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TCNTn and the OCRnx. Note that when working with fixed TOP values, the unused bits 
are masked to zero when any of the OCRnx Registers are written. As the third period 
shown in Figure 18-8 illustrates, changing the TOP actively while the Timer/Counter is 
running in the phase correct mode can result in an asymmetrical output. The reason for 
this can be found in the update time of the OCRnx Register. Since the OCRnx update 
occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of 
the falling slope is determined by the previous TOP value, while the length of the rising 
slope is determined by the new TOP value. When these two values are not equal the 
two slopes of the period will differ in length. The difference in length gives the 
asymmetrical result of the output. 

It is recommended to use the phase and frequency correct mode instead of the phase 
correct mode when changing the TOP value while the Timer/Counter is running. When 
using a static TOP value there are practically no differences between the two modes of 
operation. 

In phase correct PWM mode, the compare units allow generating PWM waveforms on 
the OCnx pins. Setting the COMnx1:0 bits to 2 will produce a non-inverted PWM. An 
inverted PWM output can be generated by setting the COMnx1:0 to 3 (see Table 18-4 
on page 256). The actual OCnx value will only be visible on the port pin if the data 
direction of the port pin is set to output (DDR_OCnx). The PWM waveform is generated 
by setting (or clearing) the OCnx Register at the compare match between OCRnx and 
TCNTn when the counter increments, and by clearing (or setting) the OCnx Register at 
compare match between OCRnx and TCNTn when the counter decrements. The PWM 
frequency of the output fOCnxPCPWM when using phase-correct PWM can be calculated 
with the following equation: 

)2

/_

TOPN

f
f

OIclk

OCnxPCPWM
⋅⋅

=  

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). 

The extreme values for the OCRnx Register represent special cases when generating a 
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to 
BOTTOM the output will be continuously low and if set equal to TOP the output will be 
continuously high for non-inverted PWM mode. For inverted PWM the output will have 
the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) 
and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 

18.9.5 Phase and Frequency Correct PWM Mode 

The phase and frequency correct Pulse Width Modulation (PWM) mode (WGMn3:0 = 8 
or 9) provides a high resolution phase and frequency correct PWM waveform 
generation option. The phase and frequency correct PWM mode is, like the phase 
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly 
from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting 
Compare Output mode, the Output Compare (OCnx) is cleared on the compare match 
between TCNTn and OCRnx while up-counting, and set on the compare match while 
down-counting. In inverting Compare Output mode, the operation is inverted. The dual-
slope operation gives a lower maximum operation frequency compared to the single-
slope operation. However these modes are preferred for motor control applications due 
to the symmetric feature of the dual-slope PWM modes. 

The main difference between the phase correct and the phase and frequency correct 
PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, 
(see Figure 18-8 on page 261 and Figure 18-9 on page 263). 
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The PWM resolution for the phase and frequency correct PWM mode can be defined by 
either ICRn or OCRnA. The minimum resolution allowed is 2 bit (ICRn or OCRnA set to 
0x0003), and the maximum resolution is 16 bit (ICRn or OCRnA set to MAX). The PWM 
resolution RPFCPWM in bits can be calculated with the following equation: 

)2log(

)1log( +
=

TOP
RPFCPWM  

In phase and frequency correct PWM mode the counter is incremented until the counter 
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA 
(WGMn3:0 = 9). The counter has then reached TOP and changes the count direction. 
The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for 
the phase correct and frequency correct PWM mode is shown in Figure 18-9 below. 
The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is 
used to define TOP. The TCNTn value is shown in the timing diagram as a histogram 
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted 
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare 
matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a 
compare match occurs. 

Figure 18-9. Phase and Frequency Correct PWM Mode Timing Diagram 

OCRnx/TOP Updateand

TOVn Interrupt Flag Set

(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

 

The Timer/Counter Overflow Flag (TOVn) is set at the timer clock cycle when the 
OCRnx Registers are updated with the double-buffered value (at BOTTOM). The OCnA 
or ICFn Flag is set after TCNTn has reached TOP when either OCRnA or ICRn is used 
for defining the TOP value. The Interrupt Flags can then be used to generate an 
interrupt each time the counter reaches the TOP or BOTTOM value. 

When changing the TOP value the program must ensure that the new TOP value is 
higher or equal to the value of all of the Compare Registers. If the TOP value is lower 
than any of the Compare Registers, a compare match will never occur between the 
TCNTn and the OCRnx. 

As Figure 18-9 shows the output generated is, in contrast to the phase correct mode, 
symmetrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the 
length of the rising and the falling slopes will always be equal. This gives symmetrical 
output pulses and is therefore frequency correct. 
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The definition of TOP with the ICRn Register works well when using fixed TOP values. 
Combined with ICRn the OCRnA Register is available for generating a PWM output on 
OCnA. However, if the base PWM frequency is actively changed by modifying the TOP 
value, using the OCRnA as TOP is clearly a better choice due to its double buffer 
feature. 

In phase and frequency correct PWM mode, the compare units allow generating PWM 
waveforms on the OCnx pins. Setting the COMnx1:0 bits to 2 will produce a non-
inverted PWM. An inverted PWM output can be generated by setting the COMnx1:0 to 
3 (see Table 18-4 on page 256). The actual OCnx value will only be visible at the port 
pin if the data direction of the port pin is set to output (DDR_OCnx). The PWM 
waveform is generated by setting (or clearing) the OCnx Register at the compare match 
between OCRnx and TCNTn when the counter increments, and by clearing (or setting) 
the OCnx Register at compare match between OCRnx and TCNTn when the counter 
decrements. The PWM frequency of the output fOCnxPFCPWM when using phase and 
frequency correct PWM can be calculated with the following equation: 

)2

/_

TOPN

f
f

OIclk

OCnxPFCPWM
⋅⋅

=  

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). 

The extreme values for the OCRnx Register represent special cases when generating a 
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to 
BOTTOM the output will be continuously low and if set equal to TOP the output will be 
set to high for non-inverted PWM mode. For inverted PWM the output will have the 
opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and 
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 

18.10 Timer/Counter Timing Diagrams 

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore 
shown as a clock enable signal in the following figures. The figures include information 
on when Interrupt Flags are set and when the OCRnx Register is updated with the 
OCRnx buffer value (only for modes utilizing double buffering). Figure 18-10 shows a 
timing diagram for the setting of OCFnx. 

Figure 18-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling 
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Figure 18-11 shows the same timing data, but with the prescaler enabled. 

Figure 18-11. Timer/Counter Timing Diagram, Setting of OCFnx with Prescaler 
(fclk_I/O/8) 
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Figure 18-12 shows the count sequence close to TOP in various modes. When using 
phase and frequency correct PWM mode the OCRnx Register is updated at BOTTOM. 
The timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-
1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn 
Flag at BOTTOM. 

Figure 18-12. Timer/Counter Timing Diagram, no Prescaling 
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Figure 18-13 shows the same timing data, but with the prescaler enabled. 

Figure 18-13. Timer/Counter Timing Diagram with Prescaler (fclk_I/O/8) 
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18.11 Register Description 

18.11.1 TCCR1A – Timer/Counter1 Control Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($80) COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – COM1A1:0 - Compare Output Mode for Channel A 

The COM1A1:0 bits control the output compare behavior of pin OC1A. If one or both of 
the COM1A1:0 bits are written to one, the OC1A output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC1A pin must be set in order to enable the 
output driver. When the OC1A is connected to the pin, the function of the COM1A1:0 
bits is dependent of the WGM13:0 bits setting. The following table shows the 
COM1A1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-6 COM1A Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM1A1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
(set output to high level). 

• Bit 5:4 – COM1B1:0 - Compare Output Mode for Channel B 
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The COM1B1:0 bits control the output compare behavior of pin OC1B. If one or both of 
the COM1B1:0 bits are written to one, the OC1B output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC1B pin must be set in order to enable the 
output driver. When the OC1A is connected to the pin, the function of the COM1B1:0 
bits is dependent of the WGM13:0 bits setting. The following table shows the 
COM1B1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-7 COM1B Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM1B1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
(set output to high level). 

• Bit 3:2 – COM1C1:0 - Compare Output Mode for Channel C 

The COM1C1:0 bits control the output compare behavior of pin OC1C. If one or both of 
the COM1C1:0 bits are written to one, the OC1C output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC1C pin must be set in order to enable the 
output driver. When the OC1A is connected to the pin, the function of the COM1C1:0 
bits is dependent of the WGM13:0 bits setting. The following table shows the 
COM1C1:0 bit functionality when the WGM13:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-8 COM1C Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM1C1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
(set output to high level). 

• Bit 1:0 – WGM11:10 - Waveform Generation Mode 

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". 

