnxPFCPWM when using phase and
frequency correct PWM can be calculated with the following equation:

)2

/_

TOPN

f
f

OIclk

OCnxPFCPWM
⋅⋅

=

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

18.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when Interrupt Flags are set and when the OCRnx Register is updated with the
OCRnx buffer value (only for modes utilizing double buffering). Figure 18-10 shows a
timing diagram for the setting of OCFnx.

Figure 18-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk
Tn

(clk
I/O

/1)

OCFnx

clk
I/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

 265

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 18-11 shows the same timing data, but with the prescaler enabled.

Figure 18-11. Timer/Counter Timing Diagram, Setting of OCFnx with Prescaler
(fclk_I/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

Figure 18-12 shows the count sequence close to TOP in various modes. When using
phase and frequency correct PWM mode the OCRnx Register is updated at BOTTOM.
The timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-
1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn
Flag at BOTTOM.

Figure 18-12. Timer/Counter Timing Diagram, no Prescaling

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
Tn

(clk
I/O

/1)

clk
I/O

266

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 18-13 shows the same timing data, but with the prescaler enabled.

Figure 18-13. Timer/Counter Timing Diagram with Prescaler (fclk_I/O/8)

TOVn (FPWM)

and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

18.11 Register Description

18.11.1 TCCR1A – Timer/Counter1 Control Register A

Bit 7 6 5 4 3 2 1 0

NA ($80) COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – COM1A1:0 - Compare Output Mode for Channel A

The COM1A1:0 bits control the output compare behavior of pin OC1A. If one or both of
the COM1A1:0 bits are written to one, the OC1A output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC1A pin must be set in order to enable the
output driver. When the OC1A is connected to the pin, the function of the COM1A1:0
bits is dependent of the WGM13:0 bits setting. The following table shows the
COM1A1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-6 COM1A Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM1A1:0

3 Set OCnA/OCnB/OCnC on Compare Match
(set output to high level).

• Bit 5:4 – COM1B1:0 - Compare Output Mode for Channel B

 267

8266A-MCU Wireless-12/09

 ATmega128RFA1

The COM1B1:0 bits control the output compare behavior of pin OC1B. If one or both of
the COM1B1:0 bits are written to one, the OC1B output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC1B pin must be set in order to enable the
output driver. When the OC1A is connected to the pin, the function of the COM1B1:0
bits is dependent of the WGM13:0 bits setting. The following table shows the
COM1B1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-7 COM1B Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM1B1:0

3 Set OCnA/OCnB/OCnC on Compare Match
(set output to high level).

• Bit 3:2 – COM1C1:0 - Compare Output Mode for Channel C

The COM1C1:0 bits control the output compare behavior of pin OC1C. If one or both of
the COM1C1:0 bits are written to one, the OC1C output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC1C pin must be set in order to enable the
output driver. When the OC1A is connected to the pin, the function of the COM1C1:0
bits is dependent of the WGM13:0 bits setting. The following table shows the
COM1C1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-8 COM1C Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM1C1:0

3 Set OCnA/OCnB/OCnC on Compare Match
(set output to high level).

• Bit 1:0 – WGM11:10 - Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation".

Table 18-9 WGM1 Register Bits

Register Bits Value Description

0x0 Normal mode of operation WGM11:10

0x1 PWM, phase correct, 8-bit

268

8266A-MCU Wireless-12/09

ATmega128RFA1

Register Bits Value Description

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

18.11.2 TCCR1B – Timer/Counter1 Control Register B

Bit 7 6 5 4 3 2 1 0

NA ($81) ICNC1 ICES1 Res WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – ICNC1 - Input Capture 1 Noise Canceller

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise
Canceler is activated, the input from the Input Capture Pin (ICP1) is filtered. The filter
function requires four successive equal valued samples of the ICP1 pin for changing its
output. The input capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

• Bit 6 – ICES1 - Input Capture 1 Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a
capture event. When the ICES1 bit is written to zero, a falling (negative) edge is used
as trigger. When the ICES1 bit is written to one, a rising (positive) edge will trigger the
capture. When a capture is triggered according to the ICES1 setting, the counter value
is copied into the Input Capture Register (ICR1). The event will also set the Input
Capture Flag (ICF1). This can be used to cause an Input Capture Interrupt, if this
interrupt is enabled. When the ICR1 is used as TOP value (see description of the
WGM13:0 bits located in the TCCR1A and the TCCR1B Register), the ICP1 is
disconnected and consequently the input capture function is disabled.

• Bit 5 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 4:3 – WGM11:10 - Waveform Generation Mode

 269

8266A-MCU Wireless-12/09

 ATmega128RFA1

Combined with the WGM11:0 bits found in the TCCR1A Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation".

Table 18-10 WGM1 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

WGM11:10

0xF Fast PWM, TOP = OCRnA

• Bit 2:0 – CS12:10 - Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter1
according to the following table. If external pin modes are used for the Timer/Counter1,
transitions on the T1 pin will clock the counter even if the pin is configured as an output.
This feature allows software control of the counting.

Table 18-11 CS1 Register Bits

Register Bits Value Description

0x00 No clock source (Timer/Counter stopped)

0x01 clk_IO/1 (no prescaling)

0x02 clk_IO/8 (from prescaler)

0x03 clk_IO/64 (from prescaler)

0x04 clk_IO/256 (from prescaler)

0x05 clk_IO/1024 (from prescaler)

0x06 External clock source on Tn pin, clock on
falling edge

CS12:10

0x07 External clock source on Tn pin, clock on
rising edge

270

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.3 TCCR1C – Timer/Counter1 Control Register C

Bit 7 6 5 4 3 2 1 0

NA ($82) FOC1A FOC1B FOC1C Res4 Res3 Res2 Res1 Res0 TCCR1C

Read/Write RW RW RW R R R R R

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – FOC1A - Force Output Compare for Channel A

The FOC1A bit is only active when the WGM13:0 bits specify a non-PWM mode. When
writing a logical one to the FOC1A bit, an immediate compare match is forced on the
waveform generation unit. The OC1A output is changed according to its COM1A1:0 bits
setting. Note that the FOC1A bits are implemented as strobes. Therefore it is the value
present in the COM1A1:0 bits that determine the effect of the forced compare. A
FOC1A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR1A as TOP. The FOC1A bits are always read
as zero.

• Bit 6 – FOC1B - Force Output Compare for Channel B

The FOC1B bit is only active when the WGM13:0 bits specify a non-PWM mode. When
writing a logical one to the FOC1B bit, an immediate compare match is forced on the
waveform generation unit. The OC1B output is changed according to its COM1B1:0 bits
setting. Note that the FOC1B bits are implemented as strobes. Therefore it is the value
present in the COM1B1:0 bits that determine the effect of the forced compare. A
FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR1B as TOP. The FOC1B bits are always read
as zero.

• Bit 5 – FOC1C - Force Output Compare for Channel C

The FOC1C bit is only active when the WGM13:0 bits specify a non-PWM mode. When
writing a logical one to the FOC1C bit, an immediate compare match is forced on the
waveform generation unit. The OC1C output is changed according to its COM1C1:0 bits
setting. Note that the FOC1C bits are implemented as strobes. Therefore it is the value
present in the COM1C1:0 bits that determine the effect of the forced compare. A
FOC1C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR1C as TOP. The FOC1C bits are always read
as zero.

• Bit 4:0 – Res4:0 - Reserved

These bits are reserved for future use.

18.11.4 TCNT1H – Timer/Counter1 High Byte

Bit 7 6 5 4 3 2 1 0

NA ($85) TCNT1H7:0 TCNT1H

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other

 271

8266A-MCU Wireless-12/09

 ATmega128RFA1

16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT1) while the counter is running introduces a risk of missing a compare
match between TCNT1 and one of the OCR1x Registers. Writing to the TCNT1
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT1H7:0 - Timer/Counter1 High Byte

18.11.5 TCNT1L – Timer/Counter1 Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($84) TCNT1L7:0 TCNT1L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT1) while the counter is running introduces a risk of missing a compare
match between TCNT1 and one of the OCR1x Registers. Writing to the TCNT1
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT1L7:0 - Timer/Counter1 Low Byte

18.11.6 OCR1AH – Timer/Counter1 Output Compare Register A High Byte

Bit 7 6 5 4 3 2 1 0

NA ($89) OCR1AH7:0 OCR1AH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1A pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1AH7:0 - Timer/Counter1 Output Compare Register High Byte

18.11.7 OCR1AL – Timer/Counter1 Output Compare Register A Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($88) OCR1AL7:0 OCR1AL

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

272

8266A-MCU Wireless-12/09

ATmega128RFA1

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1A pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1AL7:0 - Timer/Counter1 Output Compare Register Low Byte

18.11.8 OCR1BH – Timer/Counter1 Output Compare Register B High Byte

Bit 7 6 5 4 3 2 1 0

NA ($8B) OCR1BH7:0 OCR1BH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1B pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1BH7:0 - Timer/Counter1 Output Compare Register High Byte

18.11.9 OCR1BL – Timer/Counter1 Output Compare Register B Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($8A) OCR1BL7:0 OCR1BL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1B pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1BL7:0 - Timer/Counter1 Output Compare Register Low Byte

 273

8266A-MCU Wireless-12/09

 ATmega128RFA1

18.11.10 OCR1CH – Timer/Counter1 Output Compare Register C High Byte

Bit 7 6 5 4 3 2 1 0

NA ($8D) OCR1CH7:0 OCR1CH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1C pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1CH7:0 - Timer/Counter1 Output Compare Register High Byte

18.11.11 OCR1CL – Timer/Counter1 Output Compare Register C Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($8C) OCR1CL7:0 OCR1CL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT1). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC1C pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR1CL7:0 - Timer/Counter1 Output Compare Register Low Byte

18.11.12 ICR1H – Timer/Counter1 Input Capture Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($87) ICR1H7:0 ICR1H

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Input Capture Register is updated with the counter (TCNT1) value each time an
event occurs on the ICP1 pin or on the Analog Comparator output. The Input Capture
Register can be used for defining the counter TOP value. The Input Capture Register is
16-bit in size. To ensure that both the high and low bytes are read simultaneously when
the CPU accesses these registers, the access is performed using an 8-bit temporary
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – ICR1H7:0 - Timer/Counter1 Input Capture Register High Byte

274

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.13 ICR1L – Timer/Counter1 Input Capture Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($86) ICR1L7:0 ICR1L

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Input Capture Register is updated with the counter (TCNT1) value each time an
event occurs on the ICP1 pin or on the Analog Comparator output. The Input Capture
Register can be used for defining the counter TOP value. The Input Capture Register is
16-bit in size. To ensure that both the high and low bytes are read simultaneously when
the CPU accesses these registers, the access is performed using an 8-bit temporary
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – ICR1L7:0 - Timer/Counter1 Input Capture Register Low Byte

18.11.14 TIMSK1 – Timer/Counter1 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

NA ($6F) Res1 Res0 ICIE1 Res OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R RW R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICIE1 - Timer/Counter1 Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter1 Input Capture interrupt is enabled. The
corresponding Interrupt Vector is executed when the ICF1 Flag, located in TIFR1, is
set.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCIE1C - Timer/Counter1 Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter1 Output Compare C Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF1C Flag, located in
TIFR1, is set.

• Bit 2 – OCIE1B - Timer/Counter1 Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A - Timer/Counter1 Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled.

 275

8266A-MCU Wireless-12/09

 ATmega128RFA1

The corresponding Interrupt Vector is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1 - Timer/Counter1 Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding
Interrupt Vector is executed when the TOV1 Flag, located in TIFR1, is set.

18.11.15 TIFR1 – Timer/Counter1 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

$16 ($36) Res1 Res0 ICF1 Res OCF1C OCF1B OCF1A TOV1 TIFR1

Read/Write R R RW R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICF1 - Timer/Counter1 Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture
Register (ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is
set when the counter reaches the TOP value. ICF1 is automatically cleared when the
Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be cleared by writing
a logic one to its bit location.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCF1C - Timer/Counter1 Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the
Output Compare Register C (OCR1C). Note that a Forced Output Compare (FOC1C)
strobe will not set the OCF1C Flag. OCF1C is automatically cleared when the Output
Compare Match C Interrupt Vector is executed. Alternatively, OCF1C can be cleared by
writing a logic one to its bit location.

• Bit 2 – OCF1B - Timer/Counter1 Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the
Output Compare Register B (OCR1B). Note that a Forced Output Compare (FOC1B)
strobe will not set the OCF1B Flag. OCF1B is automatically cleared when the Output
Compare Match B Interrupt Vector is executed. Alternatively, OCF1B can be cleared by
writing a logic one to its bit location.

• Bit 1 – OCF1A - Timer/Counter1 Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the
Output Compare Register A (OCR1A). Note that a Forced Output Compare (FOC1A)
strobe will not set the OCF1A Flag. OCF1A is automatically cleared when the Output
Compare Match A Interrupt Vector is executed. Alternatively, OCF1A can be cleared by
writing a logic one to its bit location.

• Bit 0 – TOV1 - Timer/Counter1 Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting of the Timer/Counter1
Control Register. In Normal and CTC modes, the TOV1 Flag is set when the timer

276

8266A-MCU Wireless-12/09

ATmega128RFA1

overflows. TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt
Vector is executed. Alternatively, TOV1 can be cleared by writing a logic one to its bit
location.

18.11.16 TCCR3A – Timer/Counter3 Control Register A

Bit 7 6 5 4 3 2 1 0

NA ($90) COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – COM3A1:0 - Compare Output Mode for Channel A

The COM3A1:0 bits control the output compare behavior of pin OC3A. If one or both of
the COM3A1:0 bits are written to one, the OC3A output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC3A pin must be set in order to enable the
output driver. When the OC3A is connected to the pin, the function of the COM3A1:0
bits is dependent of the WGM33:0 bits setting. The following table shows the
COM3A1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-12 COM3A Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM3A1:0

3 Set OCnA/OCnB/OCnC on Compare Match
(set output to high level).

• Bit 5:4 – COM3B1:0 - Compare Output Mode for Channel B

The COM3B1:0 bits control the output compare behavior of pin OC3B. If one or both of
the COM3B1:0 bits are written to one, the OC3B output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC3B pin must be set in order to enable the
output driver. When the OC3B is connected to the pin, the function of the COM3B1:0
bits is dependent of the WGM33:0 bits setting. The following table shows the
COM3B1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-13 COM3B Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM3B1:0

3 Set OCnA/OCnB/OCnC on Compare Match

 277

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

(set output to high level).

• Bit 3:2 – COM3C1:0 - Compare Output Mode for Channel C

The COM3C1:0 bits control the output compare behavior of pin OC3C. If one or both of
the COM3C1:0 bits are written to one, the OC3C output overrides the normal port
functionality of the I/O pin it is connected to. However note that the Data Direction
Register (DDR) bit corresponding to the OC3C pin must be set in order to enable the
output driver. When the OC3C is connected to the pin, the function of the COM3C1:0
bits is dependent of the WGM33:0 bits setting. The following table shows the
COM3C1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-14 COM3C Register Bits

Register Bits Value Description

0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

1 Toggle OCnA/OCnB/OCnC on Compare
Match.

2 Clear OCnA/OCnB/OCnC on Compare
Match (set output to low level).

COM3C1:0

3 Set OCnA/OCnB/OCnC on Compare Match
(set output to high level).

• Bit 1:0 – WGM31:30 - Waveform Generation Mode

Combined with the WGM33:2 bits found in the TCCR3B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation".

Table 18-15 WGM3 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

WGM31:30

0xD Reserved

278

8266A-MCU Wireless-12/09

ATmega128RFA1

Register Bits Value Description

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

18.11.17 TCCR3B – Timer/Counter3 Control Register B

Bit 7 6 5 4 3 2 1 0

NA ($91) ICNC3 ICES3 Res WGM33 WGM32 CS32 CS31 CS30 TCCR3B

Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – ICNC3 - Input Capture 3 Noise Canceller

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise
Canceler is activated, the input from the Input Capture Pin (ICP3) is filtered. The filter
function requires four successive equal valued samples of the ICP3 pin for changing its
output. The input capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

• Bit 6 – ICES3 - Input Capture 3 Edge Select

This bit selects which edge on the Input Capture Pin (ICP3) that is used to trigger a
capture event. When the ICES3 bit is written to zero, a falling (negative) edge is used
as trigger. When the ICES3 bit is written to one, a rising (positive) edge will trigger the
capture. When a capture is triggered according to the ICES3 setting, the counter value
is copied into the Input Capture Register (ICR3). The event will also set the Input
Capture Flag (ICF3). This can be used to cause an Input Capture Interrupt, if this
interrupt is enabled. When the ICR3 is used as TOP value (see description of the
WGM33:0 bits located in the TCCR3A and the TCCR3B Register), the ICP3 is
disconnected and consequently the input capture function is disabled.

• Bit 5 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 4:3 – WGM31:30 - Waveform Generation Mode

Combined with the WGM31:0 bits found in the TCCR3A Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation".

Table 18-16 WGM3 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

WGM31:30

0x6 Fast PWM, 9-bit

 279

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

• Bit 2:0 – CS32:30 - Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter3
according to the following table. If external pin modes are used for the Timer/Counter3,
transitions on the T3 pin will clock the counter even if the pin is configured as an output.
This feature allows software control of the counting.

Table 18-17 CS3 Register Bits

Register Bits Value Description

0x00 No clock source (Timer/Counter stopped)

0x01 clk_IO/1 (no prescaling)

0x02 clk_IO/8 (from prescaler)

0x03 clk_IO/64 (from prescaler)

0x04 clk_IO/256 (from prescaler)

0x05 clk_IO/1024 (from prescaler)

0x06 External clock source on Tn pin, clock on
falling edge

CS32:30

0x07 External clock source on Tn pin, clock on
rising edge

18.11.18 TCCR3C – Timer/Counter3 Control Register C

Bit 7 6 5 4 3 2 1 0

NA ($92) FOC3A FOC3B FOC3C Res4 Res3 Res2 Res1 Res0 TCCR3C

Read/Write RW RW RW R R R R R

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – FOC3A - Force Output Compare for Channel A

The FOC3A bit is only active when the WGM33:0 bits specify a non-PWM mode. When
writing a logical one to the FOC3A bit, an immediate compare match is forced on the
waveform generation unit. The OC3A output is changed according to its COM3A1:0 bits
setting. Note that the FOC3A bits are implemented as strobes. Therefore it is the value
present in the COM3A1:0 bits that determine the effect of the forced compare. A
FOC3A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR3A as TOP. The FOC3A bits are always read
as zero.

280

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 6 – FOC3B - Force Output Compare for Channel B

The FOC3B bit is only active when the WGM33:0 bits specify a non-PWM mode. When
writing a logical one to the FOC3B bit, an immediate compare match is forced on the
waveform generation unit. The OC3B output is changed according to its COM3B1:0 bits
setting. Note that the FOC3B bits are implemented as strobes. Therefore it is the value
present in the COM3B1:0 bits that determine the effect of the forced compare. A
FOC3B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR1B as TOP. The FOC3B bits are always read
as zero.

• Bit 5 – FOC3C - Force Output Compare for Channel C

The FOC3C bit is only active when the WGM33:0 bits specify a non-PWM mode. When
writing a logical one to the FOC3C bit, an immediate compare match is forced on the
waveform generation unit. The OC3C output is changed according to its COM3C1:0 bits
setting. Note that the FOC3C bits are implemented as strobes. Therefore it is the value
present in the COM3C1:0 bits that determine the effect of the forced compare. A
FOC3C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR3C as TOP. The FOC3C bits are always read
as zero.

• Bit 4:0 – Res4:0 - Reserved

These bits are reserved for future use.

18.11.19 TCNT3H – Timer/Counter3 High Byte

Bit 7 6 5 4 3 2 1 0

NA ($95) TCNT3H7:0 TCNT3H

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT3H and TCNT3L, combined TCNT3) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT3) while the counter is running introduces a risk of missing a compare
match between TCNT3 and one of the OCR3x Registers. Writing to the TCNT3
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT3H7:0 - Timer/Counter3 High Byte

18.11.20 TCNT3L – Timer/Counter3 Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($94) TCNT3L7:0 TCNT3L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

 281

8266A-MCU Wireless-12/09

 ATmega128RFA1

The two Timer/Counter I/O locations (TCNT3H and TCNT3L, combined TCNT3) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT3) while the counter is running introduces a risk of missing a compare
match between TCNT3 and one of the OCR3x Registers. Writing to the TCNT3
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT3L7:0 - Timer/Counter3 Low Byte

18.11.21 OCR3AH – Timer/Counter3 Output Compare Register A High Byte

Bit 7 6 5 4 3 2 1 0

NA ($99) OCR3AH7:0 OCR3AH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3A pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3AH7:0 - Timer/Counter3 Output Compare Register High Byte

18.11.22 OCR3AL – Timer/Counter3 Output Compare Register A Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($98) OCR3AL7:0 OCR3AL

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3A pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3AL7:0 - Timer/Counter3 Output Compare Register Low Byte

282

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.23 OCR3BH – Timer/Counter3 Output Compare Register B High Byte

Bit 7 6 5 4 3 2 1 0

NA ($9B) OCR3BH7:0 OCR3BH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3B pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3BH7:0 - Timer/Counter3 Output Compare Register High Byte

18.11.24 OCR3BL – Timer/Counter3 Output Compare Register B Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($9A) OCR3BL7:0 OCR3BL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3B pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3BL7:0 - Timer/Counter3 Output Compare Register Low Byte

18.11.25 OCR3CH – Timer/Counter3 Output Compare Register C High Byte

Bit 7 6 5 4 3 2 1 0

NA ($9D) OCR3CH7:0 OCR3CH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3C pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3CH7:0 - Timer/Counter3 Output Compare Register High Byte

 283

8266A-MCU Wireless-12/09

 ATmega128RFA1

18.11.26 OCR3CL – Timer/Counter3 Output Compare Register C Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($9C) OCR3CL7:0 OCR3CL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT3). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC3C pin. The Output Compare
Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See section "Accessing 16-bit Registers" for details.

• Bit 7:0 – OCR3CL7:0 - Timer/Counter3 Output Compare Register Low Byte

18.11.27 ICR3H – Timer/Counter3 Input Capture Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($97) ICR3H7:0 ICR3H

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Input Capture Register is updated with the counter (TCNT3) value each time an
event occurs on the ICP3 pin. The Input Capture Register can be used for defining the
counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the
high and low bytes are read simultaneously when the CPU accesses these registers,
the access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – ICR3H7:0 - Timer/Counter3 Input Capture Register High Byte

18.11.28 ICR3L – Timer/Counter3 Input Capture Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($96) ICR3L7:0 ICR3L

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Input Capture Register is updated with the counter (TCNT3) value each time an
event occurs on the ICP3 pin. The Input Capture Register can be used for defining the
counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the
high and low bytes are read simultaneously when the CPU accesses these registers,
the access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – ICR3L7:0 - Timer/Counter3 Input Capture Register Low Byte

284

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.29 TIMSK3 – Timer/Counter3 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

NA ($71) Res1 Res0 ICIE3 Res OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3

Read/Write R R RW R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICIE3 - Timer/Counter3 Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter3 Input Capture interrupt is enabled. The
corresponding Interrupt Vector is executed when the ICF3 Flag, located in TIFR3, is
set.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCIE3C - Timer/Counter3 Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter3 Output Compare C Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF3C Flag, located in
TIFR3, is set.

• Bit 2 – OCIE3B - Timer/Counter3 Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter3 Output Compare B Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF3B Flag, located in
TIFR3, is set.

• Bit 1 – OCIE3A - Timer/Counter3 Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter3 Output Compare A Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF3A Flag, located in
TIFR3, is set.

• Bit 0 – TOIE3 - Timer/Counter3 Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter3 Overflow interrupt is enabled. The corresponding
Interrupt Vector is executed when the TOV3 Flag, located in TIFR3, is set.

18.11.30 TIFR3 – Timer/Counter3 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

$18 ($38) Res1 Res0 ICF3 Res OCF3C OCF3B OCF3A TOV3 TIFR3

Read/Write R R RW R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

 285

8266A-MCU Wireless-12/09

 ATmega128RFA1

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICF3 - Timer/Counter3 Input Capture Flag

This flag is set when a capture event occurs on the ICP3 pin. When the Input Capture
Register (ICR3) is set by the WGM33:0 to be used as the TOP value, the ICF3 Flag is
set when the counter reaches the TOP value. ICF3 is automatically cleared when the
Input Capture Interrupt Vector is executed. Alternatively, ICF3 can be cleared by writing
a logic one to its bit location.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCF3C - Timer/Counter3 Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the
Output Compare Register C (OCR3C). Note that a Forced Output Compare (FOC3C)
strobe will not set the OCF3C Flag. OCF3C is automatically cleared when the Output
Compare Match C Interrupt Vector is executed. Alternatively, OCF3C can be cleared by
writing a logic one to its bit location.

• Bit 2 – OCF3B - Timer/Counter3 Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the
Output Compare Register B (OCR3B). Note that a Forced Output Compare (FOC3B)
strobe will not set the OCF3B Flag. OCF3B is automatically cleared when the Output
Compare Match B Interrupt Vector is executed. Alternatively, OCF3B can be cleared by
writing a logic one to its bit location.

• Bit 1 – OCF3A - Timer/Counter3 Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the
Output Compare Register A (OCR3A). Note that a Forced Output Compare (FOC3A)
strobe will not set the OCF3A Flag. OCF3A is automatically cleared when the Output
Compare Match A Interrupt Vector is executed. Alternatively, OCF3A can be cleared by
writing a logic one to its bit location.

• Bit 0 – TOV3 - Timer/Counter3 Overflow Flag

The setting of this flag is dependent of the WGM33:0 bits setting of the Timer/Counter3
Control Register. In Normal and CTC modes, the TOV3 Flag is set when the timer
overflows. TOV3 is automatically cleared when the Timer/Counter3 Overflow Interrupt
Vector is executed. Alternatively, TOV3 can be cleared by writing a logic one to its bit
location.

18.11.31 TCCR4A – Timer/Counter4 Control Register A

Bit 7 6 5 4 3 2 1 0

NA ($A0) COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40 TCCR4A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – COM4A1:0 - Compare Output Mode for Channel A

The Timer/Counter4 has only limited functionality. Therefore the COM4A1:0 bits do not
control the output compare behavior of any pin. The following table shows the

286

8266A-MCU Wireless-12/09

ATmega128RFA1

COM4A1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-18 COM4A Register Bits

Register Bits Value Description

0 Normal operation

1 Reserved

2 Reserved

COM4A1:0

3 Reserved

• Bit 5:4 – COM4B1:0 - Compare Output Mode for Channel B

The Timer/Counter4 has only limited functionality. Therefore the COM4B1:0 bits do not
control the output compare behavior of any pin. The following table shows the
COM4B1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-19 COM4B Register Bits

Register Bits Value Description

0 Normal operation

1 Reserved

2 Reserved

COM4B1:0

3 Reserved

• Bit 3:2 – COM4C1:0 - Compare Output Mode for Channel C

The Timer/Counter4 has only limited functionality. Therefore the COM4C1:0 bits do not
control the output compare behavior of any pin. The following table shows the
COM4C1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-20 COM4C Register Bits

Register Bits Value Description

0 Normal operation

1 Reserved

2 Reserved

COM4C1:0

3 Reserved

• Bit 1:0 – WGM41:40 - Waveform Generation Mode

Combined with the WGM43:2 bits found in the TCCR4B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation". Note that Timer/Counter4 has
only limited functionality. It cannot be connected to any I/O pin.

Table 18-21 WGM4 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

WGM41:40

0x4 CTC, TOP = OCRnA

 287

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

18.11.32 TCCR4B – Timer/Counter4 Control Register B

Bit 7 6 5 4 3 2 1 0

NA ($A1) ICNC4 ICES4 Res WGM43 WGM42 CS42 CS41 CS40 TCCR4B

Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – ICNC4 - Input Capture 4 Noise Canceller

Timer/Counter4 has only limited functionality. It is not connected to any Input Capture
Pin. Therefore this bit has no meaningful function.

• Bit 6 – ICES4 - Input Capture 4 Edge Select

Timer/Counter4 has only limited functionality. It is not connected to any Input Capture
Pin. Therefore this bit has no meaningful function.

• Bit 5 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 4:3 – WGM41:40 - Waveform Generation Mode

Combined with the WGM41:0 bits found in the TCCR4A Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation". Note that Timer/Counter4 has
only limited functionality. It cannot be connected to any I/O pin.

Table 18-22 WGM4 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

WGM41:40

0x3 PWM, phase correct, 10-bit

288

8266A-MCU Wireless-12/09

ATmega128RFA1

Register Bits Value Description

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

• Bit 2:0 – CS42:40 - Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter4
according to the following table. External pin modes cannot be used for the
Timer/Counter4.

Table 18-23 CS4 Register Bits

Register Bits Value Description

0x00 No clock source (Timer/Counter stopped)

0x01 clk_IO/1 (no prescaling)

0x02 clk_IO/8 (from prescaler)

0x03 clk_IO/64 (from prescaler)

0x04 clk_IO/256 (from prescaler)

0x05 clk_IO/1024 (from prescaler)

0x06 Reserved

CS42:40

0x07 Reserved

18.11.33 TCCR4C – Timer/Counter4 Control Register C

Bit 7 6 5 4 3 2 1 0

NA ($A2) FOC4A FOC4B FOC4C Res4 Res3 Res2 Res1 Res0 TCCR4C

Read/Write RW RW RW R R R R R

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – FOC4A - Force Output Compare for Channel A

The FOC4A bit is only active when the WGM43:0 bits specify a non-PWM mode. When
writing a logical one to the FOC4A bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter4 the match has no direct impact on any
output pin. Note that the FOC4A bits are implemented as strobes. Therefore it is the
value present in the COM4A1:0 bits that determine the effect of the forced compare. A
FOC4A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on

 289

8266A-MCU Wireless-12/09

 ATmega128RFA1

Compare Match (CTC) mode using OCR4A as TOP. The FOC4A bits are always read
as zero.

• Bit 6 – FOC4B - Force Output Compare for Channel B

The FOC4B bit is only active when the WGM43:0 bits specify a non-PWM mode. When
writing a logical one to the FOC4B bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter4 the match has no direct impact on any
output pin. Note that the FOC4B bits are implemented as strobes. Therefore it is the
value present in the COM4B1:0 bits that determine the effect of the forced compare. A
FOC4B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR4B as TOP. The FOC4B bits are always read
as zero.

• Bit 5 – FOC4C - Force Output Compare for Channel C

The FOC4C bit is only active when the WGM43:0 bits specify a non-PWM mode. When
writing a logical one to the FOC4C bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter4 the match has no direct impact on any
output pin. Note that the FOC4C bits are implemented as strobes. Therefore it is the
value present in the COM4C1:0 bits that determine the effect of the forced compare. A
FOC4C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR4C as TOP. The FOC4C bits are always read
as zero.

• Bit 4:0 – Res4:0 - Reserved

These bits are reserved for future use.

18.11.34 TCNT4H – Timer/Counter4 High Byte

Bit 7 6 5 4 3 2 1 0

NA ($A5) TCNT4H7:0 TCNT4H

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT4H and TCNT4L, combined TCNT4) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT4) while the counter is running introduces a risk of missing a compare
match between TCNT4 and one of the OCR4x Registers. Writing to the TCNT4
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT4H7:0 - Timer/Counter4 High Byte

18.11.35 TCNT4L – Timer/Counter4 Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($A4) TCNT4L7:0 TCNT4L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

290

8266A-MCU Wireless-12/09

ATmega128RFA1

The two Timer/Counter I/O locations (TCNT4H and TCNT4L, combined TCNT4) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT4) while the counter is running introduces a risk of missing a compare
match between TCNT4 and one of the OCR4x Registers. Writing to the TCNT4
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT4L7:0 - Timer/Counter4 Low Byte

18.11.36 OCR4AH – Timer/Counter4 Output Compare Register A High Byte

Bit 7 6 5 4 3 2 1 0

NA ($A9) OCR4AH7:0 OCR4AH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4AH7:0 - Timer/Counter4 Output Compare Register High Byte

18.11.37 OCR4AL – Timer/Counter4 Output Compare Register A Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($A8) OCR4AL7:0 OCR4AL

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4AL7:0 - Timer/Counter4 Output Compare Register Low Byte

 291

8266A-MCU Wireless-12/09

 ATmega128RFA1

18.11.38 OCR4BH – Timer/Counter4 Output Compare Register B High Byte

Bit 7 6 5 4 3 2 1 0

NA ($AB) OCR4BH7:0 OCR4BH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4BH7:0 - Timer/Counter4 Output Compare Register High Byte

18.11.39 OCR4BL – Timer/Counter4 Output Compare Register B Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($AA) OCR4BL7:0 OCR4BL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4BL7:0 - Timer/Counter4 Output Compare Register Low Byte

18.11.40 OCR4CH – Timer/Counter4 Output Compare Register C High Byte

Bit 7 6 5 4 3 2 1 0

NA ($AD) OCR4CH7:0 OCR4CH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4CH7:0 - Timer/Counter4 Output Compare Register High Byte

292

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.41 OCR4CL – Timer/Counter4 Output Compare Register C Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($AC) OCR4CL7:0 OCR4CL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT4). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR4CL7:0 - Timer/Counter4 Output Compare Register Low Byte

18.11.42 ICR4H – Timer/Counter4 Input Capture Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($A7) ICR4H7:0 ICR4H

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter4 has only limited functionality. It is not connected to any I/O pin.
Therefore the contents of this register is never updated with the counter (TCNT4) value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for
details.

• Bit 7:0 – ICR4H7:0 - Timer/Counter4 Input Capture Register High Byte

18.11.43 ICR4L – Timer/Counter4 Input Capture Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($A6) ICR4L7:0 ICR4L

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter4 has only limited functionality. It is not connected to any I/O pin.
Therefore the contents of this register is never updated with the counter (TCNT4) value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for
details.

• Bit 7:0 – ICR4L7:0 - Timer/Counter4 Input Capture Register Low Byte

 293

8266A-MCU Wireless-12/09

 ATmega128RFA1

18.11.44 TIMSK4 – Timer/Counter4 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

NA ($72) Res1 Res0 ICIE4 Res OCIE4C OCIE4B OCIE4A TOIE4 TIMSK4

Read/Write R R RW R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICIE4 - Timer/Counter4 Input Capture Interrupt Enable

The Timer/Counter4 has only limited functionality. It does not have an Input Capture
pin. Therefore this bit has no useful meaning.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCIE4C - Timer/Counter4 Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter4 Output Compare C Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF4C Flag, located in
TIFR4, is set.

• Bit 2 – OCIE4B - Timer/Counter4 Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter4 Output Compare B Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF4B Flag, located in
TIFR4, is set.

• Bit 1 – OCIE4A - Timer/Counter4 Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter4 Output Compare A Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF4A Flag, located in
TIFR4, is set.

• Bit 0 – TOIE4 - Timer/Counter4 Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter4 Overflow interrupt is enabled. The corresponding
Interrupt Vector is executed when the TOV4 Flag, located in TIFR4, is set.

18.11.45 TIFR4 – Timer/Counter4 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

$19 ($39) Res1 Res0 ICF4 Res OCF4C OCF4B OCF4A TOV4 TIFR4

Read/Write R R RW R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

294

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 5 – ICF4 - Timer/Counter4 Input Capture Flag

The Timer/Counter4 has only limited functionality. It does not have an Input Capture
pin. Therefore this bit has no useful meaning.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCF4C - Timer/Counter4 Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the
Output Compare Register C (OCR4C). Note that a Forced Output Compare (FOC4C)
strobe will not set the OCF4C Flag. OCF4C is automatically cleared when the Output
Compare Match C Interrupt Vector is executed. Alternatively, OCF4C can be cleared by
writing a logic one to its bit location.

• Bit 2 – OCF4B - Timer/Counter4 Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the
Output Compare Register B (OCR4B). Note that a Forced Output Compare (FOC4B)
strobe will not set the OCF4B Flag. OCF4B is automatically cleared when the Output
Compare Match B Interrupt Vector is executed. Alternatively, OCF4B can be cleared by
writing a logic one to its bit location.

• Bit 1 – OCF4A - Timer/Counter4 Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the
Output Compare Register A (OCR4A). Note that a Forced Output Compare (FOC4A)
strobe will not set the OCF4A Flag. OCF4A is automatically cleared when the Output
Compare Match A Interrupt Vector is executed. Alternatively, OCF4A can be cleared by
writing a logic one to its bit location.

• Bit 0 – TOV4 - Timer/Counter4 Overflow Flag

The setting of this flag is dependent of the WGM43:0 bits setting of the Timer/Counter4
Control Register. In Normal and CTC modes, the TOV4 Flag is set when the timer
overflows. TOV4 is automatically cleared when the Timer/Counter4 Overflow Interrupt
Vector is executed. Alternatively, TOV4 can be cleared by writing a logic one to its bit
location.

18.11.46 TCCR5A – Timer/Counter5 Control Register A

Bit 7 6 5 4 3 2 1 0

NA ($120) COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50 TCCR5A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – COM5A1:0 - Compare Output Mode for Channel A

The Timer/Counter5 has only limited functionality. Therefore the COM5A1:0 bits do not
control the output compare behavior of any pin. The following table shows the
COM5A1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-24 COM5A Register Bits

Register Bits Value Description

COM5A1:0 0 Normal operation

 295

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

1 Reserved

2 Reserved

3 Reserved

• Bit 5:4 – COM5B1:0 - Compare Output Mode for Channel B

The Timer/Counter5 has only limited functionality. Therefore the COM5B1:0 bits do not
control the output compare behavior of any pin. The following table shows the
COM5B1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-25 COM5B Register Bits

Register Bits Value Description

0 Normal operation

1 Reserved

2 Reserved

COM5B1:0

3 Reserved

• Bit 3:2 – COM5C1:0 - Compare Output Mode for Channel C

The Timer/Counter5 has only limited functionality. Therefore the COM5C1:0 bits do not
control the output compare behavior of any pin. The following table shows the
COM5C1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode
(non-PWM). For the other functionality refer to section "Modes of Operation".

Table 18-26 COM5C Register Bits

Register Bits Value Description

0 Normal operation

1 Reserved

2 Reserved

COM5C1:0

3 Reserved

• Bit 1:0 – WGM51:50 - Waveform Generation Mode

Combined with the WGM53:2 bits found in the TCCR5B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation". Note that Timer/Counter5 has
only limited functionality. It cannot be connected to any I/O pin.

Table 18-27 WGM5 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

0x6 Fast PWM, 9-bit

WGM51:50

0x7 Fast PWM, 10-bit

296

8266A-MCU Wireless-12/09

ATmega128RFA1

Register Bits Value Description

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

18.11.47 TCCR5B – Timer/Counter5 Control Register B

Bit 7 6 5 4 3 2 1 0

NA ($121) ICNC5 ICES5 Res WGM53 WGM52 CS52 CS51 CS50 TCCR5B

Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – ICNC5 - Input Capture 5 Noise Canceller

Timer/Counter5 has only limited functionality. It is not connected to any Input Capture
Pin. Therefore this bit has no meaningful function.

• Bit 6 – ICES5 - Input Capture 5 Edge Select

Timer/Counter5 has only limited functionality. It is not connected to any Input Capture
Pin. Therefore this bit has no meaningful function.

• Bit 5 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 4:3 – WGM51:50 - Waveform Generation Mode

Combined with the WGM51:0 bits found in the TCCR5A Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. For more information
on the different modes see section "Modes of Operation". Note that Timer/Counter5 has
only limited functionality. It cannot be connected to any I/O pin.

Table 18-28 WGM5 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, 8-bit

0x2 PWM, phase correct, 9-bit

0x3 PWM, phase correct, 10-bit

0x4 CTC, TOP = OCRnA

0x5 Fast PWM, 8-bit

WGM51:50

0x6 Fast PWM, 9-bit

 297

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

0x7 Fast PWM, 10-bit

0x8 PWM, Phase and frequency correct, TOP =
ICRn

0x9 PWM, Phase and frequency correct, TOP =
OCRnA

0xA PWM, Phase correct, TOP = ICRn

0xB PWM, Phase correct, TOP = OCRnA

0xC CTC, TOP = OCRnA

0xD Reserved

0xE Fast PWM, TOP = ICRn

0xF Fast PWM, TOP = OCRnA

• Bit 2:0 – CS52:50 - Clock Select

The three clock select bits select the clock source to be used by the Timer/Counter5
according to the following table. External pin modes cannot be used for the
Timer/Counter5.

Table 18-29 CS5 Register Bits

Register Bits Value Description

0x00 No clock source (Timer/Counter stopped)

0x01 clk_IO/1 (no prescaling)

0x02 clk_IO/8 (from prescaler)

0x03 clk_IO/64 (from prescaler)

0x04 clk_IO/256 (from prescaler)

0x05 clk_IO/1024 (from prescaler)

0x06 Reserved

CS52:50

0x07 Reserved

18.11.48 TCCR5C – Timer/Counter5 Control Register C

Bit 7 6 5 4 3 2 1 0

NA ($122) FOC5A FOC5B FOC5C Res4 Res3 Res2 Res1 Res0 TCCR5C

Read/Write RW RW RW R R R R R

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – FOC5A - Force Output Compare for Channel A

The FOC5A bit is only active when the WGM53:0 bits specify a non-PWM mode. When
writing a logical one to the FOC5A bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter5 the match has no direct impact on any
output pin. Note that the FOC5A bits are implemented as strobes. Therefore it is the
value present in the COM5A1:0 bits that determine the effect of the forced compare. A
FOC5A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR5A as TOP. The FOC5A bits are always read
as zero.

• Bit 6 – FOC5B - Force Output Compare for Channel B

298

8266A-MCU Wireless-12/09

ATmega128RFA1

The FOC5B bit is only active when the WGM53:0 bits specify a non-PWM mode. When
writing a logical one to the FOC5B bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter5 the match has no direct impact on any
output pin. Note that the FOC5B bits are implemented as strobes. Therefore it is the
value present in the COM5B1:0 bits that determine the effect of the forced compare. A
FOC5B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR5B as TOP. The FOC5B bits are always read
as zero.

• Bit 5 – FOC5C - Force Output Compare for Channel C

The FOC5C bit is only active when the WGM53:0 bits specify a non-PWM mode. When
writing a logical one to the FOC5C bit, an immediate compare match is forced. Due to
the limited functionality of the Timer/Counter5 the match has no direct impact on any
output pin. Note that the FOC5C bits are implemented as strobes. Therefore it is the
value present in the COM5C1:0 bits that determine the effect of the forced compare. A
FOC5C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR5C as TOP. The FOC5C bits are always read
as zero.

• Bit 4:0 – Res4:0 - Reserved

These bits are reserved for future use.

18.11.49 TCNT5H – Timer/Counter5 High Byte

Bit 7 6 5 4 3 2 1 0

NA ($125) TCNT5H7:0 TCNT5H

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT5H and TCNT5L, combined TCNT5) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT5) while the counter is running introduces a risk of missing a compare
match between TCNT5 and one of the OCR5x Registers. Writing to the TCNT5
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT5H7:0 - Timer/Counter5 High Byte

18.11.50 TCNT5L – Timer/Counter5 Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($124) TCNT5L7:0 TCNT5L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNT5H and TCNT5L, combined TCNT5) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit

 299

8266A-MCU Wireless-12/09

 ATmega128RFA1

counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the
counter (TCNT5) while the counter is running introduces a risk of missing a compare
match between TCNT5 and one of the OCR5x Registers. Writing to the TCNT5
Register blocks (removes) the compare match on the following timer clock for all
compare units.

• Bit 7:0 – TCNT5L7:0 - Timer/Counter5 Low Byte

18.11.51 OCR5AH – Timer/Counter5 Output Compare Register A High Byte

Bit 7 6 5 4 3 2 1 0

NA ($129) OCR5AH7:0 OCR5AH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5AH7:0 - Timer/Counter5 Output Compare Register High Byte

18.11.52 OCR5AL – Timer/Counter5 Output Compare Register A Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($128) OCR5AL7:0 OCR5AL

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5AL7:0 - Timer/Counter5 Output Compare Register Low Byte

18.11.53 OCR5BH – Timer/Counter5 Output Compare Register B High Byte

Bit 7 6 5 4 3 2 1 0

NA ($12B) OCR5BH7:0 OCR5BH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

300

8266A-MCU Wireless-12/09

ATmega128RFA1

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5BH7:0 - Timer/Counter5 Output Compare Register High Byte

18.11.54 OCR5BL – Timer/Counter5 Output Compare Register B Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($12A) OCR5BL7:0 OCR5BL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5BL7:0 - Timer/Counter5 Output Compare Register Low Byte

18.11.55 OCR5CH – Timer/Counter5 Output Compare Register C High Byte

Bit 7 6 5 4 3 2 1 0

NA ($12D) OCR5CH7:0 OCR5CH

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5CH7:0 - Timer/Counter5 Output Compare Register High Byte

 301

8266A-MCU Wireless-12/09

 ATmega128RFA1

18.11.56 OCR5CL – Timer/Counter5 Output Compare Register C Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($12C) OCR5CL7:0 OCR5CL

Read/Write R RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNT5). A match can be used to generate an Output Compare
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high
and low bytes are written simultaneously when the CPU writes to these registers, the
access is performed using an 8-bit temporary High Byte Register (TEMP). This
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details.

• Bit 7:0 – OCR5CL7:0 - Timer/Counter5 Output Compare Register Low Byte

18.11.57 ICR5H – Timer/Counter5 Input Capture Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($127) ICR5H7:0 ICR5H

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter5 has only limited functionality. It is not connected to any I/O pin.
Therefore the contents of this register is never updated with the counter (TCNT5) value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for
details.

• Bit 7:0 – ICR5H7:0 - Timer/Counter5 Input Capture Register High Byte

18.11.58 ICR5L – Timer/Counter5 Input Capture Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($126) ICR5L7:0 ICR5L

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter5 has only limited functionality. It is not connected to any I/O pin.
Therefore the contents of this register is never updated with the counter (TCNT5) value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for
details.

• Bit 7:0 – ICR5L7:0 - Timer/Counter5 Input Capture Register Low Byte

302

8266A-MCU Wireless-12/09

ATmega128RFA1

18.11.59 TIMSK5 – Timer/Counter5 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

NA ($73) Res1 Res0 ICIE5 Res OCIE5C OCIE5B OCIE5A TOIE5 TIMSK5

Read/Write R R RW R R R RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 5 – ICIE5 - Timer/Counter5 Input Capture Interrupt Enable

The Timer/Counter5 has only limited functionality. It does not have an Input Capture
pin. Therefore this bit has no useful meaning.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCIE5C - Timer/Counter5 Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter5 Output Compare C Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF5C Flag, located in
TIFR5, is set.

• Bit 2 – OCIE5B - Timer/Counter5 Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter5 Output Compare B Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF5B Flag, located in
TIFR5, is set.

• Bit 1 – OCIE5A - Timer/Counter5 Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter5 Output Compare A Match interrupt is enabled.
The corresponding Interrupt Vector is executed when the OCF5A Flag, located in
TIFR5, is set.

• Bit 0 – TOIE5 - Timer/Counter5 Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts
globally enabled), the Timer/Counter5 Overflow interrupt is enabled. The corresponding
Interrupt Vector is executed when the TOV5 Flag, located in TIFR5, is set.

18.11.60 TIFR5 – Timer/Counter5 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

$1A ($3A) Res1 Res0 ICF5 Res OCF5C OCF5B OCF5A TOV5 TIFR5

Read/Write R R RW R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – Res1:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

 303

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Bit 5 – ICF5 - Timer/Counter5 Input Capture Flag

The Timer/Counter5 has only limited functionality. It does not have an Input Capture
pin. Therefore this bit has no useful meaning.

• Bit 4 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3 – OCF5C - Timer/Counter5 Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the
Output Compare Register C (OCR5C). Note that a Forced Output Compare (FOC5C)
strobe will not set the OCF5C Flag. OCF5C is automatically cleared when the Output
Compare Match C Interrupt Vector is executed. Alternatively, OCF5C can be cleared by
writing a logic one to its bit location.

• Bit 2 – OCF5B - Timer/Counter5 Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the
Output Compare Register B (OCR5B). Note that a Forced Output Compare (FOC5B)
strobe will not set the OCF5B Flag. OCF5B is automatically cleared when the Output
Compare Match B Interrupt Vector is executed. Alternatively, OCF5B can be cleared by
writing a logic one to its bit location.

• Bit 1 – OCF5A - Timer/Counter5 Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the
Output Compare Register A (OCR5A). Note that a Forced Output Compare (FOC5A)
strobe will not set the OCF5A Flag. OCF5A is automatically cleared when the Output
Compare Match A Interrupt Vector is executed. Alternatively, OCF5A can be cleared by
writing a logic one to its bit location.

• Bit 0 – TOV5 - Timer/Counter5 Overflow Flag

The setting of this flag is dependent of the WGM53:0 bits setting of the Timer/Counter5
Control Register. In Normal and CTC modes, the TOV5 Flag is set when the timer
overflows. TOV5 is automatically cleared when the Timer/Counter5 Overflow Interrupt
Vector is executed. Alternatively, TOV5 can be cleared by writing a logic one to its bit
location.

304

8266A-MCU Wireless-12/09

ATmega128RFA1

19 Timer/Counter 0, 1, 3, 4, and 5 Prescaler

Timer/Counter 0, 1, 3, 4, and 5 share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to
all Timer/Counters. Tn is used as a general name, n = 0, 1, 3, 4, or 5.

19.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 =
1). This provides the fastest operation with a maximum Timer/Counter clock frequency
equal to system clock frequency (fCLK_I/O). Alternatively one of four taps from the
prescaler can be used as a clock source. The prescaled clock has a frequency of either
fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256 or fCLK_I/O/1024.

19.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of
the Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not
affected by the Timer/Counter’s clock select, the state of the prescaler will have
implications for situations where a prescaled clock is used. One example of prescaling
artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 >
1). The number of system clock cycles from the moment the timer is enabled until the
first count occurs can be from 1 to N+1 system clock cycles, where N equals the
prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program
execution. However care must be taken if the other Timer/Counter that shares the same
prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all
connected Timer/Counters.

19.3 External Clock Source

An external clock source applied to the Tn pin can be used as Timer/Counter clock
(clkTn). The Tn pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector.
Figure 19-1 shows a functional equivalent block diagram of the Tn synchronization and
edge detector logic. The registers are clocked at the positive edge of the internal
system clock (clkI/O). The latch is transparent in the high period of the internal system
clock.

The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 19-1. Tn/T0 Pin Sampling

Tn_sync

(To Clock
Select Logic)

Edge DetectorSynchronization

D QD Q

LE

D QTn

clk
I/O

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system
clock cycles from an edge applied to the Tn pin to the counter being updated.

 305

8266A-MCU Wireless-12/09

 ATmega128RFA1

Enabling and disabling of the clock input must be done when Tn has been stable for at
least one system clock cycle. Otherwise there is a risk of generating a false
Timer/Counter clock pulse.

Each half period of the applied, external clock must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less
than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since
the edge detector uses sampling, the maximum frequency of a detectable external
clock is half the sampling frequency (Nyquist sampling theorem). However due to
variation of the system clock frequency and duty cycle caused by Oscillator source
(crystal, resonator and capacitors) tolerances, it is recommended to limit the maximum
frequency of an external clock source to less than fclk_I/O/2.5. An external clock source
can not be prescaled.

Figure 19-2. Prescaler for synchronous Timer/Counters

PSR10

Clear

Tn

Tn

clk
I/O

Synchronization

Synchronization

TIMER/COUNTERn CLOCK SOURCE

clk

Tn

TIMER/COUNTERn CLOCK SOURCE

clk

Tn

CSn0

CSn1

CSn2

CSn0

CSn1

CSn2

19.4 Register Description

19.4.1 GTCCR – General Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0

$23 ($43) TSM Res4 Res3 Res2 Res1 Res0 PSRASY PSRSYNC GTCCR

Read/Write RW R R R R R R RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – TSM - Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode the value that is written to the PSRASY and PSRSYNC bits is kept, hence
keeping the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value
without the risk of one of them advancing during the configuration. When the TSM bit is
written to zero, the PSRASY and PSRSYNC bits are cleared by hardware and the
Timer/Counters simultaneously start counting.

• Bit 6:2 – Res4:0 - Reserved

306

8266A-MCU Wireless-12/09

ATmega128RFA1

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 1 – PSRASY - Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating
in asynchronous mode, the bit will remain one until the prescaler has been reset. The
bit will not be cleared by hardware if the TSM bit is set.

• Bit 0 – PSRSYNC - Prescaler Reset for Synchronous Timer/Counters

When this bit is one, the Timer/Counter0, Timer/Counter1, Timer/Counter3,
Timer/Counter4 and Timer/Counter5 prescaler will be reset. This bit is normally cleared
immediately by hardware, except if the TSM bit is set. Note that Timer/Counter0,
Timer/Counter1, Timer/Counter3, Timer/Counter4 and Timer/Counter5 share the same
prescaler and a reset of this prescaler will affect all timers.

 307

8266A-MCU Wireless-12/09

 ATmega128RFA1

20 Output Compare Modulator (OCM1C0A)

20.1 Overview

The Output Compare Modulator (OCM) allows generation of waveforms modulated with
a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of
the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0.
For more details about these Timer/Counters see "Timer/Counter 0, 1, 3, 4, and 5
Prescaler" on page 304 and "8-bit Timer/Counter2 with PWM and Asynchronous
Operation" on page 309.

Figure 20-1. Output Compare Modulator, Block Diagram

OC1C

Pin

OC1C /

OC0A / PB7

Timer/Counter 1

Timer/Counter 0 OC0A

When the modulator is enabled, the two output compare channels are modulated
together as shown in the block diagram (Figure 20-1 above).