Table 18-9 WGM1 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation WGM11:10 

0x1 PWM, phase correct, 8-bit 



 

 

 

 

 

 

 

 
 

  
 

268 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

Register Bits Value Description 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

 

18.11.2 TCCR1B – Timer/Counter1 Control Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($81) ICNC1 ICES1 Res WGM13 WGM12 CS12 CS11 CS10 TCCR1B 

Read/Write RW RW R RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – ICNC1 - Input Capture 1 Noise Canceller 

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise 
Canceler is activated, the input from the Input Capture Pin (ICP1) is filtered. The filter 
function requires four successive equal valued samples of the ICP1 pin for changing its 
output. The input capture is therefore delayed by four Oscillator cycles when the noise 
canceler is enabled. 

• Bit 6 – ICES1 - Input Capture 1 Edge Select 

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a 
capture event. When the ICES1 bit is written to zero, a falling (negative) edge is used 
as trigger. When the ICES1 bit is written to one, a rising (positive) edge will trigger the 
capture. When a capture is triggered according to the ICES1 setting, the counter value 
is copied into the Input Capture Register (ICR1). The event will also set the Input 
Capture Flag (ICF1). This can be used to cause an Input Capture Interrupt, if this 
interrupt is enabled. When the ICR1 is used as TOP value (see description of the 
WGM13:0 bits located in the TCCR1A and the TCCR1B Register), the ICP1 is 
disconnected and consequently the input capture function is disabled. 

• Bit 5 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 4:3 – WGM11:10 - Waveform Generation Mode 
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Combined with the WGM11:0 bits found in the TCCR1A Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". 

Table 18-10 WGM1 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

WGM11:10 

0xF Fast PWM, TOP = OCRnA 

• Bit 2:0 – CS12:10 - Clock Select 

The three clock select bits select the clock source to be used by the Timer/Counter1 
according to the following table. If external pin modes are used for the Timer/Counter1, 
transitions on the T1 pin will clock the counter even if the pin is configured as an output. 
This feature allows software control of the counting. 

Table 18-11 CS1 Register Bits 

Register Bits Value Description 

0x00 No clock source (Timer/Counter stopped) 

0x01 clk_IO/1 (no prescaling) 

0x02 clk_IO/8 (from prescaler) 

0x03 clk_IO/64 (from prescaler) 

0x04 clk_IO/256 (from prescaler) 

0x05 clk_IO/1024 (from prescaler) 

0x06 External clock source on Tn pin, clock on 
falling edge 

CS12:10 

0x07 External clock source on Tn pin, clock on 
rising edge 
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18.11.3 TCCR1C – Timer/Counter1 Control Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($82) FOC1A FOC1B FOC1C Res4 Res3 Res2 Res1 Res0 TCCR1C 

Read/Write RW RW RW R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – FOC1A - Force Output Compare for Channel A 

The FOC1A bit is only active when the WGM13:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC1A bit, an immediate compare match is forced on the 
waveform generation unit. The OC1A output is changed according to its COM1A1:0 bits 
setting. Note that the FOC1A bits are implemented as strobes. Therefore it is the value 
present in the COM1A1:0 bits that determine the effect of the forced compare. A 
FOC1A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR1A as TOP. The FOC1A bits are always read 
as zero. 

• Bit 6 – FOC1B - Force Output Compare for Channel B 

The FOC1B bit is only active when the WGM13:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC1B bit, an immediate compare match is forced on the 
waveform generation unit. The OC1B output is changed according to its COM1B1:0 bits 
setting. Note that the FOC1B bits are implemented as strobes. Therefore it is the value 
present in the COM1B1:0 bits that determine the effect of the forced compare. A 
FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR1B as TOP. The FOC1B bits are always read 
as zero. 

• Bit 5 – FOC1C - Force Output Compare for Channel C 

The FOC1C bit is only active when the WGM13:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC1C bit, an immediate compare match is forced on the 
waveform generation unit. The OC1C output is changed according to its COM1C1:0 bits 
setting. Note that the FOC1C bits are implemented as strobes. Therefore it is the value 
present in the COM1C1:0 bits that determine the effect of the forced compare. A 
FOC1C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR1C as TOP. The FOC1C bits are always read 
as zero. 

• Bit 4:0 – Res4:0 - Reserved 

These bits are reserved for future use. 

 

18.11.4 TCNT1H – Timer/Counter1 High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($85) TCNT1H7:0 TCNT1H 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 



 

 

 

 

 

 

 

 
 

   
 271

 

 

 

8266A-MCU Wireless-12/09 

 ATmega128RFA1 

16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT1) while the counter is running introduces a risk of missing a compare 
match between TCNT1 and one of the OCR1x Registers. Writing to the TCNT1 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT1H7:0 - Timer/Counter1 High Byte 

 

18.11.5 TCNT1L – Timer/Counter1 Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($84) TCNT1L7:0 TCNT1L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT1) while the counter is running introduces a risk of missing a compare 
match between TCNT1 and one of the OCR1x Registers. Writing to the TCNT1 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT1L7:0 - Timer/Counter1 Low Byte 

 

18.11.6 OCR1AH – Timer/Counter1 Output Compare Register A High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($89) OCR1AH7:0 OCR1AH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1A pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1AH7:0 - Timer/Counter1 Output Compare Register High Byte 

 

18.11.7 OCR1AL – Timer/Counter1 Output Compare Register A Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($88) OCR1AL7:0 OCR1AL 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   



 

 

 

 

 

 

 

 
 

  
 

272 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1A pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1AL7:0 - Timer/Counter1 Output Compare Register Low Byte 

 

18.11.8 OCR1BH – Timer/Counter1 Output Compare Register B High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($8B) OCR1BH7:0 OCR1BH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1B pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1BH7:0 - Timer/Counter1 Output Compare Register High Byte 

 

18.11.9 OCR1BL – Timer/Counter1 Output Compare Register B Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($8A) OCR1BL7:0 OCR1BL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1B pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1BL7:0 - Timer/Counter1 Output Compare Register Low Byte 
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18.11.10 OCR1CH – Timer/Counter1 Output Compare Register C High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($8D) OCR1CH7:0 OCR1CH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1C pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1CH7:0 - Timer/Counter1 Output Compare Register High Byte 

 

18.11.11 OCR1CL – Timer/Counter1 Output Compare Register C Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($8C) OCR1CL7:0 OCR1CL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT1). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC1C pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR1CL7:0 - Timer/Counter1 Output Compare Register Low Byte 

 

18.11.12 ICR1H – Timer/Counter1 Input Capture Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($87) ICR1H7:0 ICR1H 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Input Capture Register is updated with the counter (TCNT1) value each time an 
event occurs on the ICP1 pin or on the Analog Comparator output. The Input Capture 
Register can be used for defining the counter TOP value. The Input Capture Register is 
16-bit in size. To ensure that both the high and low bytes are read simultaneously when 
the CPU accesses these registers, the access is performed using an 8-bit temporary 
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit 
registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – ICR1H7:0 - Timer/Counter1 Input Capture Register High Byte 
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18.11.13 ICR1L – Timer/Counter1 Input Capture Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($86) ICR1L7:0 ICR1L 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Input Capture Register is updated with the counter (TCNT1) value each time an 
event occurs on the ICP1 pin or on the Analog Comparator output. The Input Capture 
Register can be used for defining the counter TOP value. The Input Capture Register is 
16-bit in size. To ensure that both the high and low bytes are read simultaneously when 
the CPU accesses these registers, the access is performed using an 8-bit temporary 
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit 
registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – ICR1L7:0 - Timer/Counter1 Input Capture Register Low Byte 

 

18.11.14 TIMSK1 – Timer/Counter1 Interrupt Mask Register 

Bit 7 6 5 4 3 2 1 0  

NA ($6F) Res1 Res0 ICIE1 Res OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1 

Read/Write R R RW R R R RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICIE1 - Timer/Counter1 Input Capture Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter1 Input Capture interrupt is enabled. The 
corresponding Interrupt Vector is executed when the ICF1 Flag, located in TIFR1, is 
set. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCIE1C - Timer/Counter1 Output Compare C Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter1 Output Compare C Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF1C Flag, located in 
TIFR1, is set. 

• Bit 2 – OCIE1B - Timer/Counter1 Output Compare B Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF1B Flag, located in 
TIFR1, is set. 

• Bit 1 – OCIE1A - Timer/Counter1 Output Compare A Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. 
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The corresponding Interrupt Vector is executed when the OCF1A Flag, located in 
TIFR1, is set. 

• Bit 0 – TOIE1 - Timer/Counter1 Overflow Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding 
Interrupt Vector is executed when the TOV1 Flag, located in TIFR1, is set. 