20.2 Description

The Output Compare unit 1C and Output Compare unit 2 share the PB7 port pin for
output. The outputs of the Output Compare units (OC1C and OC0A) override the
normal PORTB7 Register when one of them is enabled (i.e., when COMnx1:0 is not
equal to zero). When both OC1C and OC0A are enabled at the same time, the
modulator is automatically enabled.

The functional equivalent schematic of the modulator is shown on in the following
figure. The schematic includes part of the Timer/Counter units and the port B bit 7
output driver circuit.

Figure 20-2. Output Compare Modulator, Schematic

PORTB7 DDRB7

D QD Q

Pin

COMA01

COMA00

DATABUS

OC1C /

OC0A/ PB7

COM1C1

COM1C0

Modulator

1

0

OC1C

D Q

OC0A

D Q

(From Waveform Generator)

(From Waveform Generator)

0

1

Vcc

308

8266A-MCU Wireless-12/09

ATmega128RFA1

When the modulator is enabled the type of modulation (logical AND or OR) can be
selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the
port independent of the COMnx1:0 bit setting.

20.3 Timing Example

Figure 20-3 below illustrates the modulator in action. In this example the
Timer/Counter1 is set to operate in fast PWM mode (non-inverted) and Timer/Counter0
uses CTC waveform mode with toggle Compare Output mode (COMnx1:0 = 1).

Figure 20-3. Output Compare Modulator, Timing Diagram

1 2

OC0A
(CTC Mode)

OC1C
(FPWM Mode)

PB7
(PORTB7 = 0)

PB7
(PORTB7 = 1)

(Period)
3

clk I/O

In this example Timer/Counter2 provides the carrier while the modulating signal is
generated by the Output Compare unit C of the Timer/Counter1.

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction
factor is equal to the number of system clock cycles of one period of the carrier (OC0A).
In this example the resolution is reduced by a factor of two. The reason for the
reduction is illustrated in Figure 20-3 above at the second and third period of the PB7
output when PORTB7 equals zero. The period 2 high time is one cycle longer than the
period 3 high time, but the result on the PB7 output is equal in both periods.

 309

8266A-MCU Wireless-12/09

 ATmega128RFA1

21 8-bit Timer/Counter2 with PWM and Asynchronous Operation

21.1 Features

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

• Single channel counter

• Clear timer on compare match (auto reload)

• Glitch-free, phase-correct pulse-width modulator (PWM)

• Frequency generator

• 10 bit clock prescaler

• Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B)

• Able to run with external 32 kHz watch crystal independent of the I/O clock

21.2 Overview

A simplified block diagram of the 8-bit Timer/Counter is shown on Figure 21-1 on page
310. For the current placement of I/O pins, see chapter "Pin Configurations" on page 2.
CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The
device-specific I/O Register and bit locations are listed in the "Register Description" on
page 323.

The Power Reduction Timer/Counter2 bit PRTIM2 in register PRR0 (see "PRR0 –
Power Reduction Register0" on page 167) must be written to zero to enable
Timer/Counter2 module.

Note: OC2B is implemented but not routed to a pin and for this reason it can’t be used.

21.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8
bit registers. Interrupt request (abbreviated to Int.Req.) signals are all visible in the
Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the
Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the
figure.

The Timer/Counter can be clocked internally, via the prescaler, asynchronously clocked
from the TOSC1/2 pins or alternatively from the Automated Meter Reading (AMR) pin
as detailed later in this section. The asynchronous operation is controlled by the
Asynchronous Status Register (ASSR). The Clock Select logic block controls which
clock source the Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the Clock
Select logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared
with the Timer/Counter value at all times. The result of the compare can be used by the
Waveform Generator to generate a PWM or variable frequency output on the Output
Compare pins (OC2A and OC2B). See chapter "Output Compare Unit" on page 316 for
details. The compare match event will also set the Compare Flag (OCF2A or OCF2B)
which can be used to generate an Output Compare interrupt request.

21.2.2 Definitions

Many register and bit references in this document are written in general form. A lower
case “n” replaces the Timer/Counter number, in this case 2. However, when using the

310

8266A-MCU Wireless-12/09

ATmega128RFA1

register or bit defines in a program, the precise form must be used, i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on.

Figure 21-1. 8-bit Timer/Counter Block Diagram

Timer/Counter

D
A

T
A

 B
U

S

=

TCNTn

Waveform
Generation

OCnx

= 0

Control Logic

= 0xFF

TOPBOTTOM

count

clear

direction

TOVn
(Int.Req.)

OCnx
(Int.Req.)

Synchronization Unit

OCRnx

TCCRnx

ASSRn
Status flags

clkI/O

clkASY

Synchronized Status flags

asynchronous mode
select (ASn)

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clkTn

clkI/O

AMR

The definitions in Table Table 21-1 below are also used extensively throughout the
section.

Table 21-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX)
or the value stored in the OCR2A Register. The assignment is dependent on the
mode of operation.

21.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external
asynchronous clock source. The clock source clkT2 is by default equal to the MCU
clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock
source is either taken from the Timer/Counter Oscillator connected to TOSC1 and
TOSC2 or from the AMR pin. For details on asynchronous operation, see section

 311

8266A-MCU Wireless-12/09

 ATmega128RFA1

"Asynchronous Operation of Timer/Counter2" on page 320. For details on clock sources
and prescaler, see section "Timer/Counter Prescaler" on page 322.

21.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter
unit. Figure 21-2 below shows a block diagram of the counter and its surrounding
environment.

Figure 21-2. Counter Unit Block Diagram

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear
Prescaler

clkTn

TOSC1

T/C
Oscillator

TOSC2

cl k
I/O

AMR

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or
decremented at each timer clock (clkT2). clkT2 can be generated from an external or
internal clock source, selected by the Clock Select bits (CS22:0). When no clock source
is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be
accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write
overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits
located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the
Timer/Counter Control Register B (TCCR2B). There are close connections between
how the counter behaves (counts) and how waveforms are generated on the Output
Compare outputs OC2A and OC2B. For more details about advanced counting
sequences and waveform generation, see chapter "Modes of Operation" below.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation
selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

21.5 Modes of Operation

The mode of operation, i.e., the behaviour of the Timer/Counter and the Output
Compare pins, is defined by the combination of the Waveform Generation mode
(WGM22:0) and Compare Output mode (COM2x1:0) bits. The Compare Output mode
bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COM2x1:0 bits control whether the PWM output generated should be inverted or

312

8266A-MCU Wireless-12/09

ATmega128RFA1

not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits control
whether the output should be set, cleared, or toggled at a compare match (see chapter
"Compare Match Output Unit" on page 317).

For detailed timing information refer to chapter "Timer/Counter Timing Diagrams" on
page 319.

The following table shows the function of the WGM22:0 bits of registers TCCR2A and
TCCR2B. These bits control the counting sequence of the counter, the source for
maximum (TOP) counter value, and what type of waveform generation to be used.

Table 21-2. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0

Timer/Counter

Mode of

Operation TOP

Update of

OCRX at

TOV Flag

Set on
(1,2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase

Correct
0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase

Correct
OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00

21.5.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8 bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However combined with the timer overflow interrupt that automatically clears the TOV2
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

21.5.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Table 20-3. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and
then counter (TCNT2) is cleared.

 313

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 21-3. CTC Mode, Timing Diagram

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value
written to OCR2A is lower than the current value of TCNT2, the counter will miss the
compare match. The counter will then have to count to its maximum value (0xFF) and
wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to
toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless
the data direction for the pin is set to output. The waveform generated will have a
maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The
waveform frequency is defined by the following equation

)1(2

/_

OCRnxN

f
f

OIclk

OCnx
+⋅⋅

=

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

21.5.3 Fast PWM Mode

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If
the interrupt is enabled, the interrupt handler routine can be used for updating the
compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is
defined as 0xFF when WGM22:0 = 3, and OCR2A when WGM22:0 = 7 (see section
"Register Description" on page 323 for register TCCR2A). The actual OC2x value will
only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by setting (or clearing) the OC2x Register at the compare
match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the
timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

314

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 21-4. Fast PWM Mode, Timing Diagram

TCNTn

OCRnx Update and�
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

The PWM frequency for the output can be calculated by the following equation:

256

/_

⋅
=

N

f
f

OIclk

OCnxPWM

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating
a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM2A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The
waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is
set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

21.5.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase
correct PWM waveform generation option. The phase correct PWM mode is based on a
dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then
from TOP to BOTTOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when
WGM22:0 = 5. In non-inverting Compare Output mode, the Output Compare (OC2x) is
cleared on the compare match between TCNT2 and OCR2x while up-counting, and set
on the compare match while down-counting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation
frequency than single slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

In phase correct PWM mode the counter is incremented until the counter value matches
TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value
will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 21-5 on page 315. The TCNT2 value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram

 315

8266A-MCU Wireless-12/09

 ATmega128RFA1

includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT2 slopes represent compare matches between OCR2x and TCNT2.

Figure 21-5. Phase Correct PWM Mode, Timing Diagram

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches
BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the
counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms
on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM.
An inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is
defined as 0xFF when WGM22:0 = 3, and OCR2A when WGM22:0 = 7 (see section
"Register Description" on page 323 for register TCCR2A). The actual OC2x value will
only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare
match between OCR2x and TCNT2 when the counter increments, and setting (or
clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the
counter decrements. The PWM frequency for the output when using phase correct
PWM can be calculated by the following equation:

510

/_

⋅
=

N

f
f

OIclk

OCnxPCPWM

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

At the very start of period 2 in Figure 21-5 above OCnx has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee
symmetry around BOTTOM. There are two cases that give a transition without
Compare Match.

316

8266A-MCU Wireless-12/09

ATmega128RFA1

• OCR2A changes its value from MAX, like in Figure 21-5 on page 315. When the
OCR2A value is MAX the OCn pin value is the same as the result of a down-
counting compare match. To ensure symmetry around BOTTOM the OCn value at
MAX must correspond to the result of an up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that
reason misses the Compare Match and hence the OCn change that would have
happened on the way up.

21.6 Output Compare Unit

The 8 bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator
signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the
next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare
Flag generates an Output Compare interrupt. The Output Compare Flag is
automatically cleared when the interrupt is executed. Alternatively, the Output Compare
Flag can be cleared by software by writing a logical one to its I/O bit location. The
Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits.
The max and bottom signals are used by the Waveform Generator for handling the
special cases of the extreme values in some modes of operation (chapter "Modes of
Operation" on page 311).

Figure 21-6 below shows a block diagram of the Output Compare unit.

Figure 21-6. Output Compare Unit, Block Diagram

OCFn (Int.Req.)

= (8-bit Comparator)

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom

The OCR2x Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCR2x Compare Register to either top or bottom of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

 317

8266A-MCU Wireless-12/09

 ATmega128RFA1

The OCR2x Register access may seem complex, but this is not the case. When the
double buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if
double buffering is disabled the CPU will access the OCR2x directly.

21.6.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare
match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be
updated as if a real compare match had occurred (the COM2x1:0 bits settings define
whether the OC2x pin is set, cleared or toggled).

21.6.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt
when the Timer/Counter clock is enabled.

21.6.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the
Output Compare channel, independently of whether the Timer/Counter is running or
not. If the value written to TCNT2 equals the OCR2x value, the compare match will be
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2
value equal to BOTTOM when the counter is down-counting.

The setup of the OC2x should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC2x value is to use the Force
Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare
value. A change of the COM2x1:0 bits will take effect immediately.

21.7 Compare Match Output Unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform
Generator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the
next compare match. Also, the COM2x1:0 bits control the OC2x pin output source.
Figure 20-7 shows a simplified schematic of the logic affected by the COM2x1:0 bit
setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only
the parts of the general I/O Port Control Registers (DDR and PORT) that are affected
by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for
the internal OC2x Register, not the OC2x pin.

The general I/O port function is overridden by the Output Compare (OC2x) from the
Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as
output before the OC2x value is visible on the pin. The port override function is
independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state
before the output is enabled. Note that some COM2x1:0 bit settings are reserved for
certain modes of operation. See section "Register Description" on page 323 for details.

318

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 21-7. Compare Match Output Unit, Schematic

PORT

DDR

D Q

D Q

OCnx

PinOCnx

D Q
Waveform

Generator

COMnx1

COMnx0

0

1

D
A
T
A

 B
U

S

FOCn

clk
I/O

21.7.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM
modes. Setting the COM2x1:0 = 0 for all modes tells the Waveform Generator that no
action on the OC2x Register is to be performed on the next compare match. For
compare output actions in the non-PWM modes for fast PWM mode and for phase
correct PWM refer to section "Register Description" on page 323 for register TCCR2A.
A change of the COM2x1:0 bits state will have effect at the first compare match after
the bits are written. For non-PWM modes, the action can be forced to have immediate
effect by using the FOC2x strobe bits.

The following table shows the COM2x1:0 bit functionality when the WGM02:0 bits are
set to a normal or CTC mode (non-PWM).

Table 21-3. Compare Output Mode, non-PWM Mode

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected;

0 1 Toggle OC2x on Compare Match;

1 0 Clear OC2x on Compare Match;

1 1 Set OC2x on Compare Match;

Table 17-3 shows the COM2x1:0 bit functionality when the WGM21:0 bits are set to fast
PWM mode.

Table 21-4. Compare Output Mode, Fast PWM Mode

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected.

0 1

WGM22 = 0: Normal Port Operation, OC2A Disconnected.

WGM22 = 1: Toggle OC2A on Compare Match.

OC2B: not applicable, reserved function;

 319

8266A-MCU Wireless-12/09

 ATmega128RFA1

COM2x1 COM2x0 Description

1 0
Clear OC2x on Compare Match, set OC2x at BOTTOM, (non-
inverting mode).

1 1
Set OC2x on Compare Match, clear OC2x at BOTTOM, (inverting
mode).

Note: 1. A special case occurs when OCR2x equals TOP and COM2x1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at BOTTOM. See "Fast
PWM Mode" on page 313.

Table 17-4 shows the COM2x1:0 bit functionality when the WGM22:0 bits are set to
phase correct PWM mode.

Table 21-5. Compare Output Mode, Phase Correct PWM Mode

COM2x1 COM2x0 Description

0 0 Normal port operation, OC2x disconnected.

0 1

WGM22 = 0: Normal Port Operation, OC2A Disconnected.

WGM22 = 1: Toggle OC2A on Compare Match.

OC2B: not applicable, reserved function;

1 0
Clear OC2x on Compare Match when up-counting. Set OC2x on

Compare Match when down-counting.

1 1
Set OC2x on Compare Match when up-counting. Clear OC2x on

Compare Match when down-counting.

Note: 1. A special case occurs when OCR2x equals TOP and COM2x1 is set. In this case,
the Compare Match is ignored, but the set or clear is done at TOP. See "Phase
Correct PWM Mode" on page 314 for more details.

21.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock
(clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when Interrupt Flags are set. Figure 21-8 below contains timing data for basic
Timer/Counter operation. The figure shows the count sequence close to the MAX value
in all modes other than phase correct PWM mode.

Figure 21-8. Timer/Counter Timing Diagram, no Prescaling

clk
Tn

(clk
I/O

/1)

TOVn

clk
I/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

320

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 21-9 below shows the same timing data, but with the prescaler enabled.

Figure 21-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

Figure 21-10 below shows the setting of OCF2A in all modes except CTC mode.

Figure 21-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler
(fclk_I/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clk
I/O

clk
Tn

(clk
I/O

/8)

Figure 21-11 below shows the setting of OCF2A and the clearing of TCNT2 in CTC
mode.

Figure 21-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode,
with Prescaler (fclk_I/O/8)

OCFnx

OCRnx

TCNTn

(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clk
I/O

clk
Tn

(clk
I/O

/8)

21.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

 321

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

2. Select clock source by setting AS2 as appropriate.

3. Write new values to TCNT2, OCR2x, and TCCR2x.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.

5. Clear the Timer/Counter2 Interrupt Flags.

6. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator
frequency.

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is
transferred to a temporary register, and latched after two positive edges on TOSC1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the five mentioned registers have
their individual temporary register, which means that e.g. writing to TCNT2 does not
disturb an OCR2x write in progress. To detect that a transfer to the destination
register has taken place, the Asynchronous Status Register – ASSR has been
implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to
TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will
enter sleep mode before the changes are effective. This is particularly important if
any of the Output Compare2 interrupt is used to wake up the device, since the
Output Compare function is disabled during writing to OCR2x or TCNT2. If the write
cycle is not finished, and the MCU enters sleep mode before the corresponding
OCR2xUB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise
Reduction mode, precautions must be taken if the user wants to re-enter one of
these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time
between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the
interrupt will not occur, and the device will fail to wake up. If the user is in doubt
whether the time before re-entering Powersave or ADC Noise Reduction mode is
sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has
elapsed:

1. Write a value to TCCR2x, TCNT2, or OCR2x.

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero. .

3. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for
Timer/Counter2 is always running, except in Power-down and Standby modes. After
a Power-up Reset or wake-up from Power-down or Standby mode, the user should
be aware of the fact that this Oscillator might take as long as one second to stabilize.
The user is advised to wait for at least one second before using Timer/Counter2
after power-up or wake-up from Power-down or Standby mode. The contents of all
Timer/Counter2 Registers must be considered lost after a wake-up from Power-
down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or ADC Noise Reduction mode when the
timer is clocked asynchronously: When the interrupt condition is met, the wake up
process is started on the following cycle of the timer clock, that is, the timer is always

322

8266A-MCU Wireless-12/09

ATmega128RFA1

advanced by at least one before the processor can read the counter value. After
wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal I/O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Powersave mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2x or TCCR2x.

2. Wait for the corresponding Update Busy Flag to be cleared.

3. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the Interrupt Flag. The Output Compare pin is changed on the
timer clock and is not synchronized to the processor clock.

• If the CPU wakes up from asynchronous timer and goes back to sleep again, it may
wakeup multiple times or the IRQ is called multiple times. This may be avoided if the
CPU waits with the next sleep instruction until the next asynchronous clock arrives.

21.10 Timer/Counter Prescaler

Figure 21-12. Prescaler for Timer/Counter2

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clk
I/O

clk
T2S

TOSC1

AS2

CS20

CS21

CS22

cl
k T

2
S
/8

cl
k T

2
S
/6

4

cl
k T

2
S
/1

2
8

cl
k T

2
S
/1

02
4

cl
k T

2
S
/2

5
6

cl
k T

2
S
/3

2

0PSRASY

Clear

clk
T2

AMR

EXCLKAMR

The register ASSR defines the clock source for the asynchronous Timer/Counter2. The
clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the
main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is
asynchronously clocked either from the TOSC1 or from the AMR pin. This enables the
use of Timer/Counter2 as a Real Time Counter (RTC).

 323

8266A-MCU Wireless-12/09

 ATmega128RFA1

The TOSC1 pin is selected by setting the EXCLKAMR bit in the ASSR register to logic
zero. Under this condition TOSC1 and TOSC2 are disconnected from Port G and a
crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a
32.768 kHz crystal. By setting the EXCLK bit in the ASSR, a 32 kHz external clock can
be applied on TOSC1.

Setting the EXCLKAMR bit to logic one selects the AMR pin as the Timer/Counter2
clock source. Thus the 32 kHz oscillator can be used by the MAC symbol counter while
the Timer/Counter2 uses pin AMR as clock source, see "MAC Symbol Counter" on
page 133.

A complete overview of the implemented asynchronous clock sources can be found in
Table 21-6 below. The last column mentions which pins are available for GPIO
functionality. For details about the ASSR register refer to section "Register Description"
below.

For Timer/Counter2, the possible pre-scaled selections are: clkT2S/8, clkT2S/32, clkT2S
/64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may
be selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the
user to operate with a predictable prescaler.

Table 21-6. Asynchronous clock selection for Timer/Counter2 and Symbol-Counter

AS2 EXCLK EXCLKAMR

Timer/Counter2

clock source

32 kHz crystal Osc.

(TOSC1/TOSC2)

PG2, PG3, PG4

as GPIOs

0 0 0 cp2io off PG2, PG3, PG4

0 1 0 not defined not defined not defined

1 0 0 32 kHz crystal Osc on PG2

1 1 0 TOSC1 (PG4) off PG2, PG3

0 0 1 cp2io off PG2, PG3, PG4

0 1 1 not defined not defined not defined

1 0 1 AMR (PG2) on

1 1 1 AMR (PG2) off PG3, PG4

21.11 Register Description

21.11.1 TIMSK2 – Timer/Counter Interrupt Mask register

Bit 7 6 5 4 3 2 1 0

NA ($70) Res4 Res3 Res2 Res1 Res0 OCIE2B OCIE2A TOIE2 TIMSK2

Read/Write R R R R R RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:3 – Res4:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 2 – OCIE2B - Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is
set in the Timer/Counter2 Interrupt Flag Register TIFR2.

324

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 1 – OCIE2A - Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter2 Interrupt Flag Register TIFR2.

• Bit 0 – TOIE2 - Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed
if an overflow in Timer/Counter2 occurs i.e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register TIFR2.

21.11.2 TIFR2 – Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

$17 ($37) Res4 Res3 Res2 Res1 Res0 OCF2B OCF2A TOV2 TIFR2

Read/Write R R R R R RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:3 – Res4:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 2 – OCF2B - Output Compare Flag 2 B

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2B Output Compare Register2. OCF2B is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2B is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B
(Timer/Counter2 Compare Match Interrupt Enable), and OCF2B are set (one), the
Timer/Counter2 Compare Match Interrupt is executed.

• Bit 1 – OCF2A - Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2A Output Compare Register2. OCF2A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2A is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A
(Timer/Counter2 Compare Match Interrupt Enable), and OCF2A are set (one), the
Timer/Counter2 Compare Match Interrupt is executed.

• Bit 0 – TOV2 - Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A
(Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

 325

8266A-MCU Wireless-12/09

 ATmega128RFA1

21.11.3 TCCR2A – Timer/Counter2 Control Register A

Bit 7 6 5 4 3 2 1 0

NA ($B0) COM2A1 COM2A0 COM2B1 COM2B0 Res1 Res0 WGM21 WGM20 TCCR2A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – COM2A1:0 - Compare Match Output A Mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the
COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit
corresponding to the OC2A pin must be set in order to enable the output driver. When
OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM22:0 bit setting. The following table shows the COM2A1:0 bit functionality when
the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Refer to section
"Compare Match Output Unit" for a description of the functionality in the other modes.

Table 21-7 COM2A Register Bits

Register Bits Value Description

0 Normal port operation, OC2A disconnected

1 Toggle OC2A on Compare Match

2 Clear OC2A on Compare Match

COM2A1:0

3 Set OC2A on Compare Match

• Bit 5:4 – COM2B1:0 - Compare Match Output B Mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the
COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit
corresponding to the OC2B pin must be set in order to enable the output driver. When
OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. The following table shows the COM2B1:0 bit functionality when
the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Refer to section
"Compare Match Output Unit" for a description of the functionality in the other modes.

Table 21-8 COM2B Register Bits

Register Bits Value Description

0 Normal port operation, OC2B disconnected

1 Toggle OC2B on Compare Match

2 Clear OC2B on Compare Match

COM2B1:0

3 Set OC2B on Compare Match

• Bit 3:2 – Res1:0 - Reserved

• Bit 1:0 – WGM21:20 - Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the
Timer/Counter2 unit are: Normal mode (counter), Clear Timer on Compare Match
(CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see section
"Modes of Operation" for details).

326

8266A-MCU Wireless-12/09

ATmega128RFA1

Table 21-9 WGM2 Register Bits

Register Bits Value Description

0x0 Normal mode of operation

0x1 PWM, phase correct, TOP=0xFF

0x2 CTC, TOP = OCRA

0x3 Fast PWM, TOP=0xFF

0x4 Reserved

0x5 PWM, Phase correct, TOP = OCRA

0x6 Reserved

WGM21:20

0x7 Fast PWM, TOP=OCRA

21.11.4 TCCR2B – Timer/Counter2 Control Register B

Bit 7 6 5 4 3 2 1 0

NA ($B1) FOC2A FOC2B Res1 Res0 WGM22 CS22 CS21 CS20 TCCR2B

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – FOC2A - Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However,
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B
is written in PWM mode operation. When writing a logical one to the FOC2A bit, an
immediate Compare Match is forced on the Waveform Generation unit. The OC2A
output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that
determines the effect of the forced compare. A FOC2A strobe will not generate any
interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit
is always read as zero.

• Bit 6 – FOC2B - Force Output Compare B

The FOC2B bit is only active when the WGM bits specify a non-PWM mode. However,
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B
is written in PWM mode operation. When writing a logical one to the FOC2B bit, an
immediate Compare Match is forced on the Waveform Generation unit. The OC2B
output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is
implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that
determines the effect of the forced compare. A FOC2B strobe will not generate any
interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP. The FOC2B bit
is always read as zero.

• Bit 5:4 – Res1:0 - Reserved

• Bit 3 – WGM22 - Waveform Generation Mode

Combined with the WGM21:0 bits found in the TCCR2A Register, this bit controls the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used. See description of "TCCR2A -
Timer/Counter2 Control Register A" for details.

• Bit 2:0 – CS22:20 - Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter2. If
external pin modes are used for the Timer/Counter2, transitions on the T2 pin will clock

 327

8266A-MCU Wireless-12/09

 ATmega128RFA1

the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Table 21-10 CS2 Register Bits

Register Bits Value Description

0x00 No clock source (Timer/Counter2 stopped)

0x01 clk_T2S/1 (no prescaling)

0x02 clk_T2S/8 (from prescaler)

0x03 clk_T2S/32 (from prescaler)

0x04 clk_T2S/64 (from prescaler)

0x05 clk_T2S/128 (from prescaler)

0x06 clk_T2S/256 (from prescaler)

CS22:20

0x07 clk_T2S/1024 (from prescaler)

21.11.5 TCNT2 – Timer/Counter2

Bit 7 6 5 4 3 2 1 0

NA ($B2) TCNT27:20 TCNT2

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to
the 8-bit counter unit of the Timer/Counter2. Writing to the TCNT2 Register blocks
(removes) the Compare Match on the following timer clock. Modifying the counter
(TCNT2) while the counter is running, introduces a risk of missing a Compare Match
between TCNT2 and the OCR2x Registers.

• Bit 7:0 – TCNT27:20 - Timer/Counter2 Byte

21.11.6 OCR2A – Timer/Counter2 Output Compare Register A

Bit 7 6 5 4 3 2 1 0

NA ($B3) OCR2A7:0 OCR2A

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2A pin.

• Bit 7:0 – OCR2A7:0 - Output Compare Register

21.11.7 OCR2B – Timer/Counter2 Output Compare Register B

Bit 7 6 5 4 3 2 1 0

NA ($B4) OCR2B7:0 OCR2B

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

328

8266A-MCU Wireless-12/09

ATmega128RFA1

The Output Compare Register B contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2B pin.

• Bit 7:0 – OCR2B7:0 - Output Compare Register

21.11.8 ASSR – Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0

NA ($B6) EXCLKAMR EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/Write RW RW RW R R R R R

Initial 0 0 0 0 0 0 0 0

The register ASSR controls the asynchronous clocks for Timer/Counter2 and enables
the asynchronous 32kHz clock for the symbol counter. Three bits
(AS2,EXCLK,EXCLKAMR) are used to control the clocks. Note, to prevent clock spikes
on asynchronous clock wires, every access to ASSR should change only one of the
three bits.

• Bit 7 – EXCLKAMR - Enable External Clock Input for AMR

The bit EXCLKAMR extends the available clock sources for Timer/Counter2. If this bit is
written to one, and asynchronous clock is selected (bit AS2 set), AMR functionality is
enabled and Timer/Counter2 is clocked by pin AMR.

• Bit 6 – EXCLK - Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock
input buffer is enabled and an external clock can be input on Timer Oscillator 1
(TOSC1) pin instead of a 32 kHz crystal. Writing to EXCLK should be done before
asynchronous operation is selected. Note that the crystal Oscillator will only run when
this bit is zero.

• Bit 5 – AS2 - Timer/Counter2 Asynchronous Mode

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O.
When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator
connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed,
the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB - Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

• Bit 3 – OCR2AUB - Timer/Counter2 Output Compare Register A Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit
becomes set. When OCR2A has been updated from the temporary storage register,
this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to
be updated with a new value.

• Bit 2 – OCR2BUB - Timer/Counter2 Output Compare Register B Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit
becomes set. When OCR2B has been updated from the temporary storage register,

 329

8266A-MCU Wireless-12/09

 ATmega128RFA1

this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to
be updated with a new value.

• Bit 1 – TCR2AUB - Timer/Counter2 Control Register A Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit
becomes set. When TCCR2A has been updated from the temporary storage register,
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready
to be updated with a new value.

• Bit 0 – TCR2BUB - Timer/Counter2 Control Register B Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit
becomes set. When TCCR2B has been updated from the temporary storage register,
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready
to be updated with a new value.

21.11.9 GTCCR – General Timer Counter Control register

Bit 7 6 5 4 3 2 1 0

$23 ($43) TSM PSRASY GTCCR

Read/Write RW RW

Initial Value 0 0

• Bit 7 – TSM - Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode the value that is written to the PSRASY and PSRSYNC bits is kept, hence
keeping the corresponding prescaler reset signals asserted. This ensures that the
corresponding Timer/Counters are halted and can be configured to the same value
without the risk of one of them advancing during the configuration. When the TSM bit is
written to zero, the PSRASY and PSRSYNC bits are cleared by hardware and the
Timer/Counters simultaneously start counting.

• Bit 1 – PSRASY - Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating
in asynchronous mode, the bit will remain one until the prescaler has been reset. The
bit will not be cleared by hardware if the TSM bit is set.

330

8266A-MCU Wireless-12/09

ATmega128RFA1

22 SPI- Serial Peripheral Interface

22.1 Features

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the ATmega128RFA1 and peripheral devices or between several AVR
devices.

The ATmega128RFA1 SPI includes the following features:

• Full-duplex, Three-wire Synchronous Data Transfer

• Master or Slave Operation

• LSB First or MSB First Data Transfer

• Seven Programmable Bit Rates

• End of Transmission Interrupt Flag

• Write Collision Flag Protection

• Wake-up from Idle Mode

• Double Speed (CK/2) Master SPI Mode

22.2 Functional Description

USART can also be used in Master SPI mode, see "USART in SPI Mode" on page 368.
The Power Reduction SPI bit, PRSPI, in "PRR0 – Power Reduction Register0" on page
167 must be written to zero to enable SPI module. The block diagram of the SPI
interface is shown in Figure 22-1 on page 331.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 22-2
on page 331. The system consists of two shift Registers, and a Master clock generator.
The SPI Master initiates the communication cycle when pulling low the Slave Select SS

__

pin of the desired Slave. Master and Slave prepare the data to be sent in their
respective shift Registers, and the Master generates the required clock pulses on the
SCK line to interchange data. Data is always shifted from Master to Slave on the Master
Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out,
MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS

__
, line.

When configured as a Master, the SPI interface has no automatic control of the SS
__

 line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock
generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable
bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may
continue to shift the next byte by writing it into SPDR, or signal the end of packet by
pulling high the Slave Select, SS

__
 line. The last incoming byte will be kept in the Buffer

Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS

__
 pin is driven high. In this state, software may update the contents of

the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE,
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming
byte will be kept in the Buffer Register for later use.

 331

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 22-1. SPI Block Diagram
(1)

S
P

I2
X

S
P

I2
X

DIVIDER

/2/4/8/16/32/64/128

Note: 1. Refer to Figure 1-1 on page 2 and Table 14-3 on page 193 for SPI pin placement.

Figure 22-2. SPI Master-slave Interconnection

SHIFT

ENABLE

The system is single buffered in the transmit direction and double buffered in the
receive direction. This means that bytes to be transmitted cannot be written to the SPI
Data Register before the entire shift cycle is completed. When receiving data, however,
a received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the

332

8266A-MCU Wireless-12/09

ATmega128RFA1

control logic will sample the incoming signal of the SCK pin. To ensure correct sampling
of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles
High period: longer than 2 CPU clock cycles

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS
__

 pins is
overridden according to Table 21-1. For more details on automatic port overrides, refer
to "Alternate Port Functions" on page 191.

Table 22-1. Pin Overrides
(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Note: 1. See "Alternate Functions of Port B" on page 192 for a detailed description of how
to define the direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to
perform a simple transmission. DDR_SPI in the examples must be replaced by the
actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and
DD_SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI
is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Assembly Code Example
(1)

SPI_MasterInit:

 ; Set MOSI and SCK output, all others input

 ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

 out DDR_SPI,r17

 ; Enable SPI, Master, set clock rate fck/16

 ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

 out SPCR,r17

 ret

SPI_MasterTransmit:

 ; Start transmission of data (r16)

 out SPDR,r16

Wait_Transmit:

 ; Wait for transmission complete

 sbis SPSR,SPIF

 rjmp Wait_Transmit

 ret

 333

8266A-MCU Wireless-12/09

 ATmega128RFA1

C Code Example
(1)

void SPI_MasterInit(void)

{

 /* Set MOSI and SCK output, all others input */

 DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

 /* Enable SPI, Master, set clock rate fck/16 */

 SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

 /* Start transmission */

 SPDR = cData;

 /* Wait for transmission complete */

 while(!(SPSR & (1<<SPIF)))

 ;

}

Note: 1. See "About Code Examples" on page 7

Assembly Code Example(1)

SPI_SlaveInit:

 ; Set MISO output, all others input

 ldi r17,(1<<DD_MISO)

 out DDR_SPI,r17

 ; Enable SPI

 ldi r17,(1<<SPE)

 out SPCR,r17

 ret

SPI_SlaveReceive:

 ; Wait for reception complete

 sbis SPSR,SPIF

 rjmp SPI_SlaveReceive

 ; Read received data and return

 in r16,SPDR

 ret

334

8266A-MCU Wireless-12/09

ATmega128RFA1

C Code Example(1)

void SPI_SlaveInit(void)

{

 /* Set MISO output, all others input */

 DDR_SPI = (1<<DD_MISO);

 /* Enable SPI */

 SPCR = (1<<SPE);

}

 char SPI_SlaveReceive(void)

{

 /* Wait for reception complete */

 while(!(SPSR & (1<<SPIF)))

 ;

 /* Return Data Register */

 return SPDR;

}

Note: 1. See "About Code Examples" on page 7;

22.3 SS
__

 Pin Functionality

22.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS
__

) pin is always input. When
SS
__

 is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS

__
 is driven high, all pins are inputs, and the

SPI is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS

__
 pin is driven high. The SS

__
 pin is useful for packet/byte

synchronization to keep the slave bit counter synchronous with the master clock
generator. When the SS

__
 pin is driven high, the SPI slave will immediately reset the send

and receive logic, and drop any partially received data in the Shift Register.

22.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can
determine the direction of the SS

__
 pin. If SS

__
 is configured as an output, the pin is a

general output pin which does not affect the SPI system. Typically, the pin will be
driving the SS

__
 pin of the SPI Slave. If SS

__
 is configured as an input, it must be held high

to ensure Master SPI operation. If the SS
__

 pin is driven low by peripheral circuitry when
the SPI is configured as a Master with the SS

__
 pin defined as an input, the SPI system

interprets this as another master selecting the SPI as a slave and starting to send data
to it. To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result
of the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists
a possibility that SS

__
 is driven low, the interrupt should always check that the MSTR bit

is still set. If the MSTR bit has been cleared by a slave select, it must be set by the user
to re-enable SPI Master Mode.

 335

8266A-MCU Wireless-12/09

 ATmega128RFA1

22.3.3 Data Mode

There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 22-3 below and Figure 22-4 below. Data bits are shifted out and
latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals
to stabilize. This is clearly seen in the summary of Table 22-2 below:

Table 22-2. CPOL Functionality

 Leading Edge Trailing Edge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Figure 22-3. SPI Transfer Format with CPHA = 0

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)

mode 0

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Figure 22-4. SPI Transfer Format with CPHA = 1

SCK (CPOL = 0)

mode 1

SAMPLE I

MOSI/MISO

CHANGE 0

MOSI PIN

CHANGE 0

MISO PIN

SCK (CPOL = 1)

mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)

336

8266A-MCU Wireless-12/09

ATmega128RFA1

22.4 Register Description

22.4.1 SPCR – SPI Control Register

Bit 7 6 5 4 3 2 1 0

$2C ($4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – SPIE - SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the Global Interrupt Enable bit in SREG is set.s

• Bit 6 – SPE - SPI Enable

When the SPE bit is set (one), the SPI is enabled. This bit must be set to enable any
SPI operations.

• Bit 5 – DORD - Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR - Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when
written logic zero. If the Slave Select pin is configured as an input and is driven low
while MSTR is set, MSTR will be cleared and SPIF in SPSR are set. The user will then
have to set MSTR to re-enable SPI Master mode.

• Bit 3 – CPOL - Clock polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero,
SCK is low when idle. Refer to the "Data Modes" section for an example. The CPOL
functionality is summarized below.

Table 22-3 CPOL Register Bits

Register Bits Value Description

0 Rising (Leading Edge), Falling (Trailing
Edge)

CPOL

1 Falling (Leading Egde), Rising (Trailing
Edge)

• Bit 2 – CPHA - Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK. Refer to the "Data Modes" section for an example.
The CPOL functionality is summarized below.

Table 22-4 CPHA Register Bits

Register Bits Value Description

0 Sample (Leading Edge), Setup (Trailing
Edge)

CPHA

1 Setup (Leading Edge), Sample (Trailing
Edge)

• Bit 1:0 – SPR1:0 - SPI Clock Rate Select 1 and 0

 337

8266A-MCU Wireless-12/09

 ATmega128RFA1

These two bits control the SCK rate of the device configured as a Master. SPR1 and
SPR0 have no effect on the Slave. The relationship between SCK and the Oscillator
Clock frequency fosc is shown in the following table.

Table 22-5 SPR Register Bits

Register Bits Value Description

0x00 fosc/4

0x01 fosc/16

0x02 fosc/64

0x03 fosc/128

0x04 fosc/2

0x05 fosc/8

0x06 fosc/32

SPR1:0

0x07 fosc/64

22.4.2 SPSR – SPI Status Register

Bit 7 6 5 4 3 2 1 0

$2D ($4D) SPIF WCOL Res4 Res3 Res2 Res1 Res0 SPI2X SPSR

Read/Write R R R R R R R RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – SPIF - SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if
SPIE in SPCR is set and global interrupts are enabled. The SPIF Flag is also set if the
Slave Select pin is an input and is driven low when the SPI is in Master mode. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF
set and then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL - Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set and then accessing the SPI Data Register.

• Bit 5:1 – Res4:0 - Reserved

• Bit 0 – SPI2X - Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode. This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work
at fosc/4 or lower. The SPI interface on the ATmega128RFA1 is also used for program
memory and EEPROM downloading or uploading. See section "Serial Downloading" for
serial programming and verification.

338

8266A-MCU Wireless-12/09

ATmega128RFA1

22.4.3 SPDR – SPI Data Register

Bit 7 6 5 4 3 2 1 0

$2E ($4E) SPDR7:0 SPDR

Read/Write RW RW RW RW RW RW R R

Initial Value X X X X X X 0 0

The SPI Data Register is a read/write register used for data transfer between the
Register File and the SPI Shift Register. Writing to the register initiates data
transmission. Reading the register causes the Shift Register Receive buffer to be read.

• Bit 7:0 – SPDR7:0 - SPI Data Register

 339

8266A-MCU Wireless-12/09

 ATmega128RFA1

23 USART

23.1 Features

• Full duplex operation (independent serial receive and transmit registers)

• Asynchronous or synchronous operation

• Master or slave clocked synchronous operation

• High resolution baud rate generator

• Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits

• Odd or even parity generation and parity check supported by hardware

• Data overrun detection

• Framing error detection

• Noise filtering includes false start bit detection and digital low pass filter

• 3 separate interrupts on TX complete, TX data register empty and RX complete

• Multi-processor communication mode

• Double speed, asynchronous communication mode

23.2 Overview

The Universal Synchronous and Asynchronous Serial Receiver and Transmitter
(USART) is a highly flexible serial communication device.

The ATmega128RFA1 has two USART’s, USART0 and USART1. The functionality for
all two USART’s is described below. USART0 and USART1 have different I/O registers
as shown in "Register Summary" on page 496.

A simplified block diagram of the USART transmitter is shown in Figure 23-1 on page
340 on page 340. CPU accessible I/O registers and I/O pins are shown in bold.

The Power Reduction USART0 bit, PRUSART0, in "PRR0 – Power Reduction
Register0" on page 167 must be disabled by writing a logical zero to it. The Power
Reduction USART1 bit, PRUSART1, in "PRR1 – Power Reduction Register 1" on page
168 must be disabled by writing a logical zero to it.

The dashed boxes in the block diagram Figure 23-1 on page 340 separate the three
main parts of the USART (listed from the top): clock generator, transmitter and receiver.
Control registers are shared by all units. The clock generation logic consists of
synchronization logic for external clock input used by synchronous slave operation, and
the baud rate generator. The XCKn (transfer clock) pin is only used by synchronous
transfer mode. The transmitter consists of a single write buffer, a serial shift register,
Parity generator and control logic for handling different serial frame formats. The write
buffer allows a continuous transfer of data without any delay between frames. The
receiver is the most complex part of the USART module due to its clock and data
recovery units. The recovery units are used for asynchronous data reception. In
addition to the recovery units, the receiver includes a parity checker, control logic, a
shift register and a two level receive buffer (UDRn). The receiver supports the same
frame formats as the transmitter, and can detect frame, data overrun and parity errors.

340

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 23-1. USART Block Diagram
(1)

PARITY
GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxDPIN
CONTROL

UDR (Receive)

PIN
CONTROL

XCK

DATA
RECOVERY

CLOCK
RECOVERY

PIN
CONTROL

TX
CONTROL

RX
CONTROL

PARITY
CHECKER

DA
TA

 B
US

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver

Note: 1. See "Figure 1-1" on page 2, Table 14-6 on page 195and Table 14-9 on page
197Table 14-9 on page 197for USART pin placement.

23.3 Clock Generation

The clock generation logic generates the base clock for the transmitter and receiver.
The USART supports four modes of clock operation: Normal asynchronous, double
speed asynchronous, master synchronous and slave synchronous mode. The UMSELn
bit in USART Control and Status Register C (UCSRnC) selects between asynchronous
and synchronous operation. Double speed (asynchronous mode only) is controlled by
the U2Xn found in the UCSRnA register. When using synchronous mode (UMSELn =
1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock
source is internal (master mode) or external (slave mode). The XCKn pin is only active
when using synchronous mode.

 341

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 22-2 on page 331 shows a block diagram of the clock generation logic.

Figure 23-2. Clock Generation Logic, Block Diagram

Prescaling
Down-Counter /2

UBRR

/4 /2

fosc
UBRR+1

Sync
Register

OSC

XCK
Pin

txclk

U2X

UMSEL

DDR_XCK

0
1

0
1

xcki
xcko

DDR_XCK
rxclk

0
1

1
0

Edge
Detector

UCPOL

Signal description:

txclk Transmitter clock (internal signal).

rxclk Receiver base clock (internal signal).

xcki Input from XCK pin (internal signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (internal signal). Used for synchronous master
operation.

fOSC System clock frequency.

23.3.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 22-2 on page 331.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it
function as a programmable prescaler or baud rate generator. The down-counter,
running at system clock (fOSC), is loaded with the UBRRn value each time the counter
has counted down to zero or when the UBRRLn register is written. A clock is generated
each time the counter reaches zero. This clock is the baud rate generator clock output
(= fOSC/(UBRRn+1)). The transmitter divides the baud rate generator clock output by 2,
8 or 16 depending on mode. The baud rate generator output is used directly by the
receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCKn bits.

Table 23-1 below contains equations for calculating the baud rate (in bits per second)
and for calculating the UBRRn value for each mode of operation using an internally
generated clock source.

Table 23-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating

Baud Rate
(1)

Equation for Calculating

UBRR Value

Asynchronous Normal Mode
(U2Xn = 0)

)1(16 +
=

UBRRn

f
BAUD OSC 1

16
−=

BAUD

f
UBRRn OSC

Asynchronous Double Speed
Mode (U2Xn = 1)

)1(8 +
=

UBRRn

f
BAUD OSC 1

8
−=

BAUD

f
UBRRn OSC

342

8266A-MCU Wireless-12/09

ATmega128RFA1

Operating Mode Equation for Calculating

Baud Rate
(1)

Equation for Calculating

UBRR Value

Synchronous Master Mode

)1(2 +
=

UBRRn

f
BAUD OSC 1

2
−=

BAUD

f
UBRRn OSC

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps)

fOSC System oscillator clock frequency

UBRRn Contents of the UBRRHn and UBRRLn registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in
Table 23-14 on page 365.

23.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit
only has effect for the asynchronous operation. Set this bit to zero when using
synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the transmitter, there are no
downsides.

23.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 22-2 on page 331 for details.

External clock input from the XCKn pin is sampled by a synchronization register to
minimize the chance of meta-stability. The output from the synchronization register
must then pass through an edge detector before it can be used by the transmitter and
receiver. This process introduces a two CPU clock period delay and therefore the
maximum external XCKn clock frequency is limited by the following equation:

4

OSC

XCK

f
f <

Note that fOSC depends on the stability of the system clock source. It is therefore
recommended to add some margin to avoid possible loss of data due to frequency
variations.

23.3.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either
clock input (slave) or clock output (master). The dependency between the clock edges
and data sampling or data change is the same. The basic principle is that data input (on
RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn)
is changed.

 343

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 23-3. Synchronous Mode XCKn Timing

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and
which is used for data change. As Figure 22-3 on page 335 shows, when UCPOLn is
zero the data will be changed at rising XCKn edge and sampled at falling XCKn edge. If
UCPOLn is set, the data will be changed at falling XCKn edge and sampled at rising
XCKn edge.

23.4 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30
combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a
complete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 23-4 below illustrates the
possible combinations of the frame formats. Bits inside brackets are optional.

Figure 23-4. Frame Formats

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

St Start bit, always low

(n) Data bits (0 to 8)

P Parity bit - can be odd or even

Sp Stop bit, always high

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be
high

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn
bits in UCSRnB and UCSRnC. The receiver and transmitter use the same setting. Note
that changing the setting of any of these bits will corrupt all ongoing communication for
both the receiver and transmitter.

344

8266A-MCU Wireless-12/09

ATmega128RFA1

The USART Character Size (UCSZn2:0) bits select the number of data bits in the
frame. The USART Parity Mode (UPMn1:0) bits enable and set the type of parity bit.
The selection between one or two stop bits is done by the USART Stop Bit Select
(USBSn) bit. The receiver ignores the second stop bit. A frame error will therefore only
be detected in cases where the first stop bit is zero.

23.4.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The parity bit is located between the last
data bit and first stop bit of a serial frame. The relation between the parity bit and data
bits is as follows:

1

0

01231

01231

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

−

−

dddddP

dddddP

nodd

neven

K

K

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

23.5 USART Initialization

The USART has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting frame format and
enabling the transmitter or the receiver depending on the usage. For interrupt driven
USART operation, the global interrupt flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXCn flag can be used to check that the transmitter has completed all transfers, and
the RXC flag can be used to check that there are no unread data in the receive buffer.
Note that the TXCn flag must be cleared before each transmission (before UDRn is
written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous
operation using polling (no interrupts enabled) and a fixed frame format. The baud rate
is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers.

Assembly Code Example
(1)

USART_Init:

 ; Set baud rate

 out UBRRnH, r17

 out UBRRnL, r16

 ; Enable receiver and transmitter

 ldi r16, (1<<RXENn)|(1<<TXENn)

 out UCSRnB,r16

 ; Set frame format: 8data, 2stop bit

 ldi r16, (1<<USBSn)|(3<<UCSZn0)

 out UCSRnC,r16

 ret

 345

8266A-MCU Wireless-12/09

 ATmega128RFA1

C Code Example
(1)

#define FOSC 8000000// Clock Speed

#define BAUD 9600

#define (MYUBRR FOSC/16/BAUD-1)

void main(void)

{...

USART_Init (MYUBRR);

...} // main

void USART_Init(unsigned int ubrr){

/* Set baud rate */

UBRRnH = (unsigned char)(ubrr>>8);

UBRRnL = (unsigned char) ubrr;

/* Enable receiver and transmitter */

UCSRnB = (1<<RXEN)|(1<<TXEN);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBS)|(3<<UCSZ0);

} // USART_Init

Note: 1. See "About Code Examples" on page 7

More advanced initialization routines can be made that include frame format as
parameters, disable interrupts and so on. However, many applications use a fixed
setting of the baud and control registers, and for these types of applications the
initialization code can be placed directly in the main routine, or be combined with
initialization code for other I/O modules.

23.6 Data Transmission – The USART Transmitter

The USART transmitter is enabled by setting the Transmit Enable (TXEN) bit in the
UCSRnB register. When the transmitter is enabled, the normal port operation of the
TxDn pin is overridden by the USART and gives the function as the transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCKn pin
will be overridden and used as transmission clock.

23.6.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be
transmitted. The CPU can load the transmit buffer by writing to the UDRn I/O location.
The buffered data in the transmit buffer will be moved to the shift register when the shift
register is ready to send a new frame. The shift register is loaded with new data if it is in
idle state (no ongoing transmission) or immediately after the last stop bit of the previous
frame is transmitted. When the shift register is loaded with new data, it will transfer one
complete frame at the rate given by the baud rate register, U2Xn bit or by XCKn
depending on mode of operation.

The following code examples show a simple USART transmit function based on polling
of the Data Register Empty Flag (UDREn). When using frames with less than eight bits,
the most significant bits written to the UDRn are ignored. The USART has to be
initialized before the function can be used. For the assembly code, the data to be sent
is assumed to be stored in register r16.

346

8266A-MCU Wireless-12/09

ATmega128RFA1

Assembly Code Example
(1)

USART_Transmit:

 ; Wait for empty transmit buffer

 sbis UCSRnA,UDREn rjmp USART_Transmit

 ; Put data (r16) into buffer, sends the data

 out UDRn,r16

 ret

C Code Example
(1)

void USART_Transmit(unsigned char data)

{

 /* Wait for empty transmit buffer */

 while (!(UCSRnA & (1<<UDREn)));

 /* Put data into buffer, sends the data */

 UDRn = data;

}

Note: 1. See "About Code Examples" on page 7

The function simply waits for the transmit buffer to be empty by checking the UDREn
flag, before loading it with new data to be transmitted. If the data register empty
interrupt is utilized, the interrupt routine writes the data into the buffer.

23.6.2 Sending Frames with 9 Data Bit

If 9 bit characters are used (UCSZn2:0 = 7), the ninth bit must be written to the TXB8 bit
in UCSRnB before the low byte of the character is written to UDRn. The following code
examples show a transmit function that handles 9 bit characters. For the assembly
code, the data to be sent is assumed to be stored in registers r17:r16.

Assembly Code Example
(1)(2)

USART_Transmit:

 ; Wait for empty transmit buffer

 sbis UCSRnA,UDREn

 rjmp USART_Transmit

 ; Copy 9th bit from r17 to TXB8

 cbi UCSRnB,TXB8

 sbrc r17,0

 sbi UCSRnB,TXB8

 ; Put LSB data (r16) into buffer, sends the data

 out UDRn,r16

 ret

 347

8266A-MCU Wireless-12/09

 ATmega128RFA1

C Code Example
(1)(2)

void USART_Transmit(unsigned int data)

{

 /* Wait for empty transmit buffer */

 while (!(UCSRnA & (1<<UDREn))));

 /* Copy 9th bit to TXB8 */

 UCSRnB &= ~(1<<TXB8);

 if (data & 0x0100)

 UCSRnB |= (1<<TXB8);

 /* Put data into buffer, sends the data */

 UDRn = data;

}

Note: 1. These transmit functions are written to be general functions. They can be
optimized if the content of the UCSRnB is static. For example, only the TXB8 bit
of the UCSRnB register is used after initialization.

2. See "About Code Examples" on page 7

The 9
th
 bit can be used for indicating an address frame when using multi processor

communication mode or for other protocol handling as for example synchronization.

23.6.3 Transmitter Flags and Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register
Empty (UDREn) and Transmit Complete (TXCn). Both flags can be used for generating
interrupts.

The Data Register Empty Flag (UDREn) indicates whether the transmit buffer is ready
to receive new data. This bit is set when the transmit buffer is empty, and cleared when
the transmit buffer contains data to be transmitted that has not yet been moved into the
shift register. For compatibility with future devices, always write this bit to zero when
writing the UCSRnA register.

When the USART Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is
written to one, the USART data register empty interrupt will be executed as long as
UDREn is set (provided that global interrupts are enabled). UDREn is cleared by writing
UDRn. When interrupt-driven data transmission is used, the data register empty
interrupt routine must either write new data to UDRn in order to clear UDREn or disable
the data register empty interrupt, otherwise a new interrupt will occur once the interrupt
routine terminates.

The Transmit Complete Flag (TXCn) bit is set one when the entire frame in the transmit
shift register has been shifted out and there are no new data currently present in the
transmit buffer. The TXCn flag bit is automatically cleared when a transmission
complete interrupt is executed, or it can be cleared by writing a one to its bit location.
The TXCn flag is useful in half-duplex communication interfaces (like the RS-485
standard), where a transmitting application must enter receive mode and free the
communication bus immediately after completing the transmission.

When the Transmission Complete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the
USART transmission complete interrupt will be executed when the TXCn flag becomes
set (provided that global interrupts are enabled). When the transmission complete
interrupt is used, the interrupt handling routine does not have to clear the TXCn flag.
This is done automatically when the interrupt is executed.