 

18.11.15 TIFR1 – Timer/Counter1 Interrupt Flag Register 

Bit 7 6 5 4 3 2 1 0  

$16 ($36) Res1 Res0 ICF1 Res OCF1C OCF1B OCF1A TOV1 TIFR1 

Read/Write R R RW R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICF1 - Timer/Counter1 Input Capture Flag 

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture 
Register (ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is 
set when the counter reaches the TOP value. ICF1 is automatically cleared when the 
Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be cleared by writing 
a logic one to its bit location. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCF1C - Timer/Counter1 Output Compare C Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the 
Output Compare Register C (OCR1C). Note that a Forced Output Compare (FOC1C) 
strobe will not set the OCF1C Flag. OCF1C is automatically cleared when the Output 
Compare Match C Interrupt Vector is executed. Alternatively, OCF1C can be cleared by 
writing a logic one to its bit location. 

• Bit 2 – OCF1B - Timer/Counter1 Output Compare B Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the 
Output Compare Register B (OCR1B). Note that a Forced Output Compare (FOC1B) 
strobe will not set the OCF1B Flag. OCF1B is automatically cleared when the Output 
Compare Match B Interrupt Vector is executed. Alternatively, OCF1B can be cleared by 
writing a logic one to its bit location. 

• Bit 1 – OCF1A - Timer/Counter1 Output Compare A Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the 
Output Compare Register A (OCR1A). Note that a Forced Output Compare (FOC1A) 
strobe will not set the OCF1A Flag. OCF1A is automatically cleared when the Output 
Compare Match A Interrupt Vector is executed. Alternatively, OCF1A can be cleared by 
writing a logic one to its bit location. 

• Bit 0 – TOV1 - Timer/Counter1 Overflow Flag 

The setting of this flag is dependent of the WGM13:0 bits setting of the Timer/Counter1 
Control Register. In Normal and CTC modes, the TOV1 Flag is set when the timer 
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overflows.  TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt 
Vector is executed. Alternatively, TOV1 can be cleared by writing a logic one to its bit 
location. 

 

18.11.16 TCCR3A – Timer/Counter3 Control Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($90) COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – COM3A1:0 - Compare Output Mode for Channel A 

The COM3A1:0 bits control the output compare behavior of pin OC3A. If one or both of 
the COM3A1:0 bits are written to one, the OC3A output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC3A pin must be set in order to enable the 
output driver. When the OC3A is connected to the pin, the function of the COM3A1:0 
bits is dependent of the WGM33:0 bits setting. The following table shows the 
COM3A1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-12 COM3A Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM3A1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
(set output to high level). 

• Bit 5:4 – COM3B1:0 - Compare Output Mode for Channel B 

The COM3B1:0 bits control the output compare behavior of pin OC3B. If one or both of 
the COM3B1:0 bits are written to one, the OC3B output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC3B pin must be set in order to enable the 
output driver. When the OC3B is connected to the pin, the function of the COM3B1:0 
bits is dependent of the WGM33:0 bits setting. The following table shows the 
COM3B1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-13 COM3B Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM3B1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
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Register Bits Value Description 

(set output to high level). 

• Bit 3:2 – COM3C1:0 - Compare Output Mode for Channel C 

The COM3C1:0 bits control the output compare behavior of pin OC3C. If one or both of 
the COM3C1:0 bits are written to one, the OC3C output overrides the normal port 
functionality of the I/O pin it is connected to. However note that the Data Direction 
Register (DDR) bit corresponding to the OC3C pin must be set in order to enable the 
output driver. When the OC3C is connected to the pin, the function of the COM3C1:0 
bits is dependent of the WGM33:0 bits setting. The following table shows the 
COM3C1:0 bit functionality when the WGM33:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-14 COM3C Register Bits 

Register Bits Value Description 

0 Normal port operation, OCnA/OCnB/OCnC 
disconnected. 

1 Toggle OCnA/OCnB/OCnC on Compare 
Match. 

2 Clear OCnA/OCnB/OCnC on Compare 
Match (set output to low level). 

COM3C1:0 

3 Set OCnA/OCnB/OCnC on Compare Match 
(set output to high level). 

• Bit 1:0 – WGM31:30 - Waveform Generation Mode 

Combined with the WGM33:2 bits found in the TCCR3B Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". 

Table 18-15 WGM3 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

WGM31:30 

0xD Reserved 
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Register Bits Value Description 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

 

18.11.17 TCCR3B – Timer/Counter3 Control Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($91) ICNC3 ICES3 Res WGM33 WGM32 CS32 CS31 CS30 TCCR3B 

Read/Write RW RW R RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – ICNC3 - Input Capture 3 Noise Canceller 

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise 
Canceler is activated, the input from the Input Capture Pin (ICP3) is filtered. The filter 
function requires four successive equal valued samples of the ICP3 pin for changing its 
output. The input capture is therefore delayed by four Oscillator cycles when the noise 
canceler is enabled. 

• Bit 6 – ICES3 - Input Capture 3 Edge Select 

This bit selects which edge on the Input Capture Pin (ICP3) that is used to trigger a 
capture event. When the ICES3 bit is written to zero, a falling (negative) edge is used 
as trigger. When the ICES3 bit is written to one, a rising (positive) edge will trigger the 
capture. When a capture is triggered according to the ICES3 setting, the counter value 
is copied into the Input Capture Register (ICR3). The event will also set the Input 
Capture Flag (ICF3). This can be used to cause an Input Capture Interrupt, if this 
interrupt is enabled. When the ICR3 is used as TOP value (see description of the 
WGM33:0 bits located in the TCCR3A and the TCCR3B Register), the ICP3 is 
disconnected and consequently the input capture function is disabled. 

• Bit 5 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 4:3 – WGM31:30 - Waveform Generation Mode 

Combined with the WGM31:0 bits found in the TCCR3A Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". 

Table 18-16 WGM3 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

WGM31:30 

0x6 Fast PWM, 9-bit 
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Register Bits Value Description 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

• Bit 2:0 – CS32:30 - Clock Select 

The three clock select bits select the clock source to be used by the Timer/Counter3 
according to the following table. If external pin modes are used for the Timer/Counter3, 
transitions on the T3 pin will clock the counter even if the pin is configured as an output. 
This feature allows software control of the counting. 

Table 18-17 CS3 Register Bits 

Register Bits Value Description 

0x00 No clock source (Timer/Counter stopped) 

0x01 clk_IO/1 (no prescaling) 

0x02 clk_IO/8 (from prescaler) 

0x03 clk_IO/64 (from prescaler) 

0x04 clk_IO/256 (from prescaler) 

0x05 clk_IO/1024 (from prescaler) 

0x06 External clock source on Tn pin, clock on 
falling edge 

CS32:30 

0x07 External clock source on Tn pin, clock on 
rising edge 

 

18.11.18 TCCR3C – Timer/Counter3 Control Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($92) FOC3A FOC3B FOC3C Res4 Res3 Res2 Res1 Res0 TCCR3C 

Read/Write RW RW RW R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – FOC3A - Force Output Compare for Channel A 

The FOC3A bit is only active when the WGM33:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC3A bit, an immediate compare match is forced on the 
waveform generation unit. The OC3A output is changed according to its COM3A1:0 bits 
setting. Note that the FOC3A bits are implemented as strobes. Therefore it is the value 
present in the COM3A1:0 bits that determine the effect of the forced compare. A 
FOC3A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR3A as TOP. The FOC3A bits are always read 
as zero. 
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• Bit 6 – FOC3B - Force Output Compare for Channel B 

The FOC3B bit is only active when the WGM33:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC3B bit, an immediate compare match is forced on the 
waveform generation unit. The OC3B output is changed according to its COM3B1:0 bits 
setting. Note that the FOC3B bits are implemented as strobes. Therefore it is the value 
present in the COM3B1:0 bits that determine the effect of the forced compare. A 
FOC3B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR1B as TOP. The FOC3B bits are always read 
as zero. 

• Bit 5 – FOC3C - Force Output Compare for Channel C 

The FOC3C bit is only active when the WGM33:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC3C bit, an immediate compare match is forced on the 
waveform generation unit. The OC3C output is changed according to its COM3C1:0 bits 
setting. Note that the FOC3C bits are implemented as strobes. Therefore it is the value 
present in the COM3C1:0 bits that determine the effect of the forced compare. A 
FOC3C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR3C as TOP. The FOC3C bits are always read 
as zero. 

• Bit 4:0 – Res4:0 - Reserved 

These bits are reserved for future use. 