348

8266A-MCU Wireless-12/09

ATmega128RFA1

23.6.4 Parity Generator

The parity generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

23.6.5 Disabling the Transmitter

The disabling of the transmitter (setting the TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, i.e., when the transmit shift register
and transmit buffer register do not contain data to be transmitted. The transmitter will no
longer override the TxDn pin when disabled.

23.7 Data Reception – The USART Receiver

The USART receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB register to one. When the receiver is enabled, the normal pin operation of the
RxDn pin is overridden by the USART and given the function as the receiver’s serial
input. The baud rate, mode of operation and frame format must be set up once before
any serial reception can be done. If synchronous operation is used, the clock on the
XCKn pin will be used as transfer clock.

23.7.1 Receiving Frames with 5 to 8 Data Bits

The receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCKn clock, and shifted into the receive
shift register until the first stop bit of a frame is received. A second stop bit will be
ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the receive shift register, the contents of the shift register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O
location.

The following code example shows a simple USART receive function based on polling
of the Receive Complete Flag (RXCn). When using frames with less than eight bits the
most significant bits of the data read from the UDRn will be masked to zero. The
USART has to be initialized before the function can be used. The function simply waits
for data to be present in the receive buffer by checking the RXCn flag before reading
the buffer and returning the value.

Assembly Code Example
(1)

USART_Receive:

 ; Wait for data to be received

 sbis UCSRnA, RXCn

 rjmp USART_Receive

 ; Get and return received data from buffer

 in r16, UDRn

 ret

 349

8266A-MCU Wireless-12/09

 ATmega128RFA1

C Code Example
(1)

unsigned char USART_Receive(void)

{

 /* Wait for data to be received */

 while (!(UCSRnA & (1<<RXCn)));

 /* Get and return received data from buffer */

 return UDRn;

}

Note: 1. See "About Code Examples" on page 7

23.7.2 Receiving Frames with 9 Data Bits

If 9 bit characters are used (UCSZn2:0=7) the 9
th
 bit must be read from the RXB8n bit in

UCSRnB before reading the low bits from the UDRn register. This rule applies to the
FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data from
UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO
and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the
FIFO, will change.

The following code example shows a simple USART receive function that handles both
nine bit characters and the status bits.

Assembly Code Example
(1)

USART_Receive:

 ; Wait for data to be received

 sbis UCSRnA, RXCn

 rjmp USART_Receive

 ; Get status and 9th bit, then data from buffer

 in r18, UCSRnA

 in r17, UCSRnB

 in r16, UDRn

 ; If error, return -1

 andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

 breq USART_ReceiveNoError

 ldi r17, HIGH(-1)

 ldi r16, LOW(-1)

USART_ReceiveNoError:

 ; Filter the 9th bit, then return

 lsr r17

 andi r17, 0x01

 ret

350

8266A-MCU Wireless-12/09

ATmega128RFA1

C Code Example
(1)

unsigned int USART_Receive(void)

{

 unsigned char status, resh, resl;

 /* Wait for data to be received */

 while (!(UCSRnA & (1<<RXCn)));

 /* Get status and 9th bit, then data */

 /* from buffer */

 status = UCSRnA;

 resh = UCSRnB;

 resl = UDRn;

 /* If error, return -1 */

 if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

 return -1;

 /* Filter the 9th bit, then return */

 resh = (resh >> 1) & 0x01;

 return ((resh << 8) | resl);

}

Note: 1. See "About Code Examples" on page 7

The receive function example reads all the I/O registers into the register file before any
computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

23.7.3 Receive Complete Flag and Interrupt

The USART receiver has one flag that indicates the receiver state.

The Receive Complete Flag (RXCn) indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the receiver
is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn
bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART
receive complete interrupt will be executed as long as the RXCn flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDRn in order to clear the
RXCn flag, otherwise a new interrupt will occur once the interrupt routine terminates.

23.7.4 Receiver Error Flags

The USART receiver has three error flags: Frame Error (FEn), Data OverRun (DORn)
and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the
error flags is that they are located in the receive buffer together with the frame for which
they indicate the error status. Due to the buffering of the error flags, the UCSRnA must
be read before the receive buffer (UDRn), since reading the UDRn I/O location changes
the buffer read location. The error flags cannot be altered by the application software
doing a write to the flag location. However, all flags must be set to zero when the
UCSRnA is written for upward compatibility of future USART implementations. None of
the error flags can generate interrupts.

The Frame Error Flag (FEn) indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FEn flag is zero when the stop bit was correctly

 351

8266A-MCU Wireless-12/09

 ATmega128RFA1

read (as one), and the FEn flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FEn flag is not affected by the setting of the USBSn bit in
UCSRnC since the receiver ignores all, except for the first, stop bits. For compatibility
with future devices, always set this bit to zero when writing to UCSRnA.

The Data OverRun Flag (DORn) indicates data loss due to a receiver buffer full
condition. A data overrun occurs when the receive buffer is full (two characters), it is a
new character waiting in the receive shift register, and a new start bit is detected. If the
DORn flag is set there was one or more serial frame lost between the frame last read
from UDRn, and the next frame read from UDRn. For compatibility with future devices,
always write this bit to zero when writing to UCSRnA. The DORn flag is cleared when
the frame received was successfully moved from the shift register to the receive buffer.

The Parity Error Flag (UPEn) indicates that the next frame in the receive buffer had a
parity error when received. If parity check is not enabled the UPEn bit will always be
read zero. For compatibility with future devices, always set this bit to zero when writing
to UCSRnA. For more details see "Parity Bit Calculation" on page 344 and "Parity
Checker" below.

23.7.5 Parity Checker

The parity checker is active when the high USART parity mode (UPMn1) bit is set. Type
of parity check to be performed (odd or even) is selected by the UPMn0 bit. When
enabled, the parity checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error Flag (UPEn) can then be read by software to check if the frame had a parity error.

The UPEn bit is set if the next character that can be read from the receive buffer had a
parity error when received .The parity checking was enabled at that point (UPMn1 = 1).
This bit is valid until the receive buffer (UDRn) is read.

23.7.6 Disabling the Receiver

In contrast to the transmitter, disabling of the receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero)
the receiver will no longer override the normal function of the RxDn port pin. The
receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data in
the buffer will be lost

23.7.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDRn I/O
location until the RXCn flag is cleared. The following code example shows how to flush
the receive buffer.

Assembly Code Example
(1)

USART_Flush:

 sbis UCSRnA, RXCn

 ret

 in r16, UDRn

 rjmp USART_Flush

352

8266A-MCU Wireless-12/09

ATmega128RFA1

C Code Example
(1)

void USART_Flush(void)

{

 unsigned char dummy;

 while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

Note: 1. See "About Code Examples" on page 7

23.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling
asynchronous data reception. The clock recovery logic is used for synchronizing the
internally generated baud rate clock to the incoming asynchronous serial frames at the
RxDn pin. The data recovery logic samples and low pass filters each incoming bit,
thereby improving the noise immunity of the receiver. The asynchronous reception
operational range depends on the accuracy of the internal baud rate clock, the rate of
the incoming frames, and the frame size in number of bits.

23.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames.
Figure 23-5 below illustrates the sampling process of the start bit of an incoming frame.
The sample rate is 16 times the baud rate for Normal mode, and eight times the baud
rate for double speed mode. The horizontal arrows illustrate the synchronization
variation due to the sampling process. Note the larger time variation when using the
double speed mode (U2Xn = 1) of operation. Samples denoted zero are samples done
when the RxDn line is idle (i.e., no communication activity).

Figure 23-5. Start Bit Sampling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-
sample as shown in the figure. The clock recovery logic then uses samples 8, 9 and 10
for Normal mode, and samples 4, 5 and 6 for double speed mode (indicated with
sample numbers inside boxes on the figure), to decide if a valid start bit is received. If
two or more of these three samples have logical high levels (the majority wins), the start
bit is rejected as a noise spike and the receiver starts looking for the next high to low-
transition. If however, a valid start bit is detected, the clock recovery logic is
synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

23.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in Normal
mode and eight states for each bit in double speed mode. Figure 23-6 on page 353

 353

8266A-MCU Wireless-12/09

 ATmega128RFA1

shows the sampling of the data bits and the parity bit. Each of the samples is given a
number that is equal to the state of the recovery unit.

Figure 23-6. Sampling of Data and Parity Bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the centre of the received bit. The centre
samples are emphasized on the figure by having the sample number inside boxes. The
majority voting process is done as follows:

If two or all three samples have high levels, the received bit is registered to be logic 1. If
two or all three samples have low levels, the received bit is registered to be logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin.
The recovery process is then repeated until a complete frame is received including the
first stop bit. Note that the receiver only uses the first stop bit of a frame.

Figure 23-7 below shows the sampling of the stop bit and the earliest possible
beginning of the start bit of the next frame.

Figure 23-7. Stop Bit Sampling and Next Start Bit Sampling

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

The same majority voting is done to the stop bit as done for the other bits in the frame.
If the stop bit is registered to have a logic 0 value, the Frame Error Flag (FEn) will be
set.

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For normal speed mode, the first low level
sample can be at point marked (A) in Figure 23-7 above. For double speed mode the
first low level must be delayed to (B). (C) marks a stop bit of full length. The early start
bit detection influences the operational range of the receiver.

23.8.3 Asynchronous Operational Range

The operational range of the receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
receiver does not have a similar (see Table 23-2 on page 354) base frequency, the
receiver will not be able to synchronize the frames to the start bit.

354

8266A-MCU Wireless-12/09

ATmega128RFA1

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

MF

fast

F

slow
SSD

SD
R

SSDS

SD
R

++

+
=

+⋅+−

+
=

)1(

)2(

1

)1(

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for normal speed mode and S = 8 for double speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and
SF = 4 for double speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for double speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to
the receiver baud rate.

Rfast is the ratio of the fastest incoming data rate that can be accepted in relation to
the receiver baud rate.

Table 23-2 below and Table 23-3 below list the maximum receiver baud rate error that
can be tolerated. Note that normal speed mode has higher tolerance of baud rate
variations.

Table 23-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D

(Data+Parity Bit)

Rslow (%)

Rfast (%)

Max Total Error (%)

Recommended Max

Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 23-3. Recommended Maximum Receiver Baud Rate Error for Double Speed
Mode (U2Xn = 1)

D

(Data+Parity Bit)

Rslow (%)

Rfast (%)

Max Total Error (%)

Recommended Max

Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0

The recommendations of the maximum receiver baud rate error were made under the
assumption that the receiver and transmitter equally divides the maximum total error.

There are two possible sources for the receiver baud rate error. The receiver’s system
clock will always have some minor instability over the supply voltage range and the
temperature range. When using the radio transceiver crystal oscillator (XOSC) to
generate the system clock, this is rarely a problem, but for the internal RC oscillator the
system clock may differ more than 2% over the temperature range. The second source
for the error is more controllable. The baud rate generator can not always do an exact

 355

8266A-MCU Wireless-12/09

 ATmega128RFA1

division of the system frequency to get the baud rate wanted. In this case an UBRR
value that gives an acceptable low error can be used if possible.

23.9 Multi-processor Communication Mode

Setting the Multi-processor Communication Mode (MPCMn) bit in UCSRnA enables a
filtering function of incoming frames received by the USART receiver. Frames that do
not contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the MCU,
in a system with multiple MCUs that communicate via the same serial bus. The
transmitter is unaffected by the MPCMn setting, but has to be used differently when it is
a part of a system utilizing the multi-processor communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the receiver is set up
for frames with nine data bits, then the ninth bit (RXB8n) is used for identifying address
and data frames. When the frame type bit (the first stop or the ninth bit) is one, the
frame contains an address. When the frame type bit is zero the frame is a data frame.

The multi-processor communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the
received frames until another address frame is received.

23.9.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9 bit character frame format
(UCSZn2:0 = 7). The 9

th
 bit (TXB8n) must be set when an address frame (TXB8n = 1)

or cleared when a data frame (TXB = 0) is being transmitted. The slave MCUs must in
this case be set to use a 9 bit character frame format.

The following procedure should be used to exchange data in multi-processor
communication mode:

1. All slave MCUs are in multi-processor communication mode (MPCMn in UCSRnA is
set).

2. The master MCU sends an address frame, and all slaves receive and read this
frame. In the slave MCUs, the RXCn flag in UCSRnA will be set as normal.

3. Each slave MCU reads the UDRn register and determines if it has been selected. If
so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte
and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is
received. The other slave MCUs, which still have the MPCMn bit set, will ignore the
data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU
sets the MPCMn bit and waits for a new address frame from master. The process
then repeats from 2.

Using any of the 5 to 8 bit character frame formats is possible, but impractical since the
receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the transmitter and receiver uses the same character
size setting. If 5 to 8 bit character frames are used, the transmitter must be set to use
two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame type.

356

8266A-MCU Wireless-12/09

ATmega128RFA1

Do not use read-modify-write instructions (SBI and CBI) to set or clear the MPCMn bit.
The MPCMn bit shares the same I/O location as the TXCn flag and this might
accidentally be cleared when using SBI or CBI instructions.

23.10 Register Description

23.10.1 UDR0 – USART0 I/O Data Register

Bit 7 6 5 4 3 2 1 0

NA ($C6) UDR07:00 UDR0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDR0. The
Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR0
Register location. Reading the UDR0 Register location will return the contents of the
Receive Data Buffer Register (RXB). For 5-, 6-, or 7-bit characters the upper unused
bits will be ignored by the Transmitter and set to zero by the Receiver. The transmit
buffer can only be written when the UDRE0 Flag in the UCSR0A Register is set. Data
written to UDR0 when the UDRE0 Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer and the Transmitter is enabled,
the Transmitter will load the data into the Transmit Shift Register when the Shift
Register is empty. Then the data will be serially transmitted on the TxD0 pin. The
receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-
Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit test
instructions (SBIC and SBIS), since these also will change the state of the FIFO.

• Bit 7:0 – UDR07:00 - USART I/O Data Register

23.10.2 UCSR0A – USART0 Control and Status Register A

Bit 7 6 5 4 3 2 1 0

NA ($C0) RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 UCSR0A

Read/Write R RW R R R R RW RW

Initial Value 0 0 1 0 0 0 0 0

• Bit 7 – RXC0 - USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is
disabled, the receive buffer will be flushed and consequently the RXC0 bit will become
zero. The RXC0 Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE0 bit).

• Bit 6 – TXC0 - USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR0). The
TXC0 Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXC0 Flag can generate a
Transmit Complete interrupt (see description of the TXCIE0 bit).

 357

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Bit 5 – UDRE0 - USART Data Register Empty

The UDRE0 Flag indicates if the transmit buffer (UDR0) is ready to receive new data. If
UDRE0 is one, the buffer is empty, and therefore ready to be written. The UDRE0 Flag
can generate a Data Register Empty interrupt (see description of the UDRIE0 bit).
UDRE0 is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FE0 - Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. I.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDR0) is read. The FE0 bit is zero when the
stop bit of received data is one. Always set this bit to zero when writing to UCSR0A.

• Bit 3 – DOR0 - Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when
the receive buffer is full (two characters), it is a new character waiting in the Receive
Shift Register and a new start bit is detected. This bit is valid until the receive buffer
(UDR0) is read. Always set this bit to zero when writing to UCSR0A.

• Bit 2 – UPE0 - USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPM01 = 1). This bit is valid until the
receive buffer (UDR0) is read. Always set this bit to zero when writing to UCSR0A.

• Bit 1 – U2X0 - Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation. Writing this bit to one will reduce the divisor of the baud rate
divider from 16 to 8 effectively doubling the transfer rate for asynchronous
communication.

• Bit 0 – MPCM0 - Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM0 bit is
written to one, all the incoming frames received by the USART Receiver that do not
contain address information will be ignored. The Transmitter is unaffected by the
MPCM0 setting. For more detailed information see section "Multi-processor
Communication Mode".

23.10.3 UCSR0B – USART0 Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($C1) RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 UCSR0B

Read/Write RW RW RW RW RW RW R W

Initial Value 0 0 1 0 0 0 0 0

• Bit 7 – RXCIE0 - RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC0 Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC0 bit in UCSR0A is set.

• Bit 6 – TXCIE0 - TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC0 Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC0 bit in UCSR0A is set.

• Bit 5 – UDRIE0 - USART Data Register Empty Interrupt Enable

358

8266A-MCU Wireless-12/09

ATmega128RFA1

Writing this bit to one enables interrupt on the UDRE0 Flag. A Data Register Empty
interrupt will be generated only if the UDRIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRE0 bit in UCSR0A is set.

• Bit 4 – RXEN0 - Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxD0 pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE0, DOR0 and UPE0 Flags.

• Bit 3 – TXEN0 - Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override
normal port operation for the TxD0 pin when enabled. The disabling of the Transmitter
(writing TXEN0 to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer
Register do not contain data to be transmitted. When disabled, the Transmitter will no
longer override the TxD0 port.

• Bit 2 – UCSZ02 - Character Size

The UCSZ02 bits combined with the UCSZ01:0 bit in UCSR0C sets the number of data
bits (Character Size) in the frame that the Receiver and Transmitter use.

• Bit 1 – RXB80 - Receive Data Bit 8

RXB80 is the 9th data bit of the received character when operating with serial frames
with nine data bits. The bit must be read before reading the lower 8 bits from UDR0.

• Bit 0 – TXB80 - Transmit Data Bit 8

TXB80 is the 9th data bit in the character to be transmitted when operating with serial
frames with nine data bits. The bit must be written before writing the lower 8 bits to
UDR0.

23.10.4 UCSR0C – USART0 Control and Status Register C

Bit 7 6 5 4 3 2 1 0

NA ($C2) UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 1 0

• Bit 7:6 – UMSEL01:00 - USART Mode Select

These bits select the mode of operation of the USART0 as shown in the following table.
See section "USART in SPI Mode" for a full description of the Master SPI Mode
(MSPIM) operation.

Table 23-4 UMSEL0 Register Bits

Register Bits Value Description

0x00 Asynchronous USART

0x01 Synchronous USART

0x02 Reserved

UMSEL01:00

0x03 Master SPI (MSPIM)

• Bit 5:4 – UPM01:00 - Parity Mode

These bits enable and set type of parity generation and check. If enabled, the
Transmitter will automatically generate and send the parity of the transmitted data bits
within each frame. The Receiver will generate a parity value for the incoming data and

 359

8266A-MCU Wireless-12/09

 ATmega128RFA1

compare it to the UPM0 setting. If a mismatch is detected, the UPE0 Flag in UCSR0A
will be set.

Table 23-5 UPM0 Register Bits

Register Bits Value Description

0x00 Disabled

0x01 Reserved

0x02 Enabled, Even Parity

UPM01:00

0x03 Enabled, Odd Parity

• Bit 3 – USBS0 - Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Table 23-6 USBS0 Register Bits

Register Bits Value Description

0x00 1-bit USBS0

0x01 2-bit

• Bit 2:1 – UCSZ01:00 - Character Size

The UCSZ01:0 bits combined with the UCSZ02 bit in UCSR0B sets the number of data
bits (Character Size) in the frame that the Receiver and Transmitter use.

Table 23-7 UCSZ0 Register Bits

Register Bits Value Description

0 5-bit

1 6-bit

2 7-bit

3 8-bit

4 Reserved

5 Reserved

6 Reserved

UCSZ01:00

7 9-bit

• Bit 0 – UCPOL0 - Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOL0 bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK0).

Table 23-8 UCPOL0 Register Bits

Register Bits Value Description

0 Rising XCKn Edge (Transmitted Data
Changed), Falling XCKn Edge (Received
Data Sampled)

UCPOL0

1 Falling XCKn Edge (Transmitted Data
Changed), Rising XCKn Edge (Received
Data Sampled)

360

8266A-MCU Wireless-12/09

ATmega128RFA1

23.10.5 UBRR0H – USART0 Baud Rate Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($C5) Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 UBRR0H

Read/Write R R R R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

UBRR0 is a 12-bit register which contains the USART baud rate. The UBRR0H
contains the four most significant bits, and the UBRR0L contains the eight least
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and
Receiver will be corrupted if the baud rate is changed. Writing UBRR0L will trigger an
immediate update of the baud rate prescaler.

• Bit 7:4 – Res3:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 3:0 – UBRR11:8 - USART Baud Rate Register

These bits represent bits [11:8] of the Baud Rate Register. Sample values for
commonly used clock frequencies can be found in section "Examples of Baud Rate
Setting".

23.10.6 UBRR0L – USART0 Baud Rate Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($C4) UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 UBRR0L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

UBRR0 is a 12-bit register which contains the USART baud rate. The UBRR0H
contains the four most significant bits, and the UBRR0L contains the eight least
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and
Receiver will be corrupted if the baud rate is changed. Writing UBRR0L will trigger an
immediate update of the baud rate prescaler.

• Bit 7:0 – UBRR7:0 - USART Baud Rate Register

These bits represent bits [7:0] of the Baud Rate Register. Sample values for commonly
used clock frequencies can be found in section "Examples of Baud Rate Setting".

23.10.7 UDR1 – USART1 I/O Data Register

Bit 7 6 5 4 3 2 1 0

NA ($CE) UDR17:10 UDR1

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers
share the same I/O address referred to as USART Data Register or UDR1. The
Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR1
Register location. Reading the UDR1 Register location will return the contents of the

 361

8266A-MCU Wireless-12/09

 ATmega128RFA1

Receive Data Buffer Register (RXB). For 5-, 6-, or 7-bit characters the upper unused
bits will be ignored by the Transmitter and set to zero by the Receiver. The transmit
buffer can only be written when the UDRE1 Flag in the UCSR1A Register is set. Data
written to UDR1 when the UDRE1 Flag is not set, will be ignored by the USART
Transmitter. When data is written to the transmit buffer and the Transmitter is enabled,
the Transmitter will load the data into the Transmit Shift Register when the Shift
Register is empty. Then the data will be serially transmitted on the TxD1 pin. The
receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-
Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit test
instructions (SBIC and SBIS), since these also will change the state of the FIFO.

• Bit 7:0 – UDR17:10 - USART I/O Data Register

23.10.8 UCSR1A – USART1 Control and Status Register A

Bit 7 6 5 4 3 2 1 0

NA ($C8) RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 UCSR1A

Read/Write R RW R R R R RW RW

Initial Value 0 0 1 0 0 0 0 0

• Bit 7 – RXC1 - USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is
disabled, the receive buffer will be flushed and consequently the RXC1 bit will become
zero. The RXC1 Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE1 bit).

• Bit 6 – TXC1 - USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR1). The
TXC1 Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXC1 Flag can generate a
Transmit Complete interrupt (see description of the TXCIE1 bit).

• Bit 5 – UDRE1 - USART Data Register Empty

The UDRE1 Flag indicates if the transmit buffer (UDR1) is ready to receive new data. If
UDRE1 is one, the buffer is empty, and therefore ready to be written. The UDRE1 Flag
can generate a Data Register Empty interrupt (see description of the UDRIE1 bit).
UDRE1 is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FE1 - Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. I.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDR1) is read. The FE1 bit is zero when the
stop bit of received data is one. Always set this bit to zero when writing to UCSR1A.

• Bit 3 – DOR1 - Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when
the receive buffer is full (two characters), it is a new character waiting in the Receive
Shift Register and a new start bit is detected. This bit is valid until the receive buffer
(UDR1) is read. Always set this bit to zero when writing to UCSR1A.

• Bit 2 – UPE1 - USART Parity Error

362

8266A-MCU Wireless-12/09

ATmega128RFA1

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPM11 = 1). This bit is valid until the
receive buffer (UDR1) is read. Always set this bit to zero when writing to UCSR1A.

• Bit 1 – U2X1 - Double the USART Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation. Writing this bit to one will reduce the divisor of the baud rate
divider from 16 to 8 effectively doubling the transfer rate for asynchronous
communication.

• Bit 0 – MPCM1 - Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM1 bit is
written to one, all the incoming frames received by the USART Receiver that do not
contain address information will be ignored. The Transmitter is unaffected by the
MPCM1 setting. For more detailed information see section "Multi-processor
Communication Mode".

23.10.9 UCSR1B – USART1 Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($C9) RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B

Read/Write RW RW RW RW RW RW R W

Initial Value 0 0 1 0 0 0 0 0

• Bit 7 – RXCIE1 - RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC1 Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC1 bit in UCSR1A is set.

• Bit 6 – TXCIE1 - TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC1 Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC1 bit in UCSR1A is set.

• Bit 5 – UDRIE1 - USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE1 Flag. A Data Register Empty
interrupt will be generated only if the UDRIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRE1 bit in UCSR1A is set.

• Bit 4 – RXEN1 - Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal
port operation for the RxD1 pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FE1, DOR1 and UPE1 Flags.

• Bit 3 – TXEN1 - Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override
normal port operation for the TxD1 pin when enabled. The disabling of the Transmitter
(writing TXEN1 to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer
Register do not contain data to be transmitted. When disabled, the Transmitter will no
longer override the TxD1 port.

• Bit 2 – UCSZ12 - Character Size

 363

8266A-MCU Wireless-12/09

 ATmega128RFA1

The UCSZ12 bits combined with the UCSZ11:0 bit in UCSR1C sets the number of data
bits (Character Size) in the frame that the Receiver and Transmitter use.

• Bit 1 – RXB81 - Receive Data Bit 8

RXB81 is the 9th data bit of the received character when operating with serial frames
with nine data bits. The bit must be read before reading the lower 8 bits from UDR1.

• Bit 0 – TXB81 - Transmit Data Bit 8

TXB81 is the 9th data bit in the character to be transmitted when operating with serial
frames with nine data bits. The bit must be written before writing the lower 8 bits to
UDR1.

23.10.10 UCSR1C – USART1 Control and Status Register C

Bit 7 6 5 4 3 2 1 0

NA ($CA) UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 UCSR1C

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 1 1 0

• Bit 7:6 – UMSEL11:10 - USART Mode Select

These bits select the mode of operation of the USART1 as shown in the following table.
See section "USART in SPI Mode" for a full description of the Master SPI Mode
(MSPIM) operation.

Table 23-9 UMSEL1 Register Bits

Register Bits Value Description

0x00 Asynchronous USART

0x01 Synchronous USART

0x02 Reserved

UMSEL11:10

0x03 Master SPI (MSPIM)

• Bit 5:4 – UPM11:10 - Parity Mode

These bits enable and set type of parity generation and check. If enabled, the
Transmitter will automatically generate and send the parity of the transmitted data bits
within each frame. The Receiver will generate a parity value for the incoming data and
compare it to the UPM1 setting. If a mismatch is detected, the UPE1 Flag in UCSR1A
will be set.

Table 23-10 UPM1 Register Bits

Register Bits Value Description

0x00 Disabled

0x01 Reserved

0x02 Enabled, Even Parity

UPM11:10

0x03 Enabled, Odd Parity

• Bit 3 – USBS1 - Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

364

8266A-MCU Wireless-12/09

ATmega128RFA1

Table 23-11 USBS1 Register Bits

Register Bits Value Description

0x00 1-bit USBS1

0x01 2-bit

• Bit 2:1 – UCSZ11:10 - Character Size

The UCSZ11:0 bits combined with the UCSZ12 bit in UCSR1B sets the number of data
bits (Character Size) in the frame that the Receiver and Transmitter use.

Table 23-12 UCSZ1 Register Bits

Register Bits Value Description

0 5-bit

1 6-bit

2 7-bit

3 8-bit

4 Reserved

5 Reserved

6 Reserved

UCSZ11:10

7 9-bit

• Bit 0 – UCPOL1 - Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOL1 bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK1).

Table 23-13 UCPOL1 Register Bits

Register Bits Value Description

0 Rising XCKn Edge (Transmitted Data
Changed), Falling XCKn Edge (Received
Data Sampled)

UCPOL1

1 Falling XCKn Edge (Transmitted Data
Changed), Rising XCKn Edge (Received
Data Sampled)

23.10.11 UBRR1H – USART1 Baud Rate Register High Byte

Bit 7 6 5 4 3 2 1 0

NA ($CD) Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 UBRR1H

Read/Write R R R R RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

UBRR1 is a 12-bit register which contains the USART baud rate. The UBRR1H
contains the four most significant bits, and the UBRR1L contains the eight least
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and
Receiver will be corrupted if the baud rate is changed. Writing UBRR1L will trigger an
immediate update of the baud rate prescaler.

• Bit 7:4 – Res3:0 - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

 365

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Bit 3:0 – UBRR11:8 - USART Baud Rate Register

These bits represent bits [11:8] of the Baud Rate Register. Sample values for
commonly used clock frequencies can be found in section "Examples of Baud Rate
Setting".

23.10.12 UBRR1L – USART1 Baud Rate Register Low Byte

Bit 7 6 5 4 3 2 1 0

NA ($CC) UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 UBRR1L

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

UBRR1 is a 12-bit register which contains the USART baud rate. The UBRR1H
contains the four most significant bits, and the UBRR1L contains the eight least
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and
Receiver will be corrupted if the baud rate is changed. Writing UBRR1L will trigger an
immediate update of the baud rate prescaler.

• Bit 7:0 – UBRR7:0 - USART Baud Rate Register

These bits represent bits [7:0] of the Baud Rate Register. Sample values for commonly
used clock frequencies can be found in section "Examples of Baud Rate Setting".

23.11 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for
asynchronous operation can be generated by using the UBRR settings in Table 23-14
below to Table 23-16 on page 367. UBRR values which yield an actual baud rate
differing less than 0.5% from the target baud rate, are bold in the table. Higher error
ratings are acceptable, but the Receiver will have less noise resistance when the error
ratings are high, especially for large serial frames (see "Asynchronous Operational
Range" on page 353). The error values are calculated using the following equation:

[] %1001% ⋅









−=

BaudRate

BaudRate
Error

MatchClosest

Table 23-14. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

fOSC = 1.8432 MHz fOSC = 2.0000 MHz fOSC = 3.6864 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1
Baud

Rate

(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

4800 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

9600 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

14.4k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

19.2k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

28.8k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

38.4k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

366

8266A-MCU Wireless-12/09

ATmega128RFA1

fOSC = 1.8432 MHz fOSC = 2.0000 MHz fOSC = 3.6864 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1
Baud

Rate

(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

57.6k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

76.8k 1 -25.0% 2 0.0% 1 -18.6% 2 8.5% 2 0.0% 5 0.0%

115.2k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

230.4k - - 0 0.0% - - - - 0 0.0% 1 0.0%

250k - - - - - - 0 0.0%% 0 -7.8% 1 -7.8%

Max.
(1)

 115.2 kbps 230.4 kbps 125 kbps 250 kbps 230.4 kbps 460.8 kbps

Notes: 1. UBRR = 0, Error = 0.0%

Table 23-15. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fOSC = 4.0000 MHz fOSC = 7.3728 MHz fOSC = 8.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

Baud

Rate

(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 103 0.2% 207 0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%

4800 51 0.2% 103 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%

9600 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

14.4k 16 2.1% 34 -0.8% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%

19.2k 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

28.8k 8 -3.5% 16 2.1% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%

38.4k 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

57.6k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

76.8k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

115.2k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

230.4k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

250k 0 0.0% 1 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%

0.5M - - 0 0.0% 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%

1M - - - - - - 0 -7.8% - - 0 0.0%

Max.
(1)

 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps 0.5 Mbps 1 Mbps

Notes: 1. UBRR = 0, Error = 0.0%

 367

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 23-16. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fOSC = 11.0592 MHz fOSC = 14.7456 MHz fOSC = 16.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

Baud

Rate

(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 287 0.0% 575 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%

4800 143 0.0% 287 0.0% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%

9600 71 0.0% 143 0.0% 95 0.0% 191 0.0% 103 0.2% 207 0.2%

14.4k 47 0.0% 95 0.0% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%

19.2k 35 0.0% 71 0.0% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

28.8k 23 0.0% 47 0.0% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%

38.4k 17 0.0% 35 0.0% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

57.6k 11 0.0% 23 0.0% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%

76.8k 8 0.0% 17 0.0% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

115.2k 5 0.0% 11 0.0% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

230.4k 2 0.0% 5 0.0% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

250k 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%

0.5M - - 2 -7.8% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%

1M - - - - 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%

Max.
(1)

 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps

Notes: 1. UBRR = 0, Error = 0.0%

368

8266A-MCU Wireless-12/09

ATmega128RFA1

24 USART in SPI Mode

The Universal Synchronous and Asynchronous Serial Receiver and Transmitter
(USART) can be set to a master SPI compliant mode of operation. The Master SPI
Mode (MSPIM) has the following features:

• Full duplex, three-wire synchronous data transfer

• Master operation

• Supports all four SPI modes of operation (mode 0, 1, 2, and 3)

• LSB first or MSB first data transfer (configurable data order)

• Queued operation (double buffered)

• High resolution baud rate generator

• High speed operation (fXCK,MAX = fCK/2)

• Flexible interrupt generation

24.1 Overview

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode
of operation the SPI master control logic takes direct control over the USART
resources. These resources include the transmitter and receiver shift register and
buffers, and the baud rate generator. The parity generator and checker, the data and
clock recovery logic, and the RX and TX control logic is disabled. The USART RX and
TX control logic is replaced by a common SPI transfer control logic. However, the pin
control logic and interrupt generation logic is identical in both modes of operation.

The I/O register locations are the same in both modes. However, some of the
functionality of the control registers changes when using MSPIM.

24.2 USART MSPIM vs. SPI

The ATmega128RFA1 USART in MSPIM mode is fully compatible with the
ATmega128RFA1 SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit.

• The UCPHAn bit functionality is identical to the SPI CPHA bit.

• The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of
the USART in MSPIM mode is somewhat different compared to the SPI. In addition to
differences of the control register bits, and that only master operation is supported by
the USART in MSPIM mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI
has no buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is
achieved by setting UBRRn accordingly.

• Interrupt timing is not compatible.

• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 24–3
on page 373.

 369

8266A-MCU Wireless-12/09

 ATmega128RFA1

24.2.1 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver.
For USART MSPIM mode of operation only internal clock generation (i.e. master
operation) is supported. The Data Direction Register for the XCKn pin (DDR_XCKn)
must therefore be set to one (i.e. as output) for the USART in MSPIM to operate
correctly. Preferably the DDR_XCKn should be set up before the USART in MSPIM is
enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART
synchronous master mode. The baud rate or UBRRn setting can therefore be
calculated using the same equations, see Table 24-1 below:

Table 24-1. Equations for Calculating Baud Rate Register Setting

 Operating Mode Equation for Calculating

Baud Rate
(1)

Equation for Calculating

UBRR Value

Synchronous Master mode

)1(2 +
=

UBRRn

f
BAUD OSC

 1
2

−=
BAUD

f
UBRRn OSC

Note: The Baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRHn and UBRRLn Registers, (0-4095)

24.3 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial
data, which are determined by control bits UCPHAn and UCPOLn. The data transfer
timing diagrams are shown in Figure 24-1 below. Data bits are shifted out and latched
in on opposite edges of the XCKn signal, ensuring sufficient time for data signals to
stabilize. The UCPOLn and UCPHAn functionality is summarized in Table 24-2 below.
Note that changing the setting of any of these bits will corrupt all ongoing
communication for both the receiver and transmitter.

Figure 24-1. UCPHAn and UCPOLn data transfer timing diagrams

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=

0
U

C
P

H
A

=
1

Table 24-2. UCPOLn and UCPHAn Functionality

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

370

8266A-MCU Wireless-12/09

ATmega128RFA1

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

1 1 3 Setup (Falling) Sample (Rising)

24.4 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART
in MSPIM mode has two valid frame formats:

• 8-bit data with MSB first

• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a
total of eight, are succeeding, ending with the most or least significant bit accordingly.
When a complete frame is transmitted, a new frame can directly follow it, or the
communication line can be set to an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM
mode. The Receiver and Transmitter use the same setting. Note that changing the
setting of any of these bits will corrupt all ongoing communication for both the Receiver
and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART
transmit complete interrupt will then signal that the 16-bit value has been shifted out.

24.4.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take
place. The initialization process normally consists of setting the baud rate, setting
master mode of operation (by setting DDR_XCKn to one), setting frame format and
enabling the Transmitter and the Receiver. Only the transmitter can operate
independently. For interrupt driven USART operation, the Global Interrupt Flag should
be cleared (and thus interrupts globally disabled) when doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register
(UBRRn) must be zero at the time the transmitter is enabled. Contrary to the
normal mode USART operation the UBRRn must then be written to the desired
value after the transmitter is enabled, but before the first transmission is
started. Setting UBRRn to zero before enabling the transmitter is not necessary
if the initialization is done immediately after a reset since UBRRn is reset to
zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be
sure that there is no ongoing transmissions during the period the registers are changed.
The TXCn Flag can be used to check that the Transmitter has completed all transfers,
and the RXCn Flag can be used to check that there are no unread data in the receive
buffer. Note that the TXCn Flag must be cleared before each transmission (before
UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume polling (no interrupts
enabled). The baud rate is given as a function parameter. For the assembly code, the
baud rate parameter is assumed to be stored in the r17:r16 registers.

 371

8266A-MCU Wireless-12/09

 ATmega128RFA1

Assembly Code Example
(1)

USART_Init:

 clr r18

 out UBRRnH,r18

 out UBRRnL,r18

 ; Setting the XCKn port pin as output, enables master mode.

 sbi XCKn_DDR, XCKn

 ; Set MSPI mode of operation and SPI data mode 0.

 ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

 out UCSRnC,r18

 ; Enable receiver and transmitter.

 ldi r18, (1<<RXENn)|(1<<TXENn)

 out UCSRnB,r18 ; Set baud rate.

 ; IMPORTANT:

 ; The Baud Rate must be set after the transmitter is enabled!

 out UBRRnH, r17

 out UBRRnL, r18

 ret

C Code Example
(1)

void USART_Init(unsigned int baud)

{

 UBRRn = 0;

 /* Setting the XCKn port pin as output, enables master mode. */

 XCKn_DDR |= (1<<XCKn);

 /* Set MSPI mode of operation and SPI data mode 0. */

 UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

 /* Enable receiver and transmitter. */

 UCSRnB = (1<<RXENn)|(1<<TXENn);

 /* Set baud rate. */

 /* IMPORTANT: */

 /* The Baud Rate must be set after the transmitter is enabled */

 UBRRn = baud;

 }

Note: 1. See "About Code Examples" on page 7

24.5 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn
bit in the UCSRnB register is set to one. When the Transmitter is enabled, the normal
port operation of the TxDn pin is overridden and given the function as the Transmitter's
serial output. Enabling the receiver is optional and is done by setting the RXENn bit in
the UCSRnB register to one. When the receiver is enabled, the normal pin operation of
the RxDn pin is overridden and given the function as the Receiver's serial input. The
XCKn will in both cases be used as the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is
initiated by writing to the UDRn I/O location. This is the case for both sending and
receiving data since the transmitter controls the transfer clock. The data written to

372

8266A-MCU Wireless-12/09

ATmega128RFA1

UDRn is moved from the transmit buffer to the shift register when the shift register is
ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the
UDRn register must be read once for each byte transmitted. The input buffer
operation is identical to normal USART mode, i.e. if an overflow occurs the
character last received will be lost, not the first data in the buffer. This means
that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the
UDRn is not read before all transfers are completed, then byte 3 to be received
will be lost, and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function
based on polling of the Data Register Empty (UDREn) Flag and the Receive Complete
(RXCn) Flag. The USART has to be initialized before the function can be used. For the
assembly code, the data to be sent is assumed to be stored in Register r16 and the
data received will be available in the same register (r16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn
Flag, before loading it with new data to be transmitted. The function then waits for data
to be present in the receive buffer by checking the RXCn Flag, before reading the buffer
and returning the value.

Assembly Code Example
(1)

USART_MSPIM_Transfer:

 ; Wait for empty transmit buffer

 sbis UCSRnA, UDREn

 rjmp USART_MSPIM_Transfer

 ; Put data (r16) into buffer, sends the data

 out UDRn,r16

 ; Wait for data to be received

USART_MSPIM_Wait_RXCn:

 sbis UCSRnA, RXCn

 rjmp USART_MSPIM_Wait_RXCn

 ; Get and return received data from buffer

 in r16, UDRn

 ret

C Code Example
(1)

unsigned char USART_Receive(void)

{

 /* Wait for empty transmit buffer */

 while (!(UCSRnA & (1<<UDREn)));

 /* Put data into buffer, sends the data */

 UDRn = data;

 /* Wait for data to be received */

 while (!(UCSRnA & (1<<RXCn)));

 /* Get and return received data from buffer */

 return UDRn;

}

Notes: 1. See "About Code Examples" on page 7

 373

8266A-MCU Wireless-12/09

 ATmega128RFA1

24.5.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM
mode are identical in function to the normal USART operation. However, the receiver
error status flags (FE, DOR, and PE) are not in use and are always read as zero.

24.5.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in
function to the normal USART operation.

24.6 USART MSPIM Register Description

The following section describes the registers used for SPI operation using the USART.

24.6.1 UDRn – USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRn) in MSPI mode is
identical to normal USART operation. See "UDR0 – USART0 I/O Data Register" on
page 356.

24.6.2 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers

The function and bit description of the baud rate registers in MSPI mode is identical to
normal USART operation. See "UBRR0L – USART0 Baud Rate Register Low Byte" on
page 360 and "UBRR0H – USART0 Baud Rate Register High Byte" on page 360.

Table 24–3. Comparison of USART in MSPIM mode and SPI pins

USART_MSPIM SPI Comment

TxDn MOSI Master Out only

RxDn MISO Master In only

XCKn SCK (Functional identical)

(N/A) SS¯ ¯ Not supported by USART in MSPIM

24.6.3 UCSR0A – USART0 MSPIM Control and Status Register A

Bit 7 6 5 4 3 2 1 0

NA ($C0) RXC0 TXC0 UDRE0 UCSR0A

Read/Write R RW R

Initial Value 0 0 0

• Bit 7 – RXC0 - USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is
disabled, the receive buffer will be flushed and consequently the RXC0 bit will become
zero. The RXC0 Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE0 bit).

• Bit 6 – TXC0 - USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR0). The
TXC0 Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXC0 Flag can generate a
Transmit Complete interrupt (see description of the TXCIE0 bit).

374

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 5 – UDRE0 - USART Data Register Empty

The UDRE0 Flag indicates if the transmit buffer (UDR0) is ready to receive new data. If
UDRE0 is one, the buffer is empty, and therefore ready to be written. The UDRE0 Flag
can generate a Data Register Empty interrupt (see description of the UDRIE0 bit).
UDRE0 is set after a reset to indicate that the Transmitter is ready.

24.6.4 UCSR0B – USART0 MSPIM Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($C1) RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSR0B

Read/Write RW RW RW RW RW

Initial Value 0 0 1 0 0

• Bit 7 – RXCIE0 - RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC0 Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC0 bit in UCSR0A is set.

• Bit 6 – TXCIE0 - TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC0 Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC0 bit in UCSR0A is set.

• Bit 5 – UDRIE0 - USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE0 Flag. A Data Register Empty
interrupt will be generated only if the UDRIE0 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRE0 bit in UCSR0A is set.

• Bit 4 – RXEN0 - Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will
override normal port operation for the RxD0 pin when enabled. Disabling the Receiver
will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. setting
RXEN0=1 and TXEN0=0) has no meaning since it is the transmitter that controls the
transfer clock and since only master mode is supported.

• Bit 3 – TXEN0 - Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override
normal port operation for the TxD0 pin when enabled. The disabling of the Transmitter
(writing TXEN0 to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer
Register do not contain data to be transmitted. When disabled, the Transmitter will no
longer override the TxD0 port.

24.6.5 UCSR0C – USART0 MSPIM Control and Status Register C

Bit 7 6 5 4 3 2 1 0

NA ($C2) UDORD0 UCPHA0 UCPOL0 UCSR0C

Read/Write RW RW RW

Initial Value 1 1 0

• Bit 2 – UDORD0 - Data Order

 375

8266A-MCU Wireless-12/09

 ATmega128RFA1

When set to one the LSB of the data word is transmitted first. When set to zero the
MSB of the data word is transmitted first. Refer to section "Frame Formats" for details.

• Bit 1 – UCPHA0 - Clock Phase

The UCPHA0 bit setting determines if data is sampled on the leading (first) or tailing
(last) edge of XCK0. Refer to the section "SPI Data Modes and Timing" for details.

• Bit 0 – UCPOL0 - Clock Polarity

The UCPOL0 bit sets the polarity of the XCK0 clock. The combination of the UCPOL0
and UCPHA0 bit settings determine the timing of the data transfer. Refer to the section
"SPI Data Modes and Timing" for details.

24.6.6 UCSR1A – USART1 MSPIM Control and Status Register A

Bit 7 6 5 4 3 2 1 0

NA ($C8) RXC1 TXC1 UDRE1 UCSR1A

Read/Write R RW R

Initial Value 0 0 0

• Bit 7 – RXC1 - USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is
disabled, the receive buffer will be flushed and consequently the RXC1 bit will become
zero. The RXC1 Flag can be used to generate a Receive Complete interrupt (see
description of the RXCIE1 bit).

• Bit 6 – TXC1 - USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDR1). The
TXC1 Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXC1 Flag can generate a
Transmit Complete interrupt (see description of the TXCIE1 bit).

• Bit 5 – UDRE1 - USART Data Register Empty

The UDRE1 Flag indicates if the transmit buffer (UDR1) is ready to receive new data. If
UDRE1 is one, the buffer is empty, and therefore ready to be written. The UDRE1 Flag
can generate a Data Register Empty interrupt (see description of the UDRIE1 bit).
UDRE1 is set after a reset to indicate that the Transmitter is ready.

24.6.7 UCSR1B – USART1 MSPIM Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($C9) RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSR1B

Read/Write RW RW RW RW RW

Initial Value 0 0 1 0 0

• Bit 7 – RXCIE1 - RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC1 Flag. A USART Receive Complete
interrupt will be generated only if the RXCIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXC1 bit in UCSR1A is set.

376

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 6 – TXCIE1 - TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC1 Flag. A USART Transmit Complete
interrupt will be generated only if the TXCIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXC1 bit in UCSR1A is set.

• Bit 5 – UDRIE1 - USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE1 Flag. A Data Register Empty
interrupt will be generated only if the UDRIE1 bit is written to one, the Global Interrupt
Flag in SREG is written to one and the UDRE1 bit in UCSR1A is set.

• Bit 4 – RXEN1 - Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will
override normal port operation for the RxD1 pin when enabled. Disabling the Receiver
will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. setting
RXEN1=1 and TXEN1=0) has no meaning since it is the transmitter that controls the
transfer clock and since only master mode is supported.

• Bit 3 – TXEN1 - Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override
normal port operation for the TxD1 pin when enabled. The disabling of the Transmitter
(writing TXEN1 to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer
Register do not contain data to be transmitted. When disabled, the Transmitter will no
longer override the TxD1 port.

24.6.8 UCSR1C – USART1 MSPIM Control and Status Register C

Bit 7 6 5 4 3 2 1 0

NA ($CA) UDORD1 UCPHA1 UCPOL1 UCSR1C

Read/Write RW RW RW

Initial Value 1 1 0

• Bit 2 – UDORD1 - Data Order

When set to one the LSB of the data word is transmitted first. When set to zero the
MSB of the data word is transmitted first. Refer to section "Frame Formats" for details.

• Bit 1 – UCPHA1 - Clock Phase

The UCPHA1 bit setting determines if data is sampled on the leading (first) or tailing
(last) edge of XCK1. Refer to the section "SPI Data Modes and Timing" for details.

• Bit 0 – UCPOL1 - Clock Polarity

The UCPOL1 bit sets the polarity of the XCK1 clock. The combination of the UCPOL1
and UCPHA1 bit settings determine the timing of the data transfer. Refer to the section
"SPI Data Modes and Timing" for details.

 377

8266A-MCU Wireless-12/09

 ATmega128RFA1

25 2-wire Serial Interface

25.1 Features

• Simple yet powerful and flexible communication interface, only two bus lines
needed

• Both master and slave operation supported

• Device can operate as transmitter or receiver

• 7-bit address space allows up to 128 different slave addresses

• Multi-master arbitration support

• Up to 400 kHz data transfer speed

• Slew-rate limited output drivers

• Noise suppression circuitry rejects spikes on bus lines

• Fully programmable slave address with general call support

• Address recognition causes wake-up when microcontroller is in sleep mode

25.2 2-wire Serial Interface Bus Definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications.
The TWI protocol allows the systems designer to interconnect up to 128 different
devices using only two bi-directional bus lines, one for clock (SCL) and one for data
(SDA). The only external hardware needed to implement the bus is a single pull-up
resistor for each of the TWI bus lines. All devices connected to the bus have individual
addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.

Figure 25-1. TWI Bus Interconnection

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD

25.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

Table 25-1. TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The Master also
generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

378

8266A-MCU Wireless-12/09

ATmega128RFA1

The Power Reduction TWI bit, PRTWI bit in "PRR0 – Power Reduction Register0" on
page 167 must be written to zero to enable the 2-wire Serial Interface.

25.2.2 Electrical Interconnection

As depicted in Figure 25-1 on page 377, both bus lines are connected to the positive
supply voltage through pull-up resistors. The bus drivers of all TWI-compliant devices
are open-drain or open-collector. This implements a wired-AND function which is
essential to the operation of the interface. A low level on a TWI bus line is generated
when one or more TWI devices output a zero. A high level is output when all TWI
devices trim-state their outputs, allowing the pull-up resistors to pull the line high. Note
that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus
capacitance limit of 400 pF and the 7-bit slave address space. A detailed specification
of the electrical characteristics of the TWI is given in "2-wire Serial Interface
Characteristics" on page 503. Two different sets of specifications are presented there,
one relevant for bus speeds below 100 kHz, and one valid for bus speeds up to 400
kHz.

25.3 Data Transfer and Frame Format

25.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line.
The level of the data line must be stable when the clock line is high. The only exception
to this rule is for generating start and stop conditions.

Figure 25-2. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

25.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated
when the Master issues a START condition on the bus, and it is terminated when the
Master issues a STOP condition. Between a START and a STOP condition, the bus is
considered busy, and no other master should try to seize control of the bus. A special
case occurs when a new START condition is issued between a START and STOP
condition. This is referred to as a REPEATED START condition, and is used when the
Master wishes to initiate a new transfer without relinquishing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to
the START behavior, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signaled by changing the level of the
SDA line when the SCL line is high.

 379

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-3. START, REPEATED START and STOP conditions

SDA

SCL

START STOPREPEATED STARTSTOP START

25.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is
set, a read operation is to be performed, otherwise a write operation should be
performed. When a Slave recognizes that it is being addressed, it should acknowledge
by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is busy, or for
some other reason can not service the Master’s request, the SDA line should be left
high in the ACK clock cycle. The Master can then transmit a STOP condition, or a
REPEATED START condition to initiate a new transmission. An address packet
consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be
allocated by the designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in
the ACK cycle. A general call is used when a Master wishes to transmit the same
message to several slaves in the system. When the general call address followed by a
Write bit is transmitted on the bus, all slaves set up to acknowledge the general call will
pull the SDA line low in the ack cycle. The following data packets will then be received
by all the slaves that acknowledged the general call. Note that transmitting the general
call address followed by a Read bit is meaningless, as this would cause contention if
several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 25-4. Address Packet Format

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

25.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the Master generates the clock
and the START and STOP conditions, while the Receiver is responsible for
acknowledging the reception. An Acknowledge (ACK) is signaled by the Receiver

380

8266A-MCU Wireless-12/09

ATmega128RFA1

pulling the SDA line low during the ninth SCL cycle. If the Receiver leaves the SDA line
high, a NACK is signaled. When the Receiver has received the last byte, or for some
reason cannot receive any more bytes, it should inform the Transmitter by sending a
NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 25-5. Data Packet Format

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

25.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to
implement handshaking between the Master and the Slave. The Slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by
the Master is too fast for the Slave, or the Slave needs extra time for processing
between the data transmissions. The Slave extending the SCL low period will not affect
the SCL high period, which is determined by the Master. As a consequence, the Slave
can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 25-6 below shows a typical data transmission. Note that several data bytes can
be transmitted between the SLA+R/W and the STOP condition, depending on the
software protocol implemented by the application software.

Figure 25-6. Typical Data Transmission

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

25.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have
been taken in order to ensure that transmissions will proceed as normal, even if two or
more masters initiate a transmission at the same time. Two problems arise in multi-
master systems:

 381

8266A-MCU Wireless-12/09

 ATmega128RFA1

• An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that
they have lost the selection process. This selection process is called arbitration.
When a contending master discovers that it has lost the arbitration process, it should
immediately switch to Slave mode to check whether it is being addressed by the
winning master. The fact that multiple masters have started transmission at the
same time should not be detectable to the slaves, i.e. the data being transferred on
the bus must not be corrupted.

• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission
proceed in a lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the Master with the shortest high period. The low period of
the combined clock is equal to the low period of the Master with the longest low period.
Note that all masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 25-7. SCL Synchronization Between Multiple Masters

TA
low

TA
high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TB
low

TB
high

Masters Start
Counting Low Period

Masters Start
Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after
outputting data. If the value read from the SDA line does not match the value the
Master had output, it has lost the arbitration. Note that a Master can only lose arbitration
when it outputs a high SDA value while another Master outputs a low value. The losing
Master should immediately go to Slave mode, checking if it is being addressed by the
winning Master. The SDA line should be left high, but losing masters are allowed to
generate a clock signal until the end of the current data or address packet. Arbitration
will continue until only one Master remains, and this may take many bits. If several
masters are trying to address the same Slave, arbitration will continue into the data
packet.

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions
never occur. This implies that in multi-master systems, all data transfers must use the
same composition of SLA+R/W and data packets. In other words: All transmissions

382

8266A-MCU Wireless-12/09

ATmega128RFA1

must contain the same number of data packets, otherwise the result of the arbitration is
undefined.

Figure 25-8. Arbitration Between Two Masters

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDA

A
 SDA

25.5 Overview of the TWI Module

The TWI module is comprised of several sub-modules, as shown in Figure 25-9 below.
All registers drawn in a thick line are accessible through the AVR data bus.

Figure 25-9. Overview of the TWI Module

T
W

I
U

n
it

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

 383

8266A-MCU Wireless-12/09

 ATmega128RFA1

25.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers
contain a slew-rate limiter in order to conform to the TWI specification. The input stages
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the
internal pull-ups in the AVR pads can be enabled by setting the PORT bits
corresponding to the SCL and SDA pins, as explained in the I/O Port section. The
internal pull-ups can in some systems eliminate the need for external ones.

25.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or
Prescaler settings, but the CPU clock frequency in the Slave must be at least 16 times
higher than the SCL frequency. Note that slaves may prolong the SCL low period,
thereby reducing the average TWI bus clock period. The SCL frequency is generated
according to the following equation:

() TWPSTWBR

frequencyClockCPU
frequencySCL

4216 ⋅+
=

• TWBR = Value of the TWI Bit Rate Register.

• TWPS = Value of the prescaler bits in the TWI Status Register.

Note that pull-up resistor values should be selected according to the SCL frequency
and the capacitive bus line load. See in "2-wire Serial Interface Characteristics" on page
503 for value of pull-up resistor.

25.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP
Controller and Arbitration detection hardware. The TWDR contains the address or data
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be
transmitted or received. This (N)ACK Register is not directly accessible by the
application software. However, when receiving, it can be set or cleared by manipulating
the TWI Control Register (TWCR). When in Transmitter mode, the value of the received
(N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be
taken and appropriate status codes generated.

25.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address
in the TWI Address Register (TWAR). If the TWI General Call Recognition Enable
(TWGCE) bit in the TWAR is written to one, all incoming address bits will also be
compared against the General Call address. Upon an address match, the Control Unit
is informed, allowing correct action to be taken. The TWI may or may not acknowledge
its address, depending on settings in the TWCR. The Address Match unit is able to

384

8266A-MCU Wireless-12/09

ATmega128RFA1

compare addresses even if the AVR MCU is in sleep mode, enabling the MCU to wake
up if addressed by a Master. If another interrupt (e.g., INT0) occurs during TWI Power-
down address match and wakes up the CPU, the TWI aborts operation and return to it’s
idle state. If this cause any problems, ensure that TWI Address Match is the only
enabled interrupt when entering Power-down.

25.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to
settings in the TWI Control Register (TWCR). When an event requiring the attention of
the application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In
the next clock cycle, the TWI Status Register (TWSR) is updated with a status code
identifying the event. The TWSR only contains relevant status information when the
TWI Interrupt Flag is asserted. At all other times, the TWSR contains a special status
code indicating that no relevant status information is available. As long as the TWINT
Flag is set, the SCL line is held low. This allows the application software to complete its
tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a
Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

25.6 Using the TWI

The ATmega128RFA1 TWI is byte-oriented and interrupt based. Interrupts are issued
after all bus events, like reception of a byte or transmission of a START condition.
Because the TWI is interrupt-based, the application software is free to carry on other
operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in
TWCR together with the Global Interrupt Enable bit in SREG allow the application to
decide whether or not assertion of the TWINT Flag should generate an interrupt
request. If the TWIE bit is cleared, the application must poll the TWINT Flag in order to
detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits
application response. In this case, the TWI Status Register (TWSR) contains a value
indicating the current state of the TWI bus. The application software can then decide
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and
TWDR Registers.

Figure 25-10 on page 385 is a simple example of how the application can interface to
the TWI hardware. In this example, a Master wishes to transmit a single data byte to a
Slave. This description is quite abstract, a more detailed explanation follows later in this
section. A simple code example implementing the desired behavior is also presented.

 385

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-10. Interfacing the Application to the TWI in a Typical Transmission

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
p

p
lic

a
ti
o

n
A

c
ti
o

n
T

W
I

H
a

rd
w

a
re

A
c
ti
o

n

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a
START condition. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag.
The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the START condition has
successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that
the START condition was successfully transmitted. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine.
Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has
been loaded with the desired SLA+W, a specific value must be written to TWCR,
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value
to write is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Immediately after the application
has cleared TWINT, the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set,
and TWSR is updated with a status code indicating that the address packet has
successfully been sent. The status code will also reflect whether a Slave
acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that
the address packet was successfully transmitted, and that the value of the ACK bit
was as expected. If TWSR indicates otherwise, the application software might take
some special action, like calling an error routine. Assuming that the status code is as
expected, the application must load a data packet into TWDR. Subsequently, a
specific value must be written to TWCR, instructing the TWI hardware to transmit the
data packet present in TWDR. Which value to write is described later on. However, it
is important that the TWINT bit is set in the value written. Writing a one to TWINT

386

8266A-MCU Wireless-12/09

ATmega128RFA1

clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will
initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the
packet or not.

7. The application software should now examine the value of TWSR, to make sure that
the data packet was successfully transmitted, and that the value of the ACK bit was
as expected. If TWSR indicates otherwise, the application software might take some
special action, like calling an error routine. Assuming that the status code is as
expected, the application must write a specific value to TWCR, instructing the TWI
hardware to transmit a STOP condition. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one
to TWINT clears the flag. The TWI will not start any operation as long as the TWINT
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI
will initiate transmission of the STOP condition. Note that TWINT is NOT set after a
STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI
transmissions. These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be
set. Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made, for example by using
include-files.

Table 25-2. Code example

 Assembly Code Example C Example Comments

1 ldi

r16,(1<<TWINT)|(1<<TWSTA)|

 (1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

 (1<<TWEN)

Send START condition

2 wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This
indicates that the START condition
has been transmitted

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

 ERROR();

Check value of TWI Status Register.
Mask prescaler bits. If status different
from START go to ERROR

3

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT)|(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT)|(1<<TWEN);

Load SLA_W into TWDR Register.
Clear TWINT bit in TWCR to start
transmission of address

 387

8266A-MCU Wireless-12/09

 ATmega128RFA1

 Assembly Code Example C Example Comments

4 wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This
indicates that the SLA+W has been
transmitted, and ACK/NACK has
been received.

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)

 ERROR();

Check value of TWI Status Register.
Mask prescaler bits. If status different
from MT_SLA_ACK go to ERROR

5

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT)|(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN);

Load DATA into TWDR Register.
Clear TWINT bit in TWCR to start
transmission of data

6 wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_DATA_ACK)

 ERROR();

Check value of TWI Status Register.
Mask prescaler bits. If status different
from MT_DATA_ACK go to ERROR

7

ldi r16,(1<<TWINT)|(1<<TWEN)|

 (1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition

25.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other masters are present in the system, some of these might transmit
data to the TWI, and then SR mode would be used. It is the application software that
decides which modes are legal.

The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These
figures contain the following abbreviations:

S: START condition Rs: REPEATED START condition
R: Read bit (high level at SDA) W: Write bit (low level at SDA)
Data: 8-bit data byte P: STOP condition
SLA: Slave Address A: Acknowledge bit (low level at SDA)
A
_

: Not acknowledge bit (high level at SDA)

In Figure 25-12 on page 389 to Figure 25-18 on page 399 circles are used to indicate
that the TWINT Flag is set. The numbers in the circles show the status code held in
TWSR, with the prescaler bits masked to zero. At these points, actions must be taken
by the application to continue or complete the TWI transfer. The TWI transfer is
suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the
appropriate software action. For each status code, the required software action and

388

8266A-MCU Wireless-12/09

ATmega128RFA1

details of the following serial transfer are given in Table 25-3 on page 390 to Table 25-6
on page 398. Note that the prescaler bits are masked to zero in these tables.

25.7.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave
Receiver (see Figure 25-11 below). In order to enter a Master mode, a START
condition must be transmitted. The format of the following address packet determines
whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is
transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All
status codes mentioned in this section assume that the prescaler bits are zero or are
masked to zero.

Figure 25-11. Data Transfer in Master Transmitter Mode

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER

Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one
to transmit a START condition and TWINT must be written to one to clear the TWINT
Flag. The TWI will then test the 2-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (see Table
25-3 on page 390). In order to enter MT mode, SLA+W must be transmitted. This is
done by writing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by
writing it to one) to continue the transfer. This is accomplished by writing the following
value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible
status codes in Master mode are 0x18, 0x20, or 0x38. The appropriate action to be
taken for each of these status codes is detailed in Table 25-3 on page 390.

When SLA+W has been successfully transmitted, a data packet should be transmitted.
This is done by writing the data byte to TWDR. TWDR must only be written when
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC)
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

 389

8266A-MCU Wireless-12/09

 ATmega128RFA1

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is
generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value X 1 0 X 1 0 X

After a REPEATED START condition (state 0x10) the 2-wire Serial Interface can
access the same Slave again, or a new Slave without transmitting a STOP condition.
Repeated START enables the Master to switch between Slaves, Master Transmitter
mode and Master Receiver mode without losing control of the bus.

Figure 25-12. Formats and States in the Master Transmitter Mode

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

S

390

8266A-MCU Wireless-12/09

ATmega128RFA1

Table 25-3. Status codes for Master Transmitter Mode

Application Software Response

To TWCR

Status Code

(TWSR)

Prescaler

Bits are 0

Status of the 2-wire

Serial Bus and 2-wire

Serial Interface

Hardware To/from TWDR STA STO TWINT TWEA
Next Action Taken by TWI

Hardware

0x08 A START condition has

been transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted; ACK or

NOT ACK will be received

0x10 A repeated START

condition has been

transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted; ACK or

NOT ACK will be received

SLA+R will be transmitted; Logic will

switch to Master Receiver mode

0x18 SLA+W has been

transmitted; ACK has

been received

Load data byte o

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and

ACK or NOT ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be reset

STOP condition followed by a START

condition will be transmitted and

TWSTO Flag will be reset

0x20 SLA+W has been

transmitted; NOT ACK

has been received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and

ACK or NOT ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be rese

STOP condition followed by a START

condition will be transmitted and

TWSTO Flag will be reset

0x28 Data byte has been

transmitted; ACK has

been received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and

ACK or NOT ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be reset

STOP condition followed by a START

condition will be transmitted and

TWSTO Flag will be reset

0x30 Data byte has been

transmitted; NOT ACK

has been received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and

ACK or NOT ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be reset

STOP condition followed by a START

condition will be transmitted and

TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W

or data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and

not addressed Slave mode entered

A START condition will be

transmitted when the bus be-comes

free

25.7.2 Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a Slave
Transmitter (for Slave see Figure 25-13 on page 391). In order to enter a Master mode,
a START condition must be transmitted. The format of the following address packet
determines whether Master Transmitter or Master Receiver mode is to be entered. If
SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is
entered. All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

 391

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-13. Data Transfer in Master Receiver Mode

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER

Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the
TWINT Flag. The TWI will then test the 2-wire Serial Bus and generate a START
condition as soon as the bus becomes free. After a START condition has been
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be
0x08 (see Table 25-4 on page 392). In order to enter MR mode, SLA+R must be
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should
be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible
status codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be
taken for each of these status codes is detailed in Table 25-4 on page 392. Received
data can be read from the TWDR Register when the TWINT Flag is set high by
hardware. This scheme is repeated until the last byte has been received. After the last
byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated
START condition. A STOP condition is generated by writing the following value to
TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated

392

8266A-MCU Wireless-12/09

ATmega128RFA1

START enables the Master to switch between Slaves, Master Transmitter mode and
Master Receiver mode without losing control over the bus.

Table 25-4. Status codes for Master Receiver Mode

Application Software Response

To TWCR

Status Code

(TWSR)

Prescaler

Bits are 0

Status of the 2-wire

Serial Bus and 2-wire

Serial Interface Hard-

ware To/from TWDR STA STD TWINT TWEA

Next Action Taken by TWI

Hardware

0x08 A START condition has

been transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted ACK or

NOT ACK will be received

0x10 A repeated START

condition has been

transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted ACK or

NOTACK will be received

SLA+W will be transmitted Logic will

switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R

or NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released

and not addressed Slave mode will

be entered

A START condition will be

transmitted when the bus becomes

free

0x40 SLA+R has been

transmitted; ACK has

been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x48 SLA+R has been

transmitted; NOT ACK

has been received

No TWDR action or

No TWDR action or

No TWDR action

1

0

1

0

1

1

1

1

1

X

X

X

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be reset

STOP condition followed by a

START condition will be transmitted

and TWSTO Flag will be reset

0x50 Data byte has been

received; ACK has been

returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x58 Data byte has been

received; NOT ACK has

been returned

Read data byte or

Read data byte or

Read data byte

1

0

1

0

1

1

1

1

1

X

X

X

Repeated START will be transmitted

STOP condition will be transmitted

and TWSTO Flag will be reset

STOP condition followed by a

START condition will be transmitted

and TWSTO Flag will be reset

 393

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-14. Formats and States in the Master Receiver Mode

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

25.7.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a Master
Transmitter (see Figure 25-15 below). All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 25-15. Data transfer in Slave Receiver mode

Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

394

8266A-MCU Wireless-12/09

ATmega128RFA1

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 25-5 below. The Slave Receiver mode may also be
entered if arbitration is lost while the TWI is in the Master mode (see states 0x68 and
0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”)
to SDA after the next received data byte. This can be used to indicate that the Slave is
not able to receive any more bytes. While TWEA is zero, the TWI does not
acknowledge its own slave address. However, the 2-wire Serial Bus is still monitored
and address recognition may resume at any time by setting TWEA. This implies that the
TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the
general call address by using the 2-wire Serial Bus clock as a clock source. The part
will then wake up from sleep and the TWI will hold the SCL clock low during the wake
up and until the TWINT Flag is cleared (by writing it to one). Further data reception will
be carried out as normal, with the AVR clocks running as normal. Observe that if the
AVR is set up with a long start-up time, the SCL line may be held low for a long time,
blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these Sleep modes.

Table 25-5. Status Codes for Slave Receiver Mode

Application Software Response

To TWCR

Status Code

(TWSR)

Prescaler

Bits are 0

Status of the 2-wire

Serial Bus and 2-wire

Serial Interface

Hardware To/from TWDR STA STO TWINT TWEA
Next Action Taken by TWI

Hardware

0x60 Own SLA+W has been

received; ACK has been

returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x68 Arbitration lost in

SLA+R/W as Master;

own SLA+W has been

received; ACK has been

returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x70 General call address has

been received; ACK has

been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

 395

8266A-MCU Wireless-12/09

 ATmega128RFA1

0x78 Arbitration lost in

SLA+R/W as Master;

General call address has

been received; ACK has

been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x80 Previously addressed

with own SLA+W; data

has been received; ACK

has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x88 Previously addressed

with own SLA+W; data

has been received; NOT

ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA; a START condition will be

transmitted when the bus becomes

free

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”; a START condition will be

transmitted when the bus becomes

free

0x90 Previously addressed

with general call; data

has been re-ceived; ACK

has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT

ACK will be returned

Data byte will be received and ACK

will be returned

0x98 Previously addressed

with general call; data

has been received; NOT

ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA; a START condition will be

transmitted when the bus becomes

free

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”; a START condition will be

transmitted when the bus becomes

free

396

8266A-MCU Wireless-12/09

ATmega128RFA1

0xA0 A STOP condition or

repeated START

condition has been

received while still

addressed as Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA; a START condition will be

transmitted when the bus becomes

free

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”; a START condition will be

transmitted when the bus becomes

free

Figure 25-16. Formats and States in the Slave Receiver Mode

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

25.7.4 Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master
Receiver (see Figure 25-17 on page 397). All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

 397

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-17. Data Transfer in Slave Transmitter Mode

Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

Value Device’s Own Slave Address

The upper seven bits are the address to which the 2-wire Serial Interface will respond
when addressed by a Master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgement of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 25-6 on page 398. The Slave Transmitter mode may
also be entered if arbitration is lost while the TWI is in the Master mode (see state
0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the
Master Receiver transmits a NACK or ACK after the final byte. The TWI is switched to
the not addressed Slave mode, and will ignore the Master if it continues the transfer.
Thus the Master Receiver receives all “1” as serial data. State 0xC8 is entered if the
Master demands additional data bytes (by transmitting ACK), even though the Slave
has transmitted the last byte (TWEA zero and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
2-wire Serial Bus is still monitored and address recognition may resume at any time by
setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the
general call address by using the 2-wire Serial Bus clock as a clock source. The part

398

8266A-MCU Wireless-12/09

ATmega128RFA1

will then wake up from sleep and the TWI will hold the SCL clock will low during the
wake up and until the TWINT Flag is cleared (by writing it to one). Further data
transmission will be carried out as normal, with the AVR clocks running as normal.
Observe that if the AVR is set up with a long start-up time, the SCL line may be held
low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

Table 25-6. Status Code for Slave Transmitter Mode

Application Software Response

To TWCR

Status Code

(TWSR)

Prescaler

Bits are 0

Status of the 2-wire

Serial Bus and 2-wire

Serial Interface

Hardware To/from TWDR STA STD TWINT TWEA
Next Action Taken by TWI

Hardware

0xA8 Own SLA+R has been

received; ACK has been

returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and

NOT ACK should be received Data

byte will be transmitted and ACK

should be received

0xB0 Arbitration lost in SLA+R/W

as Master; own SLA+R has

been received; ACK has

been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and

NOT ACK should be received Data

byte will be transmitted and ACK

should be received

0xB8 Data byte in TWDR has

been transmitted; ACK has

been received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and

NOT ACK should be received

Data byte will be transmitted and

ACK should be received

0xC0 Data byte in TWDR has

been transmitted; NOT

ACK has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA; a START condition will be

transmitted when the bus becomes

free

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”; a START condition will be

transmitted when the bus becomes

free

0xC8 Last data byte in TWDR

has been transmitted

(TWEA = “0”); ACK has

been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”

Switched to the not addressed Slave

mode; no recognition of own SLA or

GCA; a START condition will be

transmitted when the bus becomes

free

Switched to the not addressed Slave

mode; own SLA will be recognized;

GCA will be recognized if TWGCE =

“1”; a START condition will be

transmitted when the bus becomes

free

 399

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 25-18. Formats and States in the Slave Transmitter Mode

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = ’0’)

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1’s

A

25.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table
25-7 below.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag
is not set. This occurs between other states, and when the TWI is not involved in a
serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer.
A bus error occurs when a START or STOP condition occurs at an illegal position in the
format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be
cleared by writing a logic one to it. This causes the TWI to enter the not addressed
Slave mode and to clear the TWSTO Flag (no other bits in TWCR are affected). The
SDA and SCL lines are released, and no STOP condition is transmitted.

Table 25-7. Miscellaneous States

Application Software Response

To TWCR

Status Code

(TWSR)

Prescaler

Bits are 0

Status of the 2-wire

Serial Bus and 2-wire

Serial Interface Hard-

ware To/from TWDR STA STO TWINT TWEA
Next Action Taken by TWI

Hardware

0xF8 No relevant state

information available

TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal

START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is

affected, no STOP condi-tion is sent

on the bus. In all cases, the bus is

released and TWSTO is cleared.

25.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired
action. Consider for example reading data from a serial EEPROM. Typically, such a
transfer involves the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

400

8266A-MCU Wireless-12/09

ATmega128RFA1

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master
must instruct the Slave what location it wants to read, requiring the use of the MT mode.
Subsequently, data must be read from the Slave, implying the use of the MR mode.
Thus, the transfer direction must be changed. The Master must keep control of the bus
during all these steps, and the steps should be carried out as an atomic operation. If
this principle is violated in a multi-master system, another Master can alter the data
pointer in the EEPROM between steps 2 and 3, and the Master will read the wrong data
location. Such a change in transfer direction is accomplished by transmitting a
REPEATED START between the transmission of the address byte and reception of the
data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 25-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

25.8 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated
simultaneously by one or more of them. The TWI standard ensures that such situations
are handled in such a way that one of the masters will be allowed to proceed with the
transfer, and that no data will be lost in the process. An example of an arbitration
situation is depicted below, where two masters are trying to transmit data to a Slave
Receiver.

Figure 25-20. An Arbitration Example

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER

Device n

SDA

SCL

........ R1 R2

DEVDD

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave.
In this case, neither the Slave nor any of the masters will know about the bus
contention.

• Two or more masters are accessing the same Slave with different data or direction
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data
bits. The masters trying to output a one on SDA while another Master outputs a zero

 401

8266A-MCU Wireless-12/09

 ATmega128RFA1

will lose the arbitration. Losing masters will switch to not addressed Slave mode or
wait until the bus is free and transmit a new START condition, depending on
application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will
occur in the SLA bits. Masters trying to output a one on SDA while another Master
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to
Slave mode to check if they are being addressed by the winning Master. If
addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed
Slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

This is summarized in Figure 25-21 below. Possible status values are given in circles.

Figure 25-21. Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

25.9 Register Description

25.9.1 TWBR – TWI Bit Rate Register

Bit 7 6 5 4 3 2 1 0

NA ($B8) TWBR7:0 TWBR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The SCL period is controlled by settings in the TWI Bit Rate Register (TWBR) and the
Prescaler bits in the TWI Status Register (TWSR). Slave operation does not depend on
Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave must be at
least 16 times higher than the SCL frequency.

• Bit 7:0 – TWBR7:0 - TWI Bit Rate Register Value

The TWBR register selects the division factor for the bit rate generator. The bit rate
generator is a frequency divider which generates the SCL clock frequency in the Master
modes. See section "Bit Rate Generator Unit" for calculating bit rates.

402

8266A-MCU Wireless-12/09

ATmega128RFA1

25.9.2 TWCR – TWI Control Register

Bit 7 6 5 4 3 2 1 0

NA ($BC) TWINT TWEA TWSTA TWSTO TWWC TWEN Res TWIE TWCR

Read/Write RW RW RW RW RW RW R RW

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to
initiate a Master access by applying a START condition to the bus, to generate a
Receiver acknowledge, to generate a stop condition, and to control halting of the bus
while the data to be written to the bus are put into the TWDR. It also indicates a write
collision if data writing to TWDR is attempted while the register is inaccessible.

• Bit 7 – TWINT - TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects
application software response. If the I-bit in SREG and TWIE in TWCR are set, the
MCU will jump to the TWI Interrupt Vector. While the TWINT Flag is set, the SCL low
period is stretched. The TWINT Flag must be cleared by software by writing a logic one
to it. Note that this flag is not automatically cleared by hardware when executing the
interrupt routine. Also note that clearing this flag starts the operation of the TWI. So all
accesses to the TWI Address Register (TWAR), TWI Status Register (TWSR) and TWI
Data Register (TWDR) must be complete before clearing this flag.

• Bit 6 – TWEA - TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is
written to one, the ACK pulse is generated on the TWI bus if the following conditions
are met: 1. The devices own slave address has been received; 2. A general call has
been received, while the TWGCE bit in the TWAR is set. 3. A data byte has been
received in Master Receiver or Slave Receiver mode. By writing the TWEA bit to zero,
the device can be virtually disconnected from the 2-wire Serial Bus temporarily.
Address recognition can then be resumed by writing the TWEA bit to one again.

• Bit 5 – TWSTA - TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the
2-wire Serial Bus. The TWI hardware checks if the bus is available and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits
until a STOP condition is detected and then generates a new START condition to claim
the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

• Bit 4 – TWSTO - TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-
wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is
cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined not-addressed Slave mode and releases the SCL and SDA lines to a
high impedance state.

• Bit 3 – TWWC - TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN - TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O ports connected to the SCL and SDA

 403

8266A-MCU Wireless-12/09

 ATmega128RFA1

pins enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated regardless of any ongoing
operation.

• Bit 1 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 0 – TWIE - TWI Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT Flag is high.

25.9.3 TWSR – TWI Status Register

Bit 7 6 5 4 3 2 1 0

NA ($B9) TWS7 TWS6 TWS5 TWS4 TWS3 Res TWPS1 TWPS0 TWSR

Read/Write RW RW RW RW RW R RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:3 – TWS4:0 - TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different
status codes for both transmitter and receiver mode are described in the following table.
Note that the value read from TWSR contains both the 5-bit status value and the 2-bit
prescaler value. The application designer should mask the prescaler bits to zero when
checking the Status bits. This makes status checking independent of prescaler setting.
This approach is used in this datasheet, unless otherwise noted.

Table 25-8 TWS Register Bits

Register Bits Value Description

0x00 Bus error due to illegal START or STOP
condition.

0x08 A START condition has been transmitted.

0x10 A repeated START condition has been
transmitted.

0x18 SLA+W has been transmitted; ACK has
been received.

0x20 SLA+W has been transmitted; NOT ACK has
been received.

0x28 Data byte has been transmitted; ACK has
been received.

0x30 Data byte has been transmitted; NOT ACK
has been received.

0x38 Arbitration lost in SLA+W or data bytes
(Transmitter); Arbitration lost in SLA+R or
NOT ACK bit (Receiver).

0x40 SLA+R has been transmitted; ACK has been
received.

0x48 SLA+R has been transmitted; NOT ACK has
been received.

TWS4:0

0x50 Data byte has been received; ACK has been

404

8266A-MCU Wireless-12/09

ATmega128RFA1

Register Bits Value Description

returned.

0x58 Data byte has been received; NOT ACK has
been returned.

0x60 Own SLA+W has been received; ACK has
been returned.

0x68 Arbitration lost in SLA+R/W as Master; own
SLA+W has been received; ACK has been
returned.

0x70 General call address has been received;
ACK has been returned.

0x78 Arbitration lost in SLA+R/W as Master;
general call address has been received;
ACK has been returned.

0x80 Previously addressed with own SLA+W; data
has been received; ACK has been returned.

0x88 Previously addressed with own SLA+W; data
has been received; NOT ACK has been
returned.

0x90 Previously addressed with general call; data
has been received; ACK has been returned.

0x98 Previously addressed with general call; data
has been received; NOT ACK has been
returned.

0xA0 A STOP condition or repeated START
condition has been received while still
addressed as Slave.

0xA8 Own SLA+R has been received; ACK has
been returned.

0xB0 Arbitration lost in SLA+R/W as Master; own
SLA+R has been received; ACK has been
returned.

0xB8 Data byte in TWDR has been transmitted;
ACK has been received.

0xC0 Data byte in TWDR has been transmitted;
NO ACK has been received.

0xC8 Last data byte in TWDR has been
transmitted (TWEA = 0); ACK has been
received.

0xF8 No relevant state information available;
TWINT = 0.

• Bit 2 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

• Bit 1:0 – TWPS1:0 - TWI Prescaler Bits

These bits can be read and written and control the bit rate of the prescaler.

Table 25-9 TWPS Register Bits

Register Bits Value Description

TWPS1:0 0x00 1

 405

8266A-MCU Wireless-12/09

 ATmega128RFA1

Register Bits Value Description

0x01 4

0x02 16

0x03 64

25.9.4 TWDR – TWI Data Register

Bit 7 6 5 4 3 2 1 0

NA ($BB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode,
the TWDR contains the last byte received. It is writable while the TWI is not in the
process of shifting a byte. This occurs when the TWI Interrupt Flag (TWINT) is set by
hardware. Note that the Data Register cannot be initialized by the user before the first
interrupt occurs. The data in TWDR remains stable as long as TWINT is set. While data
is shifted out, data on the bus is simultaneously shifted in. TWDR always contains the
last byte present on the bus, except after a wake up from a sleep mode by the TWI
interrupt. In this case, the contents of TWDR is undefined. In the case of a lost bus
arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit
is automatically controlled by the TWI logic. The CPU cannot access the ACK bit
directly.

• Bit 7:0 – TWD7:0 - TWI Data Register Byte

25.9.5 TWAR – TWI (Slave) Address Register

Bit 7 6 5 4 3 2 1 0

NA ($BA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant
bits of TWAR) to which the TWI will respond when programmed as a Slave Transmitter
or Receiver. This register is not needed in the Master modes. In multi-master systems
TWAR must be set in Masters which can be addressed as Slaves by other Masters.
The LSB of TWAR is used to enable the recognition of the general call address (0x00).
There is an associated address comparator that looks for the slave address (or general
call address if enabled) in the received serial address. If a match is found, an interrupt
request is generated.

• Bit 7:1 – TWA6:0 - TWI (Slave) Address

These bits contain the TWI address operated as a Slave device.

• Bit 0 – TWGCE - TWI General Call Recognition Enable Bit

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

406

8266A-MCU Wireless-12/09

ATmega128RFA1

25.9.6 TWAMR – TWI (Slave) Address Mask Register

Bit 7 6 5 4 3 2 1 0

NA ($BD) TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 Res TWAMR

Read/Write RW RW RW RW RW RW RW R

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:1 – TWAM6:0 - TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in
TWAMR can mask (disable) the corresponding address bit in the TWI Address Register
(TWAR). If the mask bit is set to one then the address match logic ignores the compare
between the incoming address bit and the corresponding bit in TWAR.

• Bit 0 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

 407

8266A-MCU Wireless-12/09

 ATmega128RFA1

26 AC – Analog Comparator

The Analog Comparator compares the input values on the positive pin AIN0 and
negative pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage
on the negative pin AIN1, the Analog Comparator output, ACO, is set. The comparator’s
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The
user can select Interrupt triggering on comparator output rise, fall or toggle. A block
diagram of the comparator and its surrounding logic is shown in Figure 26-1 below.

The Power Reduction ADC bit PRADC in PRR0 (see "PRR0 – Power Reduction
Register0" on page 167) must be disabled by writing a logical zero to be able to use the
ADC input multiplexer.

Figure 26-1. Analog Comparator Block Diagram

Note: 1. See Table 26-1 below.

2. Refer to Figure 1-1 on page 2 and Table 14-9 on page 197 for Analog Comparator
pin placement.

26.1 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7:0 pins as the negative input of the Analog
Comparator. The ADC multiplexer is used to select this input and consequently the
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX5 and MUX2:0 in ADMUX select the input pin to replace the negative input
to the Analog Comparator, as shown in Table 26-1 below. If ACME is cleared or ADEN
is set, AIN1 is applied to the negative input to the Analog Comparator.

Table 26-1. Analog Comparator Multiplexed Input

ACME ADEN MUX5 MUX2:0 Analog Comparator Negative Input

0 x x xxx AIN1

1 1 x xxx AIN1

1 0 0 000 ADC0

1 0 0 001 ADC1

1 0 0 010 ADC2

1 0 0 011 ADC3

1 0 0 100 ADC4

408

8266A-MCU Wireless-12/09

ATmega128RFA1

ACME ADEN MUX5 MUX2:0 Analog Comparator Negative Input

1 0 0 101 ADC5

1 0 0 110 ADC6

1 0 0 111 ADC7

26.2 Register Description

26.2.1 ACSR – Analog Comparator Control And Status Register

Bit 7 6 5 4 3 2 1 0

$30 ($50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write RW RW R RW RW RW RW RW

Initial Value 0 0 NA 0 0 0 0 0

• Bit 7 – ACD - Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power
consumption in Active and Idle mode. When changing the ACD bit, the Analog
Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an
interrupt can occur when the bit is changed.

• Bit 6 – ACBG - Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage connects to the positive input of
the Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of
the Analog Comparator. When the bandgap reference is used as the input of the
Analog Comparator, it will take a certain time for the voltage to stabilize. If not
stabilized, the first comparison may give a wrong value. See section "Internal Voltage
Reference" for details.

• Bit 5 – ACO - Analog Compare Output

The output of the analog comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1-2 clock cycles.

• Bit 4 – ACI - Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hard-ware when
executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by
writing a logic one to the flag.

• Bit 3 – ACIE - Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the
analog comparator interrupt is activated. When written logic zero, the interrupt is
disabled.

• Bit 2 – ACIC - Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the input capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the input capture
function exists. To make the comparator trigger the Timer/Counter1 Input Capture
interrupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

 409

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Bit 1:0 – ACIS1:0 - Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator
interrupt. The different settings are shown in the following table. When changing the
ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by clearing its
Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

Table 26-2 ACIS Register Bits

Register Bits Value Description

0x00 Interrupt on Toggle

0x01 Reserved

0x02 Interrupt on Falling Edge

ACIS1:0

0x03 Interrupt on Rising Edge

26.2.2 ADCSRB – ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($7B) ACME ADCSRB

Read/Write RW

Initial Value 0

• Bit 6 – ACME - Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer defines the negative input of the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog
Comparator. For a detailed description of this bit, see section "Analog Comparator
Multiplexed Input".

26.2.3 DIDR1 – Digital Input Disable Register 1

Bit 7 6 5 4 3 2 1 0

NA ($7F) AIN1D AIN0D DIDR1

Read/Write RW RW

Initial Value 0 0

• Bit 1 – AIN1D - AIN1 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1 pin is disabled. The
corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the AIN1 pin and the digital input from this pin is not needed,
this bit should be written logic one to reduce power consumption in the digital input
buffer.

• Bit 0 – AIN0D - AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN0 pin is disabled. The
corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the AIN0 pin and the digital input from this pin is not needed,
this bit should be written logic one to reduce power consumption in the digital input
buffer.

410

8266A-MCU Wireless-12/09

ATmega128RFA1

27 ADC – Analog to Digital Converter

27.1 Features

• 10-bit Resolution

• Differential Non-Linearity is less than ± 0.5 LSB

• 2 LSB Integral Non-Linearity

• 3 - 240 µs Conversion Time

• Up to 330 kSPS (Up to 570 kSPS with 8-bit Resolution)

• 8 Multiplexed Single Ended Input Channels

• 11 Differential Input Channels

• 2 Differential Input Channels with an Optional Gain of 10x and 200x

• Internal Linear Temperature Sensor

• Optional Left Adjustment for ADC Result Readout

• 0 - VAVDD ADC Input Voltage Range

• 0 - VEVDD Differential ADC Input Voltage Range

• Selectable 1.5V, 1.6V or VAVDD ADC Reference Voltage

• Free Running or Single Conversion Mode

• Interrupt on ADC Conversion Complete

• Sleep Mode Noise Canceller

The ATmega128RFA1 features a 10-bit successive approximation ADC. The ADC is
connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V
(AVSS).

The device also supports multiple differential voltage input combinations. Two of the
differential inputs (ADC1 & ADC0 and ADC3 & ADC2) are equipped with a
programmable gain stage, providing amplification steps of 0 dB (1x), 20 dB (10x) or 46
dB (200x) on the differential input voltage before the A/D conversion. The differential
input channels are constructed of pairs out of the 8 single-ended inputs. They share a
common negative terminal (ADC0, ADC1 or ADC2), while most of the other ADC inputs
can be selected as the positive input terminal. If 1x or 10x gain is used, 8 bit resolution
can be expected. If 200x gain is used, 6 bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 27-1 on page 411.

The analog components of the ADC are supplied from the analog supply voltage AVDD.
AVDD is generated from EVDD by an internal voltage generator. The logic part of the
ADC is supplied from the digital supply voltage DVDD. DVDD is generated from
DEVDD also by an internal voltage generator.

Internal reference voltages of nominally 1.5V, 1.6V or AVDD (1.8V) are provided on-
chip. The 1.6V reference is calibrated to ± 1 LSB during manufacturing. The reference
voltage can be monitored at the AREF pin. Additional de-coupling capacitance at AREF
is not required. A high capacitive loading of AREF will de-stabilize the internal reference
voltage generation. An external reference voltage in the range of 0 < VAREF,EXT ≤ VAVDD
may be used but must be supplied with a very low impedance.

 411

8266A-MCU Wireless-12/09

 ATmega128RFA1

The Power Reduction ADC bit, PRADC (see "PRR0 – Power Reduction Register0" on
page 167) must be disabled by writing a logical zero to enable the ADC.

Figure 27-1. Analog to Digital Converter Block Schematic

8-BIT DATABUS

ADC CTRL & STATUS
REGISTER B (ADCSRB)

ADC CTRL & STATUS
REGISTER C (ADCSRC)

ADC MULTIPLEXER
SELECT (ADMUX)

ADC CTRL & STATUS
REGISTER A (ADCSRA)

TRIGGER
SELECT

A
D

F
R

A
D

S
C

ADTS[2:0]

INTERRUPT
FLAGS

A
D

IF

A
D

IE

AD CONVERSION
COMPLETE IRQ

ADC DATA REGISTER
(ADCH/ADCL)

15 0

PRESCALER

CONVERSION LOGIC

START

A
D

P
S

[2
:0

]

A
D

IF

A
D

E
N

A
D

C
[9

:0
]

A
D

S
U

T
[4

:0
]

A
D

T
H

T
[1

:0
]

A
D

L
A

R

MUX DECODER

M
U

X
[4

:0
]

M
U

X
[5

]

R
E

F
S

[1
:0

]

C
H

A
N

N
E

L
 S

E
L

E
C

T
IO

N

D
IF

F
 /
 G

A
IN

 S
E

L
E

C
T

10-bit DAC

SAMPLE & HOLD
COMPARATOR

AVDD

AREF

INTERNAL
REFERENCE

(1.5V/1.6V)

ADC[7:0]

AVSS

BANDGAP
REFERENCE

1.2V

TEMPERATURE
SENSOR

ADC[2:0]

GAIN
AMPLIFIER

ADC
MULTIPLEXER
OUTPUT

DRT VOLTAGE
SRAM2

CLAMP

A
C

C
H

27.2 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents 0V (conversion result 0x000) and the
maximum value in single ended mode represents the reference voltage minus 1 LSB
(conversion result 0x3FF). The reference voltage can be measured at the AREF pin.
The internal, generated reference voltage can have the values 1.5V, 1.6V or AVDD
where the 1.6V has the highest absolute accuracy. The reference voltage is selected by
writing to the REFSn bits in the ADMUX Register. An external reference voltage can
also be selected. Such an external voltage must be supplied with a very low impedance
RAREF,EXT (see "ADC Electrical Characteristics" on page 505). The load current IL,AREF

(see "ADC Electrical Characteristics" on page 505) seen by the external source is code
dependent and changes in the course of the successive approximation process (load
current steps). The internal voltage reference (except AVDD) must not be decoupled by
an external capacitor. Adding unnecessary external capacitance at the AREF pin will

412

8266A-MCU Wireless-12/09

ATmega128RFA1

cause instable operation of the internal reference voltage buffer and will not improve
noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX and
ADCSRB. Any of the ADC input pins, as well as AVSS and a fixed bandgap voltage
reference can be selected as single ended inputs to the ADC. A choice of ADC input
pins can be selected as positive and negative inputs to the differential amplifier.
Furthermore the temperature sensor and the DRT voltages of SRAM2 can also be
processed with the ADC.

If differential channels are selected, the amplified voltage difference between the
selected input channel pair then becomes the input of the ADC. The respective pin
voltages for a differential measurement can be in the range from 0V to EVDD. In this
way it is possible to handle differential input voltages with a common mode value higher
than AVDD e.g. process a 50mV differential signal with a 2.5V common mode voltage.
If single ended channels are used, the gain amplifier is bypassed altogether. Any ADC
input voltage (single-ended or amplified-differential) exceeding AVDD will be internally
clamped to AVDD to avoid damaging the ADC circuitry. Note that the pin input current
will not increase if the clamp circuit is active.

The ADC is enabled by setting ADEN bit in ADCSRA. Voltage reference and input
channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared. It is required to disable the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the
content of the Data Registers belongs to the same conversion. Once ADCL is read,
ADC access to Data Registers is blocked. This means that if ADCL has been read, and
a conversion completes before ADCH is read, neither register is updated and the result
from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL
Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes.
When ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

27.3 ADC Start-Up

After the ADC is enabled by setting ADEN, it will go through a start-up phase. The
analog supply voltage AVDD is turned on. It takes time tAVREG (see "Power Management
Electrical Characteristics" on page 503) µs for AVDD to stabilize. A stable AVDD
voltage is indicated by the AVDDOK bit in ADCSRB. After this the ADC and, for
differential input channels also the gain amplifier, is powered up. The duration of this
phase depends on the ADC clock period and the configuration of the Start-Up and
Track-And–Hold Time bits, ADSUT4:0 and ADTHT1:0 in ADCSRC. For details about
the start-up timing refer to section "Pre-scaling and Conversion Timing" on page 413.

During the ADC start-up phase a conversion start can already be requested by writing a
logical one to the ADC Start Conversion bit, ADSC in ADCSRA. In this case a
conversion is started directly after the start-up phase. During the start-up phase it is still
possible to change the analog input channel until the AVDDOK bit changes to logic one
or, if the AVDDOK bit is one, until the ADSC bit is set.

 413

8266A-MCU Wireless-12/09

 ATmega128RFA1

27.4 Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared
by hardware when the conversion is completed. If a different data channel is selected
while a conversion is in progress, the ADC will finish the current conversion before
performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto
Triggering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA.
The trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal still is set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

Figure 27-2. ADC Auto Trigger Logic

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLK
ADC

.

.

.

. EDGE
DETECTOR

ADATE

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new
conversion as soon as the ongoing conversion has finished. The ADC then operates in
Free Running mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
The ADSC bit will be read as one during a conversion, independently of how the
conversion was started.

27.5 Pre-scaling and Conversion Timing

27.5.1 Prescaler

By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 4 MHz. If a lower resolution than 10 bits is needed, the input clock

414

8266A-MCU Wireless-12/09

ATmega128RFA1

frequency to the ADC can be as high as 8 MHz to get a higher sample rate. For
differential input channels the ADC clock speed is restricted to a maximum of 2 MHz.

Figure 27-3. ADC Prescaler

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0

ADPS1

ADPS2

C
K

/1
2
8

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN

START

The ADC module contains a prescaler, which generates an acceptable ADC clock
frequency from any CPU frequency above 100 kHz. The pre-scaling is set by the ADPS
bits in ADCSRA. The prescaler starts counting from the moment when the ADC is
enabled. The prescaler keeps running for as long as the ADEN bit is set, and is
continuously reset when ADEN is low.

27.5.2 Start-Up Timing

The ADC is enabled by setting the ADEN bit in ADCSRA. First the analog voltage
regulator is powered up which takes tAVREG (see "Power Management Electrical
Characteristics" on page 503). A stable AVDD is indicated by the AVDDOK bit in
ADCSRB.

After AVDD has stabilized, the ADC is started. The ADC start-up time has a length of
tADSU and can be adjusted by the Start-Up time bits ADSUT4:0 in ADCSRC. If
differential input channels are used, then an additional initialization period tAINIT is
required by the gain amplifier. This period is configured by the Track-And-Hold Time
bits, ADTHT1:0 in ADCSRC. ADSUT4:0 and ADTHT1:0 are fixed numbers of ADC
clock cycles and can be setup for different ADC clock speeds.

The minimum required ADC start-up time is 20 µs. Note that for the maximum ADC
speed of 8 MHz the start-up time can not be set higher than 16 µs in ADSUT4:0. Under
this condition the user has either to ensure that a conversion is not started earlier than
20 µs after the ADC is enabled or the first conversion result should be discarded.

For a summary of start-up times and sequences see Table 27-1 below, Table 27-2
below, Figure 27-4 on page 415 and Figure 27-5 on page 415.

Table 27-1. Start-Up Time, Single Ended Channels

Parameter Duration in ADC Clock Cycles
ADC Start-Up Time tADSU 4(ADSUT+1), minimum 20 µs

Table 27-2. Start-Up Time, Differential Channels

Parameter Duration in ADC Clock Cycles
ADC Start-Up Time tADSU 4(ADSUT+1), minimum 20 µs

 415

8266A-MCU Wireless-12/09

 ATmega128RFA1

Parameter Duration in ADC Clock Cycles
Gain Amplifier Initialization Time tAINIT 2(ADTHT+2)

Figure 27-4. ADC Timing Diagram, Start-Up for Single Ended Channels

A D C C lo c k

A D E N

A D S C

A V D D O K

A D IF

A D C H

A D C L

A D C
S ta rt -U p

tA V P U tA D S U

M U X a n d R E F S U p d a te

1 1 T A D C _ C L K

C o n v e rs io n
A V D D

P o w e r -U p

S ig n a n d M S B o f R e s u lt

L S B o f R e s u lt

S a m p le
 & H o ld

C o n v e rs io n
C o m p le te

Figure 27-5. ADC Timing Diagram, Start-Up for Differential Channels

A D C C lo c k

A D E N

A D S C

A V D D O K

A D IF

A D C H

A D C L

A D C
S ta r t -U p

tA V P U tA D S U

M U X a n d R E F S U p d a te

1 1 T A D C _ C L K

C o n v e rs io n
A V D D

P o w e r -U p

S ig n a n d M S B

L S B o f R e s u lt

S a m p le
 & H o ld

C o n v e rs io n
C o m p le te

A m p lifie r
In it

tA IN IT

27.5.3 Conversion Timing

The delay from requesting a conversion start by setting the ADSC bit in ADCSRA to the
moment where the sample-and-hold takes place is fixed. The same fixed delay also
applies for auto triggered conversions. In this case three additional CPU clock cycles
are used for the trigger event synchronization logic. The delay depends on the
prescaler configuration ADPS and if single-ended or differential channels are used. A
summary is given in Table 27-3 on page 416. All conversions take 11 ADC clock cycles.

When a conversion is complete, the result is written to the ADC Data Registers, and
ADIF is set. In Single Conversion mode, ADSC is cleared simultaneously. The software
may then set ADSC again, and a new conversion will be initiated at the earliest after the
following tracking phase. The tracking phase is required after each conversion. Its
duration can be adjusted according to the ADC clock speed by the ADTHT bits in
ADCSRC and is different for single-ended and differential channels. For details see
Table 27-4 on page 416.

In Free Running mode, a new conversion will be started immediately after the tracking
phase of the previous conversion while ADSC remains high. The calculation of the
resulting sample rate is given in Table 27-5 on page 416.

For timing diagrams of single and auto triggered and free running conversions see
Figure 27-6 on page 416 to Figure 27-8 on page 417.

416

8266A-MCU Wireless-12/09

ATmega128RFA1

Table 27-3. Conversion Start Delay

Channel ADPS Delay from Conversion Start Request to Sample &

Hold tSCSMP

0, 1 2 CPU clock cycles

2 4 CPU clock cycles

3 0 CPU clock cycles

Single-Ended

4…7 0 CPU clock cycles

Differential 0…7 2 ADC clock cycles

Table 27-4. Tracking Time

Channel Tracking Phase Duration tTRCK in ADC Clock Cycles

Single-Ended ADTHT+1, minimum 500 ns

Differential 2ADTHT+3

Table 27-5. Sample Rate in Free Running Mode

Channel Sample Rate in ADC Clock Cycles

Single-Ended ADTHT+12

Differential 2ADTHT+14

Figure 27-6. ADC Timing Diagram, Single Conversion

A D C C lock

A D EN

A D SC

A D IF

A D C H

A D C L

M U X and R E FS U pdate

11 T A D C _C LK tTR C K

T rack ingC onvers ion

tS C S M P

S ign and M S B of R esult

LS B of R esult

M U X and R E FS U pdate
C onve rs ion

C om ple te

tS C S M P

C onve rs ion

Prescaler R eset
and
Sam ple & H old

Presca ler
R eset
and
Sam ple
& H old

Figure 27-7. ADC Timing Diagram, Auto Triggered Conversion

A D C C lock

A D EN

Trigger Source

A D IF

A D CH

A D CL

M U X and RE FS U pdate

11 T AD C_C LK tT R C K

TrackingC onvers ion

tSC S M P

S ign and M SB o f Result

LSB of R esult

M U X and RE FS U pdate
Convers ion

C om plete

tS C S M P

C onvers ion

Prescaler Reset
and
Sam ple & Hold

A D ATE

Prescaler
Reset
and
Sam ple
& Hold

 417

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 27-8. ADC Timing Diagram, Free Running Conversion

A D C C lock

A D T S [2 :0]

A D S C

A D IF

A D C H

A D C L

11 T A D C _C LK tT R C K

T rack ingC onvers ion

S ign and M S B of R esu lt

LSB of R esu lt

M U X and R E F S U pdate
C onvers ion

C om ple te
S am ple & H old

C onvers ion

 0

11 T A D C _C LK

27.6 Changing Channel or Reference Selection

The MUXn and REFSn bits in the ADMUX and ADCSRB Register are single buffered
through a temporary register to which the CPU has random access. This ensures that
the channels and reference selection only takes place at a safe point during the
conversion. The channel and reference selection is continuously updated either during
the AVDD power-up phase or until a conversion is started by setting ADSC. After this
the channel and reference selection is locked to ensure a sufficient initialization and
sampling time for the ADC. Continuous updating of the channel selection resumes after
the conversion has completed (ADIF in ADCSRA is set). The reference selection can
only be updated if the ADC is disabled and enabled again.

If Auto Triggering is used, the exact time of the triggering event can be undetermined.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN in the ADSCRA Register are written to one, an interrupt
event can occur at any time. If the ADMUX Register is changed in this period, the user
cannot tell if the next conversion is based on the old or the new settings. ADMUX can
be safely updated in the following ways:

1. When ADATE or ADEN is cleared.

2. During a conversion

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
A/D conversion.

After the channel or reference voltage selection is updated a settling time is required for
the ADC and the gain amplifier or the reference voltage to stabilize. When changing
the channel selection while the ADC is enabled the required settling phase is
automatically inserted by the ADC interface, see section "ADC Input Channels" on page
418. For consideration on changing the reference voltage selection please refer to
section"ADC Voltage Reference" on page 419.

27.6.1 Accessing the ADMUX Register

The channel selection bits MUX4:0 and MUX5 are located in two different register, the
ADMUX and the ADCSRB register. To ensure that changes go only into effect after
both register have been changed they are internally buffered (see Figure 27-9 on page
419 and Figure 27-10 on page 419). The MUX5 bit has to written first followed by a
write access to the MUX4:0 bits which triggers the update of the internal buffer. If only

418

8266A-MCU Wireless-12/09

ATmega128RFA1

the MUX4:0 bits need to be modified then a write access to the MUX4:0 bits is
sufficient.

27.6.2 ADC Input Channels

The ADC input channels can be changed while the ADC is running under the condition
that the previous channel was a single-ended one. Changing between differential
channels however requires that the ADC is disabled and enabled again to make the
ADC go through the initial start-up phase.

If changing from single-ended to single-ended or from single-ended to differential input
channels a settling phase is automatically inserted by the ADC interface logic after the
input channel is modified. The settling phase is required by the ADC and the gain
amplifier to stabilize. If a conversions start is requested during this settling phase, by
setting ADSC or by a trigger event in Auto Triggered mode then the conversion is
started only after the settling phase has completed.

In case the MUXn bits are altered during an ongoing conversion, the ADC input channel
is changed after the conversion has completed. MUXn changes occurring during the
tracking phase, which follows a conversion, will stop the tracking phase and the ADC
settling phase will be entered.

In Free Running mode MUXn can also be modified. In this case the ADC input channel
is changed after the conversion end or from the subsequent tracking phase. As a
consequence the time from one conversion to the next is extended by the duration of
the ADC settling phase.

The ADC settling time tASET depends on the previous and the new channel and on the
configuration of the ADSUT4:0 and ADTHT1:0 bits as shown in Table 27-6 below.
Additionally a synchronization delay tCHDLY from 2 CPU to 2 ADC Clock cycles is
required between changing the ADC input channel selection and the beginning of the
settling phase. For details see the timing diagrams Figure 27-9 on page 419 and Figure
27-10 on page 419.

If the analog input signal encounters large variations it can be useful to manually reset
the ADC and the gain amplifier before starting a new conversion. To achieve this, the
settling phase can be forced without modifying MUXn by writing a logic one to the
Analog Channel Change bit ACCH in ADCSRB. Using the ACCH bit is only
recommended for single-ended input channels. For differential input channels the ADC
and the gain amplifier can be reset if the ADC is disabled and enabled again.

Table 27-6. Settling Time after Channel Changes

Channel Transition Settling Time tASET in ADC Clock Cycles
Single-Ended or Differential to Single-Ended ADTHT+2

Single-Ended to Differential 4(ADSUT+1) + 2(ADTHT+2)

Differential to Differential Requires the ADC to be disabled and enabled
again.

 419

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 27-9. ADC Timing Diagram, Changing MUXn after a Conversion

A D C C lock

A D IF

A D C H

A D C L

tA S E T

A D C Se ttlingC onvers ion

S ign and M SB of R esu lt

LS B of R esu lt

C onvers ion
C om p lete

M U X 5:0

M U X 5:0 in te rna l

O ld C hannel N ew C hannel

N ew C hannelO ld C hannel

A D C Input
C hannel is
changed

tC H D LY N ew C onvers ion
can be sta rted
from here

Figure 27-10. ADC Timing Diagram, Changing MUXn during a Conversion

AD C C lock

AD IF

AD C H

AD C L

11 TA DC_ C LK tA S ET

AD C SettlingC onvers ion

S ign and M SB o f R esult

LSB of R esult

C onvers ion
C om plete

M U X5:0

M U X5:0 in tern al

O ld C hannel N ew C hanne l

N ew C hannelO ld C hanne l

AD C Input
C hannel is
changed

tC HD LY
N ew C onversion
can be started
from here

27.6.3 ADC Voltage Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC.
Single ended channels that exceed VREF will result 0x3FF. VREF can be selected by the
REFSn bits in the ADMUX register as either AVDD (1.8V), internal 1.5V or 1.6V
reference or an external voltage at the AREF pin.