 

18.11.19 TCNT3H – Timer/Counter3 High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($95) TCNT3H7:0 TCNT3H 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT3H and TCNT3L, combined TCNT3) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT3) while the counter is running introduces a risk of missing a compare 
match between TCNT3 and one of the OCR3x Registers. Writing to the TCNT3 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT3H7:0 - Timer/Counter3 High Byte 

 

18.11.20 TCNT3L – Timer/Counter3 Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($94) TCNT3L7:0 TCNT3L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
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The two Timer/Counter I/O locations (TCNT3H and TCNT3L, combined TCNT3) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT3) while the counter is running introduces a risk of missing a compare 
match between TCNT3 and one of the OCR3x Registers. Writing to the TCNT3 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT3L7:0 - Timer/Counter3 Low Byte 

 

18.11.21 OCR3AH – Timer/Counter3 Output Compare Register A High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($99) OCR3AH7:0 OCR3AH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3A pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3AH7:0 - Timer/Counter3 Output Compare Register High Byte 

 

18.11.22 OCR3AL – Timer/Counter3 Output Compare Register A Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($98) OCR3AL7:0 OCR3AL 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3A pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3AL7:0 - Timer/Counter3 Output Compare Register Low Byte 
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18.11.23 OCR3BH – Timer/Counter3 Output Compare Register B High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($9B) OCR3BH7:0 OCR3BH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3B pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3BH7:0 - Timer/Counter3 Output Compare Register High Byte 

 

18.11.24 OCR3BL – Timer/Counter3 Output Compare Register B Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($9A) OCR3BL7:0 OCR3BL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3B pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3BL7:0 - Timer/Counter3 Output Compare Register Low Byte 

 

18.11.25 OCR3CH – Timer/Counter3 Output Compare Register C High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($9D) OCR3CH7:0 OCR3CH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3C pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3CH7:0 - Timer/Counter3 Output Compare Register High Byte 
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18.11.26 OCR3CL – Timer/Counter3 Output Compare Register C Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($9C) OCR3CL7:0 OCR3CL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT3). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC3C pin. The Output Compare 
Registers are 16-bit in size. To ensure that both the high and low bytes are written 
simultaneously when the CPU writes to these registers, the access is performed using 
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all 
the other 16-bit registers. See section "Accessing 16-bit Registers" for details. 

• Bit 7:0 – OCR3CL7:0 - Timer/Counter3 Output Compare Register Low Byte 

 

18.11.27 ICR3H – Timer/Counter3 Input Capture Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($97) ICR3H7:0 ICR3H 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Input Capture Register is updated with the counter (TCNT3) value each time an 
event occurs on the ICP3 pin. The Input Capture Register can be used for defining the 
counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the 
high and low bytes are read simultaneously when the CPU accesses these registers, 
the access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – ICR3H7:0 - Timer/Counter3 Input Capture Register High Byte 

 

18.11.28 ICR3L – Timer/Counter3 Input Capture Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($96) ICR3L7:0 ICR3L 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Input Capture Register is updated with the counter (TCNT3) value each time an 
event occurs on the ICP3 pin. The Input Capture Register can be used for defining the 
counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the 
high and low bytes are read simultaneously when the CPU accesses these registers, 
the access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – ICR3L7:0 - Timer/Counter3 Input Capture Register Low Byte 
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18.11.29 TIMSK3 – Timer/Counter3 Interrupt Mask Register 

Bit 7 6 5 4 3 2 1 0  

NA ($71) Res1 Res0 ICIE3 Res OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3 

Read/Write R R RW R R R RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICIE3 - Timer/Counter3 Input Capture Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter3 Input Capture interrupt is enabled. The 
corresponding Interrupt Vector is executed when the ICF3 Flag, located in TIFR3, is 
set. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCIE3C - Timer/Counter3 Output Compare C Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter3 Output Compare C Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF3C Flag, located in 
TIFR3, is set. 

• Bit 2 – OCIE3B - Timer/Counter3 Output Compare B Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter3 Output Compare B Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF3B Flag, located in 
TIFR3, is set. 

• Bit 1 – OCIE3A - Timer/Counter3 Output Compare A Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter3 Output Compare A Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF3A Flag, located in 
TIFR3, is set. 

• Bit 0 – TOIE3 - Timer/Counter3 Overflow Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter3 Overflow interrupt is enabled. The corresponding 
Interrupt Vector is executed when the TOV3 Flag, located in TIFR3, is set. 

 

18.11.30 TIFR3 – Timer/Counter3 Interrupt Flag Register 

Bit 7 6 5 4 3 2 1 0  

$18 ($38) Res1 Res0 ICF3 Res OCF3C OCF3B OCF3A TOV3 TIFR3 

Read/Write R R RW R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 
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This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICF3 - Timer/Counter3 Input Capture Flag 

This flag is set when a capture event occurs on the ICP3 pin. When the Input Capture 
Register (ICR3) is set by the WGM33:0 to be used as the TOP value, the ICF3 Flag is 
set when the counter reaches the TOP value. ICF3 is automatically cleared when the 
Input Capture Interrupt Vector is executed. Alternatively, ICF3 can be cleared by writing 
a logic one to its bit location. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCF3C - Timer/Counter3 Output Compare C Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the 
Output Compare Register C (OCR3C). Note that a Forced Output Compare (FOC3C) 
strobe will not set the OCF3C Flag. OCF3C is automatically cleared when the Output 
Compare Match C Interrupt Vector is executed. Alternatively, OCF3C can be cleared by 
writing a logic one to its bit location. 

• Bit 2 – OCF3B - Timer/Counter3 Output Compare B Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the 
Output Compare Register B (OCR3B). Note that a Forced Output Compare (FOC3B) 
strobe will not set the OCF3B Flag. OCF3B is automatically cleared when the Output 
Compare Match B Interrupt Vector is executed. Alternatively, OCF3B can be cleared by 
writing a logic one to its bit location. 

• Bit 1 – OCF3A - Timer/Counter3 Output Compare A Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT3) value matches the 
Output Compare Register A (OCR3A). Note that a Forced Output Compare (FOC3A) 
strobe will not set the OCF3A Flag. OCF3A is automatically cleared when the Output 
Compare Match A Interrupt Vector is executed. Alternatively, OCF3A can be cleared by 
writing a logic one to its bit location. 

• Bit 0 – TOV3 - Timer/Counter3 Overflow Flag 

The setting of this flag is dependent of the WGM33:0 bits setting of the Timer/Counter3 
Control Register. In Normal and CTC modes, the TOV3 Flag is set when the timer 
overflows.  TOV3 is automatically cleared when the Timer/Counter3 Overflow Interrupt 
Vector is executed. Alternatively, TOV3 can be cleared by writing a logic one to its bit 
location. 

 

18.11.31 TCCR4A – Timer/Counter4 Control Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($A0) COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40 TCCR4A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – COM4A1:0 - Compare Output Mode for Channel A 

The Timer/Counter4 has only limited functionality. Therefore the COM4A1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
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COM4A1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-18 COM4A Register Bits 

Register Bits Value Description 

0 Normal operation 

1 Reserved 

2 Reserved 

COM4A1:0 

3 Reserved 

• Bit 5:4 – COM4B1:0 - Compare Output Mode for Channel B 

The Timer/Counter4 has only limited functionality. Therefore the COM4B1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
COM4B1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-19 COM4B Register Bits 

Register Bits Value Description 

0 Normal operation 

1 Reserved 

2 Reserved 

COM4B1:0 

3 Reserved 

• Bit 3:2 – COM4C1:0 - Compare Output Mode for Channel C 

The Timer/Counter4 has only limited functionality. Therefore the COM4C1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
COM4C1:0 bit functionality when the WGM43:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-20 COM4C Register Bits 

Register Bits Value Description 

0 Normal operation 

1 Reserved 

2 Reserved 

COM4C1:0 

3 Reserved 

• Bit 1:0 – WGM41:40 - Waveform Generation Mode 

Combined with the WGM43:2 bits found in the TCCR4B Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes.  For more information 
on the different modes see section "Modes of Operation". Note that Timer/Counter4 has 
only limited functionality. It cannot be connected to any I/O pin. 

Table 18-21 WGM4 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

WGM41:40 

0x4 CTC, TOP = OCRnA 
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Register Bits Value Description 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

 

18.11.32 TCCR4B – Timer/Counter4 Control Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($A1) ICNC4 ICES4 Res WGM43 WGM42 CS42 CS41 CS40 TCCR4B 

Read/Write RW RW R RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – ICNC4 - Input Capture 4 Noise Canceller 

Timer/Counter4 has only limited functionality. It is not connected to any Input Capture 
Pin. Therefore this bit has no meaningful function. 

• Bit 6 – ICES4 - Input Capture 4 Edge Select 

Timer/Counter4 has only limited functionality. It is not connected to any Input Capture 
Pin. Therefore this bit has no meaningful function. 

• Bit 5 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 4:3 – WGM41:40 - Waveform Generation Mode 

Combined with the WGM41:0 bits found in the TCCR4A Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". Note that Timer/Counter4 has 
only limited functionality. It cannot be connected to any I/O pin. 

Table 18-22 WGM4 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

WGM41:40 

0x3 PWM, phase correct, 10-bit 
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Register Bits Value Description 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

• Bit 2:0 – CS42:40 - Clock Select 

The three clock select bits select the clock source to be used by the Timer/Counter4 
according to the following table. External pin modes cannot be used for the 
Timer/Counter4. 