AVDD is connected to the ADC through a passive switch. The internal 1.5V and 1.6V
references are generated from a bandgap reference (VBG) through an amplifier. In
either case, the external AREF pin is directly connected to the ADC and the reference
voltage can be measured at the AREF pin with a high impedance voltmeter. When
using the internal 1.5V or 1.6V references no external de-coupling capacitor must be
connected to AREF. High capacitive loading will de-stabilize the internal voltage
amplifier. The 1.6V reference voltage is calibrated to an absolute accuracy of 1 LSB
during the manufacturing process.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
external voltage. An external reference voltage must be supplied with a very low
impedance RAREF,EXT (see "ADC Electrical Characteristics" on page 505). The load
current IL,AREF (see "ADC Electrical Characteristics" on page 505) seen by the external
source is code dependent and changes (current steps) in the course of the successive
approximation process. If no external voltage is applied to the AREF pin, the user may
switch between AVDD, 1.5V and 1.6V as reference selection.

Changes of the reference selection bits REFSn will only take effect until the first
conversion start is requested by setting ADSC in ADCSRA. After this the ADC has to be

420

8266A-MCU Wireless-12/09

ATmega128RFA1

disabled and enabled again for new reference selections. For internal references a
stable voltage is indicated by the REFOK bit in ADCSRB.

27.7 ADC Noise Canceller

The ADC features a noise canceller that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceller
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC Conversion Complete interrupt must be
enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

3. If no other interrupts occur before the A/D conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine.
If another interrupt wakes up the CPU before the A/D conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will
be generated when the A/D conversion completes. The CPU will remain in active
mode until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption.

27.7.1 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 27-11 on
page 421. An analog source applied to ADCn is subjected to the pin capacitance and
input leakage of that pin, regardless of whether that channel is selected as input for the
ADC. When the channel is selected, the source must drive the S/H capacitor through
the series resistance (combined resistance in the input path).

The ADC is optimized for analog signals having output impedance ZOUT of
approximately 3 kΩ or less. If such a source is used, the sampling time will be
negligible. If a source with higher impedance is used, the correct sampling time will
depend on how much time is needed to charge the S/H capacitor, which can vary
widely. The user is recommended to only use low impedance sources with slowly
varying signals, since this minimizes the required charge transfer to the S/H capacitor.
The required tracking time (input sampling switch closed) tDTRCK to settle to within 1 LSB
can be estimated to

nskZt OUTDTRCK 097.0)2000/(⋅+Ω=

for ZOUT > 3kΩ (worst case: maximum input step). A minimum tracking time of 500ns is
guaranteed by the conversion logic. Based on the ADC clock frequency the bits
ADTHT[1:0] of register ADCSRC allow the adjustment of the tracking time to the user’s
requirements.

Tracking time requirements should also be considered for the differential mode. The
input signal is sampled by the gain amplifier. The value of the input capacitance CS/H
depends on the selected gain (~7pF for 200x gain, <1pF otherwise). The tracking is
equal to 50% of the clock period of CKADC2. Hence in differential mode a slower clock
frequency is required for input sources with high impedance.

 421

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 27-11. Analog Input Circuitry

A D C n

I IL

I IH

C S /H = 1 4 p F

V A V D D /2

2 k

Signal components higher than the Nyquist frequency (fADC/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

27.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the
ground plane, and keep them well away from high-speed switching digital tracks.

2. Use the ADC noise canceller function to reduce induced noise from the CPU.

3. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

27.7.3 Offset Compensation Schemes

The differential amplifier has a built-in offset cancellation circuitry that nulls the offset of
differential measurements as much as possible. The remaining offset in the analog path
can be measured directly by selecting the same channel for both differential inputs. This
offset residue can then be subtracted in software from the measurement results. The
offset on any channel can be reduced below one LSB using this kind of software based
offset correction.

27.7.4 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between 0V and VREF in 2
n
 steps

(LSB’s). The lowest code is read as 0, and the highest code is read as 2
n
-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal
transition (at 0.5 LSB). Ideal value: 0 LSB.

422

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 27-12. Offset Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the
last transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below
maximum). Ideal value: 0 LSB.

Figure 27-13. Gain Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the
maximum deviation of an actual transition compared to an ideal transition for any
code. Ideal value: 0 LSB.

 423

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 27-14. Integral Non-linearity (INL)
Output Code

VREF Input Voltage

Ideal ADC

Actual ADC
IN

L

• Differential Non-linearity (DNL): The maximum deviation of the actual code width
(the interval between two adjacent transitions) from the ideal code width (1 LSB).
Ideal value: 0 LSB.

Figure 27-15. Differential Non-linearity (DNL)

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB

• Quantization Error: Due to the quantization of the input voltage into a finite number
of codes, a range of input voltages (1 LSB wide) will code to the same value. It is
always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition
compared to an ideal transition for any code. This is the compound effect of offset,
gain error, differential error, non-linearity, and quantization error. Ideal value: ±0.5
LSB.

27.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH).

424

8266A-MCU Wireless-12/09

ATmega128RFA1

For single ended conversion, the result is

REF

IN

V

V
ADC

1024⋅
=

where VIN is the voltage on the selected input pin and VREF the selected voltage
reference (see "Table 27-10" on page 427 and "Table 27-11" on page 428). 0x000
represents analog ground, and 0x3FF represents the selected reference voltage minus
one LSB.

If differential channels are used, the result is

()

REF

NEGPOS

V

GAINVV
ADC

512⋅⋅−
=

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative
input pin, and VREF the selected voltage reference. The result is presented in two’s
complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of
the result (ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero,
the result is positive. Figure 27-16 below shows the decoding of the differential input
range.

Table 27-7 on page 425 shows the resulting output codes if the differential input
channel pair (ADCn - ADCm) is selected with a gain of GAIN and a reference voltage of
VREF.

Figure 27-16. Differential Measurement Range

0

Output code

0x1FF

0x000

V
REF

/GAIN Differential Input
voltage (Volts)

0x3FF

0x200

- V
REF

/GAIN

 425

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 27-7. Correlation Between Input Voltage and Output Codes

VADCn Read Code Corresponding Decimal Value

VADCm + VREF / GAIN 0x1FF 511

VADCm + 0.999 VREF / GAIN 0x1FF 511

VADCm + 0.998 VREF / GAIN 0x1FE 510

… … …

VADCm + 0.001 VREF / GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF / GAIN 0x3FF -1

… … …

VADCm - 0.999 VREF / GAIN 0x201 -511

VADCm - VREF / GAIN 0x200 -512

Example:

ADMUX = 0xED (ADC3 - ADC2, 10x gain, 1.6V reference, left adjusted result)

The voltage on ADC3 is 300 mV; the voltage on ADC2 is 425 mV.

ADCR = 512 * 10 * (300 - 425) / 1600 = -400 = 0x270.

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right
adjusts the result: ADCL = 0x70, ADCH = 0x02.

27.9 Internal Temperature Measurement

The on-chip temperature can be measured using a special setup of the A/D converter
inputs. The integrated temperature sensor provides a linear, medium-accurate voltage
proportional to the absolute temperature (in Kelvin). This voltage is first amplified with
the programmable gain amplifier and then processed with the A/D converter. A low
frequency of the conversion clock must be selected due to the nature of the input
signal. The absolute accuracy of the temperature measurement is limited by
manufacturing tolerances, noise from supply and ground voltages and the exactness of
the reference voltage. The following table summarizes the preferred setup of the
temperature measurement:

Table 27-8. Recommended ADC Setup for Temperature Measurement

Parameter Register Recommended Setup

ADC Channel ADMUX,
ADCSRB

Select the Temperature Sensor, MUX4:0 = 01001;
MUX5 = 1;

ADC Clock ADCSRA Select a clock frequency of 500kHz or lower;

VREF ADMUX Select the internal 1.6V reference voltage;

Start-up time ADCSRC Standard requirement of 20µs is sufficient;

Tracking time ADCSRC Setting ADTHT = 0 is sufficient;

The A/D conversion result ADCTEMP will always be a positive number. The ideal result
can be calculated when using the internal 1.6V reference voltage according to the
following equation:

CADCTEMP °⋅+= /885.04.241 θ

Similar the Celsius-temperature θ can be extracted from the A/D conversion result with
this formula:

426

8266A-MCU Wireless-12/09

ATmega128RFA1

8.27213.1/ −⋅=° TEMPADCCθ

Note that the above equations are only valid in the allowed operating temperature
range. The translation of the A/D measurement result to a Celsius-temperature value
can be easily achieved with a look-up table in software. The accuracy of the
temperature reading can be improved by averaging of multiple A/D conversion results.
In this way the impact of noise is reduced. The temperature sensor is connected to a
differential input channel with a gain of 10. The offset error of the channel can be
corrected to the first order by using an appropriate channel (e.g. MUX4:0=01000,
MUX5=0, see Table 27-11 on page 428). The in that manner measured error of the
differential signal processing is then subtracted from the temperature sensor ADC
reading.

Note that changing between the temperature sensor channel and the channel for the
offset error correction can lead to a large difference of the analog input voltage.
Therefore it is recommended to disable the ADC, select the new channel and then
enable the ADC again.

27.10 SRAM DRT Voltage Measurement

The decrease of the supply voltage of SRAM block 2 for the leakage current reduction
can also be measured using a special setup of the A/D converter inputs. The details of
the SRAM leakage current reduction are described in section "SRAM with Data
Retention" on page 163. The supply voltage of a disabled SRAM block can be reduced
to save leakage power while maintaining data retention. This feature applies to all four
SRAM blocks however only the voltage of SRAM block 2 can be verified using the A/D
converter.

The default factory setting for the data retention (DRT) voltage normally guarantees the
best leakage performances. Other values are nevertheless possible and can be
selected by the application software. The true value of the supply voltage reduction is
depending on the manufacturing process and environmental conditions like
temperature. The A/D converter allows determining the value of the DRT voltage of
SRAM block 2. The same voltage setting results for all practical purposes in the same
supply voltage for all other SRAM blocks.

Care must be taken when verifying the DRT voltage of SRAM block 2 with the A/D
converter because it will be put into sleep mode and hence it is not available for the
application program. Addressing the disabled SRAM will return invalid data (all data
read zero). The voltage measurement is split into two parts. One setting allows
measuring the voltage drop from DVDD. The other setting allows verifying the voltage
shift from DVSS. Both measurements are differential and use the programmable gain
amplifier. A low frequency of the conversion clock must be selected due to the high-
impedance nature of the input signal. Accurate and stable voltage readings may just be
available after a long waiting time of up to 100 ms. This limitation is the consequence of
the small leakage currents that discharge the internal de-coupling capacitances before
the supply voltage settles to the DRT value. The following table summarizes the
preferred setup of the DRT voltage measurement:

Table 27-9. Recommended ADC Setup for DRT Voltage Measurements

Parameter Register Recommended Setup

SRAM DRT on DRTRAM2 Set bits DISPC and ENDRT to 1;

ADC Channel ADMUX,

Select MUX4:0 = 10100 to measure VDRTBBP;

Select MUX4:0 = 11101 to measure VDRTBBN;

 427

8266A-MCU Wireless-12/09

 ATmega128RFA1

Parameter Register Recommended Setup

ADCSRB MUX5 = 1;

ADC Clock ADCSRA Select a clock frequency of 500kHz or lower;

VREF ADMUX Select the internal 1.6V reference voltage;

Start-up time ADCSRC Standard requirement of 20µs is sufficient;

Tracking time ADCSRC Setting ADTHT = 0 is sufficient;

The A/D conversion result will always be a positive number for both VDRTBBP and
VDRTBBN. The SRAM supply voltage is easily calculated according to the following
equation (see chapter "SRAM with Data Retention" on page 163):

)(,, DRTBBNDRTBBPDDDRTSRAMDD VVVV +−=

The conversion result is coded as described in "ADC Conversion Result" on page 423
with a GAIN of 0.5. It is not possible to read both VDRTBBP and VDRTBBN at the same time.
However the time required for the A/D conversion is short compared to the time
constant of a DRT voltage change.

27.11 Register Description

27.11.1 ADMUX – ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0

NA ($7C) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in the following table.
Changes of these bits will only take effect until the first conversion start is requested by
setting ADSC. After this the ADC has to be disabled and enabled again for new
reference selections. The internal voltage reference options may not be used if an
external reference voltage is being applied to the AREF pin.

Table 27-10. Reference Voltage Selections for ADC

REFS1 REFS0 Reference Voltage Selection

0 0 AREF, Internal VREF turned off

0 1 AVDD (1.8V)

1 0 Internal 1.5V Voltage Reference (no external capacitor at AREF pin)

1 1 Internal 1.6V Voltage Reference (no external capacitor at AREF pin)

• Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the A/D conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see
"ADCL and ADCH – The ADC Data Register" on page 432.

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs is connected to the
ADC. See Table 27-11 on page 428 for details. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in

428

8266A-MCU Wireless-12/09

ATmega128RFA1

ADCSRA is set). Note that the MUX5 bit is located in the ADCSRB register. A write
access to the MUX4:0 bits triggers the update of the internally buffered MUX5 bit, see
"Accessing the ADMUX Register" on page 417 .

27.11.2 ADCSRB – ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0

NA ($7B) AVDDOK ACME REFOK ACCH MUX5 ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

• Bit 7 – AVDDOK: AVDD Supply Voltage OK

The analog functions of the ADC are powered from the AVDD domain. AVDD is
supplied from an internal voltage regulator. Setting the ADEN bit in register ADCSRA
will power-up the AVDD domain if not already requested by another functional group of
the device. The bit allows the user to monitor (poll) the status of the AVDD domain. A
status of 1 indicates that AVDD has been powered-up.

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

This bit is used for the Analog Comparator only. See "ADCSRB – ADC Control and
Status Register B" on page 409 for details.

• Bit 5 – REFOK: Reference Voltage OK

The status of the internal generated reference voltage can be monitored through this
bit. Setting the ADEN bit in register ADCSRA will enable the reference voltage for the
ADC according to the REFSn bits in the ADMUX register. The reference voltage will be
available after a start-up delay. A REFOK value of 1 indicates that the internal
generated reference voltage is approaching final levels.

• Bit 4 – ACCH: Analog Channel Change

The user can force a reset of the analog blocks by setting this bit to 1 without
requesting a different channel. The analog blocks of the ADC will be reset to handle
possible new voltage ranges. Such a reset phase is especially important for the gain
amplifier. It could be temporarily disabled by a large step of its input common voltage
leading to erroneous A/D conversion results. ACCH will read as one until the reset
phase of the analog blocks can be entered.

• Bit 3 – MUX5: Analog Channel and Gain Selection Bit

This bit is used together with MUX4:0 in ADMUX to select the analog input signals
connected to the ADC. See the following table for details. If this bit is changed during a
conversion, the change will not go in effect until this conversion is complete. Note that
the MUX5 bit is internally buffered and a write access to the MUX4:0 bits is required to
trigger the update of the MUX5 bit, see "Accessing the ADMUX Register" on page 417 .

Table 27-11. Input Channel Selections

MUX5:0

Single Ended

Input

Positive Differential

Input

Negative Differential

Input Gain

000000 ADC0

000001 ADC1

000010 ADC2

000011 ADC3

000100 ADC4

000101 ADC5

N/A

 429

8266A-MCU Wireless-12/09

 ATmega128RFA1

MUX5:0

Single Ended

Input

Positive Differential

Input

Negative Differential

Input Gain

000110 ADC6

000111 ADC7

001000 ADC0 ADC0 10x

001001 ADC1 ADC0 10x

001010 ADC0 ADC0 200x

001011 ADC1 ADC0 200x

001100 ADC2 ADC2 10x

001101 ADC3 ADC2 10x

001110 ADC2 ADC2 200x

001111

N/A

ADC3 ADC2 200x

010000 ADC0 ADC1 1x

010001 ADC1 ADC1 1x

010010 ADC2 ADC1 1x

010011 ADC3 ADC1 1x

010100 ADC4 ADC1 1x

010101 ADC5 ADC1 1x

010110 ADC6 ADC1 1x

010111

N/A

ADC7 ADC1 1x

011000 ADC0 ADC2 1x

011001 ADC1 ADC2 1x

011010 ADC2 ADC2 1x

011011 ADC3 ADC2 1x

011100 ADC4 ADC2 1x

011101

N/A

ADC5 ADC2 1x

011110 1.2V (VBG)

011111 0V (AVSS)
N/A

100000 Reserved

100001 Reserved

100010 Reserved

100011 Reserved

100100 Reserved

100101 Reserved

100110 Reserved

100111 Reserved

N/A

101000 Reserved

101001 Temperature Sensor

101010 Reserved

101011 Reserved

101100 Reserved

101101 Reserved

101110

N/A

Reserved

430

8266A-MCU Wireless-12/09

ATmega128RFA1

MUX5:0

Single Ended

Input

Positive Differential

Input

Negative Differential

Input Gain

101111 Reserved

110000 Reserved

110001 Reserved

110010 Reserved

110011 Reserved

110100 SRAM Back-bias Voltage VDRTBBP

110101 Reserved

110110 Reserved

110111

N/A

Reserved

111000 Reserved

111001 Reserved

111010 Reserved

111011 Reserved

111100 Reserved

111101

N/A

SRAM Back-bias Voltage VDRTBBN

111110 Reserved

111111 Reserved
N/A

• Bits 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an A/D conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.
Note that switching from a trigger source that is cleared, to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS2:0=0) will not cause a
trigger event, even if the ADC Interrupt Flag is set.

Table 27-12. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

27.11.3 ADCSRA – ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0

NA ($7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

 431

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. The AVDD supply voltage will also be enabled
if not already available. By writing it to zero, the ADC is turned off. Turning the ADC off
while a conversion is in progress will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free
Running mode, write this bit to one to start the first conversion. The first conversion
after ADSC has been written after the ADC has been enabled, or if ADSC is written at
the same time as the ADC is enabled, will include a start-up time to initialize the analog
blocks of the ADC. The start-up time is defined by the ADSUT bits of register ADCSRC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will
start a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an A/D conversion is completed and the Data Register are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be
disabled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion
Complete Interrupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the CPU frequency and the input clock
to the ADC.

Table 27-13. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

27.11.4 ADCSRC – ADC Control and Status Register C

Bit 7 6 5 4 3 2 1 0

NA ($77) ADTHT1 ADTHT0 Res0 ADSUT4 ADSUT3 ADSUT2 ADSUT1 ADSUT0 ADCSRC

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 1 0 1 0 1 0 0

432

8266A-MCU Wireless-12/09

ATmega128RFA1

This register defines the track-and-hold time for sampling the analog input voltage of
the ADC and it defines the start-up time for the analog blocks based on a number of
ADC clock cycles. The ADC clock is generated from the system clock with the ADC
prescaler. The bits ADPS2:0 of register ADCSRA set the prescaler ratio. Correct start-
up and track-and-hold times are important for precise conversion results.

• Bits 7:6 – ADTHT1:0: ADC Track-and-Hold Time

These bits define the number of ADC clock cycles for the sampling time of the analog
input voltage. For a complete description of this bit, see "Pre-scaling and Conversion
Timing" on page 413.

• Bit 5 – Res0: Reserved

• Bits 4:0 – ADSUT4:0: ADC Start-up Time

These bits define the number of ADC clock cycles for the start-up time of the analog
blocks. For a complete description of this bit, see "Pre-scaling and Conversion Timing"
on page 413.

27.11.5 ADCL and ADCH – The ADC Data Register

27.11.5.1 ADLAR = 0

Bit 15 14 13 12 11 10 9 8

NA ($79) – – – – – – ADC9 ADC8 ADCH

NA ($78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

 R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

27.11.5.2 ADLAR = 1

Bit 15 14 13 12 11 10 9 8

NA ($79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

NA ($78) ADC1 ADC0 – – – – – – ADCL

 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

 R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

When an A/D conversion is complete, the result is found in these two registers. If
differential channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read.
Consequently, if the result is left adjusted and no more than 8-bit precision (7 bit + sign
bit for differential input channels) is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted.

 433

8266A-MCU Wireless-12/09

 ATmega128RFA1

• ADC9:0: A/D Conversion Result

These bits represent the result from the conversion as detailed in "ADC Conversion
Result" on page 423.

27.11.6 DIDR0 – Digital Input Disable Register 0

Bit 7 6 5 4 3 2 1 0

NA ($7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

• Bits 7:0 – ADC7D:ADC0D: Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin
is disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC7:0 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer.

27.11.7 DIDR2 – Digital Input Disable Register 2

Bit 7 6 5 4 3 2 1 0

NA ($7D) ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D DIDR2

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

Reserved for future use.

• Bit 7:0 – ADC15D:ADC8D - Reserved Bits

This bit is reserved for future use. For ensuring compatibility with future devices, this bit
must be written to zero.

27.11.8 BGCR – Reference Voltage Calibration Register

Bit 7 6 5 4

NA ($67) Res BGCAL_FINE3 BGCAL_FINE2 BGCAL_FINE1 BGCR

Read/Write R RW RW RW

Initial Value 0 0 0 0
Bit 3 2 1 0

NA ($67) BGCAL_FINE0 BGCAL2 BGCAL1 BGCAL0 BGCR

Read/Write RW RW RW RW

Initial Value 0 0 0 0

This register contains the calibration values of the reference voltage of the ADC. The
values are loaded from the fuse memory after power-up. They can be corrected by the
application software e.g. to compensate for temperature changes. The internal 1.6V
reference voltage is calibrated and has therefore the highest accuracy compared to the
1.5V or AVDD reference.

• Bit 7 – Res - Reserved Bit

This bit is reserved for future use. A read access always will return zero. A write access
does not modify the content.

434

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 6:3 – BGCAL_FINE3:0 - Fine Calibration Bits

These bits allow the calibration of the AREF voltage with a resolution of 2mV.

Table 27-14 BGCAL_FINE Register Bits

Register Bits Value Description

0 Center value

1 Voltage step up

8 Voltage step down

7 Setting for highest voltage

BGCAL_FINE3:0

15 Setting for lowest voltage

• Bit 2:0 – BGCAL2:0 - Coarse Calibration Bits

These bits allow the calibration of the AREF voltage with a resolution of 10mV.

Table 27-15 BGCAL Register Bits

Register Bits Value Description

4 Center value

3 Voltage step up

5 Voltage step down

0 Setting for highest voltage

BGCAL2:0

7 Setting for lowest voltage

 435

8266A-MCU Wireless-12/09

 ATmega128RFA1

28 JTAG Interface and On-chip Debug System

28.1 Features

• JTAG (IEEE std. 1149.1 Compliant) Interface

• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG)
Standard

• Debugger Access to:

o All Internal Peripheral Units

o Internal and External RAM

o The Internal Register File–Program Counter

o EEPROM and Flash Memories

• Extensive on-chip debug Support for Break Conditions, Including

o AVR Break Instruction

o Break on Change of Program Memory Flow

o Single Step Break

o Program Memory Breakpoints on Single Address or Address Range

o Data Memory Breakpoints on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG
Interface

• On-chip debugging Supported by AVR Studio
®

28.2 Overview

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for
Programming via the JTAG interface, and using the Boundary-scan Chain can be found
in the sections "Programming via the JTAG Interface" on page 481 and "Programming
via the JTAG Interface" on page 481, respectively. The on-chip debug support is
considered being private JTAG instructions, and distributed within ATMEL and to
selected third party vendors only.

Figure 28-1 on page 436 shows a block diagram of the JTAG interface and the on-chip
debug system. The TAP Controller is a state machine controlled by the TCK and TMS
signals. The TAP Controller selects either the JTAG Instruction Register or one of
several Data Registers as the scan chain (Shift Register) between the TDI – input and
TDO – output. The Instruction Register holds JTAG instructions controlling the behavior
of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data
Registers used for board-level testing. The JTAG Programming Interface (actually
consisting of several physical and virtual Data Registers) is used for serial programming
via the JTAG interface. The internal scan-chain and breakpoint scan-chain are used for
on-chip debugging only.

436

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 28-1. Block Diagram

TAP
CONTROLLER

TDI

TDO

TCK

TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

ANALOG
PERIPHERIAL

UNITS

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

Analog inputs

Control & Clock lines

DEVICE BOUNDARY

28.3 TAP - Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller
state machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT –
which is not provided.

When the JTAGEN Fuse is un-programmed, these four TAP pins are normal port pins,
and the TAP controller is in reset. When programmed the input TAP signals are
internally pulled high and the JTAG is enabled for Boundary-scan and programming.
The device is shipped with this fuse programmed.

For the on-chip debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open
collectors on the reset line are used in the application.

 437

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 28-2. TAP Controller State Diagram

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

28.4 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or on-chip debug system. The
state transitions depicted in Figure 28-2 above depend on the signal present on TMS
(shown adjacent to each state transition) at the time of the rising edge at TCK. The
initial state after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG
interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of
the JTAG instructions into the JTAG Instruction Register from the TDI input at the
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when
this state is left by setting TMS high. While the instruction is shifted in from the TDI
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction

438

8266A-MCU Wireless-12/09

ATmega128RFA1

selects a particular Data Register as path between TDI and TDO and controls the
circuitry surrounding the selected Data Register.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction
is latched onto the parallel output from the Shift Register path in the Update-IR state.
The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the state
machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the
Shift Data Register – Shift-DR state. While in this state, upload the selected Data
Register (selected by the present JTAG instruction in the JTAG Instruction Register)
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of
the data is shifted in when this state is left by setting TMS high. While the Data
Register is shifted in from the TDI pin, the parallel inputs to the Data Register
captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.

Note that independent of the initial state of the TAP Controller, the Test-Logic-Reset
state can always be entered by holding TMS high for five TCK clock periods. For
detailed information on the JTAG specification, refer to the literature listed in
"Bibliography" on page 440.

28.5 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section "IEEE
1149.1 (JTAG) Boundary-scan" on page 441.

28.6 Using the On-chip Debug System

As shown in Figure 28-1, the hardware support for on-chip debugging consists mainly
of

• A scan chain on the interface between the internal AVR CPU and the internal
peripheral units.

• Breakpoint unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Breakpoint Unit implements Break on Change of Program Flow, Single Step Break,
two program memory breakpoints and two combined breakpoints. Together, the four
breakpoints can be configured as either:

• 4 single program memory breakpoints;

• 3 single program memory breakpoint + 1 single data memory breakpoint;

• 2 single program memory breakpoints + 2 single data memory breakpoints;

 439

8266A-MCU Wireless-12/09

 ATmega128RFA1

• 2 single program memory breakpoints + 1 program memory breakpoint with mask
(“range breakpoint”).

• 2 single program memory breakpoints + 1 data memory breakpoint with mask
(“range breakpoint”).

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.

A list of the on-chip debug specific JTAG instructions is given in "On-chip Debug
Specific JTAG Instructions" below.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In
addition, the OCDEN Fuse must be programmed and no Lock bits must be set for the
on-chip debug system to work. As a security feature, the on-chip debug system is
disabled when either of the LB1 or LB2 Lock-bits are set. Otherwise, the on-chip debug
system would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with on-chip debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio supports source level execution of Assembly
programs assembled with Atmel Corporation’s AVR Assembler and C programs
compiled with third party vendors’ compilers. For a full description of the AVR Studio,
please refer to the AVR Studio User Guide. Only highlights are presented in this
document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code breakpoints (using the BREAK instruction) and up to two data memory
Breakpoints, alternatively combined as a mask (range) breakpoint.

28.7 On-chip Debug Specific JTAG Instructions

The on-chip debug support is considered being private JTAG instructions, and
distributed within ATMEL and to selected third party vendors only. Instruction operation
codes are listed for reference.

28.7.1 PRIVATE0; 0x8
Private JTAG instruction for accessing on-chip debug system;

28.7.2 PRIVATE1; 0x9
Private JTAG instruction for accessing on-chip debug system;

28.7.3 PRIVATE2; 0xA
Private JTAG instruction for accessing on-chip debug system;

28.7.4 PRIVATE3; 0xB
Private JTAG instruction for accessing on-chip debug system;

28.8 Using the JTAG Programming Capabilities

Programming of the ATmega128RFA1 via JTAG is performed via the 4-pin JTAG port,
TCK, TMS, TDI, and TDO. These are the only pins that need to be controlled and
observed to perform JTAG programming (in addition to power pins). The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to
enable the JTAG Test Access Port.

440

8266A-MCU Wireless-12/09

ATmega128RFA1

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a
chip erase. This is a security feature that ensures no back-door exists for reading out
the content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section "Programming via the JTAG Interface" on
page 481.

28.9 Bibliography

For more information about general Boundary-scan, the following literature can be
consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992.

28.10 On-chip Debug Related Register in I/O Memory

28.10.1 OCDR – On-Chip Debug Register

Bit 7 6 5 4 3 2 1 0

$31 ($51) OCDR7:0 OCDR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in
the microcontroller to the debugger. The CPU can transfer a byte to the debugger by
writing to this location. At the same time, an internal flag; I/O Debug Register Dirty
IDRD is set to indicate to the debugger that the register has been written. When the
CPU reads the OCDR Register the 7 LSB will be from the OCDR Register, while the
MSB is the IDRD bit. The debugger clears the IDRD bit when it has read the
information. In some AVR devices, this register is shared with a standard I/O location.
In this case, the OCDR Register can only be accessed if the OCDEN Fuse is
programmed, and the debugger enables access to the OCDR Register. In all other
cases, the standard I/O location is accessed.

• Bit 7:0 – OCDR7:0 - On-Chip Debug Register Data

Table 28-16 OCDR Register Bits

Register Bits Value Description

OCDR7:0 0 Refer to the debugger documentation for
further information on how to use this
register.

 441

8266A-MCU Wireless-12/09

 ATmega128RFA1

29 IEEE 1149.1 (JTAG) Boundary-scan

29.1 Features

• JTAG (IEEE std. 1149.1 compliant) Interface

• Boundary-scan Capabilities According to the JTAG Standard

• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip
Connections

• Supports the Optional IDCODE Instruction

• Additional Public AVR_RESET Instruction to Reset the ATmega128RFA1

29.2 System Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing
interconnections and integrity of components on Printed Circuits Boards by using the
four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS,
SAMPLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
Data Register path will show the ID-Code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any port pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the
SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to
avoid damaging the board when issuing the EXTEST instruction for the first time.
SAMPLE/PRELOAD can also be used for taking a snapshot of the external pins during
normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

29.3 Data Registers

The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

442

8266A-MCU Wireless-12/09

ATmega128RFA1

• Reset Register

• Boundary-scan Chain

29.3.1 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass
Register is selected as path between TDI and TDO, the register is reset to 0 when
leaving the Capture-DR controller state. The Bypass Register can be used to shorten
the scan chain on a system when the other devices are to be tested.

29.3.2 Device Identification Register

Figure 29-1. The Format of the Device Identification Register

 MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

 4 bits 16 bits 11 bits 1 bit

29.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version
number follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so
on.

29.3.2.2 Part Number

The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega128RFA1 is listed in Table 31-6 on page 467.

29.3.2.3 Manufacturer ID

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG
manufacturer ID for ATMEL is listed in Table 31-6 on page 467.

29.3.3 Reset Register

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the
unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the fuse settings for the clock options, the part will remain reset for a reset time-out
period (see "Clock Sources" on page 148) after releasing the Reset Register. The
output from this Data Register is not latched, so the reset will take place immediately,
as shown in Figure 29-2 on page 443.

 443

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 29-2. Reset Register

D Q
From

TDI

ClockDR · AVR_RESET

To

TDO

From Other Internal and

External Reset Sources

Internal reset

29.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See "Boundary-scan Chain" on page 444 for a complete description.

29.4 Boundary-scan Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedance state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

29.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog
circuits having off-chip connections, the interface between the analog and the digital
logic is in the scan chain. The contents of the latched outputs of the Boundary-scan
chain is driven out as soon as the JTAG IR-Register is loaded with the EXTEST
instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

29.4.2 IDCODE; 0x1

Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-
Register consists of a version number, a device number and the manufacturer code
chosen by JEDEC. This is the default instruction after power-up.

444

8266A-MCU Wireless-12/09

ATmega128RFA1

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

29.4.3 SAMPLE_PRELOAD; 0x2

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output
latches are not connected to the pins. The Boundary-scan Chain is selected as Data
Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan chain is applied to the output latches.
However, the output latches are not connected to the pins.

29.4.4 AVR_RESET; 0xC

The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as Data Register. Note that the reset
will be active as long as there is a logic “one” in the Reset Chain. The output from this
chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

29.4.5 BYPASS; 0xF

Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

29.5 Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection.

29.5.1 Scanning the Digital Port Pins

Figure 29-3 on page 445 shows the Boundary-scan Cell for a bi-directional port pin. The
pull-up function is disabled during Boundary-scan when the JTAG IC contains EXTEST
or SAMPLE_PRELOAD. The cell consists of a bi-directional pin cell that combines the
three signals Output Control - OCxn, Output Data - ODxn, and Input Data - IDxn, into
only a two-stage Shift Register. The port and pin indexes are not used in the following
description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 29-4 on
page 446 shows a simple digital port pin as described in the section "I/O-Ports" on page
186. The Boundary-scan details from Figure 29-3 on page 445 replaces the dashed box
in Figure 29-4 on page 446.

 445

8266A-MCU Wireless-12/09

 ATmega128RFA1

When no alternate port function is present, the Input Data - ID - corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction - DD Register, and
the Pull-up Enable - PUExn – corresponds to logic expression:

PORTxnDDxnPUD ⋅⋅

Digital alternate port functions are connected outside the dotted box Figure 29-4 on
page 446 to make the scan chain read the actual pin value. For analog function, there is
a direct connection from the external pin to the analog circuit. There is no scan chain on
the interface between the digital and the analog circuitry, but some digital control signal
to analog circuitry are turned off to avoid driving contention on the pads.

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on
the port pins even if the CKOUT fuse is programmed. Even though the clock is output
when the JTAG IR contains SAMPLE_PRELOAD, the clock is not sampled by the
boundary scan.

Figure 29-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function

446

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 29-4. General Port Pin Schematic Diagram

CLK

RPx

RRx

WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
A
T
A

 B
U

S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

See Boundary-scan

Description for Details!

PUExn

OCxn

ODxn

IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn

29.5.2 Scanning the RSTN, CLKI and TST Pin

An observe-only cell as shown in Figure 29-5 below is inserted for the active low reset
signal RSTN, for the active high programming and test mode enable signal TSTN and
for the clock input CLKI.

Figure 29-5. Observe-only Cell

0

1
D Q

From

Previous

Cell

ClockDR

ShiftDR

To

Next

Cell

From System Pin To System Logic

FF1

 447

8266A-MCU Wireless-12/09

 ATmega128RFA1

29.5.3 Scanning the RSTON Pin

For the low-active reset output pin RSTON a boundary-scan cell as shown in Figure
29-6 below is inserted.

Figure 29-6. Boundary-scan Cell for Output Pins without Pull-up Function

0

1
0

1

EXTESTTo Next CellShiftDR

From System Logic

From Previous

Cell

UpdateDRClockDR

LD0FF0

D Q D Q

G

29.6 Boundary-scan Related Register in I/O Memory

29.6.1 MCUCR – MCU Control Register

Bit 7 6 5 4 3 2 1 0

$35 ($55) JTD MCUCR

Read/Write RW

Initial Value 0

The MCU Control Register contains control bits for general Microcontroller Unit
functions.

• Bit 7 – JTD - JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is
programmed. If this bit is one, the JTAG interface is disabled. In order to avoid
unintentional disabling or enabling of the JTAG interface, a timed sequence must be
followed when changing this bit: The application software must write this bit to the
desired value twice within four cycles to change its value. Note that this bit must not be
altered when using the On-chip Debug system.

29.6.2 MCUSR – MCU Status Register

Bit 7 6 5 4 3 2 1 0

$34 ($54) JTRF MCUSR

Read/Write RW

Initial Value 0

The MCU Status Register provides information on which reset source caused an MCU
reset.

448

8266A-MCU Wireless-12/09

ATmega128RFA1

• Bit 4 – JTRF - JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset,
or by writing a logic zero to the flag.

29.7 Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-scan Data Register are included in this description.
BSDL files are available for ATmega128RFA1.

29.8 ATmega128RFA1 Boundary-scan Order

Table 29-1 on page 449 shows the Scan order between TDI and TDO when the
Boundary-scan chain is selected as data path. Bit 0 is the LSB; the first bit scanned in,
and the first bit scanned out. The scan order follows the pin-out order. In Figure 29-3 on
page 445, PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, PXn. Bit 4,
5, 6 and 7 of Port F is not in the scan chain, since these pins constitute the TAP pins
when the JTAG is enabled.

 449

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 29-1. ATmega128RFA1 Boundary-Scan Order

Bit

Number Signal Name Module

Bit

Number Signal Name Module

0 PF1.Control 36 CLKI.Data Clock Input (Input Only)

1 PF1.Data 37 PD7.Control

2 PF0.Control 38 PD7.Data

3 PF0.Data

Port F

 39 PD6.Control

4 PE7.Control 40 PD6.Data

5 PE7.Data 41 PD5.Control

6 PE6.Control 42 PD5.Data

7 PE6.Data 43 PD4.Control

8 PE5.Control 44 PD4.Data

9 PE5.Data 45 PD3.Control

10 PE4.Control 46 PD3.Data

11 PE4.Data 47 PD2.Control

12 PE3.Control 48 PD2.Data

13 PE3.Data 49 PD1.Control

14 PE2.Control 50 PD1.Data

15 PE2.Data 51 PD0.Control

16 PE1.Control 52 PD0.Data

Port D

17 PE1.Data 53 PG5.Control

18 PE0.Control 54 PG5.Data

19 PE0.Data

Port E

 55 PG4.Control

20 PB7.Control 56 PG4.Data

21 PB7.Data 57 PG3.Control

22 PB6.Control 58 PG3.Data

23 PB6.Data 59 PG2.Control

24 PB5.Control 60 PG2.Data

25 PB5.Data 61 PG1.Control

26 PB4.Control 62 PG1.Data

27 PB4.Data 63 PG0.Control

28 PB3.Control 64 PG0.Data

Port G

29 PB3.Data 65 RSTON.Data
Reset Logic Output (Output Only
without Pull-up)

30 PB2.Control 66 RSTT.Data Reset Logic (Observe Only)

31 PB2.Data 67 TST.Data
Test and Programming Mode
Enable (Observe Only)

32 PB1.Control 68 PF3.Control

33 PB1.Data 69 PF3.Data

34 PB0.Control 70 PF2.Control

35 PB0.Data

Port B

 71 PF2.Data

Port F

450

8266A-MCU Wireless-12/09

ATmega128RFA1

30 Boot Loader Support – Read-While-Write Self-Programming

The Boot Loader Support provides a real Read-While-Write Self-Programming
mechanism for downloading and uploading program code by the MCU itself. This
feature allows flexible application software updates controlled by the MCU using a
Flash-resident Boot Loader program. The Boot Loader program can use any available
data interface and associated protocol to read code and write that (program) code into
the Flash memory, or read the code from the program memory. The program code
within the Boot Loader section has the capability to write into the entire Flash, including
the Boot Loader memory. The Boot Loader can thus even modify itself (including
erasing) from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets
of Boot Lock bits which can be set independently. This gives the user a unique flexibility
to select different levels of protection.

30.1 Features

• Read-While-Write Self-Programming

• Flexible Boot Memory Size

• High Security (Separate Boot Lock Bits for a Flexible Protection)

• Separate Fuse to Select Reset Vector

• Optimized Page
(1)

 Size

• Code Efficient Algorithm

• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see "Table 31-7" on
page 467) used during programming. The page organization does not affect normal
operation.

30.2 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections: the Application section and the
Boot Loader section (see Figure 30-2 on page 452). The size of the different sections is
configured by the BOOTSZ Fuses as shown in Table 30-7 on page 461 and Figure 30-2
on page 452. These two sections can have different level of protection since they have
different sets of Lock bits.

30.2.1 Application Section

The Application section is the region of the Flash that is used for storing the application
code. The protection level for the Application section can be selected by the application
Boot Lock bits (Boot Lock bits 0, BLB0), see Table 31-2 on page 464. The Application
section can never store any Boot Loader code since the SPM instruction is disabled
when executed from the Application section.

30.2.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the Boot Loader
software must be located in the BLS. The SPM instruction can only initiate
programming when executed from the BLS. The SPM instruction can access the entire
Flash, including the BLS itself. The protection level for the Boot Loader section can be
selected by the Boot Loader Lock bits (Boot Lock bits 1, BLB1), see Table 31-2 on page
464.

 451

8266A-MCU Wireless-12/09

 ATmega128RFA1

30.3 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on the address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 30-1 on page 452 and Figure 30-1 below. The
main differences between the two sections are:

• When erasing or writing a page located inside the RWW section, the NRWW section
can be read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted
during the entire operation.

Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write
section” refers to the section that is being programmed (erased or written) and not to
the section that actually is being read during a Boot Loader software update.

Figure 30-1. Read-While-Write vs. No Read-While-Write

Read-While-Write

(RWW) Section

No Read-While-Write

(NRWW) Section

Z-pointer

Addresses RWW

Section

Z-pointer

Addresses NRWW

Section

CPU is Halted

During the Operation
Code Located in

NRWW Section

Can be Read During

the Operation

30.3.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW
section. During an ongoing programming, the software must ensure that the RWW
section never is being read. If the user software is trying to read code that is located
inside the RWW section (i.e., by load program memory, call, or jump instructions or an
interrupt) during programming, the software might end up in an unknown state. To avoid
this, the interrupts should either be disabled or moved to the Boot Loader section. The
Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will
be read as logical one as long as the RWW section is blocked for reading. After a

452

8266A-MCU Wireless-12/09

ATmega128RFA1

programming is completed, the RWWSB must be cleared by software before reading
code located in the RWW section. See "SPMCSR – Store Program Memory Control
Register" on page 462 for details on how to clear RWWSB.

30.3.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire Page Erase or Page Write operation.

Table 30-1. Read-While-Write Features

Which Section does the Z-pointer

Address during the Programming?

Which Section can be Read

during Programming? CPU Halted?

Read-While-Write

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No

Figure 30-2. Memory Sections

0x0000

Flashend

Program Memory

BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section

Flashend

Program Memory

BOOTSZ = '10'

0x0000

Program Memory

BOOTSZ = '01'

Program Memory

BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
e

a
d

-W
h

ile
-W

ri
te

 S
e

c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n
R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n

R
e

a
d

-W
h

ile
-W

ri
te

 S
e

c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n
R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n
N

o
 R

e
a

d
-W

h
ile

-W
ri

te
 S

e
c
ti
o

n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader

Note: 1. The parameters in the figure above are given in Table 30-7 on page 461.

 453

8266A-MCU Wireless-12/09

 ATmega128RFA1

30.4 Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code.
The Boot Loader has two separate sets of Boot Lock bits which can be set
independently. This gives the user a unique flexibility to select different levels of
protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 31-2 on page 464 for further details. The Boot Lock bits can be set in
software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control
the programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by
(E)LPM/SPM, if it is attempted.

30.4.1 Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI
interface. Alternatively, the Boot Reset Fuse can be programmed so that the Reset
Vector is pointing to the Boot Flash start address after a reset. In this case, the Boot
Loader is started after a reset. After the application code is loaded, the program can
start executing the application code. Note that the fuses cannot be changed by the
MCU itself. This means that once the Boot Reset Fuse is programmed, the Reset
Vector will always point to the Boot Loader Reset and the fuse can only be changed
through the serial or parallel programming interface.

Table 30-2. Boot Reset Fuse
(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 30-7 on page 461)

Note: 1. “1” means unprogrammed, “0” means programmed

30.5 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-
registers ZL and ZH in the register file, and RAMPZ in the I/O space. The number of
bits actually used is implementation dependent. Note that the RAMPZ register is only
implemented when the program space is larger than 64K bytes.

23 22 21 20 19 18 17 16 Bit

15 14 13 12 11 10 9 8

RAMPZ RAMPZ1 RAMPZ0

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

 7 6 5 4 3 2 1 0

454

8266A-MCU Wireless-12/09

ATmega128RFA1

Since the Flash is organized in pages (see "Table 31-7" on page 467), the Program
Counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 30-3 below. Note that the Page
Erase and Page Write operations are addressed independently. Therefore it is of major
importance that the Boot Loader software addresses the same page in both the Page
Erase and Page Write operation. Once a programming operation is initiated, the
address is latched and the Z-pointer can be used for other operations.

The (E)LPM instruction uses the Z-pointer to store the address. Since this instruction
addresses the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 30-3. Addressing the Flash during SPM

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

Note: 1. The different variables used in Figure 30-3 above are listed in Table 30-6 on page
461.

30.6 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the Page Erase command or between a Page Erase and a Page Write
operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer,

• Perform a Page Erase,

• Perform a Page Write;

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase,

 455

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Fill temporary page buffer,

• Perform a Page Write;

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both
the Page Erase and Page Write operation is addressing the same page. For an
assembly code example see "Simple Assembly Code Example for a Boot Loader" on
page 458.

30.6.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-register.
Other bits in the Z-pointer will be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page
Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

30.6.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0,
write “00000001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR. The content of PCWORD in the Z-register is used to address the data in the
temporary buffer. The temporary buffer will be auto-erased after a Page Write operation
or by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note
that it is not possible to write more than one time to each address without erasing the
temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
is still buffered.

30.6.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer must be written to zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page
Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

30.6.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in "Interrupts" on page 211.

456

8266A-MCU Wireless-12/09

ATmega128RFA1

30.6.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 un-programmed. An accidental write to the Boot Loader itself
can corrupt the entire Boot Loader, and further software updates might be impossible. If
it is not necessary to change the Boot Loader software itself, it is recommended to
program the Boot Lock bit11 to protect the Boot Loader software from any internal
software changes.

30.6.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector
table should be moved to the BLS as described in "Interrupts" on page 211, or the
interrupts must be disabled. Before addressing the RWW section after the programming
is completed, the user software must clear the RWWSB by writing the RWWSRE. See
"Simple Assembly Code Example for a Boot Loader" on page 458 for an example.

30.6.7 Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0,
write “X0001001” to SPMCSR and execute SPM within four clock cycles after writing
SPMCSR.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

See Table 31-2 on page 464 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5:0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to “1”
when writing the Lock bits. When programming the Lock bits the entire Flash can be
read during the operation.

30.6.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Signature Row, Fuses and Lock bits from software will also be prevented
during the EEPROM write operation. It is recommended that the user checks the status
bit (EEPE) in the EECR Register and verifies that the bit is cleared before writing to the
SPMCSR Register.

30.6.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an (E)LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the
destination register. The BLBSET and SPMEN bits will auto-clear upon completion of
reading the Lock bits or if no (E)LPM instruction is executed within three CPU cycles or
no SPM instruction is executed within four CPU cycles. When BLBSET and SPMEN are
cleared, (E)LPM will work as described in the Instruction Set Manual.

 457

8266A-MCU Wireless-12/09

 ATmega128RFA1

Bit 7 6 5 4 3 2 1 0

Rd - - BLB12 BLB11 BLB02 BLB01 LB2 LB1

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Fuse Low byte (FLB) will be loaded in the destination register as shown on
the next page. Refer to (see "Table 31-5" on page 466) for a detailed description and
mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Similarly, load 0x0003 in the Z-pointer for reading the Fuse High byte. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination
register as shown below. Refer to "Table 31-4" on page 465 for detailed description and
mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Load 0x0002 in the Z-pointer for reading the Extended Fuse byte. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the
destination register as shown below. Refer to Table 31-3 on page 465 for detailed
description and mapping of the Extended Fuse byte.

Bit 7 6 5 4 3 2 1 0

Rd - - - - - EFB2 EFB1 EFB0

Fuse and Lock bits that are programmed will be read as zero. Fuse and Lock bits that
are un-programmed will be read as one.

30.6.10 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte
address given in Table 30-3 below and set the SIGRD and SPMEN bits in SPMCSR.
When a LPM instruction is executed within three CPU cycles after the SIGRD and
SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the
destination register. The SIGRD and SPMEN bits will auto-clear upon completion of
reading the Signature Row or if no LPM instruction is executed within three CPU cycles.
When SIGRD and SPMEN are cleared, LPM will work as described in the Instruction
Set Manual. The Signature Row cannot be read during an EEPROM write/erase
operation.

Table 30-3. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Note: 2. All other addresses are reserved for future use.

458

8266A-MCU Wireless-12/09

ATmega128RFA1

30.6.11 Preventing Flash Corruption

During periods of VDEVDD<1.8V, the Flash program can be corrupted because the supply
voltage is too low for the CPU and the Flash to operate properly. These issues are the
same as for board level systems using Flash, and the same design solutions should be
applied.

A Flash program corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the Flash requires a minimum voltage to operate
correctly. Secondly, the CPU itself can execute instructions incorrectly, if the supply
voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations
(one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if the
operating voltage matches the detection level. If not, an external low VDEVDD reset
protection circuit can be used. If a reset occurs while a write operation is in progress,
the write operation will be completed under the condition that the power supply
voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VDEVDD. This
will prevent the CPU from attempting to decode and execute instructions, effectively
protecting the SPMCSR Register and thus the Flash from unintentional writes.

30.6.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 30-4 below shows
the typical programming time for Flash accesses from the CPU.

Table 30-4. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Write, and write
Lock bits by SPM)

3.7 ms 4.5 ms

Flash write (Page Erase) 7.3 ms 8.9 ms

30.6.13 Simple Assembly Code Example for a Boot Loader

Assembly Code Example
(1)

;-the routine writes one page of data from RAM to Flash

; the first data location in RAM is pointed to by the Y pointer

; the first data location in Flash is pointed to by the Z-pointer

;-error handling is not included

;-the routine must be placed inside the Boot space

; (at least the Do_spm sub routine). Only code inside NRWW section

; can be read during Self-Programming (Page Erase and Page Write).

;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),

; loophi (r25), spmcrval (r20)

; storing and restoring of registers is not included in the routine

; register usage can be optimized at the expense of code size

;-It is assumed that either the interrupt table is moved to the

; Boot loader section or that the interrupts are disabled.

 459

8266A-MCU Wireless-12/09

 ATmega128RFA1

Assembly Code Example
(1)

.equ PAGESIZEB=PAGESIZE*2 ;PAGESIZEB is page in BYTES, not words

.org SMALLBOOTSTART

Write_page:

 ; Page Erase

 ldi spmcrval, (1<<PGERS) | (1<<SPMEN)

 call Do_spm

; re-enable the RWW section

 ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

 call Do_spm

 ; transfer data from RAM to Flash page buffer

 ldi looplo, low(PAGESIZEB) ;init loop variable

 ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:

 ld r0, Y+

 ld r1, Y+

 ldi spmcrval, (1<<SPMEN)

 call Do_spm

 adiw ZH:ZL, 2

 sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

 brne Wrloop

 ; execute Page Write

 subi ZL, low(PAGESIZEB) ;restore pointer

 sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256

 ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)

 call Do_spm

 ; re-enable the RWW section

 ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

 call Do_spm

 ; read back and check, optional

 ldi looplo, low(PAGESIZEB) ;init loop variable

 ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

 subi YL, low(PAGESIZEB) ;restore pointer

 sbci YH, high(PAGESIZEB)

Rdloop:

 elpm r0, Z+

 ld r1, Y+

 cpse r0, r1

 jmp Error

 sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256

 brne Rdloop

 ; return to RWW section

 ; verify that RWW section is safe to read

Return:

 in temp1, SPMCSR

460

8266A-MCU Wireless-12/09

ATmega128RFA1

Assembly Code Example
(1)

 ; If RWWSB is set, the RWW section is not ready yet

 sbrs temp1, RWWSB

 ret

 ; re-enable the RWW section

 ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)

 call Do_spm

 rjmp Return

Do_spm:

 ; check for previous SPM complete

Wait_spm:

 in temp1, SPMCSR

 sbrc temp1, SPMEN

 rjmp Wait_spm

 ; input: spmcrval determines SPM action

 ; disable interrupts if enabled, store status

 in temp2, SREG

 cli

 ; check that no EEPROM write access is present

Wait_ee:

 sbic EECR, EEPE

 rjmp Wait_ee

 ; SPM timed sequence

 out SPMCSR, spmcrval

 spm

 ; restore SREG (to enable interrupts if originally enabled)

 out SREG, temp2

 ret

Notes: 1. See "About Code Examples" on page 7.

30.6.14 Boot Loader Parameters for 128kByte of Flash Memory

In Table 30-7 on page 461 through Table 30-6 on page 461, the parameters used in the
description of the Self-Programming are given.

Table 30-5. Read-While-Write Limit with 128kByte of Flash Memory

Section
(1)

 Pages Address

Read-While-Write section (RWW) 480 0x0000 – 0xEFFF

No Read-While-Write section (NRWW) 32 0xF000 – 0xFFFF

Note: 1. For details about these two sections see "NRWW – No Read-While-Write Section"
on page 452 .

 461

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 30-6. Explanation of different variables used in Figure 30-3 on page 454 and the
mapping to the Z-pointer for 128kByte of Flash Memory

Variable Value

Corresponding

Z-value
(2)

 Description
(1)

PCMSB 15
Most significant bit in the Program Counter.
(The Program Counter is 16 bits PC[15:0])

PAGEMSB 6
Most significant bit which is used to address
the words within one page (128 words in a
page requires seven bits PC [6:0]).

ZPCMSB Z16
(3)

Bit in Z-pointer that is mapped to PCMSB.
Because Z0 is not used, the ZPCMSB
equals PCMSB + 1.

ZPAGEMSB Z7
Bit in Z-pointer that is mapped to PCMSB.
Because Z0 is not used; the ZPAGEMSB
equals PAGEMSB + 1.

PCPAGE PC[15:7] Z16
(3)

:Z8
Program Counter page address: Page
select, for Page Erase and Page Write.

PCWORD PC[6:0] Z7:Z1
Program Counter word address: Word
select, for filling temporary buffer (must be
zero during Page Write operation)

Notes: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.