Table 18-23 CS4 Register Bits 

Register Bits Value Description 

0x00 No clock source (Timer/Counter stopped) 

0x01 clk_IO/1 (no prescaling) 

0x02 clk_IO/8 (from prescaler) 

0x03 clk_IO/64 (from prescaler) 

0x04 clk_IO/256 (from prescaler) 

0x05 clk_IO/1024 (from prescaler) 

0x06 Reserved 

CS42:40 

0x07 Reserved 

 

18.11.33 TCCR4C – Timer/Counter4 Control Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($A2) FOC4A FOC4B FOC4C Res4 Res3 Res2 Res1 Res0 TCCR4C 

Read/Write RW RW RW R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – FOC4A - Force Output Compare for Channel A 

The FOC4A bit is only active when the WGM43:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC4A bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter4 the match has no direct impact on any 
output pin. Note that the FOC4A bits are implemented as strobes. Therefore it is the 
value present in the COM4A1:0 bits that determine the effect of the forced compare. A 
FOC4A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
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Compare Match (CTC) mode using OCR4A as TOP. The FOC4A bits are always read 
as zero. 

• Bit 6 – FOC4B - Force Output Compare for Channel B 

The FOC4B bit is only active when the WGM43:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC4B bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter4 the match has no direct impact on any 
output pin. Note that the FOC4B bits are implemented as strobes. Therefore it is the 
value present in the COM4B1:0 bits that determine the effect of the forced compare. A 
FOC4B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR4B as TOP. The FOC4B bits are always read 
as zero. 

• Bit 5 – FOC4C - Force Output Compare for Channel C 

The FOC4C bit is only active when the WGM43:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC4C bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter4 the match has no direct impact on any 
output pin. Note that the FOC4C bits are implemented as strobes. Therefore it is the 
value present in the COM4C1:0 bits that determine the effect of the forced compare. A 
FOC4C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR4C as TOP. The FOC4C bits are always read 
as zero. 

• Bit 4:0 – Res4:0 - Reserved 

These bits are reserved for future use. 

 

18.11.34 TCNT4H – Timer/Counter4 High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A5) TCNT4H7:0 TCNT4H 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT4H and TCNT4L, combined TCNT4) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT4) while the counter is running introduces a risk of missing a compare 
match between TCNT4 and one of the OCR4x Registers. Writing to the TCNT4 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT4H7:0 - Timer/Counter4 High Byte 

 

18.11.35 TCNT4L – Timer/Counter4 Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A4) TCNT4L7:0 TCNT4L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   



 

 

 

 

 

 

 

 
 

  
 

290 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

 

The two Timer/Counter I/O locations (TCNT4H and TCNT4L, combined TCNT4) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT4) while the counter is running introduces a risk of missing a compare 
match between TCNT4 and one of the OCR4x Registers. Writing to the TCNT4 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT4L7:0 - Timer/Counter4 Low Byte 

 

18.11.36 OCR4AH – Timer/Counter4 Output Compare Register A High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A9) OCR4AH7:0 OCR4AH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4AH7:0 - Timer/Counter4 Output Compare Register High Byte 

 

18.11.37 OCR4AL – Timer/Counter4 Output Compare Register A Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A8) OCR4AL7:0 OCR4AL 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4AL7:0 - Timer/Counter4 Output Compare Register Low Byte 
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18.11.38 OCR4BH – Timer/Counter4 Output Compare Register B High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($AB) OCR4BH7:0 OCR4BH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4BH7:0 - Timer/Counter4 Output Compare Register High Byte 

 

18.11.39 OCR4BL – Timer/Counter4 Output Compare Register B Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($AA) OCR4BL7:0 OCR4BL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4BL7:0 - Timer/Counter4 Output Compare Register Low Byte 

 

18.11.40 OCR4CH – Timer/Counter4 Output Compare Register C High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($AD) OCR4CH7:0 OCR4CH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4CH7:0 - Timer/Counter4 Output Compare Register High Byte 
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18.11.41 OCR4CL – Timer/Counter4 Output Compare Register C Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($AC) OCR4CL7:0 OCR4CL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT4). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR4CL7:0 - Timer/Counter4 Output Compare Register Low Byte 

 

18.11.42 ICR4H – Timer/Counter4 Input Capture Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A7) ICR4H7:0 ICR4H 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Timer/Counter4 has only limited functionality. It is not connected to any I/O pin. 
Therefore the contents of this register is never updated with the counter (TCNT4) value. 
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes 
are read simultaneously when the CPU accesses these registers, the access is 
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register 
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for 
details. 

• Bit 7:0 – ICR4H7:0 - Timer/Counter4 Input Capture Register High Byte 

 

18.11.43 ICR4L – Timer/Counter4 Input Capture Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($A6) ICR4L7:0 ICR4L 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Timer/Counter4 has only limited functionality. It is not connected to any I/O pin. 
Therefore the contents of this register is never updated with the counter (TCNT4) value. 
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes 
are read simultaneously when the CPU accesses these registers, the access is 
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register 
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for 
details. 

• Bit 7:0 – ICR4L7:0 - Timer/Counter4 Input Capture Register Low Byte 
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18.11.44 TIMSK4 – Timer/Counter4 Interrupt Mask Register 

Bit 7 6 5 4 3 2 1 0  

NA ($72) Res1 Res0 ICIE4 Res OCIE4C OCIE4B OCIE4A TOIE4 TIMSK4 

Read/Write R R RW R R R RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICIE4 - Timer/Counter4 Input Capture Interrupt Enable 

The Timer/Counter4 has only limited functionality. It does not have an Input Capture 
pin. Therefore this bit has no useful meaning. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCIE4C - Timer/Counter4 Output Compare C Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter4 Output Compare C Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF4C Flag, located in 
TIFR4, is set. 

• Bit 2 – OCIE4B - Timer/Counter4 Output Compare B Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter4 Output Compare B Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF4B Flag, located in 
TIFR4, is set. 

• Bit 1 – OCIE4A - Timer/Counter4 Output Compare A Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter4 Output Compare A Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF4A Flag, located in 
TIFR4, is set. 

• Bit 0 – TOIE4 - Timer/Counter4 Overflow Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter4 Overflow interrupt is enabled. The corresponding 
Interrupt Vector is executed when the TOV4 Flag, located in TIFR4, is set. 

 

18.11.45 TIFR4 – Timer/Counter4 Interrupt Flag Register 

Bit 7 6 5 4 3 2 1 0  

$19 ($39) Res1 Res0 ICF4 Res OCF4C OCF4B OCF4A TOV4 TIFR4 

Read/Write R R RW R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 
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• Bit 5 – ICF4 - Timer/Counter4 Input Capture Flag 

The Timer/Counter4 has only limited functionality. It does not have an Input Capture 
pin. Therefore this bit has no useful meaning. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCF4C - Timer/Counter4 Output Compare C Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the 
Output Compare Register C (OCR4C). Note that a Forced Output Compare (FOC4C) 
strobe will not set the OCF4C Flag. OCF4C is automatically cleared when the Output 
Compare Match C Interrupt Vector is executed. Alternatively, OCF4C can be cleared by 
writing a logic one to its bit location. 

• Bit 2 – OCF4B - Timer/Counter4 Output Compare B Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the 
Output Compare Register B (OCR4B). Note that a Forced Output Compare (FOC4B) 
strobe will not set the OCF4B Flag. OCF4B is automatically cleared when the Output 
Compare Match B Interrupt Vector is executed. Alternatively, OCF4B can be cleared by 
writing a logic one to its bit location. 

• Bit 1 – OCF4A - Timer/Counter4 Output Compare A Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT4) value matches the 
Output Compare Register A (OCR4A). Note that a Forced Output Compare (FOC4A) 
strobe will not set the OCF4A Flag. OCF4A is automatically cleared when the Output 
Compare Match A Interrupt Vector is executed. Alternatively, OCF4A can be cleared by 
writing a logic one to its bit location. 

• Bit 0 – TOV4 - Timer/Counter4 Overflow Flag 

The setting of this flag is dependent of the WGM43:0 bits setting of the Timer/Counter4 
Control Register. In Normal and CTC modes, the TOV4 Flag is set when the timer 
overflows.  TOV4 is automatically cleared when the Timer/Counter4 Overflow Interrupt 
Vector is executed. Alternatively, TOV4 can be cleared by writing a logic one to its bit 
location. 

 

18.11.46 TCCR5A – Timer/Counter5 Control Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($120) COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50 TCCR5A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – COM5A1:0 - Compare Output Mode for Channel A 

The Timer/Counter5 has only limited functionality. Therefore the COM5A1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
COM5A1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-24 COM5A Register Bits 

Register Bits Value Description 

COM5A1:0 0 Normal operation 
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Register Bits Value Description 

1 Reserved 

2 Reserved 

3 Reserved 

• Bit 5:4 – COM5B1:0 - Compare Output Mode for Channel B 

The Timer/Counter5 has only limited functionality. Therefore the COM5B1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
COM5B1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-25 COM5B Register Bits 

Register Bits Value Description 

0 Normal operation 

1 Reserved 

2 Reserved 

COM5B1:0 

3 Reserved 

• Bit 3:2 – COM5C1:0 - Compare Output Mode for Channel C 

The Timer/Counter5 has only limited functionality. Therefore the COM5C1:0 bits do not 
control the output compare behavior of any pin. The following table shows the 
COM5C1:0 bit functionality when the WGM53:0 bits are set to a normal or a CTC mode 
(non-PWM). For the other functionality refer to section "Modes of Operation". 