2. See "Addressing the Flash During Self-Programming" on page 453 for details
about the use of Z-pointer during Self-Programming.

3. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the
I/O map.

Table 30-7. Boot Size Configuration with 128kByte of Flash Memory
(1)

B
O

O
T

S
Z

1

B
O

O
T

S
Z

0

B
o

o
t

S
iz

e

P
a

g
e

s

A
p

p
li

c
a

ti
o

n
 F

la
s

h

S
e

c
ti

o
n

B
o

o
t

L
o

a
d

e
r

F
la

s
h

S
e

c
ti

o
n

E
n

d
 A

p
p

li
c
a

ti
o

n

S
e

c
ti

o
n

B
o

o
t

R
e

s
e

t
A

d
d

re
s

s

(S
ta

rt
 B

o
o

t
L

o
a
d

e
r

S
e

c
ti

o
n

)

1 1
512

words
4

0x0000 –
0xFDFF

0xFE00 –
0xFFFF

0xFDFF 0xFE00

1 0
1024
words

8
0x0000 –
0xFBFF

0xFC00 –
0xFFFF

0xFBFF 0xFC00

0 1
2048
words

16
0x0000 –
0xF7FF

0xF800 –
0xFFFF

0xF7FF 0xF800

0 0
4096
words

32
0x0000 –
0xEFFF

0xF000 –
0xFFFF

0xEFFF 0xF000

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 30-2 on page 452.

462

8266A-MCU Wireless-12/09

ATmega128RFA1

30.7 Register Description

30.7.1 SPMCSR – Store Program Memory Control Register

Bit 7 6 5 4 3 2 1 0

$37 ($57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write RW R RW RW RW RW RW RW

Initial Value 0 0 0 0 0 0 0 0

The Store Program Memory Control Register contains the control bits needed to control
the Boot Loader operations. Note: Only one SPM instruction should be active at any
time.

• Bit 7 – SPMIE - SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one),
the SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as
long as the SPMEN bit in the SPMCR register is cleared.

• Bit 6 – RWWSB - Read While Write Section Busy

When a self-programming (page erase or page write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a self-programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit 5 – SIGRD - Signature Row Read

If this bit is written to one at the same time as SPMEN, the next LPM instruction within
three clock cycles will read a byte from the signature row into the destination register. A
SPM instruction within four cycles after SIGRD and SPMEN are set, will have no effect.
This operation is reserved for future use and should not be used.

• Bit 4 – RWWSRE - Read While Write Section Read Enable

When programming (page erase or page write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will
be cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN,
the next SPM instruction within four clock cycles re-enables the RWW section. The
RWW section cannot be re-enabled while the Flash is busy with a page erase or a page
write (SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the
Flash load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET - Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in R0. The data in R1 and
the address in the Z pointer are ignored. The BLBSET bit will automatically be cleared
upon completion of the lock bit set, or if no SPM instruction is executed within four clock
cycles. A LPM instruction within three cycles after BLBSET and SPMEN are set in the
SPMCR register, will read either the Lock-bits or the Fuse bits (depending on Z0 in the
Z pointer) into the destination register.

• Bit 2 – PGWRT - Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes page write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z pointer. The data in R1 and R0 are
ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM

 463

8266A-MCU Wireless-12/09

 ATmega128RFA1

instruction is executed within four clock cycles. The CPU is halted during the entire
page write operation if the NRWW section is addressed.

• Bit 1 – PGERS - Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes page erase. The page address is taken from the high part of
the Z pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon
completion of a page erase, or if no SPM instruction is executed within four clock
cycles. The CPU is halted during the entire page write operation if the NRWW section is
addressed.

• Bit 0 – SPMEN - Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLB-SET, PGWRT or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z pointer. The LSB of the Z pointer is ignored. The SPMEN bit will
auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed
within four clock cycles. During page erase and page write, the SPMEN bit remain high
until the operation is completed. Writing any other combination than "10001", "01001",
"00101", "00011" or "00001" in the lower five bits will have no effect.

30.7.2 NEMCR – Flash Extended-Mode Control-Register

Bit 7 6 5 4 3 2 1 0

NA ($75) Resx7 ENEAM AEAM1 AEAM0 Resx3 Resx2 Resx1 Resx0 NEMCR

Read/Write RW RW RW RW RW RW RW RW

Initial Value 0 0 0 0 1 0 1 0

The Flash Extended-Mode Control-Register handles the extended address-mode of the
extra rows.

• Bit 7 – Resx7 - Reserved

• Bit 6 – ENEAM - Enable Extended Address Mode for Extra Rows

When active high, the extended address mode of the extra rows is enabled. The
address is decoded from bits AEAM1:0 of this register.

• Bit 5:4 – AEAM1:0 - Address for Extended Address Mode of Extra Rows

These bits are only used when bit ENEAM of this register is set high. Then AEAM1:0
are used to decode the addresses of the extra rows. A value of 0 decodes the default
factory row that is also accessible when the extended address mode is deactivated.

Table 30-8 AEAM Register Bits

Register Bits Value Description

0 Factory Row

1 User Row 1

2 User Row 2

AEAM1:0

3 User Row 3

• Bit 3:0 – Resx3:0 - Reserved

464

8266A-MCU Wireless-12/09

ATmega128RFA1

31 Memory Programming

31.1 Program And Data Memory Lock Bits

The ATmega128RFA1 provides six Lock bits which can be left un-programmed (“1”) or
can be programmed (“0”) to obtain the additional features listed in Table 31-2 below.
The Lock bits can only be erased to “1” with the Chip Erase command.

Table 31-1. Lock Bit Byte
 (1)

Lock Bit Byte Bit No Description Default Value

− 7 − 1 (un-programmed)

− 6 − 1 (un-programmed)

BLB12 5 Boot Lock bit 1 (un-programmed)

BLB11 4 Boot Lock bit 1 (un-programmed)

BLB02 3 Boot Lock bit 1 (un-programmed)

BLB01 2 Boot Lock bit 1 (un-programmed)

LB2 1 Lock bit 1 (un-programmed)

LB1 0 Lock bit 1 (un-programmed)

Note: 1. “1” means un-programmed, “0” means programmed.

Table 31-2. Lock Bit Protection Modes
 (1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0

Further programming of the Flash and EEPROM is
disabled in Parallel and Serial Programming mode.
The Fuse bits are locked in both Serial and Parallel
Programming mode.

(1)

3 0 0

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and Serial
Programming mode. The Boot Lock bits and Fuse bits
are locked in both Serial and Parallel Programming
mode.

(1)

BLB0 Mode BL02 BL01

1 1 1
No restrictions for SPM or (E)LPM accessing the
Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section,
and (E)LPM executing from the Boot Loader section
is not allowed to read from the Application section. If
Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from
the Application section.

4 0 1

(E)LPM executing from the Boot Loader section is not
allowed to read from the Application section. If
Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from
the Application section.

 465

8266A-MCU Wireless-12/09

 ATmega128RFA1

Memory Lock Bits Protection Type

BLB1 Mode BL12 BL11

1 1 1
No restrictions for SPM or (E)LPM accessing the Boot
Loader section.

2 1 0
SPM is not allowed to write to the Boot Loader
section.

3 0 0

SPM is not allowed to write to the Boot Loader
section, and (E)LPM executing from the Application
section is not allowed to read from the Boot Loader
section. If Interrupt Vectors are placed in the
Application section, interrupts are disabled while
executing from the Boot Loader section.

4 0 1

(E)LPM executing from the Application section is not
allowed to read from the Boot Loader section. If
Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from
the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and
LB2.

2. “1” means un-programmed, “0” means programmed.

31.2 Fuse Bits

The ATmega128RFA1 has three Fuse bytes. Table 31-3 below – Table 31-5 on page
466 describe briefly the functionality of all the fuses and how they are mapped into the
Fuse bytes. Note that the fuses are read as logical zero, “0”, if they are programmed.

Table 31-3. Extended Fuse Byte

Fuse Low Byte Bit No Description Default Value

− 7 − 1

− 6 − 1

− 5 − 1

− 4 − 1

− 3 − 1

BODLEVEL2
(1)

 2 Brown-out Detector trigger level 1 (un-programmed)

BODLEVEL1
(1)

 1 Brown-out Detector trigger level 1 (un-programmed)

BODLEVEL0
(1)

 0 Brown-out Detector trigger level 1 (un-programmed)

Notes: 1. See Table 34-23 on page 503 for BODLEVEL Fuse decoding.

Table 31-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

OCDEN
(4)

 7 Enable On-chip debugging
(OCD)

1 (un-programmed, OCD
disabled)

JTAGEN 6 Enable JTAG interface 0 (programmed, JTAG
enabled)

SPIEN
(1)

 5 Enable Serial Program and Data
Downloading (SPI)

0 (programmed, SPI
programming enabled)

WDTON
(3)

 4 Watchdog Timer always on 1 (un-programmed)

466

8266A-MCU Wireless-12/09

ATmega128RFA1

Fuse High Byte Bit No Description Default Value

EESAVE 3 EEPROM memory is preserved
through the Chip Erase

1 (un-programmed,
EEPROM not preserved)

BOOTSZ1 2 Select Boot Size (see Table 30-7
on page 461 for details)

0 (programmed)
(2)

BOOTSZ0 1 Select Boot Size (see Table 30-7
on page 461for details)

0 (programmed)
 (2)

BOOTRST 0 Select Reset Vector 1 (un-programmed)

Notes: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 30-7
on page 461 for details.

3. See "WDTCSR – Watchdog Timer Control Register" on page 183 for details.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting
of Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some
parts of the clock system to be running in all sleep modes. This may increase the
power consumption.

Table 31-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8
(4)

 7 Divide clock by 8 0 (programmed)

CKOUT
(3)

 6 Clock output 1 (un-programmed)

SUT1 5 Select start-up time 1 (un-programmed)
(1)

SUT0 4 Select start-up time 0 (programmed)
 (1)

CKSEL3 3 Select Clock source 0 (programmed)
(2)

CKSEL2 2 Select Clock source 0 (programmed)
(2)

CKSEL1 1 Select Clock source 1 (un-programmed)
 (2)

CKSEL0 0 Select Clock source 0 (programmed)
 (2)

Notes: 1. The default value of SUT1:0 results in maximum start-up time for the default clock
source. See "System Control and Reset" on page 176 for details.

2. The default setting of CKSEL3:0 results in internal RC Oscillator @ 8 MHz. See
"Table 11-1" on page 148 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTE7. See "Clock
Output Buffer" on page 152 for details.

4. See "System Clock Prescaler" on page 152 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming
the Lock bits.

31.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes
of the fuse values will have no effect until the part leaves Programming mode. This
does not apply to the EESAVE Fuse which will take effect once it is programmed. The
fuses are also latched on Power-up in Normal mode.

31.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.

 467

8266A-MCU Wireless-12/09

 ATmega128RFA1

The three bytes reside in a separate address space. For the ATmega128RFA1 the
signature bytes are given in Table 31-6 below. Accessing the signature bytes from
software is described in section "Reading the Signature Row from Software" on page
457.

Table 31-6. Device and JTAG ID

Signature Byte Number JTAG

Part 0 1 2 Part Number Manufacturer ID

ATmega128RFA1 0x1E 0xA7 0x01 0xA701 0x1F

31.4 Calibration Byte

The ATmega128RFA1 has a byte calibration value for the internal RC Oscillator. This
byte resides in the high byte of address 0x000 in the signature address space. During
reset, this byte is automatically written into the OSCCAL Register to ensure correct
frequency of the calibrated RC Oscillator.

31.5 Page Size

Table 31-7. Number of Words in a Page and Number of Pages in the Flash

Flash Size Page Size PCWORD No. of

Pages

PCPAGE PCMSB

64k words (128k bytes) 128 words PC[6:0] 512 PC[15:7] 15

Table 31-8. Number of Bytes in a Page and Number of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of

Pages

PCPAGE EEAMSB

4k bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11

31.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the ATmega128RFA1.

31.6.1 Signal Names

In this section, some pins of the ATmega128RFA1 are referenced by signal names
describing their functionality during parallel programming; see Figure 31-1 on page 468
and Table 31-9 on page 468. Pins not described in this table are referenced by their
default pin names.

The XA1/XA0 pins determine the action executed when the CLKI pin is given a positive
pulse. The bit coding is shown in Table 31-12 on page 469.

When pulsing WR

 or OE
__

 or, the command loaded determines the action executed. The
different commands are shown in Table 31-13 on page 469.

468

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 31-1. Parallel Programming
 (1)

Note: 1. Unused Pins should be left floating.

Table 31-9. Pin Name Mapping

Signal Name in

Programming Mode Pin Name I/O Function

 RDY/BSY

 PD1 O
0: Device is busy programming, 1: Device is
ready for new command.

OE
__

 PD2 I Output Enable (Active low).

WR

 PD3 I Write Pulse (Active low).

BS1 PD4 I Byte Select 1.

XA0 PD5 I XTAL Action Bit 0.

XA1 PD6 I XTAL Action Bit 1.

PAGEL PD7 I
Program Memory and EEPROM data Page
Load.

BS2 PE2 I Byte Select 2.

DATA PB7-0 I/O
Bi-directional Data bus (Output when OE¯ ¯ ¯ is
low).

Table 31-10. BS2 and BS1 Encoding

BS2 BS1

Flash / EEPROM

Address

Flash Data

Loading / Reading

Fuse

Programming

Reading Fuse

and Lock Bits

0 0 Low Byte Low Byte Low Byte Fuse Low Byte

0 1 High Byte High Byte High Byte Lock Bits

1 0
Extended High

Byte
Reserved Extended Byte

Extended Fuse
Byte

1 1 Reserved Reserved Reserved Fuse High Byte

 469

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 31-11. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 31-12. XA1 and XA0 Encoding

XA1 XA0 Action when CLKI is Pulsed

0 0
Load Flash or EEPROM Address (High or low address byte
determined by BS2 and BS1).

0 1
Load Data (High or Low data byte for Flash determined by
BS1).

1 0 Load Command.

1 1 No Action, Idle.

Table 31-13. Command Byte Bit Encoding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

31.7 Parallel Programming

Pulses of CLKI and in the following command sequences are assumed to be at least
250 ns wide unless otherwise noted.

31.7.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Apply 3.3V between DEVDD and DVSS.

2. Set RSTN to 0 and TST to 0.

3. Set the Prog_enable pins listed in Table 31-11 above to “0000” and wait at least
100ns.

4. Set TST to 1. TST can be set high any time before but not after the rising edge of
RSTN (tTSTRNH).

5. Set RSTN to 1. Any activity on Prog_enable pins within 100 ns after RSTN is set to 1
will cause the device to fail entering programming mode.

6. Wait at least 50 µs before sending a command.

470

8266A-MCU Wireless-12/09

ATmega128RFA1

31.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.

31.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM
 (1)

 memories plus Lock bits. The
Lock bits are not reset until the program memory has been completely erased. The
Fuse bits are not changed. A Chip Erase must be performed before the Flash and/or
EEPROM are reprogrammed.

Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give CLKI a positive pulse. This loads the command.

5. Give WR

 a negative pulse. This starts the Chip Erase. RDY/ BSY

 goes low.

6. Wait until RDY/BSY

 goes high before loading a new command.

31.7.4 Programming the Flash

The Flash is organized in pages; see Table 31-7 on page 467. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to
program the entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give CLKI a positive pulse. This loads the command.

B. Load Address Low byte (Address bits 7:0)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “00”. This selects the address low byte.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give CLKI a positive pulse. This loads the address low byte.

 471

8266A-MCU Wireless-12/09

 ATmega128RFA1

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give CLKI a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give CLKI a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (see Figure 31-3 on page
472 for signal waveforms).

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 31-5 on page 472.
Note that if less than eight bits are required to address words in the page (page size <
256), the most significant bit(s) in the address low byte are used to address the page
when performing a Page Write.

G. Load Address High byte (Address bits15:8)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “01”. This selects the address high byte.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give CLKI a positive pulse. This loads the address high byte.

H. Program Page

1. Set BS2, BS1 to “00”

2. Give WR

 a negative pulse. This starts programming of the entire page of data.
RDY/BSY

 goes low.

3. Wait until RDY/BSY

 goes high (See Figure 31-3 on page 472 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give CLKI a positive pulse. This loads the command, and the internal write signals
are reset.

472

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 31-5. Addressing the Flash which is Organized in Pages
 (1)

PROGRAM MEMORY

WORD ADDRESS

WITHIN A PAGE

PAGE ADDRESS

WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM

COUNTER

Note: 1. PCPAGE and PCWORD are listed in Table 31-7 on page 467.

Figure 31-3. Programming the Flash Waveforms
 (1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

31.7.5 Programming the EEPROM

The EEPROM is organized in pages; see Table 31-8 on page 467. When programming
the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to "Programming the Flash" on page 470 for details on
Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

 473

8266A-MCU Wireless-12/09

 ATmega128RFA1

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS2, BS1 to “00”.

2. Give WR

 a negative pulse. This starts programming of the EEPROM page. RDY/BSY

goes low.

3. Wait until to RDY/BSY

 goes high before programming the next page (See Figure 31-
7 below for signal waveforms).

Figure 31-7. Programming the EEPROM Waveforms

DATA

XA1

XA0

BS1

BS2

CLKI

WR

RDY/BSY

RSTN

OE

PAGEL

0x11 ADDR. LOW DATA XX ADDR. LOW DATA XXADDR. HIGH

A G B C E B C E L

K

31.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to "Programming the
Flash" on page 470 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE
__

 to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE
__

 to “1”.

31.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to "Programming
the Flash" on page 470 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE
__

 to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE
__

 to “1”.

31.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to "Programming
the Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

474

8266A-MCU Wireless-12/09

ATmega128RFA1

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR

 a negative pulse and wait for RDY/BSY

 to go high.

31.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to "Programming
the Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS2, BS1 to “01”. This selects high data byte.

4. Give WR

 a negative pulse and wait for RDY/BSY

 to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

31.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to
"Programming the Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS2, BS1 to “10”. This selects extended data byte.

4. Give WR

 a negative pulse and wait for RDY/BSY

 to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

Figure 31-8. Programming the Fuses Waveforms

31.7.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to "Programming the
Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is active
(LB1 and LB2 are programmed), it is not possible to program the Boot Lock bits by
any External Programming mode.

3. Give WR

 a negative pulse and wait for RDY/BSY

 to go high.

The Lock bits can only be cleared by executing Chip Erase.

 475

8266A-MCU Wireless-12/09

 ATmega128RFA1

31.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming
the Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0000 0100”.

2. Set OE
__

 to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE
__

 to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE
__

 to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. Set OE
__

 to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read at
DATA (“0” means programmed).

6. Set OE
__

 to “1”.

Figure 31-9. Mapping between BS1, BS2 and the Fuse and Lock Bits during Read

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

31.7.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to "Programming the
Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE
__

 to “0” and BS to “0”. The selected Signature byte can now be read at DATA.

4. Set OE
__

 to “1”.

31.7.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to "Programming the
Flash" on page 470 for details on Command and Data loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE
__

 to “0” and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE
__

 to “1”.

476

8266A-MCU Wireless-12/09

ATmega128RFA1

31.7.15 Parallel Programming Characteristics

Figure 31-10. Parallel programming timing including some general timing requirements

Data & Control
(DATA, XA0/1, BS1, BS2)

 CLKI
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

Figure 31-11. Parallel programming loading sequence with timing requirements
(1)

 CLKI

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

LOAD DATA

(LOW BYTE)

LOAD DATA

(HIGH BYTE)

LOAD DATA

LOAD ADDRESS

(LOW BYTE)

Note: 1. The timing requirements shown in Figure 31-10 above (i.e., tDVXH, tXHXL, and tXLDX)
also apply to loading operation.

Figure 31-12. Parallel programming reading sequence (within the same page) with
timing requirements

(1)

 CLKI

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

READ DATA

(LOW BYTE)

READ DATA

(HIGH BYTE)

LOAD ADDRESS

(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

Note: 1. The timing requirements shown in Figure 31-10 above (i.e., tDVXH, tXHXL, and tXLDX)
also apply to reading operation.

 477

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 31-14. Parallel Programming Characteristics, VDEVDD = 3.3V ± 10%

Symbol Parameter Min Typ Max Units

tTSTRNH Delay TST High before RSTN High 0 ns

tDVXH Data and Control Valid before CLKI High 67 ns

tXLXH CLKI Low to CLKI High 200 ns

tXHXL CLKI Pulse Width High 150 ns

tXLDX Data and Control Hold after CLKI Low 67 ns

tXLWL CLKI Low to WR

 Low 0 ns

tXLPH CLKI Low to PAGEL high 0 ns

tPLXH PAGEL low to CLKI high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR

 Low 67 ns

tPLWL PAGEL Low to WR

 Low 67 ns

tBVWL BS2/1 Valid to WR

 Low 67 ns

tWLWH WR

 Pulse Width Low 150 ns

tWLRL WR

 Low to RDY/BSY

 Low 0 1 µs

tWLRH WR

 Low to RDY/BSY

 High
(1)

 3.7 4.5 ms

tWLRH_CE WR

 Low to RDY/BSY

 High for Chip Erase
(2)

 12 14.5 ms

tXLOL CLKI Low to OE
__

 Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE
__

 Low to DATA Valid 250 ns

tOHDZ OE
__

 High to DATA Tri-stated 250 ns

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.

2. tWLRH_CE is valid for the Chip Erase command.

31.8 Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using a serial
programming bus while RSTN is pulled to DVSS. The serial programming interface
consists of pins SCK, PDI (input) and PDO (output). After RSTN is set low, the
Programming Enable instruction needs to be executed first before program/erase
operations can be executed. NOTE, in Table 31-15 below, the pin mapping for serial
programming is listed.

31.8.1 Serial Programming Pin Mapping

Table 31-15. Pin Mapping Serial Programming

Symbol Pins I/O Description

PDI PB2 I Serial Data In

PDO PB3 O Serial Data Out

SCK PB1 I Serial Clock

478

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 31-13. Serial Programming and Verify
(1)(2)

Notes: 1. If the device is clocked by the internal Oscillator, it is not required to connect a
clock source to the CLKI pin.

2. VDEVDD-0.3V < VEVDD < VDEVDD+0.3V, both VEVDD and VDEVDD must stay in valid
supply voltage limits.

When programming the EEPROM, an auto-erase cycle is built into the self-timed
programming operation (in the Serial mode ONLY) and there is no need to first execute
the Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high
periods for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz;

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz;

31.8.2 Serial Programming Algorithm

When writing serial data to the ATmega128RFA1, data is clocked on the rising edge of
SCK.

When reading data from the ATmega128RFA1, data is clocked on the falling edge of
SCK. See Figure 31-15 on page 481 for timing details.

To program and verify the ATmega128RFA1 in the serial programming mode, the
following sequence is recommended (See four byte instruction formats in Table 31-17
on page 479):

1. Power-up sequence: Apply power between DEVDD and DVSS while RSTN and
SCK are set to “0”. In some systems, the programmer can not guarantee that SCK is
held low during power-up. In this case, RSTN must be given a positive pulse of at
least two CPU clock cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin PDI.

3. The serial programming instructions will not work if the communication is out of
synchronization. When in sync. the second byte (0x53), will echo back when issuing
the third byte of the Programming Enable instruction. Whether the echo is correct or

 479

8266A-MCU Wireless-12/09

 ATmega128RFA1

not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo
back, give RSTN a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte
at a time by supplying the 7 LSB of the address and data together with the Load
Program Memory Page instruction. To ensure correct loading of the page, the data
low byte must be loaded before data high byte is applied for a given address. The
Program Memory Page is stored by loading the Write Program Memory Page
instruction with the address lines 15:8. If polling (RDY/BSY¯ ¯ ¯) is not used, the user
must wait at least tWD_FLASH before issuing the next page (see Table 31-16 below).
Accessing the serial programming interface before the Flash write operation
completes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is
first automatically erased before new data is written. If polling is not used, the user
must wait at least tWD_EEPROM before issuing the next byte (see Table 31-16 below).
In a chip erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output PDO.

7. At the end of the programming session, RSTN can be set high to commence normal
operation.

8. Power-off sequence (if needed): Set RESET to “1”. Turn DEVDD power off.

Table 31-16. Minimum Wait Delay before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5 ms

tWD_EEPROM 9 ms

tWD_CHIPERASE 14.5 ms

31.8.3 Serial Programming Instruction Set

Table 31-17 below and Figure 31-14 on page 480 describe the Instruction set.

Table 31-17. Serial Programming Instruction Set
(4)(5)

Instruction Format
(1)

Instruction/Operation Byte1 Byte2 Byte3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY¯ ¯ ¯ $F0 $00 $00 data byte out

Load Instruction

Load Program Memory Page, High Byte $48 $00 addr. LSB high data byte in

Load Program Memory Page, Low Byte $40 $00 addr. LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in

Read Instruction

Read Program Memory, High byte $28 addr. MSB addr. LSB high data byte out

Read Program Memory, Low byte $20 addr. MSB addr. LSB low data byte out

Read EEPROM Memory $A0 0000 aaaa aaaa aaaa data byte out

Read Lock Bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

480

8266A-MCU Wireless-12/09

ATmega128RFA1

Instruction Format
(1)

Read Fuse Bits $50 $00 $00 data byte out

Read Fuse High Bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions
(2)(3)

Write Program Memory Page $4C addr. MSB addr. LSB $00

Write EEPROM Memory $C0 0000 aaaa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 aaaa aaaa 00 $00

Write Lock Bits $AC $E0 $00 data byte in

Write Fuse Bits $AC $A0 $00 data byte in

Write Fuse High Bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

Notes: 1. a = address.

2. Bits are programmed ‘0’, un-programmed ‘1’.

3. To ensure future compatibility, unused Fuses and Lock bits should be un-programmed (‘1’).

4. Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size.

5. See http://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY¯ ¯ ¯ data byte out is ‘1’, a programming operation is still pending.
Wait until this bit returns ‘0’ before the next instruction is carried out. Within the same
page, the low data byte must be loaded prior to the high data byte. After data is loaded
to the page buffer, program the EEPROM page; see Figure 31-14 below.

Figure 31-14. Serial Programming Instruction Example

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MSBAdr MSBAdr MSBAdr MSBAdr MSB Adr LSBAdr LSBAdr LSBAdr LSBAdr LSB

 481

8266A-MCU Wireless-12/09

 ATmega128RFA1

31.8.4 Serial Programming Characteristics

For characteristics of the Serial Programming module see "SPI Timing Characteristics"
on page 504.

Figure 31-15. Serial Programming Waveforms

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

31.9 Programming via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCR
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-scan or
On-chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

During programming the clock frequency of the TCK Input must be less than the
maximum frequency of the chip. The System Clock Prescaler can not be used to divide
the TCK Clock Input into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

31.9.1 Programming Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG
instructions useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which Data Register is selected as path between TDI and TDO for
each instruction.

The Run-Test/Idle state of the TAP-controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. The state machine sequence
for changing the instruction word is shown in Figure 31-16 on page 482.

482

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 31-16. State Machine Sequence for Changing the Instruction Word

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

31.9.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction is used for setting the AVR device in the
Reset mode or taking the device out from the Reset mode. The TAP-controller is not
reset by this instruction. The one bit Reset Register is selected as Data Register. Note
that the reset will be active as long as there is a logic “one” in the Reset Chain. The
output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

31.9.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction enables programming via the JTAG port. The
16-bit Programming Enable Register is selected as Data Register. The active states are
the following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

 483

8266A-MCU Wireless-12/09

 ATmega128RFA1

• Update-DR: The programming enable signature is compared to the correct value,
and Programming mode is entered if the signature is valid.

31.9.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction is used for entering programming commands
via the JTAG port. The 15-bit Programming Command Register is selected as Data
Register. The active states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs.

• Run-Test/Idle: One clock cycle is generated, executing the applied command.

31.9.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction directly loads the Flash data page via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is
physically the 8 LSB’s of the Programming Command Register. The active states are
the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary
register. A write sequence is initiated that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates
between writing the low and the high byte for each new Update-DR state, starting
with the low byte for the first Update-DR encountered after entering the
PROG_PAGELOAD command. The Program Counter is pre-incremented before
writing the low byte, except for the first written byte. This ensures that the first data is
written to the address set up by PROG_COMMANDS, and loading the last location
in the page buffer does not make the program counter increment into the next page.

31.9.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction directly captures the Flash content via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is
physically the 8 LSB’s of the Programming Command Register. The active states are
the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data
Byte Register. The AVR automatically alternates between reading the low and the
high byte for each new Capture-DR state, starting with the low byte for the first
Capture-DR encountered after entering the PROG_PAGEREAD command. The
Program Counter is post-incremented after reading each high byte, including the first
read byte. This ensures that the first data is captured from the first address set up by
PROG_COMMANDS, and reading the last location in the page makes the program
counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

31.9.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section
"Programming Specific JTAG Instructions" on page 481. The Data Registers relevant
for programming operations are:

• Reset Register

484

8266A-MCU Wireless-12/09

ATmega128RFA1

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

31.9.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming.
It is required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-
out period (refer to "Clock Sources" on page 148) after releasing the Reset Register.
The output from this Data Register is not latched, so the reset will take place
immediately, as shown in "Figure 29-2" on page 443.

31.9.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The content of this register is
compared to the programming enable signature, binary code 1010_0011_0111_0000.
When the content of the register is equal to the programming enable signature,
programming via the JTAG port is enabled. The register is reset to 0 on Power-on
Reset, and should always be reset when leaving Programming mode.

Figure 31-17. Programming Enable Register
TDI

TDO

D

A

T

A

= D Q

ClockDR & PROG_ENABLE

Programming Enable

0xA370

31.9.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to
serially shift in programming commands, and to serially shift out the result of the
previous command, if any. The JTAG Programming Instruction Set is shown in Table
31-18 on page 485. The state sequence when shifting in the programming commands
is illustrated in Figure 31-19 on page 488.

 485

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 31-18. Programming Command Register
TDI

TDO

S

T

R

O

B

E

S

A

D

D

R

E

S

S

/

D

A

T

A

Flash

EEPROM

Fuses

Lock Bits

Table 31-18. JTAG Programming Instruction (set a = address high bits, b = address low bits, c = address extended bits,
H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care)

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2g. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3e. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

486

8266A-MCU Wireless-12/09

ATmega128RFA1

Instruction TDI Sequence TDO Sequence Notes

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(6)

6c. Write Fuse Extended Byte

0111011_00000000

0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(7)

6f. Write Fuse High Byte

0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(8)

6i. Write Fuse Low Byte

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)(9)

7c. Write Lock Bits

0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

 487

8266A-MCU Wireless-12/09

 ATmega128RFA1

Instruction TDI Sequence TDO Sequence Notes

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte
0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
(6)(5)

8c. Read Fuse High Byte
0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
(7)(5)

8d. Read Fuse Low Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
(8)(5)

8e. Read Lock Bits
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(9)(5)

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

Fuse Ext. byte

Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Notes: 1. This command sequence is not required if the seven MSB’s are correctly set by the previous command sequence
(which is normally the case).

2. Repeat until o = “1”.

3. Set bits to “0” to program the corresponding Fuse, “1” to un-program the Fuse.

4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.

5. “0” = programmed, “1” = un-programmed.

6. The bit mapping for Fuses Extended byte is listed in Table 31-3 on page 465.

7. The bit mapping for Fuses High byte is listed in Table 31-4 on page 465.

8. The bit mapping for Fuses Low byte is listed in Table 31-5 on page 466

9. The bit mapping for Lock bits byte is listed in Table 31-1 on page 464.

10. Address bits exceeding PCMSB and EEAMSB (Table 31-7 on page 467 and Table 31-8 on page 467) are don’t care.

11. All TDI and TDO sequences are represented by binary digits.

488

8266A-MCU Wireless-12/09

ATmega128RFA1

Figure 31-19. State Machine Sequence for Changing/Reading the Data Word

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

31.9.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page
buffer before executing Page Write, or to read out/verify the content of the Flash. A
state machine sets up the control signals to the Flash and senses the strobe signals
from the Flash, thus only the data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and an 8-bit
temporary register. During page load, the Update-DR state copies the content of the
scan chain over to the temporary register and initiates a write sequence that within 11
TCK cycles loads the content of the temporary register into the Flash page buffer. The
AVR automatically alternates between writing the low and the high byte for each new
Update-DR state, starting with the low byte for the first Update-DR encountered after
entering the PROG_PAGELOAD command. The Program Counter is pre-incremented
before writing the low byte, except for the first written byte. This ensures that the first
data is written to the address set up by PROG_COMMANDS, and loading the last
location in the page buffer does not make the Program Counter increment into the next
page.

 489

8266A-MCU Wireless-12/09

 ATmega128RFA1

During Page Read, the content of the selected Flash byte is captured into the Flash
Data Byte Register during the Capture-DR state. The AVR automatically alternates
between reading the low and the high byte for each new Capture-DR state, starting with
the low byte for the first Capture-DR encountered after entering the
PROG_PAGEREAD command. The Program Counter is post-incremented after reading
each high byte, including the first read byte. This ensures that the first data is captured
from the first address set up by PROG_COMMANDS, and reading the last location in
the page makes the program counter increment into the next page.

Figure 31-20. Flash Data Byte Register

TDI

TDO

D

A

T

A

Flash

EEPROM

Fuses

Lock Bits

STROBES

ADDRESS

State

Machine

The state machine controlling the Flash Data Byte Register is clocked by TCK. During
normal operation in which eight bits are shifted for each Flash byte, the clock cycles
needed to navigate through the TAP-controller automatically feeds the state machine
for the Flash Data Byte Register with sufficient number of clock pulses to complete its
operation transparently for the user. However, if too few bits are shifted between each
Update-DR state during page load, the TAP-controller should stay in the Run-Test/Idle
state for some TCK cycles to ensure that there are at least 11 TCK cycles between
each Update-DR state.

31.9.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 31-18 on page 485.

31.9.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the
Programming Enable Register.

31.9.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the
programming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

490

8266A-MCU Wireless-12/09

ATmega128RFA1

31.9.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE
(refer to Table 31-14 on page 477).

31.9.16 Programming the Flash

Before programming the Flash a Chip Erase must be performed, see section
"Performing Chip Erase" above.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load High byte of address using programming instruction 2c.

4. Load Low byte of address using programming instruction 2d.

5. Load data using programming instructions 2e, 2f and 2g.

6. Repeat steps 5 and 6 for all instruction words in the page.

7. Write the page using programming instruction 2h.

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer
to Table 31-14 on page 477).

9. Repeat steps 3 to 8 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2c and 2d. PCWORD (refer
to Table 31-7 on page 467) is used to address within one page and must be written
as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte,
starting with the LSB of the first instruction in the page and ending with the MSB of
the last instruction in the page. Use Update-DR to copy the contents of the Flash
Data Byte Register into the Flash page location and to auto-increment the Program
Counter before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2h.

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer
to Table 31-14 on page 477).

9. Repeat steps 3 to 8 until all data have been programmed.

31.9.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3c and 3d.

4. Read data using programming instruction 3e.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

 491

8266A-MCU Wireless-12/09

 ATmega128RFA1

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3c and 3d. PCWORD (refer
to Table 31-7 on page 467) is used to address within one page and must be written
as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or
Flash), starting with the LSB of the first instruction in the page (Flash) and ending
with the MSB of the last instruction in the page (Flash). The Capture-DR state both
captures the data from the Flash, and also auto-increments the program counter
after each word is read. Note that Capture-DR comes before the shift-DR state.
Hence, the first byte which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

31.9.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see "Performing
Chip Erase" on page 490.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load High byte of address using programming instruction 4b.

4. Load Low byte of address using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH

(refer to Table 31-14 on page 477).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM.

31.9.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM.

31.9.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will
program the corresponding fuse; a “1” will un-program the fuse.

4. Write Fuse High byte using programming instruction 6c.

492

8266A-MCU Wireless-12/09

ATmega128RFA1

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH
(refer to Table 31-14 on page 477).

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a
“1” will un-program the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH
(refer to Table 31-14 on page 477).

31.9.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the
corresponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH
(refer to Table 31-14 on page 477).

31.9.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.

To only read Fuse High byte, use programming instruction 8b.

To only read Fuse Low byte, use programming instruction 8c.

To only read Lock bits, use programming instruction 8d.

31.9.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and
third signature bytes, respectively.

31.9.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.

 493

8266A-MCU Wireless-12/09

 ATmega128RFA1

32 Application Circuits

32.1 Basic Application Schematic

A basic application schematic of the ATmega128RFA1 with a single-ended RF
connector is shown in Figure 32-1 below. The 50Ω single-ended RF input is
transformed to the 100Ω differential RF port impedance using Balun B1. The capacitors
C1 and C2 provide AC coupling of the RF input to the RF port, capacitor C4 improves
matching.

Figure 32-1. Basic Application schematic (Table 32-1 on page 494)

8

7

6

5

4

3

2

1

17 18 19 20 21 22 23 24

5657585960616263

ATmega128RFA1

A
R

E
F

A
V

S
S

AVSS

RFP

RFN

AVSS

TST

D
V

S
S

D
V

D
D

D
V

D
D

X
T

A
L

2

D
E

V
D

D

D
V

S
S

A
V

D
D

E
V

D
D

A
V

S
S

X
T

A
L

1

41

42

43

44

45

46

47

48

PB0

DVSS

PE0

PB7

CB3 CB4

RSTN

VDD

XTAL
CX1 CX2

CB1

VDD

CB2

C1

C2

B1

RF

C4

25 26 27 28 29 30 31 32

16

14

13

12

11

10

9

15

64 5455 4950515253

33

34

35

36

37

38

39

40

RSTON

CR1

XTAL
32kHzCX3 CX4

CLKI

DEVDD

DVSS

DEVDD

P
E

7

D
V

S
S

D
E

V
D

D

P
F

0

PF7

PG0

P
G

5

P
D

0

P
D

7

The power supply bypass capacitors (CB2, CB4) are connected to the external analog
supply pin (EVDD, pin 59) and external digital supply pin (DEVDD, pin 23). Pins 34, 44
and 54 supply the digital port pins.

Capacitors CB1 and CB3 are bypass capacitors for the integrated analog and digital
voltage regulators to ensure stable operation and to improve noise immunity.
Capacitors should be placed as close as possible to the pins and should have a low-
resistance and low-inductance connection to ground to achieve the best performance.

494

8266A-MCU Wireless-12/09

ATmega128RFA1

The crystal (XTAL), the two load capacitors (CX1, CX2), and the internal circuitry
connected to pins XTAL1 and XTAL2 form the 16MHz crystal oscillator for the 2.4GHz
transceiver. To achieve the best accuracy and stability of the reference frequency, large
parasitic capacitances must be avoided. Crystal lines should be routed as short as
possible and not in proximity of digital I/O signals. This is especially required for the
High Data Rate Modes.

The 32.768 kHz crystal connected to the internal low power (sub 1µA) crystal oscillator
provides a stable time reference for all low power modes including 32 Bit IEEE 802.15.4
Symbol Counter ("MAC Symbol Counter" on page 133) and real time clock application
using the asynchronous timer T/C2 ("8-bit Timer/Counter2 with PWM and
Asynchronous Operation" on page 309). Total capacitance including CX3, CX4 should
not exceed 15pF on both pins. The very low supply current of the oscillator requires
careful layout of the PCB and any leakage path must be avoided.

Crosstalk and radiation from switching digital signals to the crystal pins or the RF pins
can degrade the system performance. The programming of minimum drive strength
settings for the digital output signal is recommended (see "DPDS0 – Port Driver
Strength Register 0" on page 174).

Table 32-1. Example Bill of Materials (BoM) for "Basic Application Schematic" on page 493

Designator Description Value Manufacturer Part Number Comment

B1 SMD balun

SMD balun / filter

2.4 GHz Wuerth

Johanson

Technology

748421245

2450FB15L0001

Filter included

CB1

CB3

LDO VREG

bypass capacitor

1 µF

(100nF minimum)

CB2

CB4

Power supply bypass

capacitor

1 µF

(100nF minimum)

AVX

Murata

0603YD105KAT2A

GRM188R61C105KA12D

X5R

(0603)

10% 16V

CX1, CX2

Crystal load capacitor

12 pF

AVX

Murata

06035A120JA

GRP1886C1H120JA01

COG

(0603)

5% 50V

C0G 5% C1, C2

RF coupling capacitor

22 pF

Epcos

Epcos

AVX

B37930

B37920

06035A220JAT2A
(0402 or 0603)

50V

C4 (optional) RF matching 0.47 pF Johnstech

R1 CLKM low-pass

filter resistor

680Ω Designed for fCLKM = 1 MHz

XTAL Crystal CX-4025 16 MHz

SX-4025 16 MHz

ACAL Taitjen

Siward

XWBBPL-F-1

A207-011

XTAL 32kHz Crystal Rs=100 kOhm

32.2 Extended Feature Set Application Schematic

The ATmega128RFA1 supports additional features like:

• Security Module (AES)

• High Data Rate Mode up to 2MBits/s

• Antenna Diversity using alternate pin function DIG1/2 at Port G and F

• RX/TX Indicator using alternate pin function DIG3/4 at Port G and F

An extended feature set application schematic illustrating the use of the
ATmega128RFA1 Extended Feature Set, is shown in Figure 32-2 on page 495.

 495

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 32-2. Extended Feature Application schematic

8

7

6

5

4

3

2

1

17 18 19 20 21 22 23 24

5657585960616263

ATmega128RFA1
A

R
E

F

A
V

S
S

AVSS

RFP

RFN

AVSS

TST

D
V

S
S

D
V

D
D

D
V

D
D

X
T

A
L
2

D
E

V
D

D

D
V

S
S

A
V

D
D

E
V

D
D

A
V

S
S

X
T

A
L
1

41

42

43

44

45

46

47

48

PB0

DVSS

PE0

PB7

CB3 CB4

RSTN

VDD

XTAL
CX1 CX2

CB1

VDD

CB2

25 26 27 28 29 30 31 32

16

14

13

12

11

10

9

15

64 5455 4950515253

33

34

35

36

37

38

39

40

RSTON

CR1

XTAL
32kHzCX3 CX4

CLKI

DEVDD

DVSS

DEVDD

P
E

7

D
V

S
S

D
E

V
D

D

P
F

0

PF7

PG0

P
G

5

P
D

0

P
D

7

B
a
lu

n

R
F

-
S

w
it
c
h

ANT0

ANT1

R
F

-
S

w
it
c
h

B1SW1

SW2
PA

LNA

N1

N2

Although this example shows all additional hardware features combined, it is possible to
use all features separately or in various combinations.

496

8266A-MCU Wireless-12/09

ATmega128RFA1

33 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0x1FF) TRXFBEND TRXFBEND7 TRXFBEND6 TRXFBEND5 TRXFBEND4 TRXFBEND3 TRXFBEND2 TRXFBEND1 TRXFBEND0 132

...

(0x180) TRXFBST TRXFBST7 TRXFBST6 TRXFBST5 TRXFBST4 TRXFBST3 TRXFBST2 TRXFBST1 TRXFBST0 132

(0x17F) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x17E) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x17D) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x17C) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x17B) TST_RX_LENGTH RX_LENGTH7 RX_LENGTH6 RX_LENGTH5 RX_LENGTH4 RX_LENGTH3 RX_LENGTH2 RX_LENGTH1 RX_LENGTH0 131

(0x17A) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x179) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x178) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x177) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x176) TST_CTRL_DIGI Res7 Res6 Res5 Res4 TST_CTRL_DIG3 TST_CTRL_DIG2 TST_CTRL_DIG1 TST_CTRL_DIG0 131

(0x175) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

...

(0x173) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x172) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x171) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x170) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x16F) CSMA_BE MAX_BE3 MAX_BE2 MAX_BE1 MAX_BE0 MIN_BE3 MIN_BE2 MIN_BE1 MIN_BE0 130

(0x16E) CSMA_SEED_1 AACK_FVN_MODE1 AACK_FVN_MODE0 AACK_SET_PD AACK_DIS_ACK AACK_I_AM_COORD CSMA_SEED_12 CSMA_SEED_11 CSMA_SEED_10 129

(0x16D) CSMA_SEED_0 CSMA_SEED_07 CSMA_SEED_06 CSMA_SEED_05 CSMA_SEED_04 CSMA_SEED_03 CSMA_SEED_02 CSMA_SEED_01 CSMA_SEED_00 128

(0x16C) XAH_CTRL_0 MAX_FRAME_RETRIES3 MAX_FRAME_RETRIES2 MAX_FRAME_RETRIES1 MAX_FRAME_RETRIES0 MAX_CSMA_RETRIES2 MAX_CSMA_RETRIES1 MAX_CSMA_RETRIES0 SLOTTED_OPERATION 127

(0x16B) IEEE_ADDR_7 IEEE_ADDR_77 IEEE_ADDR_76 IEEE_ADDR_75 IEEE_ADDR_74 IEEE_ADDR_73 IEEE_ADDR_72 IEEE_ADDR_71 IEEE_ADDR_70 126

(0x16A) IEEE_ADDR_6 IEEE_ADDR_67 IEEE_ADDR_66 IEEE_ADDR_65 IEEE_ADDR_64 IEEE_ADDR_63 IEEE_ADDR_62 IEEE_ADDR_61 IEEE_ADDR_60 126

(0x169) IEEE_ADDR_5 IEEE_ADDR_57 IEEE_ADDR_56 IEEE_ADDR_55 IEEE_ADDR_54 IEEE_ADDR_53 IEEE_ADDR_52 IEEE_ADDR_51 IEEE_ADDR_50 126

(0x168) IEEE_ADDR_4 IEEE_ADDR_47 IEEE_ADDR_46 IEEE_ADDR_45 IEEE_ADDR_44 IEEE_ADDR_43 IEEE_ADDR_42 IEEE_ADDR_41 IEEE_ADDR_40 126

(0x167) IEEE_ADDR_3 IEEE_ADDR_37 IEEE_ADDR_36 IEEE_ADDR_35 IEEE_ADDR_34 IEEE_ADDR_33 IEEE_ADDR_32 IEEE_ADDR_31 IEEE_ADDR_30 125

(0x166) IEEE_ADDR_2 IEEE_ADDR_27 IEEE_ADDR_26 IEEE_ADDR_25 IEEE_ADDR_24 IEEE_ADDR_23 IEEE_ADDR_22 IEEE_ADDR_21 IEEE_ADDR_20 125

(0x165) IEEE_ADDR_1 IEEE_ADDR_17 IEEE_ADDR_16 IEEE_ADDR_15 IEEE_ADDR_14 IEEE_ADDR_13 IEEE_ADDR_12 IEEE_ADDR_11 IEEE_ADDR_10 125

(0x164) IEEE_ADDR_0 IEEE_ADDR_07 IEEE_ADDR_06 IEEE_ADDR_05 IEEE_ADDR_04 IEEE_ADDR_03 IEEE_ADDR_02 IEEE_ADDR_01 IEEE_ADDR_00 124

(0x163) PAN_ID_1 PAN_ID_17 PAN_ID_16 PAN_ID_15 PAN_ID_14 PAN_ID_13 PAN_ID_12 PAN_ID_11 PAN_ID_10 124

(0x162) PAN_ID_0 PAN_ID_07 PAN_ID_06 PAN_ID_05 PAN_ID_04 PAN_ID_03 PAN_ID_02 PAN_ID_01 PAN_ID_00 124

(0x161) SHORT_ADDR_1 SHORT_ADDR_17 SHORT_ADDR_16 SHORT_ADDR_15 SHORT_ADDR_14 SHORT_ADDR_13 SHORT_ADDR_12 SHORT_ADDR_11 SHORT_ADDR_10 124

(0x160) SHORT_ADDR_0 SHORT_ADDR_07 SHORT_ADDR_06 SHORT_ADDR_05 SHORT_ADDR_04 SHORT_ADDR_03 SHORT_ADDR_02 SHORT_ADDR_01 SHORT_ADDR_00 123

(0x15F) MAN_ID_1 MAN_ID_17 MAN_ID_16 MAN_ID_15 MAN_ID_14 MAN_ID_13 MAN_ID_12 MAN_ID_11 MAN_ID_10 123

(0x15E) MAN_ID_0 MAN_ID_07 MAN_ID_06 MAN_ID_05 MAN_ID_04 MAN_ID_03 MAN_ID_02 MAN_ID_01 MAN_ID_00 123

(0x15D) VERSION_NUM VERSION_NUM7 VERSION_NUM6 VERSION_NUM5 VERSION_NUM4 VERSION_NUM3 VERSION_NUM2 VERSION_NUM1 VERSION_NUM0 122

(0x15C) PART_NUM PART_NUM7 PART_NUM6 PART_NUM5 PART_NUM4 PART_NUM3 PART_NUM2 PART_NUM1 PART_NUM0 122

(0x15B) PLL_DCU PLL_DCU_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 121

(0x15A) PLL_CF PLL_CF_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 121

(0x159) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x158) FTN_CTRL FTN_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 120

(0x157) XAH_CTRL_1 Res1 Res0 AACK_FLTR_RES_FT AACK_UPLD_RES_FT Res AACK_ACK_TIME AACK_PROM_MODE Res 119

... Reserved

(0x155) RX_SYN RX_PDT_DIS Res2 Res1 Res0 RX_PDT_LEVEL3 RX_PDT_LEVEL2 RX_PDT_LEVEL1 RX_PDT_LEVEL0 118

... Reserved

(0x152) XOSC_CTRL XTAL_MODE3 XTAL_MODE2 XTAL_MODE1 XTAL_MODE0 XTAL_TRIM3 XTAL_TRIM2 XTAL_TRIM1 XTAL_TRIM0 117

(0x151) BATMON BAT_LOW BAT_LOW_EN BATMON_OK BATMON_HR BATMON_VTH3 BATMON_VTH2 BATMON_VTH1 BATMON_VTH0 116

(0x150) VREG_CTRL AVREG_EXT AVDD_OK Res5 Res4 Res3 DVDD_OK Res1 Res0 115

(0x14F) IRQ_STATUS AWAKE TX_END AMI CCA_ED_DONE RX_END RX_START PLL_UNLOCK PLL_LOCK 114

(0x14E) IRQ_MASK AWAKE_EN TX_END_EN AMI_EN CCA_ED_DONE_EN RX_END_EN RX_START_EN PLL_UNLOCK_EN PLL_LOCK_EN 114

(0x14D) ANT_DIV ANT_SEL Res2 Res1 Res0 ANT_DIV_EN ANT_EXT_SW_EN ANT_CTRL1 ANT_CTRL0 112

(0x14C) TRX_CTRL_2 RX_SAFE_MODE Res4 Res3 Res2 Res1 Res0 OQPSK_DATA_RATE1 OQPSK_DATA_RATE0 112

(0x14B) SFD_VALUE SFD_VALUE7 SFD_VALUE6 SFD_VALUE5 SFD_VALUE4 SFD_VALUE3 SFD_VALUE2 SFD_VALUE1 SFD_VALUE0 111

(0x14A) RX_CTRL Res7 Res6 Res5 Res4 PDT_THRES3 PDT_THRES2 PDT_THRES1 PDT_THRES0 111

(0x149) CCA_THRES CCA_CS_THRES3 CCA_CS_THRES2 CCA_CS_THRES1 CCA_CS_THRES0 CCA_ED_THRES3 CCA_ED_THRES2 CCA_ED_THRES1 CCA_ED_THRES0 110

(0x148) PHY_CC_CCA CCA_REQUEST CCA_MODE1 CCA_MODE0 CHANNEL4 CHANNEL3 CHANNEL2 CHANNEL1 CHANNEL0 109

(0x147) PHY_ED_LEVEL ED_LEVEL7 ED_LEVEL6 ED_LEVEL5 ED_LEVEL4 ED_LEVEL3 ED_LEVEL2 ED_LEVEL1 ED_LEVEL0 108

(0x146) PHY_RSSI RX_CRC_VALID RND_VALUE1 RND_VALUE0 RSSI4 RSSI3 RSSI2 RSSI1 RSSI0 107

(0x145) PHY_TX_PWR PA_BUF_LT1 PA_BUF_LT0 PA_LT1 PA_LT0 TX_PWR3 TX_PWR2 TX_PWR1 TX_PWR0 106

 497

8266A-MCU Wireless-12/09

 ATmega128RFA1

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0x144) TRX_CTRL_1 PA_EXT_EN IRQ_2_EXT_EN TX_AUTO_CRC_ON Res4 Res3 Res2 Res1 Res0 105

(0x143) TRX_CTRL_0 Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0 105

(0x142) TRX_STATE TRAC_STATUS2 TRAC_STATUS1 TRAC_STATUS0 TRX_CMD4 TRX_CMD3 TRX_CMD2 TRX_CMD1 TRX_CMD0 104

(0x141) TRX_STATUS CCA_DONE CCA_STATUS TST_STATUS TRX_STATUS4 TRX_STATUS3 TRX_STATUS2 TRX_STATUS1 TRX_STATUS0 102

... Reserved

(0x13F) AES_KEY AES_KEY7 AES_KEY6 AES_KEY5 AES_KEY4 AES_KEY3 AES_KEY2 AES_KEY1 AES_KEY0 102

(0x13E) AES_STATE AES_STATE7 AES_STATE6 AES_STATE5 AES_STATE4 AES_STATE3 AES_STATE2 AES_STATE1 AES_STATE0 102

(0x13D) AES_STATUS AES_ER Res5 Res4 Res3 Res2 Res1 Res0 AES_DONE 101

(0x13C) AES_CTRL AES_REQUEST Res AES_MODE Res AES_DIR AES_IM Res1 Res0 100

(0x13B) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

... Reserved

(0x139) TRXPR Res3 Res2 Res1 Res0 Res3 Res2 SLPTR TRXRST 169

... Reserved

(0x137) DPDS1 Res5 Res4 Res3 Res2 Res1 Res0 PGDRV1 PGDRV0 175

(0x136) DPDS0 PFDRV1 PFDRV0 PEDRV1 PEDRV0 PDDRV1 PDDRV0 PBDRV1 PBDRV0 174

(0x135) DRTRAM0 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 170

(0x134) DRTRAM1 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 170

(0x133) DRTRAM2 Res7 Res DRTSWOK ENDRT Res3 Res2 Res1 Res0 171

(0x132) DRTRAM3 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 171

(0x131) LLDRH Res2 Res1 Res0 LLDRH4 LLDRH3 LLDRH2 LLDRH1 LLDRH0 173

(0x130) LLDRL Res3 Res2 Res1 Res0 LLDRL3 LLDRL2 LLDRL1 LLDRL0 173

(0x12F) LLCR Res1 Res0 LLDONE LLCOMP LLCAL LLTCO LLSHORT LLENCAL 172

... Reserved

(0x12D) OCR5CH OCR5CH7 OCR5CH6 OCR5CH5 OCR5CH4 OCR5CH3 OCR5CH2 OCR5CH1 OCR5CH0 300

(0x12C) OCR5CL OCR5CL7 OCR5CL6 OCR5CL5 OCR5CL4 OCR5CL3 OCR5CL2 OCR5CL1 OCR5CL0 301

(0x12B) OCR5BH OCR5BH7 OCR5BH6 OCR5BH5 OCR5BH4 OCR5BH3 OCR5BH2 OCR5BH1 OCR5BH0 299

(0x12A) OCR5BL OCR5BL7 OCR5BL6 OCR5BL5 OCR5BL4 OCR5BL3 OCR5BL2 OCR5BL1 OCR5BL0 300

(0x129) OCR5AH OCR5AH7 OCR5AH6 OCR5AH5 OCR5AH4 OCR5AH3 OCR5AH2 OCR5AH1 OCR5AH0 299

(0x128) OCR5AL OCR5AL7 OCR5AL6 OCR5AL5 OCR5AL4 OCR5AL3 OCR5AL2 OCR5AL1 OCR5AL0 299

(0x127) ICR5H ICR5H7 ICR5H6 ICR5H5 ICR5H4 ICR5H3 ICR5H2 ICR5H1 ICR5H0 301

(0x126) ICR5L ICR5L7 ICR5L6 ICR5L5 ICR5L4 ICR5L3 ICR5L2 ICR5L1 ICR5L0 301

(0x125) TCNT5H TCNT5H7 TCNT5H6 TCNT5H5 TCNT5H4 TCNT5H3 TCNT5H2 TCNT5H1 TCNT5H0 298

(0x124) TCNT5L TCNT5L7 TCNT5L6 TCNT5L5 TCNT5L4 TCNT5L3 TCNT5L2 TCNT5L1 TCNT5L0 298

... Reserved

(0x122) TCCR5C FOC5A FOC5B FOC5C Res4 Res3 Res2 Res1 Res0 297

(0x121) TCCR5B ICNC5 ICES5 Res WGM53 WGM52 CS52 CS51 CS50 296

(0x120) TCCR5A COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50 294

... Reserved

(0xF8) SCOCR1HH SCOCR1HH7 SCOCR1HH6 SCOCR1HH5 SCOCR1HH4 SCOCR1HH3 SCOCR1HH2 SCOCR1HH1 SCOCR1HH0 140

(0xF7) SCOCR1HL SCOCR1HL7 SCOCR1HL6 SCOCR1HL5 SCOCR1HL4 SCOCR1HL3 SCOCR1HL2 SCOCR1HL1 SCOCR1HL0 141

(0xF6) SCOCR1LH SCOCR1LH7 SCOCR1LH6 SCOCR1LH5 SCOCR1LH4 SCOCR1LH3 SCOCR1LH2 SCOCR1LH1 SCOCR1LH0 141

(0xF5) SCOCR1LL SCOCR1LL7 SCOCR1LL6 SCOCR1LL5 SCOCR1LL4 SCOCR1LL3 SCOCR1LL2 SCOCR1LL1 SCOCR1LL0 141

(0xF4) SCOCR2HH SCOCR2HH7 SCOCR2HH6 SCOCR2HH5 SCOCR2HH4 SCOCR2HH3 SCOCR2HH2 SCOCR2HH1 SCOCR2HH0 141

(0xF3) SCOCR2HL SCOCR2HL7 SCOCR2HL6 SCOCR2HL5 SCOCR2HL4 SCOCR2HL3 SCOCR2HL2 SCOCR2HL1 SCOCR2HL0 142

(0xF2) SCOCR2LH SCOCR2LH7 SCOCR2LH6 SCOCR2LH5 SCOCR2LH4 SCOCR2LH3 SCOCR2LH2 SCOCR2LH1 SCOCR2LH0 142

(0xF1) SCOCR2LL SCOCR2LL7 SCOCR2LL6 SCOCR2LL5 SCOCR2LL4 SCOCR2LL3 SCOCR2LL2 SCOCR2LL1 SCOCR2LL0 142

(0xF0) SCOCR3HH SCOCR3HH7 SCOCR3HH6 SCOCR3HH5 SCOCR3HH4 SCOCR3HH3 SCOCR3HH2 SCOCR3HH1 SCOCR3HH0 142

(0xEF) SCOCR3HL SCOCR3HL7 SCOCR3HL6 SCOCR3HL5 SCOCR3HL4 SCOCR3HL3 SCOCR3HL2 SCOCR3HL1 SCOCR3HL0 143

(0xEE) SCOCR3LH SCOCR3LH7 SCOCR3LH6 SCOCR3LH5 SCOCR3LH4 SCOCR3LH3 SCOCR3LH2 SCOCR3LH1 SCOCR3LH0 143

(0xED) SCOCR3LL SCOCR3LL7 SCOCR3LL6 SCOCR3LL5 SCOCR3LL4 SCOCR3LL3 SCOCR3LL2 SCOCR3LL1 SCOCR3LL0 143

(0xEC) SCTSRHH SCTSRHH7 SCTSRHH6 SCTSRHH5 SCTSRHH4 SCTSRHH3 SCTSRHH2 SCTSRHH1 SCTSRHH0 138

(0xEB) SCTSRHL SCTSRHL7 SCTSRHL6 SCTSRHL5 SCTSRHL4 SCTSRHL3 SCTSRHL2 SCTSRHL1 SCTSRHL0 139

(0xEA) SCTSRLH SCTSRLH7 SCTSRLH6 SCTSRLH5 SCTSRLH4 SCTSRLH3 SCTSRLH2 SCTSRLH1 SCTSRLH0 139

(0xE9) SCTSRLL SCTSRLL7 SCTSRLL6 SCTSRLL5 SCTSRLL4 SCTSRLL3 SCTSRLL2 SCTSRLL1 SCTSRLL0 139

(0xE8) SCBTSRHH SCBTSRHH7 SCBTSRHH6 SCBTSRHH5 SCBTSRHH4 SCBTSRHH3 SCBTSRHH2 SCBTSRHH1 SCBTSRHH0 139

(0xE7) SCBTSRHL SCBTSRHL7 SCBTSRHL6 SCBTSRHL5 SCBTSRHL4 SCBTSRHL3 SCBTSRHL2 SCBTSRHL1 SCBTSRHL0 140

(0xE6) SCBTSRLH SCBTSRLH7 SCBTSRLH6 SCBTSRLH5 SCBTSRLH4 SCBTSRLH3 SCBTSRLH2 SCBTSRLH1 SCBTSRLH0 140

(0xE5) SCBTSRLL SCBTSRLL7 SCBTSRLL6 SCBTSRLL5 SCBTSRLL4 SCBTSRLL3 SCBTSRLL2 SCBTSRLL1 SCBTSRLL0 140

(0xE4) SCCNTHH SCCNTHH7 SCCNTHH6 SCCNTHH5 SCCNTHH4 SCCNTHH3 SCCNTHH2 SCCNTHH1 SCCNTHH0 137

(0xE3) SCCNTHL SCCNTHL7 SCCNTHL6 SCCNTHL5 SCCNTHL4 SCCNTHL3 SCCNTHL2 SCCNTHL1 SCCNTHL0 138

(0xE2) SCCNTLH SCCNTLH7 SCCNTLH6 SCCNTLH5 SCCNTLH4 SCCNTLH3 SCCNTLH2 SCCNTLH1 SCCNTLH0 138

(0xE1) SCCNTLL SCCNTLL7 SCCNTLL6 SCCNTLL5 SCCNTLL4 SCCNTLL3 SCCNTLL2 SCCNTLL1 SCCNTLL0 138

(0xE0) SCIRQS Res2 Res1 Res0 IRQSBO IRQSOF IRQSCP3 IRQSCP2 IRQSCP1 145

(0xDF) SCIRQM Res2 Res1 Res0 IRQMBO IRQMOF IRQMCP3 IRQMCP2 IRQMCP1 146

498

8266A-MCU Wireless-12/09

ATmega128RFA1

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xDE) SCSR Res6 Res5 Res4 Res3 Res2 Res1 Res0 SCBSY 145

(0xDD) SCCR1 Res6 Res5 Res4 Res4 Res3 Res2 Res1 SCENBO 144

(0xDC) SCCR0 SCRES SCMBTS SCEN SCCKSEL SCTSE SCCMP3 SCCMP2 SCCMP1 143

... Reserved

(0xD1) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0xD0) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

... Reserved

(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 360

(0xCD) UBRR1H Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 364

(0xCC) UBRR1L UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 365

... Reserved

(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UDORD1 UCPHA1 UCPOL1 376

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 375

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 375

... Reserved

(0xC6) UDR0 UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 356

(0xC5) UBRR0H Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 360

(0xC4) UBRR0L UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 360

... Reserved

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UDORD0 UCPHA0 UCPOL0 374

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 374

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 373

... Reserved

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 Res 406

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN Res TWIE 402

(0xBB) TWDR TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 405

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 405

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 Res TWPS1 TWPS0 403

(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 401

... Reserved

(0xB6) ASSR EXCLKAMR EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 328

... Reserved

(0xB4) OCR2B OCR2B7 OCR2B6 OCR2B5 OCR2B4 OCR2B3 OCR2B2 OCR2B1 OCR2B0 327

(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 327

(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 327

(0xB1) TCCR2B FOC2A FOC2B Res1 Res0 WGM22 CS22 CS21 CS20 326

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 Res1 Res0 WGM21 WGM20 325

... Reserved

(0xAD) OCR4CH OCR4CH7 OCR4CH6 OCR4CH5 OCR4CH4 OCR4CH3 OCR4CH2 OCR4CH1 OCR4CH0 291

(0xAC) OCR4CL OCR4CL7 OCR4CL6 OCR4CL5 OCR4CL4 OCR4CL3 OCR4CL2 OCR4CL1 OCR4CL0 292

(0xAB) OCR4BH OCR4BH7 OCR4BH6 OCR4BH5 OCR4BH4 OCR4BH3 OCR4BH2 OCR4BH1 OCR4BH0 291

(0xAA) OCR4BL OCR4BL7 OCR4BL6 OCR4BL5 OCR4BL4 OCR4BL3 OCR4BL2 OCR4BL1 OCR4BL0 291

(0xA9) OCR4AH OCR4AH7 OCR4AH6 OCR4AH5 OCR4AH4 OCR4AH3 OCR4AH2 OCR4AH1 OCR4AH0 290

(0xA8) OCR4AL OCR4AL7 OCR4AL6 OCR4AL5 OCR4AL4 OCR4AL3 OCR4AL2 OCR4AL1 OCR4AL0 290

(0xA7) ICR4H ICR4H7 ICR4H6 ICR4H5 ICR4H4 ICR4H3 ICR4H2 ICR4H1 ICR4H0 292

(0xA6) ICR4L ICR4L7 ICR4L6 ICR4L5 ICR4L4 ICR4L3 ICR4L2 ICR4L1 ICR4L0 292

(0xA5) TCNT4H TCNT4H7 TCNT4H6 TCNT4H5 TCNT4H4 TCNT4H3 TCNT4H2 TCNT4H1 TCNT4H0 289

(0xA4) TCNT4L TCNT4L7 TCNT4L6 TCNT4L5 TCNT4L4 TCNT4L3 TCNT4L2 TCNT4L1 TCNT4L0 289

... Reserved

(0xA2) TCCR4C FOC4A FOC4B FOC4C Res4 Res3 Res2 Res1 Res0 288

(0xA1) TCCR4B ICNC4 ICES4 Res WGM43 WGM42 CS42 CS41 CS40 287

(0xA0) TCCR4A COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40 285

... Reserved

(0x9D) OCR3CH OCR3CH7 OCR3CH6 OCR3CH5 OCR3CH4 OCR3CH3 OCR3CH2 OCR3CH1 OCR3CH0 282

(0x9C) OCR3CL OCR3CL7 OCR3CL6 OCR3CL5 OCR3CL4 OCR3CL3 OCR3CL2 OCR3CL1 OCR3CL0 283

(0x9B) OCR3BH OCR3BH7 OCR3BH6 OCR3BH5 OCR3BH4 OCR3BH3 OCR3BH2 OCR3BH1 OCR3BH0 282

(0x9A) OCR3BL OCR3BL7 OCR3BL6 OCR3BL5 OCR3BL4 OCR3BL3 OCR3BL2 OCR3BL1 OCR3BL0 282

(0x99) OCR3AH OCR3AH7 OCR3AH6 OCR3AH5 OCR3AH4 OCR3AH3 OCR3AH2 OCR3AH1 OCR3AH0 281

(0x98) OCR3AL OCR3AL7 OCR3AL6 OCR3AL5 OCR3AL4 OCR3AL3 OCR3AL2 OCR3AL1 OCR3AL0 281

(0x97) ICR3H ICR3H7 ICR3H6 ICR3H5 ICR3H4 ICR3H3 ICR3H2 ICR3H1 ICR3H0 283

(0x96) ICR3L ICR3L7 ICR3L6 ICR3L5 ICR3L4 ICR3L3 ICR3L2 ICR3L1 ICR3L0 283

(0x95) TCNT3H TCNT3H7 TCNT3H6 TCNT3H5 TCNT3H4 TCNT3H3 TCNT3H2 TCNT3H1 TCNT3H0 280

(0x94) TCNT3L TCNT3L7 TCNT3L6 TCNT3L5 TCNT3L4 TCNT3L3 TCNT3L2 TCNT3L1 TCNT3L0 280

... Reserved

 499

8266A-MCU Wireless-12/09

 ATmega128RFA1

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0x92) TCCR3C FOC3A FOC3B FOC3C Res4 Res3 Res2 Res1 Res0 279

(0x91) TCCR3B ICNC3 ICES3 Res WGM33 WGM32 CS32 CS31 CS30 278

(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 276

... Reserved

(0x8D) OCR1CH OCR1CH7 OCR1CH6 OCR1CH5 OCR1CH4 OCR1CH3 OCR1CH2 OCR1CH1 OCR1CH0 273

(0x8C) OCR1CL OCR1CL7 OCR1CL6 OCR1CL5 OCR1CL4 OCR1CL3 OCR1CL2 OCR1CL1 OCR1CL0 273

(0x8B) OCR1BH OCR1BH7 OCR1BH6 OCR1BH5 OCR1BH4 OCR1BH3 OCR1BH2 OCR1BH1 OCR1BH0 272

(0x8A) OCR1BL OCR1BL7 OCR1BL6 OCR1BL5 OCR1BL4 OCR1BL3 OCR1BL2 OCR1BL1 OCR1BL0 272

(0x89) OCR1AH OCR1AH7 OCR1AH6 OCR1AH5 OCR1AH4 OCR1AH3 OCR1AH2 OCR1AH1 OCR1AH0 271

(0x88) OCR1AL OCR1AL7 OCR1AL6 OCR1AL5 OCR1AL4 OCR1AL3 OCR1AL2 OCR1AL1 OCR1AL0 271

(0x87) ICR1H ICR1H7 ICR1H6 ICR1H5 ICR1H4 ICR1H3 ICR1H2 ICR1H1 ICR1H0 273

(0x86) ICR1L ICR1L7 ICR1L6 ICR1L5 ICR1L4 ICR1L3 ICR1L2 ICR1L1 ICR1L0 274

(0x85) TCNT1H TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1H0 270

(0x84) TCNT1L TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 TCNT1L0 271

... Reserved

(0x82) TCCR1C FOC1A FOC1B FOC1C Res4 Res3 Res2 Res1 Res0 270

(0x81) TCCR1B ICNC1 ICES1 Res WGM13 WGM12 CS12 CS11 CS10 268

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 266

(0x7F) DIDR1 AIN1D AIN0D 409

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 433

(0x7D) DIDR2 ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D 433

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 427

(0x7B) ADCSRB AVDDOK ACME REFOK ACCH MUX5 ADTS2 ADTS1 ADTS0 428

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 430

(0x79) ADCH ADCH7 ADCH6 ADCH5 ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 432

(0x78) ADCL ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0 432

(0x77) ADCSRC ADTHT1 ADTHT0 Res0 ADSUT4 ADSUT3 ADSUT2 ADSUT1 ADSUT0 431

... Reserved

(0x75) NEMCR Res7 ENEAM AEAM1 AEAM0 Res3 Res2 Res1 Res0 463

(0x74) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0

(0x73) TIMSK5 Res1 Res0 ICIE5 Res OCIE5C OCIE5B OCIE5A TOIE5 302

(0x72) TIMSK4 Res1 Res0 ICIE4 Res OCIE4C OCIE4B OCIE4A TOIE4 293

(0x71) TIMSK3 Res1 Res0 ICIE3 Res OCIE3C OCIE3B OCIE3A TOIE3 284

(0x70) TIMSK2 Res4 Res3 Res2 Res1 Res0 OCIE2B OCIE2A TOIE2 323

(0x6F) TIMSK1 Res1 Res0 ICIE1 Res OCIE1C OCIE1B OCIE1A TOIE1 274

(0x6E) TIMSK0 Res4 Res3 Res2 Res1 Res0 OCIE0B OCIE0A TOIE0 242

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 224

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 224

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 225

(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 220

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 219

(0x68) PCICR Res4 Res3 Res2 Res1 Res0 PCIE2 PCIE1 PCIE0 223

(0x67) BGCR Res BGCAL_FINE3 BGCAL_FINE2 BGCAL_FINE1 BGCAL_FINE0 BGCAL2 BGCAL1 BGCAL0 433

(0x66) OSCCAL CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 153

(0x65) PRR1 Res PRTRX24 PRTIM5 PRTIM4 PRTIM3 PRUSART1 168

(0x64) PRR0 PRTWI PRTIM2 PRTIM0 PRPGA PRTIM1 PRSPI PRUSART0 PRADC 167

(0x63) PRR2 Res3 Res2 Res1 Res0 PRRAM3 PRRAM2 PRRAM1 PRRAM0 168

... Reserved

(0x61) CLKPR CLKPCE Res2 Res1 Res0 CLKPS3 CLKPS2 CLKPS1 CLKPS0 154

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 183

0x3F (0x5F) SREG I T H S V N Z C 11

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 14

... Reserved

0x3B (0x5B) RAMPZ Res5 Res4 Res3 Res2 Res1 Res0 RAMPZ1 RAMPZ0 14

... Reserved

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 462

... Reserved

0x35 (0x55) MCUCR JTD Res1 Res0 PUD Res1 Res0 IVSEL IVCE 204

0x34 (0x54) MCUSR Res2 Res1 Res0 JTRF WDRF BORF EXTRF PORF 183

0x33 (0x53) SMCR Res3 Res2 Res1 Res0 SM2 SM1 SM0 SE 166

... Reserved

0x31 (0x51) OCDR OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 440

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 408

500

8266A-MCU Wireless-12/09

ATmega128RFA1

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

... Reserved

0x2E (0x4E) SPDR SPDR7 SPDR6 SPDR5 SPDR4 SPDR3 SPDR2 SPDR1 SPDR0 338

0x2D (0x4D) SPSR SPIF WCOL Res4 Res3 Res2 Res1 Res0 SPI2X 337

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 336

0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 26

0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 26

... Reserved

0x28 (0x48) OCR0B OCR0B_7 OCR0B_6 OCR0B_5 OCR0B_4 OCR0B_3 OCR0B_2 OCR0B_1 OCR0B_0 242

0x27 (0x47) OCR0A OCR0A_7 OCR0A_6 OCR0A_5 OCR0A_4 OCR0A_3 OCR0A_2 OCR0A_1 OCR0A_0 241

0x26 (0x46) TCNT0 TCNT0_7 TCNT0_6 TCNT0_5 TCNT0_4 TCNT0_3 TCNT0_2 TCNT0_1 TCNT0_0 241

0x25 (0x45) TCCR0B FOC0A FOC0B Res1 Res0 WGM02 CS02 CS01 CS00 240

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 Res1 Res0 WGM01 WGM00 238

0x23 (0x43) GTCCR TSM Res4 Res3 Res2 Res1 Res0 PSRASY PSRSYNC 329

0x22 (0x42) EEARH Res3 Res2 Res1 Res0 EEAR11 EEAR10 EEAR9 EEAR8 23

0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 23

0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 23

0x1F (0x3F) EECR Res1 Res0 EEPM1 EEPM0 EERIE EEMPE EEPE EERE 24

0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 26

0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 222

0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0 222

0x1B (0x3B) PCIFR Res4 Res3 Res2 Res1 Res0 PCIF2 PCIF1 PCIF0 223

0x1A (0x3A) TIFR5 Res1 Res0 ICF5 Res OCF5C OCF5B OCF5A TOV5 302

0x19 (0x39) TIFR4 Res1 Res0 ICF4 Res OCF4C OCF4B OCF4A TOV4 293

0x18 (0x38) TIFR3 Res1 Res0 ICF3 Res OCF3C OCF3B OCF3A TOV3 284

0x17 (0x37) TIFR2 Res4 Res3 Res2 Res1 Res0 OCF2B OCF2A TOV2 324

0x16 (0x36) TIFR1 Res1 Res0 ICF1 Res OCF1C OCF1B OCF1A TOV1 275

0x15 (0x35) TIFR0 Res4 Res3 Res2 Res1 Res0 OCF0B OCF0A TOV0 243

0x14 (0x34) PORTG Res1 Res0 PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 209

0x13 (0x33) DDRG Res1 Res0 DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 209

0x12 (0x32) PING Res1 Res0 PING5 PING4 PING3 PING2 PING1 PING0 210

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 208

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 208

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 209

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 207

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 207

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 208

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 206

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 207

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 207

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 27

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 28

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 28

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 205

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 206

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 206

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 27

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 27

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 27

Notes: 1. Reserved registers, bits and I/O memory addresses (marked as Res*) may not be modified.

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the

value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the

I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to

0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 – 0x3F must be used. When addressing I/O registers as

data space using LD and ST instructions, 0x20 must be added to these addresses. The device is a complex microcontroller with more

peripheral units than can be supported within the 64 location reserved in Op-code for the IN and OUT instructions. For the Extended I/O

space from 0x60 – 0x1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

 501

8266A-MCU Wireless-12/09

 ATmega128RFA1

34 Electrical Characteristics

34.1 Absolute Maximum Ratings

Note that stresses beyond those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional operation of
the device at these or any other conditions beyond those indicated in the operational
sections of this specification are not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

Symbol Parameter Condition Min. Typ. Max. Units

TSTOR Storage temperature -50 150 °C

TLEAD Lead temperature T = 10s,

(soldering profile compliant with
IPC/JEDEC J-STD-020B)

 260 °C

VESD ESD robustness Compl. to [3],

Compl. to [4]

4

750

 kV

V

PRF Input RF level +14 dBm

VDIG Voltage on all pins

(except pins 4, 5, 13, 14, 29)

 -0.3 VDD+0.3 V

VANA Voltage on pins 4, 5, 13, 14, 29 -0.3 2.0 V

34.1.1 Recommended Operating Range

Symbol Parameter Condition Min. Typ. Max. Units

TOP Operating temperature range -40 +85 °C

VDD Supply voltage Voltage on pins 15,28
(2)

 1.8 3.0 3.6 V

VDD1.8 Supply voltage

(on pins 13, 14, 29)

External voltage supply
(1)

 1.7 1.8 1.9 V

Notes: 1. Register VREG_CTRL needs to be programmed to disable internal voltage regulators and supply blocks by an external
1.8V supply, refer to section "Voltage Regulators (AVREG, DVREG)" on page 163.

2. Even if an implementation uses the external 1.8V voltage supply VDD1.8 it is required to connect VDD.

34.1.2 Digital Pin Characteristics

Test Conditions: TOP = 25°C (unless otherwise stated)

Symbol Parameter Condition Min Typ Max Units

VIH High level input voltage
(1)

 VDD –
0.4

 V

VIL Low level input voltage
(1)

 0.4 V

VOH High level output voltage
(1)

 For all output driver strengths defined in
DPDS0, DPDS1

VDD –
0.4

 V

VOL Low level output voltage
(1)

 For all output driver strengths defined in
DPDS0, DPDS1

 0.4 V

Note: 5. The capacitive load should not be larger than 50 pF for all I/Os when using the default driver strength settings, refer to
section "DPDS0 – Port Driver Strength Register 0" on page 174 and "DPDS1 – Port Driver Strength Register 1" on
page 175. Generally, large load capacitances increase the overall current consumption.

502

8266A-MCU Wireless-12/09

ATmega128RFA1

34.2 Clock Characteristics

34.2.1 Calibrated Internal RC Oscillator Accuracy

Table 34-2. Calibration Accuracy of Internal RC Oscillator

 Frequency VDEVDD Temperature Calibration Accuracy

Factory Calibration 16 MHz 3.0V 25°C ± TBD %

User Calibration TBD 1.8V – 3.6V -TBD°C - TBD°C ± TBD %

34.2.2 External Clock Drive

Figure 34-1 External Clock Drive Waveforms

VIL1

VIH1

Table 34-3. External Clock Drive

Symbol Parameter Min. Max. Units

1/tCLCL Oscillator Frequency 16 MHz

tCLCL Clock Period 62.5 ns

tCHCX High Time 25 ns

tCLCX Low Time 25 ns

tCLCH Rise Time 0.1 µs

tCHCL Fall Time 0.1 µs

∆tCLCL Change in period from one clock cycle to the next 1 %

34.3 System and Reset Characteristics

Table 34-4. Reset, Brown-out and Internal Voltage Characteristics

Symbol Parameter Condition Min Typ Max Units

Power-on Reset Threshold Voltage
(rising)

 TBD V

VPOT
Power-on Reset Threshold Voltage
(falling)

(1)

 0.3 V

VPSR Power-on slope rate TBD V/ms

VRST RSTN Pin Threshold Voltage 0.2VDEVDD 0.9VDEVDD V

tRST Minimum pulse width on RSTN Pin TBD ns

VHYS Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 100 ns

VBG Bandgap reference voltage VDEVDD = 3.0V, TA = 25°C 1.2 V

Note: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling).

 503

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table 34-23. BODLEVEL Fuse Coding

BODLEVEL2:0 Fuses Min VBOD Typ VBOD Max VBOD Units

111 BOD Disabled

110 1.8 V

101 1.9 V

100 2.0 V

011 2.1 V

010 2.2 V

001 2.3 V

000 2.4 V

Note: VBOT may be below nominal minimum operating voltage. The device is operated down to VDEVDD = VBOT during the
production test. This guarantees that a Brown-Out Reset will occur before VDEVDD drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 for 16 MHz
operation of the ATmega128RFA1.

34.4 Power Management Electrical Characteristics

34.4.1 Power Switches

Table 34-6. Timing Characteristics of the Power Switches

Symbol Parameter Condition Min. Typ. Max. Units

tPOR Power-on reset time Applies if the device is powered up TBD µs

tBG Bandgap startup time 7 µs

tDRT_ON DRT switch switch-on time 2 µs

tPWRSW_ON Power switch switch-on time 2 µs

34.4.2 Voltage Regulators

Table 34-7. Timing Characteristics of the Voltage regulators

Symbol Parameter Condition Min. Typ. Max. Units

tAVREG Power up time AVREG external capacity on pin AVDD TBD TBD µs

tDVREG Power up time DVREG Startup after wakeup,

Startup after deep sleep,

external capacity on pin DVDD TBD

TRX24 and all SRAM modules enabled)

 30 µs

tBG Power up time bandgap TBD µs

34.5 2-wire Serial Interface Characteristics

The timing characteristics refer to Table 34-8.

Table 34-8 2-wire Serial Bus Requirements

Symbol Parameter Condition Min. Max. Units

VIL Input Low-voltage -0.5 0.3VDEVDD V

504

8266A-MCU Wireless-12/09

ATmega128RFA1

Symbol Parameter Condition Min. Max. Units

VIH Input High-voltage 0.7VDEVDD VDEVDD +0.5 V

Vhys Hysteresis of Schmitt Trigger Inputs V

VOL Output Low-voltage 3mA sink current 0 0.4 V

tr Rise Time for both SDA and SCL 300 ns

tof Output Fall Time from VIHmin to VILmax 250 ns

tSP Spikes suppressed by the input filter 50 ns

Figure 34-2

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

34.6 SPI Timing Characteristics

See Figure 34-3and Figure 34-4 for details.

Table 34-9. SPI Timing Parameters

Description Mode Min Typ Max Units

SCK period Master See "SPCR – SPI Control Register" on
page 336.

SCK high/low Master 50% duty cycle

Rise/fall time Master TBD

Setup Master TBD

Hold Master TBD

Out to SCK Master 0.5 tSCK

SCK to out Master TBD

SCK to out high Master TBD

SS
__

 low to out Slave TBD

SCK period Slave 4 tCK

SCK high/low
(1)

 Slave 2 tCK

Rise/fall time Slave TBD

Setup Slave TBD

Hold Slave tCK

SCK to out Slave TBD

SCK to SS
__

 high Slave TBD

SS
__

 high to tri-state Slave TBD

SS
__

 low to SCK Slave TBD

 ns

Note: 1. In SPI Programming mode the minimum SCK high/low period is 2 tCLCL for fCK < 12
MHz and 3 tCLCL for fCK > 12 MHz.

 505

8266A-MCU Wireless-12/09

 ATmega128RFA1

Figure 34-3. SPI timing Requirements (Master Mode)

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87

Figure 34-4. SPI timing Requirements (Slave Mode)

MISO

(Data Output)

SCK
(CPOL = 1)

MOSI

(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

34.7 ADC Characteristics

Table 34-10. ADC Electrical Characteristics

Symbol Parameter Condition Min Typ Max Units

VINT1 Internal Voltage Reference 1.5 V

VINT2 Internal Voltage Reference 1.6 V

VINT3 Internal Voltage Reference AVDD V

RAREF,EXT External Voltage Impedance Ω

IL,AREF Load Current A

Table 34-11. ADC Characteristics, Single Ended Channels

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units

 Single Ended Conversion CLKADC <= 4 MHz 10 Bits

Resolution

Single Ended Conversion CLKADC > 8 MHz 8 Bits

 Absolute accuracy (Including Single Ended Conversion TBD LSB

506

8266A-MCU Wireless-12/09

ATmega128RFA1

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units

VREF = 1.6V CLKADC = 200kHz

 Single Ended Conversion

VREF = 1.6V CLKADC = 1MHz

 TBD LSB

 Single Ended Conversion

VREF = 1.6V CLKADC = 2MHz

 TBD LSB

INL, DNL, quantization error,

gain and offset error)

Single Ended Conversion

VREF = 1.6V CLKADC = 4MHz

 TBD LSB

 Integral Non-Linearity (INL) Single Ended Conversion

VREF = 1.6V CLKADC = 4MHz

 0.8 LSB

 Differential Non-Linearity
(DNL)

Single Ended Conversion

VREF = 1.6V CLKADC = 4MHz

-0.5 LSB

 Gain Error Single Ended Conversion

VREF = 1.6V CLKADC = 4MHz

 1 LSB

 Offset Error Single Ended Conversion

VREF = 1.6V CLKADC = 4MHz

 1.5 LSB

 Conversion Time Free Running Conversion 3 240 µs

 Clock Frequency Single Ended Conversion 8000 kHz

VREF Reference Voltage 1.5 AVDD V

VIN Input Voltage 0 AVDD V

 Input Bandwith 20 kHz

RREF Reference Input Resistance TBD kΩ

RAIN Analog Input Resistance 2 kΩ

Note: 1. Values are guidelines only

2. All values are valid for EVDD = 3.0V

Table 34-12. PGA and ADC Characteristics, Differential Channels

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units

 Gain = 1x 10 Bits

 Gain = 10x 10 Bits

Resolution

Gain = 200x 10 Bits

 Gain = 1x

VREF = 1.6V CLKADC = 2MHz

 TBD LSB

 Gain = 10x

VREF = 1.6V CLKADC = 2MHz

 TBD LSB

Absolute accuracy (Including

INL, DNL, quantization error,

gain and offset error)
Gain = 200x

VREF = 1.6V CLKADC = 2MHz

 TBD LSB

 Gain = 1x

VREF = 1.6V CLKADC = 2MHz

 3 LSB

 Gain = 10x

VREF = 1.6V CLKADC = 2MHz

 5 LSB

Integral Non-Linearity (INL)

Gain = 200x

VREF = 1.6V CLKADC = 2MHz

 10 LSB

 Differential Non-Linearity
(DNL)

Gain = 1x

VREF = 1.6V CLKADC = 2MHz

-0.5 LSB

 507

8266A-MCU Wireless-12/09

 ATmega128RFA1

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units

 Gain = 10x

VREF = 1.6V CLKADC = 2MHz

-0.75 LSB

 Gain = 200x

VREF = 1.6V CLKADC = 2MHz

TBD LSB

 Gain = 1x 1 LSB

 Gain = 10x 1.5

Gain Error

Gain = 200x 10

 Gain = 1x

VREF = 1.6V CLKADC = 2MHz

 0.7 LSB

 Gain = 10x

VREF = 1.6V CLKADC = 2MHz

 0.75 LSB

Offset Error

Gain = 200x

VREF = 1.6V CLKADC = 2MHz

 13 LSB

 Conversion Time Free Running Conversion 100 µs

 Clock Frequency Single Ended Conversion 2000 kHz

VREF Reference Voltage 1.5 AVDD V

VIN Input Voltage 0 AVDD V

VDIFF Input Differential Voltage -AVDD AVDD V

 ADC Conversion Output -512 511 LSB

 Input Bandwith 20 kHz

RREF Reference Input Resistance TBD kΩ

RAIN Analog Input Resistance 2 kΩ

Note: 1. Values are guidelines only

2. All values are valid for EVDD = 3.0V

34.8 Transceiver Electrical Characteristics

34.8.1 Digital Interface Timing Characteristics

Test Conditions: TOP = 25°C, VDD = 3.0V, CL = 50 pF (unless otherwise stated)

Symbol Parameter Condition Min. Typ. Max. Units

t12 AES core cycle time 24 µs

tIRQ Interrupt event latency Relative to the event to be indicated 9 µs

34.8.2 General RF Specifications

Test Conditions (unless otherwise stated):

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page
493.

Symbol Parameter Condition Min. Typ. Max. Units

fRF Frequency range As specified in [1],[2] 2405 2480 MHz

fCH Channel spacing As specified in [1],[2] 5 MHz

fHDR Header bit rate (SHR, PHR) As specified in [1],[2] 250 kb/s

508

8266A-MCU Wireless-12/09

ATmega128RFA1

Symbol Parameter Condition Min. Typ. Max. Units

fPSDU PSDU bit rate As specified in [1],[2]

OQPSK_DATA_RATE = 1

OQPSK_DATA_RATE = 2

OQPSK_DATA_RATE = 3

 250

500

1000

2000

 kb/s

kb/s

kb/s

kb/s

fCHIP Chip rate As specified in [1],[2] 2000 kchip/s

fCLK Crystal oscillator frequency Reference oscillator 16 MHz

tXTAL Reference oscillator settling time Leaving SLEEP state to clock available at
pin 17 (CLKM)

 215 1000 µs

 Symbol rate deviation

Reference frequency accuracy for
correct functionality

PSDU bit rate 250 kb/s

 500 kb/s

 1000 kb/s

 2000 kb/s

-60
(1)

-40

-40

-30

 +60

+40

+40

+30

ppm

ppm

ppm

ppm

B20dB 20 dB bandwidth 2.8 MHz

Note: 6. A reference frequency accuracy of ±40 ppm is required by [1], [2].

34.8.3 Transmitter Characteristics

 Test Conditions (unless otherwise stated):

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page
493.

Symbol Parameter Condition Min. Typ. Max. Units

PTX TX Output power Maximum configurable TX output power
value

Register bit TX_PWR = 0

0 +3.5 +6 dBm

PRANGE Output power range 16 steps, configurable in

register 0x05 (PHY_TX_PWR)

 20 dB

PACC Output power tolerance ±3 dB

 TX Return loss 100Ω differential impedance,
PTX = +3.5 dBm

 10 dB

 EVM 8 %rms

PHARM Harmonics

 2
nd

 harmonic

 3
rd

 harmonic

-38

-45

dBm

dBm

PSPUR Spurious Emissions

 30 – ≤ 1000 MHz

 >1 – 12.75 GHz

 1.8 – 1.9 GHz

 5.15 – 5.3 GHz

Complies with

EN 300 328/440,

FCC-CFR-47 part 15,

ARIB STD-66, RSS-210

-36

-30

-47

-47

dBm

dBm

dBm

dBm

34.8.4 Receiver Characteristics

Test Conditions (unless otherwise stated):

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, PSDU bit rate = 250 kb/s, Measurement setup
see Figure 32-1 on page 493.

 509

8266A-MCU Wireless-12/09

 ATmega128RFA1

Symbol Parameter Condition Min. Typ. Max. Units

Receiver sensitivity

 250 kb/s

 500 kb/s

 1000 kb/s

 2000 kb/s

AWGN channel, PER ≤ 1%,

 PSDU length 20 octets

High Data Rate Modes:

 PSDU length 20 octets

-100

-96

-94

-86

dBm

dBm

dBm

dBm

PSENS

Antenna Diversity 250 kb/s, PSDU 20 octets -99 dBm

RL Return loss 100Ω differential impedance 10 dB

NF Noise figure 6 dB

PRXMAX Maximum RX input level PER ≤ 1%, PSDU length of 20 octets 10 dBm

PACRN Adjacent channel rejection:

 -5 MHz

PER ≤ 1%, PSDU length of 20 octets,
PRF = -82 dBm

 34 dB

PACRP Adjacent channel rejection:

 +5 MHz

PER ≤ 1%, PSDU length of 20 octets,
PRF = -82 dBm

 38 dB

PAACRN Alternate channel rejection:

 -10 MHz

PER ≤ 1%, PSDU length of 20 octets,
PRF = -82 dBm

 54 dB

PAACRP Alternate channel rejection:

 +10 MHz

PER ≤ 1%, PSDU length of 20 octets,
PRF = -82 dBm

 54 dB

PSPUR Spurious emissions:

 LO leakage

 30 – ≤ 1000 MHz

 >1 – 12.75 GHz

-71

-57

-47

dBm

dBm

dBm

fRXTXOFFS TX/RX carrier frequency offset Sensitivity loss < 2 dB -300
(1)

 +300 kHz

IIP3 3
rd

 – order intercept point At maximum gain

Offset freq. interf. 1 = 5 MHz

Offset freq. interf. 2 = 10 MHz

 -14 dBm

IIP2 2
nd

 – order intercept point At maximum gain

Offset freq. interf. 1 = 60 MHz

Offset freq. interf. 2 = 62 MHz

 17 dBm

 RSSI tolerance Tolerance within gain step ±5 dB

 RSSI dynamic range 81 dB

 RSSI resolution 3 dB

 RSSI sensitivity Defined as RSSI_BASE_VAL -90 dBm

 Minimum RSSI value PRF ≤ RSSI_BASE_VAL 0

 Maximum RSSI value PRF > RSSI_BASE_VAL + 81 dB 28

Note: 1. Offset equals ±120 ppm

34.8.5 Current Consumption Specifications

Test Conditions (unless otherwise stated):

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page
493.

510

8266A-MCU Wireless-12/09

ATmega128RFA1

Symbol Parameter Condition Min. Typ. Max. Units

IBUSY_TX Supply current transmit state PTX = 3 dBm

PTX = 1 dBm

PTX = -3 dBm

PTX = -17 dBm

(current consumption is reduced at
VDD = 1.8V for each output power level)

 14.5

10

9

8

 mA

mA

mA

mA

IRX_ON Supply current RX_ON state RX_ON state 12.5 mA

IRX_ON_P Supply current RX_ON state RX_ON state, with register setting

RX_PDT_LEVEL > 0
(1)

 12.0 mA

IPLL_ON Supply current PLL_ON state PLL_ON state 5.7 mA

ITRX_OFF Supply current TRX_OFF state TRX_OFF state 0.4 mA

ISLEEP Supply current SLEEP state SLEEP state 0.02 µA

Note: 1. Refer to section "Figure 32-1" on page 493

34.8.6 Crystal Parameter Requirements

Symbol Parameter Condition Min. Typ. Max. Units

f0 Crystal frequency 16 MHz

CL Load capacitance 8 14 pF

C0 Static capacitance 7 pF

R1 Series resistance 100 Ω

35 Typical Characteristics

35.1 Internal Oscillator Speed

t.b.d.

 511

8266A-MCU Wireless-12/09

 ATmega128RFA1

36 Ordering Information

ATmega128RFA1

Speed (MHz) Power Supply Ordering Code Package Packing Operation Range

16 1.8 – 3.6V ATmega128RFA1-ZU PI Tray Industrial (-40ºC to 85ºC)

16 1.8 – 3.6V ATmega128RFA1-ZUR PI Tape & Reel Industrial (-40ºC to 85ºC)

Notes: 1. Pb-free packaging, complies to European Directive for Restriction of Hazardous Substances (RoHS directive).
Also Halide free and fully Green.

Package Type

PI 64-lead, 9 x 9 x 0.9 mm Body, Quad Flat No-lead Package (QFN)

512

8266A-MCU Wireless-12/09

ATmega128RFA1

37 Packaging Information

PI

ALL DIMENSIONS ARE IN MILLIMETERS.

PACKAGE WARPAGE MAX 0.08 mm.

ccc 0.05 0.002

TOLERANCES OF FORM AND POSITION

aaa

bbb

R 0.09

0.10

0.10

0.004

0.004

0.004--- ---

0.028

0.001

0.012

0.50 bsce

E2

D2

0.020 bsc

0.65

0.25

D

A2

A1

b

0.18 0.0100.007

---0.70

0.05

0.30

0.026

0.035

MAX.

MILLIMETER

NOM.

SYMBOL

A ---

MIN.

MIN.

0.90

MAX.

INCH

NOM.

A3 0.20 REF.

9.00 bsc

5.755.655.55

E

0.354 bsc

0.008 REF.

0.219 0.222 0.226

D2

A3

A

A2

A1

E2

L

D

E

A
d aaa C A

d bbb C B

B

C

eb

j 0.10 m C A B

PIN1 ID
0.20 R

d ccc C

SEATING
PLANE

R

TOP VIEW

SIDE VIEW

BOTTOM VIEW

L

0.45

L 0.35 0.40 0.45 0.014 0.016 0.018

1.72

--- --- ---

0.10

9.00 bsc 0.354 bsc

LASER MARK FOR PIN 1
IDENTIFICATION IN THIS AREA

1.27

4.854.754.65 0.183 0.187 0.191

TITLE

44306 Nantes Cedex 3 - France

Atmel Nantes S.A.
La Chantrerie - BP 70602

DRAWING No.

REV.

DRAWINGS NOT SCALED

A
PI - 64 leads - 9.0 x 9.0 mm - pitch 0.5mm

Quad Flat No Lead Package QFN

02/12/2008

PI

 513

8266A-MCU Wireless-12/09

 ATmega128RFA1

38 Errata

38.1 ATmega128RFA1 revision D (1.2)

• Power-Chain turns off when power supply drops below 1.6V

• JTAG interface reads wrong data

• CSMA back-off calculation has reduced degree of randomness

• Update of internal temporary registers for CSMA_SEED register may fail

• Interrupt TRX24_CCA_ED_DONE may occur twice

38.2 ATmega128RFA1 revision C (1.1)

• Power-Chain turns off when power supply drops below 1.6V

• JTAG interface reads wrong data

• CSMA back-off calculation has reduced degree of randomness

• Update of internal temporary registers for CSMA_SEED register may fail

• Interrupt TRX24_CCA_ED_DONE may occur twice

• DVREG_EXT bit is not write-protected

• ENDRT bits have wrong reset value

38.3 ATmega128RFA1 revision AB (1.0)

Not sampled.

38.4 Compiler package WinAVR-20090313

In the compiler package WinAVR-20090313 the SRAM start address has a wrong value
of 0x100. In this case the variables are randomly allocated across the extended I/O
space 0x100 to 0x1FF. It causes an unpredictable behavior by random overwrite of
registers (see also "JTAG interface reads wrong data" on page 514 and "DVREG_EXT
bit is not write-protected" on page 514).

Problem Fix/Workaround

Use the linker option -Wl,--section-start=.data=0x800200

38.5 Detailed errata description

38.5.1 Power-Chain turns off when power supply drops below 1.6V

If the voltage of the pins DEVDD drops below 1.6V, the internal power chain turns off.
Some hardware settings (e.g. clock source) can alter their state unintentionally. Raising
the supply voltage above 1.8V again does not bring the circuit back to normal operation.
This condition can happen either by lowering the power supply voltage below 1.6V or
turn-off the supply source while other external devices are feeding DEVDD by the
internal ESD diodes of the IO stages (e.g. hardware debugger attached to the JTAG
interface) (2606).

If the power supply drops below 1.6V while being in Deep Sleep mode, the internal
power chain is not affected.

Problem Fix/Workaround

Turn on the Brown-Out Detector at any voltage level. The supply current in Deep Sleep
does not increase.

514

8266A-MCU Wireless-12/09

ATmega128RFA1

38.5.2 JTAG interface reads wrong data

If the Power Reduction Register bits associated with the SRAM’s (PRRAM3…0 in
PRR2) and the 2.4GHz Transceiver (PRTRX24 in PRR1) are set, the JTAG interface
reads wrong data. (2613).

Problem Fix/Workaround

Do not use PRRAM3…0 in PRR2 and PRTRX24 in PRR1. Force pin RSTN=0 and the
JTAG interface can erase the program memory.

38.5.3 CSMA back-off calculation has reduced degree of randomness

The CSMA back-off calculation in the transceiver extended operating modes has a
reduced degree of randomness (e.g. transceiver is in the state TX_ARET_ON) (2665).

Problem Fix/Workaround

Initialize CSMA_SEED registers with a random value.

38.5.4 Update of internal temporary registers for CSMA_SEED register may fail

The update of the internal temporary registers of the CSMA_SEED registers may fail.
Read/write operation to the CSMA_SEED registers itself works as expected (2646).

Problem Fix/Workaround

A sleep cycle of the transceiver updates the internal temporary registers.

38.5.5 Interrupt TRX24_CCA_ED_DONE may occur twice

When requesting a manually initiated CCA measurement in BUSY_RX state and during
an internal ED measurement, a TRX24_CCA_ED_DONE interrupt could be issued
immediately after the request. In this case the register bit CCA_DONE is equal to 0 and
an additional TRX24_CCA_ED_DONE interrupt is issued after finishing the CCA
measurement and register bit CCA_DONE is set to 1 (2000).

Problem Fix/Workaround

Prevent a frame reception during manually initiated CCA measurement

• make sure that TRX_STATUS is not in RX_BUSY (i.e. start from state PLL_ON)

• set bit RX_PDT_DIS=1

• switch TRX_STATE to RX_ON

• perform CCA measurement

• set bit RX_PDT_DIS=0

38.5.6 DVREG_EXT bit is not write-protected

The external mode of the DVDD voltage regulator is not write-protected. If it is enabled
(DVREG_EXT=1 in the register VREG_CTRL) with no external power supply for DVDD,
the device leaves normal operation and can’t be recovered by the Watchdog (2658).

Problem Fix/Workaround

Do not write the bit DVREG_EXT in the register VREG_CTRL.

38.5.7 ENDRT bits have wrong reset value

The ENDRT bits in the registers DRTRAM3…0 have the wrong reset value. The data
retention of the associated SRAM in DEEP_SLEEP is disabled (2495).

 515

8266A-MCU Wireless-12/09

 ATmega128RFA1

Problem Fix/Workaround

Set ENDRT=1 in DRTRAM3…0 at the beginning of the firmware program.