Table 18-26 COM5C Register Bits 

Register Bits Value Description 

0 Normal operation 

1 Reserved 

2 Reserved 

COM5C1:0 

3 Reserved 

• Bit 1:0 – WGM51:50 - Waveform Generation Mode 

Combined with the WGM53:2 bits found in the TCCR5B Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes.  For more information 
on the different modes see section "Modes of Operation". Note that Timer/Counter5 has 
only limited functionality. It cannot be connected to any I/O pin. 

Table 18-27 WGM5 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

0x6 Fast PWM, 9-bit 

WGM51:50 

0x7 Fast PWM, 10-bit 
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Register Bits Value Description 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

 

18.11.47 TCCR5B – Timer/Counter5 Control Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($121) ICNC5 ICES5 Res WGM53 WGM52 CS52 CS51 CS50 TCCR5B 

Read/Write RW RW R RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – ICNC5 - Input Capture 5 Noise Canceller 

Timer/Counter5 has only limited functionality. It is not connected to any Input Capture 
Pin. Therefore this bit has no meaningful function. 

• Bit 6 – ICES5 - Input Capture 5 Edge Select 

Timer/Counter5 has only limited functionality. It is not connected to any Input Capture 
Pin. Therefore this bit has no meaningful function. 

• Bit 5 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 4:3 – WGM51:50 - Waveform Generation Mode 

Combined with the WGM51:0 bits found in the TCCR5A Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) 
mode, and three types of Pulse Width Modulation (PWM) modes. For more information 
on the different modes see section "Modes of Operation". Note that Timer/Counter5 has 
only limited functionality. It cannot be connected to any I/O pin. 

Table 18-28 WGM5 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, 8-bit 

0x2 PWM, phase correct, 9-bit 

0x3 PWM, phase correct, 10-bit 

0x4 CTC, TOP = OCRnA 

0x5 Fast PWM, 8-bit 

WGM51:50 

0x6 Fast PWM, 9-bit 
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Register Bits Value Description 

0x7 Fast PWM, 10-bit 

0x8 PWM, Phase and frequency correct, TOP = 
ICRn 

0x9 PWM, Phase and frequency correct, TOP = 
OCRnA 

0xA PWM, Phase correct, TOP = ICRn 

0xB PWM, Phase correct, TOP = OCRnA 

0xC CTC, TOP = OCRnA 

0xD Reserved 

0xE Fast PWM, TOP = ICRn 

0xF Fast PWM, TOP = OCRnA 

• Bit 2:0 – CS52:50 - Clock Select 

The three clock select bits select the clock source to be used by the Timer/Counter5 
according to the following table. External pin modes cannot be used for the 
Timer/Counter5. 

Table 18-29 CS5 Register Bits 

Register Bits Value Description 

0x00 No clock source (Timer/Counter stopped) 

0x01 clk_IO/1 (no prescaling) 

0x02 clk_IO/8 (from prescaler) 

0x03 clk_IO/64 (from prescaler) 

0x04 clk_IO/256 (from prescaler) 

0x05 clk_IO/1024 (from prescaler) 

0x06 Reserved 

CS52:50 

0x07 Reserved 

 

18.11.48 TCCR5C – Timer/Counter5 Control Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($122) FOC5A FOC5B FOC5C Res4 Res3 Res2 Res1 Res0 TCCR5C 

Read/Write RW RW RW R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – FOC5A - Force Output Compare for Channel A 

The FOC5A bit is only active when the WGM53:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC5A bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter5 the match has no direct impact on any 
output pin. Note that the FOC5A bits are implemented as strobes. Therefore it is the 
value present in the COM5A1:0 bits that determine the effect of the forced compare. A 
FOC5A strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR5A as TOP. The FOC5A bits are always read 
as zero. 

• Bit 6 – FOC5B - Force Output Compare for Channel B 
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The FOC5B bit is only active when the WGM53:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC5B bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter5 the match has no direct impact on any 
output pin. Note that the FOC5B bits are implemented as strobes. Therefore it is the 
value present in the COM5B1:0 bits that determine the effect of the forced compare. A 
FOC5B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR5B as TOP. The FOC5B bits are always read 
as zero. 

• Bit 5 – FOC5C - Force Output Compare for Channel C 

The FOC5C bit is only active when the WGM53:0 bits specify a non-PWM mode. When 
writing a logical one to the FOC5C bit, an immediate compare match is forced. Due to 
the limited functionality of the Timer/Counter5 the match has no direct impact on any 
output pin. Note that the FOC5C bits are implemented as strobes. Therefore it is the 
value present in the COM5C1:0 bits that determine the effect of the forced compare. A 
FOC5C strobe will not generate any interrupt nor will it clear the timer in Clear Timer on 
Compare Match (CTC) mode using OCR5C as TOP. The FOC5C bits are always read 
as zero. 

• Bit 4:0 – Res4:0 - Reserved 

These bits are reserved for future use. 

 

18.11.49 TCNT5H – Timer/Counter5 High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($125) TCNT5H7:0 TCNT5H 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT5H and TCNT5L, combined TCNT5) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT5) while the counter is running introduces a risk of missing a compare 
match between TCNT5 and one of the OCR5x Registers. Writing to the TCNT5 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT5H7:0 - Timer/Counter5 High Byte 

 

18.11.50 TCNT5L – Timer/Counter5 Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($124) TCNT5L7:0 TCNT5L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The two Timer/Counter I/O locations (TCNT5H and TCNT5L, combined TCNT5) give 
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit 
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counter. To ensure that both the high and low bytes are read and written simultaneously 
when the CPU accesses these registers, the access is performed using an 8-bit 
temporary High Byte Register (TEMP). This temporary register is shared by all the other 
16-bit registers. See section "Accessing 16-bit Registers" for details. Modifying the 
counter (TCNT5) while the counter is running introduces a risk of missing a compare 
match between TCNT5 and one of the OCR5x Registers. Writing to the TCNT5 
Register blocks (removes) the compare match on the following timer clock for all 
compare units. 

• Bit 7:0 – TCNT5L7:0 - Timer/Counter5 Low Byte 

 

18.11.51 OCR5AH – Timer/Counter5 Output Compare Register A High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($129) OCR5AH7:0 OCR5AH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5AH7:0 - Timer/Counter5 Output Compare Register High Byte 

 

18.11.52 OCR5AL – Timer/Counter5 Output Compare Register A Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($128) OCR5AL7:0 OCR5AL 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5AL7:0 - Timer/Counter5 Output Compare Register Low Byte 

 

18.11.53 OCR5BH – Timer/Counter5 Output Compare Register B High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($12B) OCR5BH7:0 OCR5BH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
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The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5BH7:0 - Timer/Counter5 Output Compare Register High Byte 

 

18.11.54 OCR5BL – Timer/Counter5 Output Compare Register B Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($12A) OCR5BL7:0 OCR5BL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5BL7:0 - Timer/Counter5 Output Compare Register Low Byte 

 

18.11.55 OCR5CH – Timer/Counter5 Output Compare Register C High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($12D) OCR5CH7:0 OCR5CH 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5CH7:0 - Timer/Counter5 Output Compare Register High Byte 
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18.11.56 OCR5CL – Timer/Counter5 Output Compare Register C Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($12C) OCR5CL7:0 OCR5CL 

Read/Write R RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Registers contain a 16-bit value that is continuously compared 
with the counter value (TCNT5). A match can be used to generate an Output Compare 
interrupt. The Output Compare Registers are 16-bit in size. To ensure that both the high 
and low bytes are written simultaneously when the CPU writes to these registers, the 
access is performed using an 8-bit temporary High Byte Register (TEMP). This 
temporary register is shared by all the other 16-bit registers. See section "Accessing 16-
bit Registers" for details. 

• Bit 7:0 – OCR5CL7:0 - Timer/Counter5 Output Compare Register Low Byte 

 

18.11.57 ICR5H – Timer/Counter5 Input Capture Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($127) ICR5H7:0 ICR5H 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Timer/Counter5 has only limited functionality. It is not connected to any I/O pin. 
Therefore the contents of this register is never updated with the counter (TCNT5) value. 
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes 
are read simultaneously when the CPU accesses these registers, the access is 
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register 
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for 
details. 