516

8266A-MCU Wireless-12/09

ATmega128RFA1

39 Revision history

Please note that the referring page numbers in this section are referring to this
document. The referring revision in this section are referring to the document revision

Rev. 8266A-MCU Wireless-12/09

1. Initial release

 517

8266A-MCU Wireless-12/09

 ATmega128RFA1

Table of Contents

1 Pin Configurations..2

2 Disclaimer..2

3 Overview..3

3.1 Block Diagram .. 3

3.2 Pin Descriptions.. 5

3.3 Compatibility to ATmega1281/2561 ... 6

4 Resources..7

5 About Code Examples..7

6 Data Retention...7

7 AVR CPU Core...9

7.1 Introduction... 9

7.2 Architectural Overview ... 9

7.3 ALU – Arithmetic Logic Unit ... 10

7.4 Status Register ... 11

7.5 General Purpose Register File ... 12

7.6 Stack Pointer .. 13

7.7 Instruction Execution Timing .. 15

7.8 Reset and Interrupt Handling ... 15

8 AVR Memories...18

8.1 In-System Reprogrammable Flash Program Memory.. 18

8.2 SRAM Data Memory .. 18

8.3 EEPROM Data Memory ... 20

8.4 EEPROM Register Description .. 23

8.5 I/O Memory... 25

8.6 General Purpose I/O Registers .. 26

8.7 Other Port Registers... 26

9 Low-Power 2.4 GHz Transceiver..29

9.1 Features ... 29

9.2 General Circuit Description .. 30

9.3 Transceiver to Microcontroller Interface... 31

9.4 Operating Modes.. 35

9.5 Functional Description.. 61

9.6 Module Description... 74

9.7 Radio Transceiver Usage... 83

9.8 Radio Transceiver Extended Feature Set .. 85

518

8266A-MCU Wireless-12/09

ATmega128RFA1

9.9 Continuous Transmission Test Mode... 96

9.10 Abbreviations.. 98

9.11 Reference Documents.. 100

9.12 Register Description ... 100

10 MAC Symbol Counter ...133

10.1 Main Features... 133

10.2 Clock source selection and Sleep/Active mode operation 133

10.3 32 bit Register Access (Atomic Read/Write) .. 133

10.4 Symbol Counter (32 bit, SCCNT)... 134

10.5 Symbol Counter SFD Timestamp Register (32 bit, SCTSR, Read Only) 134

10.6 Symbol Counter Beacon Timestamp Register (32 bit, SCBTSR) 134

10.7 Compare Unit (3x 32 bit, SCOCR1, SCOCR2, SCOCR3)............................... 135

10.8 Interrupt Control Registers ... 135

10.9 Backoff Slot Counter .. 135

10.10 Symbol Counter Usage .. 135

10.11 Register Description ... 137

11 System Clock and Clock Options..147

11.1 Overview... 147

11.2 Clock Systems and their Distribution ... 147

11.3 Clock Sources .. 148

11.4 Calibrated Internal RC Oscillator.. 149

11.5 128 kHz Internal Oscillator ... 150

11.6 External Clock .. 150

11.7 Transceiver Crystal Oscillator .. 151

11.8 Clock Output Buffer .. 152

11.9 Timer/Counter Oscillator .. 152

11.10 System Clock Prescaler ... 152

11.11 Register Description ... 153

12 Power Management and Sleep Modes ..156

12.1 Deep-Sleep Mode .. 156

12.2 AVR Microcontroller Sleep Modes ... 156

12.3 Power Reduction Register.. 159

12.4 Minimizing Power Consumption ... 159

12.5 Supply Voltage and Leakage Control... 161

12.6 Register Description ... 166

13 System Control and Reset ...176

 519

8266A-MCU Wireless-12/09

 ATmega128RFA1

13.1 Resetting the AVR.. 176

13.2 Reset Sources.. 176

13.3 Internal Voltage Reference... 179

13.4 Watchdog Timer ... 180

13.5 Register Description ... 183

14 I/O-Ports...186

14.1 Introduction... 186

14.2 Ports as General Digital I/O.. 187

14.3 Alternate Port Functions... 191

14.4 Register Description ... 204

15 Interrupts ...211

15.1 Interrupt Vectors in ATmega128RFA1 ... 211

15.2 Reset and Interrupt Vector Placement ... 213

15.3 Moving Interrupts Between Application and Boot Section 216

15.4 Register Description ... 216

16 External Interrupts ..218

16.1 Pin Change Interrupt Timing .. 218

16.2 Register Description ... 219

17 8-bit Timer/Counter0 with PWM...226

17.1 Features ... 226

17.2 Overview... 226

17.3 Timer/Counter Clock Sources .. 227

17.4 Counter Unit ... 227

17.5 Output Compare Unit ... 228

17.6 Compare Match Output Unit... 230

17.7 Modes of Operation.. 232

17.8 Timer/Counter Timing Diagrams .. 236

17.9 Register Description ... 238

18 16-bit Timer/Counter (Timer/Counter 1, 3, 4, and 5)...................244

18.1 Features ... 244

18.2 Overview... 244

18.3 Accessing 16-bit Registers... 246

18.4 Timer/Counter Clock Sources .. 249

18.5 Counter Unit ... 249

18.6 Input Capture Unit .. 250

18.7 Output Compare Units.. 252

520

8266A-MCU Wireless-12/09

ATmega128RFA1

18.8 Compare Match Output Unit... 254

18.9 Modes of Operation.. 256

18.10 Timer/Counter Timing Diagrams .. 264

18.11 Register Description ... 266

19 Timer/Counter 0, 1, 3, 4, and 5 Prescaler304

19.1 Internal Clock Source ... 304

19.2 Prescaler Reset .. 304

19.3 External Clock Source.. 304

19.4 Register Description ... 305

20 Output Compare Modulator (OCM1C0A).....................................307

20.1 Overview... 307

20.2 Description.. 307

20.3 Timing Example.. 308

21 8-bit Timer/Counter2 with PWM and Asynchronous Operation 309

21.1 Features ... 309

21.2 Overview... 309

21.3 Timer/Counter Clock Sources .. 310

21.4 Counter Unit ... 311

21.5 Modes of Operation.. 311

21.6 Output Compare Unit ... 316

21.7 Compare Match Output Unit... 317

21.8 Timer/Counter Timing Diagrams .. 319

21.9 Asynchronous Operation of Timer/Counter2.. 320

21.10 Timer/Counter Prescaler .. 322

21.11 Register Description ... 323

22 SPI- Serial Peripheral Interface..330

22.1 Features ... 330

22.2 Functional Description.. 330

22.3SS
__

 Pin Functionality ... 334

22.4 Register Description ... 336

23 USART..339

23.1 Features ... 339

23.2 Overview... 339

23.3 Clock Generation.. 340

23.4 Frame Formats... 343

23.5 USART Initialization ... 344

 521

8266A-MCU Wireless-12/09

 ATmega128RFA1

23.6 Data Transmission – The USART Transmitter... 345

23.7 Data Reception – The USART Receiver.. 348

23.8 Asynchronous Data Reception... 352

23.9 Multi-processor Communication Mode... 355

23.10 Register Description ... 356

23.11 Examples of Baud Rate Setting ... 365

24 USART in SPI Mode ..368

24.1 Overview... 368

24.2 USART MSPIM vs. SPI .. 368

24.3 SPI Data Modes and Timing .. 369

24.4 Frame Formats... 370

24.5 Data Transfer.. 371

24.6 USART MSPIM Register Description ... 373

25 2-wire Serial Interface...377

25.1 Features ... 377

25.2 2-wire Serial Interface Bus Definition ... 377

25.3 Data Transfer and Frame Format... 378

25.4 Multi-master Bus Systems, Arbitration and Synchronization 380

25.5 Overview of the TWI Module .. 382

25.6 Using the TWI... 384

25.7 Transmission Modes .. 387

25.8 Multi-master Systems and Arbitration .. 400

25.9 Register Description ... 401

26 AC – Analog Comparator ...407

26.1 Analog Comparator Multiplexed Input.. 407

26.2 Register Description ... 408

27 ADC – Analog to Digital Converter..410

27.1 Features ... 410

27.2 Operation.. 411

27.3 ADC Start-Up.. 412

27.4 Starting a Conversion... 413

27.5 Pre-scaling and Conversion Timing ... 413

27.6 Changing Channel or Reference Selection.. 417

27.7 ADC Noise Canceller ... 420

27.8 ADC Conversion Result ... 423

27.9 Internal Temperature Measurement... 425

522

8266A-MCU Wireless-12/09

ATmega128RFA1

27.10 SRAM DRT Voltage Measurement .. 426

27.11 Register Description ... 427

28 JTAG Interface and On-chip Debug System...............................435

28.1 Features ... 435

28.2 Overview... 435

28.3 TAP - Test Access Port .. 436

28.4 TAP Controller .. 437

28.5 Using the Boundary-scan Chain... 438

28.6 Using the On-chip Debug System.. 438

28.7 On-chip Debug Specific JTAG Instructions.. 439

28.8 Using the JTAG Programming Capabilities.. 439

28.9 Bibliography.. 440

28.10 On-chip Debug Related Register in I/O Memory.. 440

29 IEEE 1149.1 (JTAG) Boundary-scan..441

29.1 Features ... 441

29.2 System Overview ... 441

29.3 Data Registers.. 441

29.4 Boundary-scan Specific JTAG Instructions.. 443

29.5 Boundary-scan Chain... 444

29.6 Boundary-scan Related Register in I/O Memory.. 447

29.7 Boundary-scan Description Language Files .. 448

29.8 ATmega128RFA1 Boundary-scan Order ... 448

30 Boot Loader Support – Read-While-Write Self-Programming...450

30.1 Features ... 450

30.2 Application and Boot Loader Flash Sections ... 450

30.3 Read-While-Write and No Read-While-Write Flash Sections 451

30.4 Boot Loader Lock Bits .. 453

30.5 Addressing the Flash During Self-Programming.. 453

30.6 Self-Programming the Flash... 454

30.7 Register Description ... 462

31 Memory Programming..464

31.1 Program And Data Memory Lock Bits .. 464

31.2 Fuse Bits... 465

31.3 Signature Bytes .. 466

31.4 Calibration Byte .. 467

31.5 Page Size ... 467

 523

8266A-MCU Wireless-12/09

 ATmega128RFA1

31.6 Parallel Programming Parameters, Pin Mapping, and Commands 467

31.7 Parallel Programming... 469

31.8 Serial Downloading .. 477

31.9 Programming via the JTAG Interface... 481

32 Application Circuits ..493

32.1 Basic Application Schematic .. 493

32.2 Extended Feature Set Application Schematic.. 494

33 Register Summary ..496

34 Electrical Characteristics ...501

34.1 Absolute Maximum Ratings.. 501

34.2 Clock Characteristics.. 502

34.3 System and Reset Characteristics ... 502

34.4 Power Management Electrical Characteristics... 503

34.5 2-wire Serial Interface Characteristics ... 503

34.6 SPI Timing Characteristics ... 504

34.7 ADC Characteristics ... 505

34.8 Transceiver Electrical Characteristics .. 507

35 Typical Characteristics...510

35.1 Internal Oscillator Speed .. 510

36 Ordering Information ..511

37 Packaging Information ...512

38 Errata ...513

38.1 ATmega128RFA1 revision D (1.2) ... 513

38.2 ATmega128RFA1 revision C (1.1) ... 513

38.3 ATmega128RFA1 revision AB (1.0) ... 513

38.4 Compiler package WinAVR-20090313 .. 513

38.5 Detailed errata description ... 513

39 Revision history ..516

Table of Contents...517

524

8266A-MCU Wireless-12/09

ATmega128RFA1

Disclaimer

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND

CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,

CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Pin Configurations
	2 Disclaimer
	3 Overview
	3.1 Block Diagram
	3.2 Pin Descriptions
	3.2.1 EVDD
	3.2.2 DEVDD
	3.2.3 AVDD
	3.2.4 DVDD
	3.2.5 DVSS
	3.2.6 AVSS
	3.2.7 Port B (PB7...PB0)
	3.2.8 Port D (PD7...PD0)
	3.2.9 Port E (PE7...PE0)
	3.2.10 Port F (PF7...PF0)
	3.2.11 Port G (PG5�PG0)
	3.2.12 AVSS_RFP
	3.2.13 AVSS_RFN
	3.2.14 RFP
	3.2.15 RFN
	3.2.16 RSTN
	3.2.17 RSTON
	3.2.18 XTAL1
	3.2.19 XTAL2
	3.2.20 AREF
	3.2.21 TST
	3.2.22 CLKI

	3.3 Compatibility to ATmega1281/2561
	3.3.1 Port A and Port C
	3.3.2 External Memory Interface
	3.3.3 High Voltage Programming Mode
	3.3.4 AVR Oscillators and External Clock
	3.3.5 Analog Frontend

	4 Resources
	5 About Code Examples
	6 Data Retention
	7 AVR CPU Core
	7.1 Introduction
	7.2 Architectural Overview
	7.3 ALU - Arithmetic Logic Unit
	7.4 Status Register
	7.4.1 SREG - Status Register

	7.5 General Purpose Register File
	7.5.1 The X-register, Y-register, and Z-register

	7.6 Stack Pointer
	7.6.1 SPH - Stack Pointer High
	7.6.2 SPL - Stack Pointer Low
	7.6.3 RAMPZ - Extended Z-pointer Register for ELPM/SPM

	7.7 Instruction Execution Timing
	7.8 Reset and Interrupt Handling
	7.8.1 Interrupt Response Time

	8 AVR Memories
	8.1 In-System Reprogrammable Flash Program Memory
	8.2 SRAM Data Memory
	8.2.1 Data Memory Access Times

	8.3 EEPROM Data Memory
	8.3.1 EEPROM Read Write Access
	8.3.2 Preventing EEPROM Corruption

	8.4 EEPROM Register Description
	8.4.1 EEARH - EEPROM Address Register High Byte
	8.4.2 EEARL - EEPROM Address Register Low Byte
	8.4.3 EEDR - EEPROM Data Register
	8.4.4 EECR - EEPROM Control Register

	8.5 I/O Memory
	8.6 General Purpose I/O Registers
	8.6.1 GPIOR0 - General Purpose IO Register 0
	8.6.2 GPIOR1 - General Purpose IO Register 1
	8.6.3 GPIOR2 - General Purpose I/O Register 2

	8.7 Other Port Registers
	8.7.1 PORTA - Port A Data Register
	8.7.2 DDRA - Port A Data Direction Register
	8.7.3 PINA - Port A Input Pins Address
	8.7.4 PORTC - Port C Data Register
	8.7.5 DDRC - Port C Data Direction Register
	8.7.6 PINC - Port C Input Pins Address

	9 Low-Power 2.4 GHz Transceiver
	9.1 Features
	9.2 General Circuit Description
	9.3 Transceiver to Microcontroller Interface
	9.3.1 Transceiver Configuration and Data Access
	9.3.1.1 Register Access
	9.3.1.2 Frame Buffer Access
	9.3.1.3 Transceiver Pin Register TRXPR

	9.3.2 Interrupt Logic
	9.3.2.1 Overview

	9.3.3 Radio Transceiver Identification

	9.4 Operating Modes
	9.4.1 Basic Operating Mode
	9.4.1.1 State Control
	9.4.1.2 Basic Operating Mode Description
	9.4.1.2.1 SLEEP - Sleep State
	9.4.1.2.2 TRX_OFF - Clock State
	9.4.1.2.3 PLL_ON - PLL State
	9.4.1.2.4 RX_ON and BUSY_RX - RX Listen and Receive State
	9.4.1.2.5 BUSY_TX - Transmit State
	9.4.1.2.6 RESET State

	9.4.1.3 Interrupt Handling
	9.4.1.4 Basic Operating Mode Timing
	9.4.1.4.1 Wake-up Procedure
	9.4.1.4.2 PLL_ON and RX_ON States
	9.4.1.4.3 BUSY_TX and RX_ON States
	9.4.1.4.4 Reset Procedure
	9.4.1.4.5 State Transition Timing Summary

	9.4.2 Extended Operating Mode
	9.4.2.1 State Control
	9.4.2.2 Configuration
	9.4.2.3 RX_AACK_ON - Receive with Automatic ACK
	9.4.2.3.1 Description of RX_AACK Configuration Bits
	9.4.2.3.2 Configuration of IEEE Scenarios
	9.4.2.3.3 Configuration of non IEEE 802.15.4 Compliant Scenarios
	9.4.2.4 Frame Filtering
	9.4.2.4.1 RX_AACK Slotted Operation - Slotted Acknowledgement
	9.4.2.4.2 RX_AACK Mode Timing

	9.4.2.5 TX_ARET_ON - Transmit with Automatic Retry and CSMA-CA Retry
	9.4.2.6 Interrupt Handling
	9.4.2.7 Register Summary

	9.5 Functional Description
	9.5.1 Introduction - IEEE 802.15.4-2006 Frame Format
	9.5.1.1 PHY Protocol Layer Data Unit (PPDU)
	9.5.1.1.1 Synchronization Header (SHR)
	9.5.1.1.2 PHY Header (PHR)
	9.5.1.1.3 PHY Payload (PHY Service Data Unit, PSDU)

	9.5.1.2 MAC Protocol Layer Data Unit (MPDU)
	9.5.1.2.1 MAC Header (MHR) Fields
	9.5.1.2.2 Frame Control Field (FCF)
	9.5.1.2.3 Frame Compatibility between IEEE 802.15.4-2003 and IEEE 802.15.4-2006
	9.5.1.2.4 Sequence Number
	9.5.1.2.5 Addressing Fields
	9.5.1.2.6 Auxiliary Security Header Field
	9.5.1.2.7 MAC Service Data Unit (MSDU)
	9.5.1.2.8 MAC Footer (MFR) Fields

	9.5.2 Frame Check Sequence (FCS)
	9.5.2.1 Overview
	9.5.2.2 CRC calculation
	9.5.2.3 Automatic FCS generation
	9.5.2.4 Automatic FCS check

	9.5.3 Received Signal Strength Indicator (RSSI)
	9.5.3.1 Overview
	9.5.3.2 Reading RSSI
	9.5.3.3 Data Interpretation

	9.5.4 Energy Detection (ED)
	9.5.4.1 Overview
	9.5.4.2 Measurement Description
	9.5.4.3 Data Interpretation
	9.5.4.4 Interrupt Handling

	9.5.5 Clear Channel Assessment (CCA)
	9.5.5.1 Overview
	9.5.5.2 Configuration and CCA Request
	9.5.5.3 Data Interpretation
	9.5.5.4 Interrupt Handling
	9.5.5.5 Measurement Time

	9.5.6 Link Quality Indication (LQI)
	9.5.6.1 Overview
	9.5.6.2 Request a LQI Measurement
	9.5.6.3 Data Interpretation

	9.6 Module Description
	9.6.1 Receiver (RX)
	9.6.1.1 Overview
	9.6.1.2 Frame Receive Procedure
	9.6.1.3 Configuration

	9.6.2 Transmitter (TX)
	9.6.2.1 Overview
	9.6.2.2 Frame Transmit Procedure
	9.6.2.3 Configuration
	9.6.2.4 TX Power Ramping

	9.6.3 Frame Buffer
	9.6.3.1 Data Management
	9.6.3.2 User accessible Frame Content

	9.6.4 Battery Monitor (BATMON)
	9.6.4.1 Overview
	9.6.4.2 Configuration
	9.6.4.3 Data Interpretation
	9.6.4.4 Interrupt Handling

	9.6.5 Crystal Oscillator (XOSC)
	9.6.5.1 Overview
	9.6.5.2 Integrated Oscillator Setup
	9.6.5.3 External Reference Frequency Setup

	9.6.6 Frequency Synthesizer (PLL)
	9.6.6.1 Overview
	9.6.6.2 RF Channel Selection
	9.6.6.3 Frequency Agility
	9.6.6.4 Calibration Loops
	9.6.6.5 Interrupt Handling

	9.6.7 Automatic Filter Tuning (FTN)

	9.7 Radio Transceiver Usage
	9.7.1 Frame Receive Procedure
	9.7.2 Frame Transmit Procedure

	9.8 Radio Transceiver Extended Feature Set
	9.8.1 Random Number Generator
	9.8.2 High Data Rate Modes
	9.8.2.1 Overview
	9.8.2.2 High Data Rate Packet Structure
	9.8.2.3 High Data Rate Frame Buffer Access
	9.8.2.4 High Data Rate Energy Detection
	9.8.2.5 High Data Rate Mode Options

	9.8.3 Antenna Diversity
	9.8.3.1 Overview
	9.8.3.2 Antenna Diversity Application Example
	9.8.3.3 Antenna Diversity with Extended Operation Modes
	9.8.3.4 Antenna Diversity Sensitivity Control

	9.8.4 RX/TX Indicator
	9.8.4.1 Overview
	9.8.4.2 External RF-Front End Control

	9.8.5 RX Frame Time Stamping
	9.8.6 Configurable Start-Of-Frame Delimiter (SFD)
	9.8.7 Dynamic Frame Buffer Protection
	9.8.8 Security Module (AES)
	9.8.8.1 Overview
	9.8.8.2 Security Module Preparation
	9.8.8.3 Security Key Setup
	9.8.8.4 Security Operation Modes
	9.8.8.4.1 Electronic Code Book (ECB)
	9.8.8.4.2 Cipher Block Chaining (CBC)
	9.8.8.5 AES Interrupt Handling

	9.9 Continuous Transmission Test Mode
	9.9.1 Overview
	9.9.2 Configuration

	9.10 Abbreviations
	9.11 Reference Documents
	9.12 Register Description
	9.12.1 AES_CTRL - AES Control Register
	9.12.2 AES_STATUS - AES Status Register
	9.12.3 AES_STATE - AES Plain and Cipher Text Buffer Register
	9.12.4 AES_KEY - AES Encryption and Decryption Key Buffer Register
	9.12.5 TRX_STATUS - Transceiver Status Register
	9.12.6 TRX_STATE - Transceiver State Control Register
	9.12.7 TRX_CTRL_0 - Reserved
	9.12.8 TRX_CTRL_1 - Transceiver Control Register 1
	9.12.9 PHY_TX_PWR - Transceiver Transmit Power Control Register
	9.12.10 PHY_RSSI - Receiver Signal Strength Indicator Register
	9.12.11 PHY_ED_LEVEL - Transceiver Energy Detection Level Register
	9.12.12 PHY_CC_CCA - Transceiver Clear Channel Assessment (CCA) Control Register
	9.12.13 CCA_THRES - Transceiver CCA Threshold Setting Register
	9.12.14 RX_CTRL - Transceiver Receive Control Register
	9.12.15 SFD_VALUE - Start of Frame Delimiter Value Register
	9.12.16 TRX_CTRL_2 - Transceiver Control Register 2
	9.12.17 ANT_DIV - Antenna Diversity Control Register
	9.12.18 IRQ_MASK - Transceiver Interrupt Enable Register
	9.12.19 IRQ_STATUS - Transceiver Interrupt Status Register
	9.12.20 VREG_CTRL - Voltage Regulator Control and Status Register
	9.12.21 BATMON - Battery Monitor Control and Status Register
	9.12.22 XOSC_CTRL - Crystal Oscillator Control Register
	9.12.23 RX_SYN - Transceiver Receiver Sensitivity Control Register
	9.12.24 XAH_CTRL_1 - Transceiver Acknowledgment Frame Control Register 1
	9.12.25 FTN_CTRL - Transceiver Filter Tuning Control Register
	9.12.26 PLL_CF - Transceiver Center Frequency Calibration Control Register
	9.12.27 PLL_DCU - Transceiver Delay Cell Calibration Control Register
	9.12.28 PART_NUM - Device Identification Register (Part Number)
	9.12.29 VERSION_NUM - Device Identification Register (Version Number)
	9.12.30 MAN_ID_0 - Device Identification Register (Manufacture ID Low Byte)
	9.12.31 MAN_ID_1 - Device Identification Register (Manufacture ID High Byte)
	9.12.32 SHORT_ADDR_0 - Transceiver MAC Short Address Register (Low Byte)
	9.12.33 SHORT_ADDR_1 - Transceiver MAC Short Address Register (High Byte)
	9.12.34 PAN_ID_0 - Transceiver Personal Area Network ID Register (Low Byte)
	9.12.35 PAN_ID_1 - Transceiver Personal Area Network ID Register (High Byte)
	9.12.36 IEEE_ADDR_0 - Transceiver MAC IEEE Address Register 0
	9.12.37 IEEE_ADDR_1 - Transceiver MAC IEEE Address Register 1
	9.12.38 IEEE_ADDR_2 - Transceiver MAC IEEE Address Register 2
	9.12.39 IEEE_ADDR_3 - Transceiver MAC IEEE Address Register 3
	9.12.40 IEEE_ADDR_4 - Transceiver MAC IEEE Address Register 4
	9.12.41 IEEE_ADDR_5 - Transceiver MAC IEEE Address Register 5
	9.12.42 IEEE_ADDR_6 - Transceiver MAC IEEE Address Register 6
	9.12.43 IEEE_ADDR_7 - Transceiver MAC IEEE Address Register 7
	9.12.44 XAH_CTRL_0 - Transceiver Extended Operating Mode Control Register
	9.12.45 CSMA_SEED_0 - Transceiver CSMA-CA Random Number Generator Seed Register
	9.12.46 CSMA_SEED_1 - Transceiver Acknowledgment Frame Control Register 2
	9.12.47 CSMA_BE - Transceiver CSMA-CA Back-off Exponent Control Register
	9.12.48 TST_CTRL_DIGI - Transceiver Digital Test Control Register
	9.12.49 TST_RX_LENGTH - Transceiver Received Frame Length Register
	9.12.50 TRXFBST - Start of frame buffer
	9.12.51 TRXFBEND - End of frame buffer

	10 MAC Symbol Counter
	10.1 Main Features
	10.2 Clock source selection and Sleep/Active mode operation
	10.3 32 bit Register Access (Atomic Read/Write)
	10.4 Symbol Counter (32 bit, SCCNT)
	10.5 Symbol Counter SFD Timestamp Register (32 bit, SCTSR, Read Only)
	10.6 Symbol Counter Beacon Timestamp Register (32 bit, SCBTSR)
	10.7 Compare Unit (3x 32 bit, SCOCR1, SCOCR2, SCOCR3)
	10.8 Interrupt Control Registers
	10.9 Backoff Slot Counter
	10.10 Symbol Counter Usage
	10.10.1 SFD and Beacon Timestamp Generation
	10.10.2 Relative Compare Mode for Superframe Access Timing

	10.11 Register Description
	10.11.1 SCCNTHH - Symbol Counter Register HH-Byte
	10.11.2 SCCNTHL - Symbol Counter Register HL-Byte
	10.11.3 SCCNTLH - Symbol Counter Register LH-Byte
	10.11.4 SCCNTLL - Symbol Counter Register LL-Byte
	10.11.5 SCTSRHH - Symbol Counter Frame Timestamp Register HH-Byte
	10.11.6 SCTSRHL - Symbol Counter Frame Timestamp Register HL-Byte
	10.11.7 SCTSRLH - Symbol Counter Frame Timestamp Register LH-Byte
	10.11.8 SCTSRLL - Symbol Counter Frame Timestamp Register LL-Byte
	10.11.9 SCBTSRHH - Symbol Counter Beacon Timestamp Register HH-Byte
	10.11.10 SCBTSRHL - Symbol Counter Beacon Timestamp Register HL-Byte
	10.11.11 SCBTSRLH - Symbol Counter Beacon Timestamp Register LH-Byte
	10.11.12 SCBTSRLL - Symbol Counter Beacon Timestamp Register LL-Byte
	10.11.13 SCOCR1HH - Symbol Counter Output Compare Register 1 HH-Byte
	10.11.14 SCOCR1HL - Symbol Counter Output Compare Register 1 HL-Byte
	10.11.15 SCOCR1LH - Symbol Counter Output Compare Register 1 LH-Byte
	10.11.16 SCOCR1LL - Symbol Counter Output Compare Register 1 LL-Byte
	10.11.17 SCOCR2HH - Symbol Counter Output Compare Register 2 HH-Byte
	10.11.18 SCOCR2HL - Symbol Counter Output Compare Register 2 HL-Byte
	10.11.19 SCOCR2LH - Symbol Counter Output Compare Register 2 LH-Byte
	10.11.20 SCOCR2LL - Symbol Counter Output Compare Register 2 LL-Byte
	10.11.21 SCOCR3HH - Symbol Counter Output Compare Register 3 HH-Byte
	10.11.22 SCOCR3HL - Symbol Counter Output Compare Register 3 HL-Byte
	10.11.23 SCOCR3LH - Symbol Counter Output Compare Register 3 LH-Byte
	10.11.24 SCOCR3LL - Symbol Counter Output Compare Register 3 LL-Byte
	10.11.25 SCCR0 - Symbol Counter Control Register 0
	10.11.26 SCCR1 - Symbol Counter Control Register 1
	10.11.27 SCSR - Symbol Counter Status Register
	10.11.28 SCIRQS - Symbol Counter Interrupt Status Register
	10.11.29 SCIRQM - Symbol Counter Interrupt Mask Register

	11 System Clock and Clock Options
	11.1 Overview
	11.2 Clock Systems and their Distribution
	11.2.1 CPU Clock - clkCPU
	11.2.2 I/O Clock - clkI/O
	11.2.3 Flash Clock - clkFLASH
	11.2.4 Asynchronous Timer Clock - clkASY
	11.2.5 ADC Clock - clkADC

	11.3 Clock Sources
	11.3.1 Default Clock Source
	11.3.2 Clock Start-up Sequence

	11.4 Calibrated Internal RC Oscillator
	11.5 128 kHz Internal Oscillator
	11.6 External Clock
	11.7 Transceiver Crystal Oscillator
	11.8 Clock Output Buffer
	11.9 Timer/Counter Oscillator
	11.10 System Clock Prescaler
	11.11 Register Description
	11.11.1 OSCCAL - Oscillator Calibration Value
	11.11.2 CLKPR - Clock Prescale Register

	12 Power Management and Sleep Modes
	12.1 Deep-Sleep Mode
	12.2 AVR Microcontroller Sleep Modes
	12.2.1 Idle Mode
	12.2.2 ADC Noise Reduction Mode
	12.2.3 Power-down Mode
	12.2.4 Power-save Mode
	12.2.5 Standby Mode
	12.2.6 Extended Standby Mode

	12.3 Power Reduction Register
	12.4 Minimizing Power Consumption
	12.4.1 Analog to Digital Converter
	12.4.2 Analog Comparator
	12.4.3 Brown-out Detector
	12.4.4 Internal Voltage Reference
	12.4.5 Watchdog Timer
	12.4.6 Port Pins
	12.4.7 On-chip Debug System
	12.4.8 Symbol Counter
	12.4.9 Radio Transceiver

	12.5 Supply Voltage and Leakage Control
	12.5.1 Power-chain
	12.5.2 SRAM with Data Retention
	12.5.3 Voltage Regulators (AVREG, DVREG)
	12.5.4 Low Leakage Voltage Regulator (LLVREG)
	12.5.5 Low Leakage Voltage Regulator Control

	12.6 Register Description
	12.6.1 SMCR - Sleep Mode Control Register
	12.6.2 PRR0 - Power Reduction Register0
	12.6.3 PRR1 - Power Reduction Register 1
	12.6.4 PRR2 - Power Reduction Register 2
	12.6.5 TRXPR - Transceiver Pin Register
	12.6.6 DRTRAM0 - Data Retention Configuration Register of SRAM 0
	12.6.7 DRTRAM1 - Data Retention Configuration Register of SRAM 1
	12.6.8 DRTRAM2 - Data Retention Configuration Register of SRAM 2
	12.6.9 DRTRAM3 - Data Retention Configuration Register of SRAM 3
	12.6.10 LLCR - Low Leakage Voltage Regulator Control Register
	12.6.11 LLDRH - Low Leakage Voltage Regulator Data Register (High-Byte)
	12.6.12 LLDRL - Low Leakage Voltage Regulator Data Register (Low-Byte)
	12.6.13 DPDS0 - Port Driver Strength Register 0
	12.6.14 DPDS1 - Port Driver Strength Register 1

	13 System Control and Reset
	13.1 Resetting the AVR
	13.2 Reset Sources
	13.2.1 Power-on Reset
	13.2.2 External Reset
	13.2.3 Brown-out Detection
	13.2.4 Watchdog Reset

	13.3 Internal Voltage Reference
	13.4 Watchdog Timer
	13.4.1 Features
	13.4.2 Overview

	13.5 Register Description
	13.5.1 MCUSR - MCU Status Register
	13.5.2 WDTCSR - Watchdog Timer Control Register

	14 I/O-Ports
	14.1 Introduction
	14.2 Ports as General Digital I/O
	14.2.1 Configuring the Port
	14.2.2 Configuring the Pin
	14.2.3 Toggling the Pin
	14.2.4 Switching Between Input and Output
	14.2.5 Reading the Pin Value
	14.2.6 Digital Input Enable and Sleep Modes
	14.2.7 Unconnected Pins

	14.3 Alternate Port Functions
	14.3.1 Alternate Functions of Port B
	14.3.2 Alternate Functions of Port D
	14.3.3 Alternate Functions of Port E
	14.3.4 Alternate Functions of Port F
	14.3.5 Alternate Functions of Port G

	14.4 Register Description
	14.4.1 MCUCR - MCU Control Register
	14.4.2 DPDS0 - Port Driver Strength Register 0
	14.4.3 DPDS1 - Port Driver Strength Register 1
	14.4.4 PORTB - Port B Data Register
	14.4.5 DDRB - Port B Data Direction Register
	14.4.6 PINB - Port B Input Pins Address
	14.4.7 PORTD - Port D Data Register
	14.4.8 DDRD - Port D Data Direction Register
	14.4.9 PIND - Port D Input Pins Address
	14.4.10 PORTE - Port E Data Register
	14.4.11 DDRE - Port E Data Direction Register
	14.4.12 PINE - Port E Input Pins Address
	14.4.13 PORTF - Port F Data Register
	14.4.14 DDRF - Port F Data Direction Register
	14.4.15 PINF - Port F Input Pins Address
	14.4.16 PORTG - Port G Data Register
	14.4.17 DDRG - Port G Data Direction Register
	14.4.18 PING - Port G Input Pins Address

	15 Interrupts
	15.1 Interrupt Vectors in ATmega128RFA1
	15.2 Reset and Interrupt Vector Placement
	15.3 Moving Interrupts Between Application and Boot Section
	15.4 Register Description
	15.4.1 MCUCR - MCU Control Register

	16 External Interrupts
	16.1 Pin Change Interrupt Timing
	16.2 Register Description
	16.2.1 EICRA - External Interrupt Control Register A
	16.2.2 EICRB - External Interrupt Control Register B
	16.2.3 EIMSK - External Interrupt Mask Register
	16.2.4 EIFR - External Interrupt Flag Register
	16.2.5 PCICR - Pin Change Interrupt Control Register
	16.2.6 PCIFR - Pin Change Interrupt Flag Register
	16.2.7 PCMSK2 - Pin Change Mask Register 2
	16.2.8 PCMSK1 - Pin Change Mask Register 1
	16.2.9 PCMSK0 - Pin Change Mask Register 0

	17 8-bit Timer/Counter0 with PWM
	17.1 Features
	17.2 Overview
	17.2.1 Registers
	17.2.2 Definitions

	17.3 Timer/Counter Clock Sources
	17.4 Counter Unit
	17.5 Output Compare Unit
	17.5.1 Force Output Compare
	17.5.2 Compare Match Blocking by TCNT0 Write
	17.5.3 Using the Output Compare Unit

	17.6 Compare Match Output Unit
	17.6.1 Compare Output Mode and Waveform Generation

	17.7 Modes of Operation
	17.7.1 Normal Mode
	17.7.2 Clear Timer on Compare Match (CTC) Mode
	17.7.3 Fast PWM Mode
	17.7.4 Phase Correct PWM Mode

	17.8 Timer/Counter Timing Diagrams
	17.9 Register Description
	17.9.1 GTCCR - General Timer/Counter Control Register
	17.9.2 TCCR0A - Timer/Counter0 Control Register A
	17.9.3 TCCR0B - Timer/Counter0 Control Register B
	17.9.4 TCNT0 - Timer/Counter0 Register
	17.9.5 OCR0A - Timer/Counter0 Output Compare Register
	17.9.6 OCR0B - Timer/Counter0 Output Compare Register B
	17.9.7 TIMSK0 - Timer/Counter0 Interrupt Mask Register
	17.9.8 TIFR0 - Timer/Counter0 Interrupt Flag Register

	18 16-bit Timer/Counter (Timer/Counter 1, 3, 4, and 5)
	18.1 Features
	18.2 Overview
	18.2.1 Registers
	18.2.2 Definitions

	18.3 Accessing 16-bit Registers
	18.3.1 Reusing the Temporary High Byte Register

	18.4 Timer/Counter Clock Sources
	18.5 Counter Unit
	18.6 Input Capture Unit
	18.6.1 Input Capture Trigger Source
	18.6.2 Noise Canceller
	18.6.3 Using the Input Capture Unit

	18.7 Output Compare Units
	18.7.1 Force Output Compare
	18.7.2 Compare Match Blocking by TCNTn Write
	18.7.3 Using the Output Compare Unit

	18.8 Compare Match Output Unit
	18.8.1 Compare Output Mode and Waveform Generation

	18.9 Modes of Operation
	18.9.1 Normal Mode
	18.9.2 Clear Timer on Compare Match (CTC) Mode
	18.9.3 Fast PWM Mode
	18.9.4 Phase Correct PWM Mode
	18.9.5 Phase and Frequency Correct PWM Mode

	18.10 Timer/Counter Timing Diagrams
	18.11 Register Description
	18.11.1 TCCR1A - Timer/Counter1 Control Register A
	18.11.2 TCCR1B - Timer/Counter1 Control Register B
	18.11.3 TCCR1C - Timer/Counter1 Control Register C
	18.11.4 TCNT1H - Timer/Counter1 High Byte
	18.11.5 TCNT1L - Timer/Counter1 Low Byte
	18.11.6 OCR1AH - Timer/Counter1 Output Compare Register A High Byte
	18.11.7 OCR1AL - Timer/Counter1 Output Compare Register A Low Byte
	18.11.8 OCR1BH - Timer/Counter1 Output Compare Register B High Byte
	18.11.9 OCR1BL - Timer/Counter1 Output Compare Register B Low Byte
	18.11.10 OCR1CH - Timer/Counter1 Output Compare Register C High Byte
	18.11.11 OCR1CL - Timer/Counter1 Output Compare Register C Low Byte
	18.11.12 ICR1H - Timer/Counter1 Input Capture Register High Byte
	18.11.13 ICR1L - Timer/Counter1 Input Capture Register Low Byte
	18.11.14 TIMSK1 - Timer/Counter1 Interrupt Mask Register
	18.11.15 TIFR1 - Timer/Counter1 Interrupt Flag Register
	18.11.16 TCCR3A - Timer/Counter3 Control Register A
	18.11.17 TCCR3B - Timer/Counter3 Control Register B
	18.11.18 TCCR3C - Timer/Counter3 Control Register C
	18.11.19 TCNT3H - Timer/Counter3 High Byte
	18.11.20 TCNT3L - Timer/Counter3 Low Byte
	18.11.21 OCR3AH - Timer/Counter3 Output Compare Register A High Byte
	18.11.22 OCR3AL - Timer/Counter3 Output Compare Register A Low Byte
	18.11.23 OCR3BH - Timer/Counter3 Output Compare Register B High Byte
	18.11.24 OCR3BL - Timer/Counter3 Output Compare Register B Low Byte
	18.11.25 OCR3CH - Timer/Counter3 Output Compare Register C High Byte
	18.11.26 OCR3CL - Timer/Counter3 Output Compare Register C Low Byte
	18.11.27 ICR3H - Timer/Counter3 Input Capture Register High Byte
	18.11.28 ICR3L - Timer/Counter3 Input Capture Register Low Byte
	18.11.29 TIMSK3 - Timer/Counter3 Interrupt Mask Register
	18.11.30 TIFR3 - Timer/Counter3 Interrupt Flag Register
	18.11.31 TCCR4A - Timer/Counter4 Control Register A
	18.11.32 TCCR4B - Timer/Counter4 Control Register B
	18.11.33 TCCR4C - Timer/Counter4 Control Register C
	18.11.34 TCNT4H - Timer/Counter4 High Byte
	18.11.35 TCNT4L - Timer/Counter4 Low Byte
	18.11.36 OCR4AH - Timer/Counter4 Output Compare Register A High Byte
	18.11.37 OCR4AL - Timer/Counter4 Output Compare Register A Low Byte
	18.11.38 OCR4BH - Timer/Counter4 Output Compare Register B High Byte
	18.11.39 OCR4BL - Timer/Counter4 Output Compare Register B Low Byte
	18.11.40 OCR4CH - Timer/Counter4 Output Compare Register C High Byte
	18.11.41 OCR4CL - Timer/Counter4 Output Compare Register C Low Byte
	18.11.42 ICR4H - Timer/Counter4 Input Capture Register High Byte
	18.11.43 ICR4L - Timer/Counter4 Input Capture Register Low Byte
	18.11.44 TIMSK4 - Timer/Counter4 Interrupt Mask Register
	18.11.45 TIFR4 - Timer/Counter4 Interrupt Flag Register
	18.11.46 TCCR5A - Timer/Counter5 Control Register A
	18.11.47 TCCR5B - Timer/Counter5 Control Register B
	18.11.48 TCCR5C - Timer/Counter5 Control Register C
	18.11.49 TCNT5H - Timer/Counter5 High Byte
	18.11.50 TCNT5L - Timer/Counter5 Low Byte
	18.11.51 OCR5AH - Timer/Counter5 Output Compare Register A High Byte
	18.11.52 OCR5AL - Timer/Counter5 Output Compare Register A Low Byte
	18.11.53 OCR5BH - Timer/Counter5 Output Compare Register B High Byte
	18.11.54 OCR5BL - Timer/Counter5 Output Compare Register B Low Byte
	18.11.55 OCR5CH - Timer/Counter5 Output Compare Register C High Byte
	18.11.56 OCR5CL - Timer/Counter5 Output Compare Register C Low Byte
	18.11.57 ICR5H - Timer/Counter5 Input Capture Register High Byte
	18.11.58 ICR5L - Timer/Counter5 Input Capture Register Low Byte
	18.11.59 TIMSK5 - Timer/Counter5 Interrupt Mask Register
	18.11.60 TIFR5 - Timer/Counter5 Interrupt Flag Register

	19 Timer/Counter 0, 1, 3, 4, and 5 Prescaler
	19.1 Internal Clock Source
	19.2 Prescaler Reset
	19.3 External Clock Source
	19.4 Register Description
	19.4.1 GTCCR - General Timer/Counter Control Register

	20 Output Compare Modulator (OCM1C0A)
	20.1 Overview
	20.2 Description
	20.3 Timing Example

	21 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	21.1 Features
	21.2 Overview
	21.2.1 Registers
	21.2.2 Definitions

	21.3 Timer/Counter Clock Sources
	21.4 Counter Unit
	21.5 Modes of Operation
	21.5.1 Normal Mode
	21.5.2 Clear Timer on Compare Match (CTC) Mode
	21.5.3 Fast PWM Mode
	21.5.4 Phase Correct PWM Mode

	21.6 Output Compare Unit
	21.6.1 Force Output Compare
	21.6.2 Compare Match Blocking by TCNT2 Write
	21.6.3 Using the Output Compare Unit

	21.7 Compare Match Output Unit
	21.7.1 Compare Output Mode and Waveform Generation

	21.8 Timer/Counter Timing Diagrams
	21.9 Asynchronous Operation of Timer/Counter2
	21.10 Timer/Counter Prescaler
	21.11 Register Description
	21.11.1 TIMSK2 - Timer/Counter Interrupt Mask register
	21.11.2 TIFR2 - Timer/Counter Interrupt Flag Register
	21.11.3 TCCR2A - Timer/Counter2 Control Register A
	21.11.4 TCCR2B - Timer/Counter2 Control Register B
	21.11.5 TCNT2 - Timer/Counter2
	21.11.6 OCR2A - Timer/Counter2 Output Compare Register A
	21.11.7 OCR2B - Timer/Counter2 Output Compare Register B
	21.11.8 ASSR - Asynchronous Status Register
	21.11.9 GTCCR - General Timer Counter Control register

	22 SPI- Serial Peripheral Interface
	22.1 Features
	22.2 Functional Description
	22.3 Pin Functionality
	22.3.1 Slave Mode
	22.3.2 Master Mode
	22.3.3 Data Mode

	22.4 Register Description
	22.4.1 SPCR - SPI Control Register
	22.4.2 SPSR - SPI Status Register
	22.4.3 SPDR - SPI Data Register

	23 USART
	23.1 Features
	23.2 Overview
	23.3 Clock Generation
	23.3.1 Internal Clock Generation - The Baud Rate Generator
	23.3.2 Double Speed Operation (U2Xn)
	23.3.3 External Clock
	23.3.4 Synchronous Clock Operation

	23.4 Frame Formats
	23.4.1 Parity Bit Calculation

	23.5 USART Initialization
	23.6 Data Transmission - The USART Transmitter
	23.6.1 Sending Frames with 5 to 8 Data Bit
	23.6.2 Sending Frames with 9 Data Bit
	23.6.3 Transmitter Flags and Interrupts
	23.6.4 Parity Generator
	23.6.5 Disabling the Transmitter

	23.7 Data Reception - The USART Receiver
	23.7.1 Receiving Frames with 5 to 8 Data Bits
	23.7.2 Receiving Frames with 9 Data Bits
	23.7.3 Receive Complete Flag and Interrupt
	23.7.4 Receiver Error Flags
	23.7.5 Parity Checker
	23.7.6 Disabling the Receiver
	23.7.7 Flushing the Receive Buffer

	23.8 Asynchronous Data Reception
	23.8.1 Asynchronous Clock Recovery
	23.8.2 Asynchronous Data Recovery
	23.8.3 Asynchronous Operational Range

	23.9 Multi-processor Communication Mode
	23.9.1 Using MPCMn

	23.10 Register Description
	23.10.1 UDR0 - USART0 I/O Data Register
	23.10.2 UCSR0A - USART0 Control and Status Register A
	23.10.3 UCSR0B - USART0 Control and Status Register B
	23.10.4 UCSR0C - USART0 Control and Status Register C
	23.10.5 UBRR0H - USART0 Baud Rate Register High Byte
	23.10.6 UBRR0L - USART0 Baud Rate Register Low Byte
	23.10.7 UDR1 - USART1 I/O Data Register
	23.10.8 UCSR1A - USART1 Control and Status Register A
	23.10.9 UCSR1B - USART1 Control and Status Register B
	23.10.10 UCSR1C - USART1 Control and Status Register C
	23.10.11 UBRR1H - USART1 Baud Rate Register High Byte
	23.10.12 UBRR1L - USART1 Baud Rate Register Low Byte

	23.11 Examples of Baud Rate Setting

	24 USART in SPI Mode
	24.1 Overview
	24.2 USART MSPIM vs. SPI
	24.2.1 Clock Generation

	24.3 SPI Data Modes and Timing
	24.4 Frame Formats
	24.4.1 USART MSPIM Initialization

	24.5 Data Transfer
	24.5.1 Transmitter and Receiver Flags and Interrupts
	24.5.2 Disabling the Transmitter or Receiver

	24.6 USART MSPIM Register Description
	24.6.1 UDRn - USART MSPIM I/O Data Register
	24.6.2 UBRRnL and UBRRnH - USART MSPIM Baud Rate Registers
	24.6.3 UCSR0A - USART0 MSPIM Control and Status Register A
	24.6.4 UCSR0B - USART0 MSPIM Control and Status Register B
	24.6.5 UCSR0C - USART0 MSPIM Control and Status Register C
	24.6.6 UCSR1A - USART1 MSPIM Control and Status Register A
	24.6.7 UCSR1B - USART1 MSPIM Control and Status Register B
	24.6.8 UCSR1C - USART1 MSPIM Control and Status Register C

	25 2-wire Serial Interface
	25.1 Features
	25.2 2-wire Serial Interface Bus Definition
	25.2.1 TWI Terminology
	25.2.2 Electrical Interconnection

	25.3 Data Transfer and Frame Format
	25.3.1 Transferring Bits
	25.3.2 START and STOP Conditions
	25.3.3 Address Packet Format
	25.3.4 Data Packet Format
	25.3.5 Combining Address and Data Packets into a Transmission

	25.4 Multi-master Bus Systems, Arbitration and Synchronization
	25.5 Overview of the TWI Module
	25.5.1 SCL and SDA Pins
	25.5.2 Bit Rate Generator Unit
	25.5.3 Bus Interface Unit
	25.5.4 Address Match Unit
	25.5.5 Control Unit

	25.6 Using the TWI
	25.7 Transmission Modes
	25.7.1 Master Transmitter Mode
	25.7.2 Master Receiver Mode
	25.7.3 Slave Receiver Mode
	25.7.4 Slave Transmitter Mode
	25.7.5 Miscellaneous States
	25.7.6 Combining Several TWI Modes

	25.8 Multi-master Systems and Arbitration
	25.9 Register Description
	25.9.1 TWBR - TWI Bit Rate Register
	25.9.2 TWCR - TWI Control Register
	25.9.3 TWSR - TWI Status Register
	25.9.4 TWDR - TWI Data Register
	25.9.5 TWAR - TWI (Slave) Address Register
	25.9.6 TWAMR - TWI (Slave) Address Mask Register

	26 AC - Analog Comparator
	26.1 Analog Comparator Multiplexed Input
	26.2 Register Description
	26.2.1 ACSR - Analog Comparator Control And Status Register
	26.2.2 ADCSRB - ADC Control and Status Register B
	26.2.3 DIDR1 - Digital Input Disable Register 1

	27 ADC - Analog to Digital Converter
	27.1 Features
	27.2 Operation
	27.3 ADC Start-Up
	27.4 Starting a Conversion
	27.5 Pre-scaling and Conversion Timing
	27.5.1 Prescaler
	27.5.2 Start-Up Timing
	27.5.3 Conversion Timing

	27.6 Changing Channel or Reference Selection
	27.6.1 Accessing the ADMUX Register
	27.6.2 ADC Input Channels
	27.6.3 ADC Voltage Reference

	27.7 ADC Noise Canceller
	27.7.1 Analog Input Circuitry
	27.7.2 Analog Noise Canceling Techniques
	27.7.3 Offset Compensation Schemes
	27.7.4 ADC Accuracy Definitions

	27.8 ADC Conversion Result
	27.9 Internal Temperature Measurement
	27.10 SRAM DRT Voltage Measurement
	27.11 Register Description
	27.11.1 ADMUX - ADC Multiplexer Selection Register
	27.11.2 ADCSRB - ADC Control and Status Register B
	27.11.3 ADCSRA - ADC Control and Status Register A
	27.11.4 ADCSRC - ADC Control and Status Register C
	27.11.5 ADCL and ADCH - The ADC Data Register
	27.11.5.1 ADLAR = 0
	27.11.5.2 ADLAR = 1

	27.11.6 DIDR0 - Digital Input Disable Register 0
	27.11.7 DIDR2 - Digital Input Disable Register 2
	27.11.8 BGCR - Reference Voltage Calibration Register

	28 JTAG Interface and On-chip Debug System
	28.1 Features
	28.2 Overview
	28.3 TAP - Test Access Port
	28.4 TAP Controller
	28.5 Using the Boundary-scan Chain
	28.6 Using the On-chip Debug System
	28.7 On-chip Debug Specific JTAG Instructions
	28.7.1 PRIVATE0; 0x8
	28.7.2 PRIVATE1; 0x9
	28.7.3 PRIVATE2; 0xA
	28.7.4 PRIVATE3; 0xB

	28.8 Using the JTAG Programming Capabilities
	28.9 Bibliography
	28.10 On-chip Debug Related Register in I/O Memory
	28.10.1 OCDR - On-Chip Debug Register

	29 IEEE 1149.1 (JTAG) Boundary-scan
	29.1 Features
	29.2 System Overview
	29.3 Data Registers
	29.3.1 Bypass Register
	29.3.2 Device Identification Register
	29.3.2.1 Version
	29.3.2.2 Part Number
	29.3.2.3 Manufacturer ID

	29.3.3 Reset Register
	29.3.4 Boundary-scan Chain

	29.4 Boundary-scan Specific JTAG Instructions
	29.4.1 EXTEST; 0x0
	29.4.2 IDCODE; 0x1
	29.4.3 SAMPLE_PRELOAD; 0x2
	29.4.4 AVR_RESET; 0xC
	29.4.5 BYPASS; 0xF

	29.5 Boundary-scan Chain
	29.5.1 Scanning the Digital Port Pins
	29.5.2 Scanning the RSTN, CLKI and TST Pin
	29.5.3 Scanning the RSTON Pin

	29.6 Boundary-scan Related Register in I/O Memory
	29.6.1 MCUCR - MCU Control Register
	29.6.2 MCUSR - MCU Status Register

	29.7 Boundary-scan Description Language Files
	29.8 ATmega128RFA1 Boundary-scan Order

	30 Boot Loader Support - Read-While-Write Self-Programming
	30.2 Application and Boot Loader Flash Sections
	30.2.1 Application Section
	30.2.2 BLS - Boot Loader Section

	30.3 Read-While-Write and No Read-While-Write Flash Sections
	30.3.1 RWW - Read-While-Write Section
	30.3.2 NRWW - No Read-While-Write Section

	30.4 Boot Loader Lock Bits
	30.4.1 Entering the Boot Loader Program

	30.5 Addressing the Flash During Self-Programming
	30.6 Self-Programming the Flash
	30.6.1 Performing Page Erase by SPM
	30.6.2 Filling the Temporary Buffer (Page Loading)
	30.6.3 Performing a Page Write
	30.6.4 Using the SPM Interrupt
	30.6.5 Consideration While Updating BLS
	30.6.6 Prevent Reading the RWW Section During Self-Programming
	30.6.7 Setting the Boot Loader Lock Bits by SPM
	30.6.8 EEPROM Write Prevents Writing to SPMCSR
	30.6.9 Reading the Fuse and Lock Bits from Software
	30.6.10 Reading the Signature Row from Software
	30.6.11 Preventing Flash Corruption
	30.6.12 Programming Time for Flash when Using SPM
	30.6.13 Simple Assembly Code Example for a Boot Loader
	30.6.14 Boot Loader Parameters for 128kByte of Flash Memory

	30.7 Register Description
	30.7.1 SPMCSR - Store Program Memory Control Register
	30.7.2 NEMCR - Flash Extended-Mode Control-Register

	31 Memory Programming
	31.1 Program And Data Memory Lock Bits
	31.2 Fuse Bits
	31.2.1 Latching of Fuses

	31.3 Signature Bytes
	31.4 Calibration Byte
	31.5 Page Size
	31.6 Parallel Programming Parameters, Pin Mapping, and Commands
	31.6.1 Signal Names

	31.7 Parallel Programming
	31.7.1 Enter Programming Mode
	31.7.2 Considerations for Efficient Programming
	31.7.3 Chip Erase
	31.7.4 Programming the Flash
	31.7.5 Programming the EEPROM
	31.7.6 Reading the Flash
	31.7.7 Reading the EEPROM
	31.7.8 Programming the Fuse Low Bits
	31.7.9 Programming the Fuse High Bits
	31.7.10 Programming the Extended Fuse Bits
	31.7.11 Programming the Lock Bits
	31.7.12 Reading the Fuse and Lock Bits
	31.7.13 Reading the Signature Bytes
	31.7.14 Reading the Calibration Byte
	31.7.15 Parallel Programming Characteristics

	31.8 Serial Downloading
	31.8.1 Serial Programming Pin Mapping
	31.8.2 Serial Programming Algorithm
	31.8.3 Serial Programming Instruction Set
	31.8.4 Serial Programming Characteristics

	31.9 Programming via the JTAG Interface
	31.9.1 Programming Specific JTAG Instructions
	31.9.2 AVR_RESET (0xC)
	31.9.3 PROG_ENABLE (0x4)
	31.9.4 PROG_COMMANDS (0x5)
	31.9.5 PROG_PAGELOAD (0x6)
	31.9.6 PROG_PAGEREAD (0x7)
	31.9.7 Data Registers
	31.9.8 Reset Register
	31.9.9 Programming Enable Register
	31.9.10 Programming Command Register
	31.9.11 Flash Data Byte Register
	31.9.12 Programming Algorithm
	31.9.13 Entering Programming Mode
	31.9.14 Leaving Programming Mode
	31.9.15 Performing Chip Erase
	31.9.16 Programming the Flash
	31.9.17 Reading the Flash
	31.9.18 Programming the EEPROM
	31.9.19 Reading the EEPROM
	31.9.20 Programming the Fuses
	31.9.21 Programming the Lock Bits
	31.9.22 Reading the Fuses and Lock Bits
	31.9.23 Reading the Signature Bytes
	31.9.24 Reading the Calibration Byte

	32 Application Circuits
	32.1 Basic Application Schematic
	32.2 Extended Feature Set Application Schematic

	33 Register Summary
	34 Electrical Characteristics
	34.1 Absolute Maximum Ratings
	34.1.1 Recommended Operating Range
	34.1.2 Digital Pin Characteristics

	34.2 Clock Characteristics
	34.2.1 Calibrated Internal RC Oscillator Accuracy
	34.2.2 External Clock Drive

	34.3 System and Reset Characteristics
	34.4 Power Management Electrical Characteristics
	34.4.1 Power Switches
	34.4.2 Voltage Regulators

	34.5 2-wire Serial Interface Characteristics
	34.6 SPI Timing Characteristics
	34.7 ADC Characteristics
	34.8 Transceiver Electrical Characteristics
	34.8.1 Digital Interface Timing Characteristics
	34.8.2 General RF Specifications
	34.8.3 Transmitter Characteristics
	34.8.4 Receiver Characteristics
	34.8.5 Current Consumption Specifications
	34.8.6 Crystal Parameter Requirements

	35 Typical Characteristics
	35.1 Internal Oscillator Speed

	36 Ordering Information
	37 Packaging Information
	38 Errata
	38.1 ATmega128RFA1 revision D (1.2)
	38.2 ATmega128RFA1 revision C (1.1)
	38.3 ATmega128RFA1 revision AB (1.0)
	38.4 Compiler package WinAVR-20090313
	38.5 Detailed errata description
	38.5.1 Power-Chain turns off when power supply drops below 1.6V
	38.5.2 JTAG interface reads wrong data
	38.5.3 CSMA back-off calculation has reduced degree of randomness
	38.5.4 Update of internal temporary registers for CSMA_SEED register may fail
	38.5.5 Interrupt TRX24_CCA_ED_DONE may occur twice
	38.5.6 DVREG_EXT bit is not write-protected
	38.5.7 ENDRT bits have wrong reset value

	39 Revision history
	Table of Contents