• Bit 7:0 – ICR5H7:0 - Timer/Counter5 Input Capture Register High Byte 

 

18.11.58 ICR5L – Timer/Counter5 Input Capture Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($126) ICR5L7:0 ICR5L 

Read/Write R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0   
 

The Timer/Counter5 has only limited functionality. It is not connected to any I/O pin. 
Therefore the contents of this register is never updated with the counter (TCNT5) value. 
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes 
are read simultaneously when the CPU accesses these registers, the access is 
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register 
is shared by all the other 16-bit registers. See section "Accessing 16-bit Registers" for 
details. 

• Bit 7:0 – ICR5L7:0 - Timer/Counter5 Input Capture Register Low Byte 
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18.11.59 TIMSK5 – Timer/Counter5 Interrupt Mask Register 

Bit 7 6 5 4 3 2 1 0  

NA ($73) Res1 Res0 ICIE5 Res OCIE5C OCIE5B OCIE5A TOIE5 TIMSK5 

Read/Write R R RW R R R RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 5 – ICIE5 - Timer/Counter5 Input Capture Interrupt Enable 

The Timer/Counter5 has only limited functionality. It does not have an Input Capture 
pin. Therefore this bit has no useful meaning. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCIE5C - Timer/Counter5 Output Compare C Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter5 Output Compare C Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF5C Flag, located in 
TIFR5, is set. 

• Bit 2 – OCIE5B - Timer/Counter5 Output Compare B Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter5 Output Compare B Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF5B Flag, located in 
TIFR5, is set. 

• Bit 1 – OCIE5A - Timer/Counter5 Output Compare A Match Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter5 Output Compare A Match interrupt is enabled. 
The corresponding Interrupt Vector is executed when the OCF5A Flag, located in 
TIFR5, is set. 

• Bit 0 – TOIE5 - Timer/Counter5 Overflow Interrupt Enable 

When this bit is written to one, and the I-flag in the Status Register is set (interrupts 
globally enabled), the Timer/Counter5 Overflow interrupt is enabled. The corresponding 
Interrupt Vector is executed when the TOV5 Flag, located in TIFR5, is set. 

 

18.11.60 TIFR5 – Timer/Counter5 Interrupt Flag Register 

Bit 7 6 5 4 3 2 1 0  

$1A ($3A) Res1 Res0 ICF5 Res OCF5C OCF5B OCF5A TOV5 TIFR5 

Read/Write R R RW R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – Res1:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 
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• Bit 5 – ICF5 - Timer/Counter5 Input Capture Flag 

The Timer/Counter5 has only limited functionality. It does not have an Input Capture 
pin. Therefore this bit has no useful meaning. 

• Bit 4 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3 – OCF5C - Timer/Counter5 Output Compare C Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the 
Output Compare Register C (OCR5C). Note that a Forced Output Compare (FOC5C) 
strobe will not set the OCF5C Flag. OCF5C is automatically cleared when the Output 
Compare Match C Interrupt Vector is executed. Alternatively, OCF5C can be cleared by 
writing a logic one to its bit location. 

• Bit 2 – OCF5B - Timer/Counter5 Output Compare B Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the 
Output Compare Register B (OCR5B). Note that a Forced Output Compare (FOC5B) 
strobe will not set the OCF5B Flag. OCF5B is automatically cleared when the Output 
Compare Match B Interrupt Vector is executed. Alternatively, OCF5B can be cleared by 
writing a logic one to its bit location. 

• Bit 1 – OCF5A - Timer/Counter5 Output Compare A Match Flag 

This flag is set in the timer clock cycle after the counter (TCNT5) value matches the 
Output Compare Register A (OCR5A). Note that a Forced Output Compare (FOC5A) 
strobe will not set the OCF5A Flag. OCF5A is automatically cleared when the Output 
Compare Match A Interrupt Vector is executed. Alternatively, OCF5A can be cleared by 
writing a logic one to its bit location. 

• Bit 0 – TOV5 - Timer/Counter5 Overflow Flag 

The setting of this flag is dependent of the WGM53:0 bits setting of the Timer/Counter5 
Control Register. In Normal and CTC modes, the TOV5 Flag is set when the timer 
overflows.  TOV5 is automatically cleared when the Timer/Counter5 Overflow Interrupt 
Vector is executed. Alternatively, TOV5 can be cleared by writing a logic one to its bit 
location. 
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19 Timer/Counter 0, 1, 3, 4, and 5 Prescaler 

Timer/Counter 0, 1, 3, 4, and 5 share the same prescaler module, but the 
Timer/Counters can have different prescaler settings. The description below applies to 
all Timer/Counters. Tn is used as a general name, n = 0, 1, 3, 4, or 5. 

19.1 Internal Clock Source 

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 
1). This provides the fastest operation with a maximum Timer/Counter clock frequency 
equal to system clock frequency (fCLK_I/O). Alternatively one of four taps from the 
prescaler can be used as a clock source. The prescaled clock has a frequency of either 
fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256 or fCLK_I/O/1024. 

19.2 Prescaler Reset 

The prescaler is free running, i.e., operates independently of the Clock Select logic of 
the Timer/Counter, and it is shared by the Timer/Counter Tn. Since the prescaler is not 
affected by the Timer/Counter’s clock select, the state of the prescaler will have 
implications for situations where a prescaled clock is used. One example of prescaling 
artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 
1). The number of system clock cycles from the moment the timer is enabled until the 
first count occurs can be from 1 to N+1 system clock cycles, where N equals the 
prescaler divisor (8, 64, 256, or 1024). 

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program 
execution. However care must be taken if the other Timer/Counter that shares the same 
prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all 
connected Timer/Counters. 

19.3 External Clock Source 

An external clock source applied to the Tn pin can be used as Timer/Counter clock 
(clkTn). The Tn pin is sampled once every system clock cycle by the pin synchronization 
logic. The synchronized (sampled) signal is then passed through the edge detector. 
Figure 19-1 shows a functional equivalent block diagram of the Tn synchronization and 
edge detector logic. The registers are clocked at the positive edge of the internal 
system clock (clkI/O). The latch is transparent in the high period of the internal system 
clock. 

The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative 
(CSn2:0 = 6) edge it detects. 

Figure 19-1. Tn/T0 Pin Sampling 
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The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system 
clock cycles from an edge applied to the Tn pin to the counter being updated. 
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Enabling and disabling of the clock input must be done when Tn has been stable for at 
least one system clock cycle. Otherwise there is a risk of generating a false 
Timer/Counter clock pulse. 

Each half period of the applied, external clock must be longer than one system clock 
cycle to ensure correct sampling. The external clock must be guaranteed to have less 
than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since 
the edge detector uses sampling, the maximum frequency of a detectable external 
clock is half the sampling frequency (Nyquist sampling theorem). However due to 
variation of the system clock frequency and duty cycle caused by Oscillator source 
(crystal, resonator and capacitors) tolerances, it is recommended to limit the maximum 
frequency of an external clock source to less than fclk_I/O/2.5. An external clock source 
can not be prescaled. 

Figure 19-2. Prescaler for synchronous Timer/Counters 
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19.4 Register Description 

19.4.1 GTCCR – General Timer/Counter Control Register 

Bit 7 6 5 4 3 2 1 0  

$23 ($43) TSM Res4 Res3 Res2 Res1 Res0 PSRASY PSRSYNC GTCCR 

Read/Write RW R R R R R R RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – TSM - Timer/Counter Synchronization Mode 

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this 
mode the value that is written to the PSRASY and PSRSYNC bits is kept, hence 
keeping the corresponding prescaler reset signals asserted. This ensures that the 
corresponding Timer/Counters are halted and can be configured to the same value 
without the risk of one of them advancing during the configuration. When the TSM bit is 
written to zero, the PSRASY and PSRSYNC bits are cleared by hardware and the 
Timer/Counters simultaneously start counting. 

• Bit 6:2 – Res4:0 - Reserved 
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This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 1 – PSRASY - Prescaler Reset Timer/Counter2 

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally 
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating 
in asynchronous mode, the bit will remain one until the prescaler has been reset. The 
bit will not be cleared by hardware if the TSM bit is set. 

• Bit 0 – PSRSYNC - Prescaler Reset for Synchronous Timer/Counters 

When this bit is one, the Timer/Counter0, Timer/Counter1, Timer/Counter3, 
Timer/Counter4 and Timer/Counter5 prescaler will be reset. This bit is normally cleared 
immediately by hardware, except if the TSM bit is set. Note that Timer/Counter0, 
Timer/Counter1, Timer/Counter3, Timer/Counter4 and Timer/Counter5 share the same 
prescaler and a reset of this prescaler will affect all timers. 
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20 Output Compare Modulator (OCM1C0A) 

20.1 Overview 

The Output Compare Modulator (OCM) allows generation of waveforms modulated with 
a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of 
the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. 
For more details about these Timer/Counters see "Timer/Counter 0, 1, 3, 4, and 5 
Prescaler" on page 304 and "8-bit Timer/Counter2 with PWM and Asynchronous 
Operation" on page 309. 

Figure 20-1. Output Compare Modulator, Block Diagram 
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When the modulator is enabled, the two output compare channels are modulated 
together as shown in the block diagram (Figure 20-1 above). 

20.2 Description 

The Output Compare unit 1C and Output Compare unit 2 share the PB7 port pin for 
output. The outputs of the Output Compare units (OC1C and OC0A) override the 
normal PORTB7 Register when one of them is enabled (i.e., when COMnx1:0 is not 
equal to zero). When both OC1C and OC0A are enabled at the same time, the 
modulator is automatically enabled. 

The functional equivalent schematic of the modulator is shown on in the following 
figure. The schematic includes part of the Timer/Counter units and the port B bit 7 
output driver circuit. 

Figure 20-2. Output Compare Modulator, Schematic 
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When the modulator is enabled the type of modulation (logical AND or OR) can be 
selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the 
port independent of the COMnx1:0 bit setting. 

20.3 Timing Example 

Figure 20-3 below illustrates the modulator in action. In this example the 
Timer/Counter1 is set to operate in fast PWM mode (non-inverted) and Timer/Counter0 
uses CTC waveform mode with toggle Compare Output mode (COMnx1:0 = 1). 

Figure 20-3. Output Compare Modulator, Timing Diagram 
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In this example Timer/Counter2 provides the carrier while the modulating signal is 
generated by the Output Compare unit C of the Timer/Counter1. 

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction 
factor is equal to the number of system clock cycles of one period of the carrier (OC0A). 
In this example the resolution is reduced by a factor of two. The reason for the 
reduction is illustrated in Figure 20-3 above at the second and third period of the PB7 
output when PORTB7 equals zero. The period 2 high time is one cycle longer than the 
period 3 high time, but the result on the PB7 output is equal in both periods. 
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21 8-bit Timer/Counter2 with PWM and Asynchronous Operation 

21.1 Features 

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The 
main features are: 

• Single channel counter 

• Clear timer on compare match (auto reload) 

• Glitch-free, phase-correct pulse-width modulator (PWM) 

• Frequency generator 

• 10 bit clock prescaler 

• Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B) 

• Able to run with external 32 kHz watch crystal independent of the I/O clock  

21.2 Overview 

A simplified block diagram of the 8-bit Timer/Counter is shown on Figure 21-1 on page 
310. For the current placement of I/O pins, see chapter "Pin Configurations" on page 2. 
CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The 
device-specific I/O Register and bit locations are listed in the "Register Description" on 
page 323. 

The Power Reduction Timer/Counter2 bit PRTIM2 in register PRR0 (see "PRR0 – 
Power Reduction Register0" on page 167) must be written to zero to enable 
Timer/Counter2 module. 

Note: OC2B is implemented but not routed to a pin and for this reason it can’t be used. 

21.2.1 Registers 

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8 
bit registers. Interrupt request (abbreviated to Int.Req.) signals are all visible in the 
Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the 
Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the 
figure. 

The Timer/Counter can be clocked internally, via the prescaler, asynchronously clocked 
from the TOSC1/2 pins or alternatively from the Automated Meter Reading (AMR) pin 
as detailed later in this section. The asynchronous operation is controlled by the 
Asynchronous Status Register (ASSR). The Clock Select logic block controls which 
clock source the Timer/Counter uses to increment (or decrement) its value. The 
Timer/Counter is inactive when no clock source is selected. The output from the Clock 
Select logic is referred to as the timer clock (clkT2). 

The double buffered Output Compare Register (OCR2A and OCR2B) are compared 
with the Timer/Counter value at all times. The result of the compare can be used by the 
Waveform Generator to generate a PWM or variable frequency output on the Output 
Compare pins (OC2A and OC2B). See chapter "Output Compare Unit" on page 316 for 
details. The compare match event will also set the Compare Flag (OCF2A or OCF2B) 
which can be used to generate an Output Compare interrupt request. 

21.2.2 Definitions 

Many register and bit references in this document are written in general form. A lower 
case “n” replaces the Timer/Counter number, in this case 2. However, when using the 
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register or bit defines in a program, the precise form must be used, i.e., TCNT2 for 
accessing Timer/Counter2 counter value and so on. 

 

Figure 21-1. 8-bit Timer/Counter Block Diagram 
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The definitions in Table Table 21-1 below are also used extensively throughout the 
section. 

Table 21-1. Definitions 

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00). 

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). 

TOP The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) 
or the value stored in the OCR2A Register. The assignment is dependent on the 
mode of operation. 

21.3 Timer/Counter Clock Sources 

The Timer/Counter can be clocked by an internal synchronous or an external 
asynchronous clock source. The clock source clkT2 is by default equal to the MCU 
clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock 
source is either taken from the Timer/Counter Oscillator connected to TOSC1 and 
TOSC2 or from the AMR pin. For details on asynchronous operation, see section 
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"Asynchronous Operation of Timer/Counter2" on page 320. For details on clock sources 
and prescaler, see section  "Timer/Counter Prescaler" on page 322. 

21.4 Counter Unit 

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter 
unit. Figure 21-2 below shows a block diagram of the counter and its surrounding 
environment. 

Figure 21-2. Counter Unit Block Diagram 
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Signal description (internal signals): 

count Increment or decrement TCNT2 by 1. 

direction Selects between increment and decrement. 

clear Clear TCNT2 (set all bits to zero). 

clkTn Timer/Counter clock, referred to as clkT2 in the following. 

top Signalizes that TCNT2 has reached maximum value. 

bottom Signalizes that TCNT2 has reached minimum value (zero). 

Depending on the mode of operation used, the counter is cleared, incremented, or 
decremented at each timer clock (clkT2). clkT2 can be generated from an external or 
internal clock source, selected by the Clock Select bits (CS22:0). When no clock source 
is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be 
accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write 
overrides (has priority over) all counter clear or count operations. 

The counting sequence is determined by the setting of the WGM21 and WGM20 bits 
located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the 
Timer/Counter Control Register B (TCCR2B). There are close connections between 
how the counter behaves (counts) and how waveforms are generated on the Output 
Compare outputs OC2A and OC2B. For more details about advanced counting 
sequences and waveform generation, see chapter "Modes of Operation" below. 

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation 
selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt. 

21.5 Modes of Operation 

The mode of operation, i.e., the behaviour of the Timer/Counter and the Output 
Compare pins, is defined by the combination of the Waveform Generation mode 
(WGM22:0) and Compare Output mode (COM2x1:0) bits. The Compare Output mode 
bits do not affect the counting sequence, while the Waveform Generation mode bits do. 
The COM2x1:0 bits control whether the PWM output generated should be inverted or 
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not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits control 
whether the output should be set, cleared, or toggled at a compare match (see chapter 
"Compare Match Output Unit" on page 317). 

For detailed timing information refer to chapter "Timer/Counter Timing Diagrams" on 
page 319. 

The following table shows the function of the WGM22:0 bits of registers TCCR2A and 
TCCR2B. These bits control the counting sequence of the counter, the source for 
maximum (TOP) counter value, and what type of waveform generation to be used. 

Table 21-2. Waveform Generation Mode Bit Description 

Mode WGM2 WGM1 WGM0 

Timer/Counter 

Mode of 

Operation TOP 

Update of 

OCRX at 

TOV Flag 

Set on
(1,2)

 

0 0 0 0 Normal 0xFF Immediate MAX 

1 0 0 1 
PWM, Phase 

Correct 
0xFF TOP BOTTOM 

2 0 1 0 CTC OCRA Immediate MAX 

3 0 1 1 Fast PWM 0xFF TOP MAX 

4 1 0 0 Reserved – – – 

5 1 0 1 
PWM, Phase 

Correct 
OCRA TOP BOTTOM 

6 1 1 0 Reserved – – – 

7 1 1 1 Fast PWM OCRA BOTTOM TOP 

Notes: 1. MAX = 0xFF 

2. BOTTOM = 0x00 

21.5.1 Normal Mode 

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the 
counting direction is always up (incrementing), and no counter clear is performed. The 
counter simply overruns when it passes its maximum 8 bit value (TOP = 0xFF) and then 
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag 
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The 
TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. 
However combined with the timer overflow interrupt that automatically clears the TOV2 
Flag, the timer resolution can be increased by software. There are no special cases to 
consider in the Normal mode, a new counter value can be written anytime. 

The Output Compare unit can be used to generate interrupts at some given time. Using 
the Output Compare to generate waveforms in Normal mode is not recommended, 
since this will occupy too much of the CPU time.  

21.5.2 Clear Timer on Compare Match (CTC) Mode 

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used 
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when 
the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for 
the counter, hence also its resolution. This mode allows greater control of the compare 
match output frequency. It also simplifies the operation of counting external events. 

The timing diagram for the CTC mode is shown in Table 20-3. The counter value 
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and 
then counter (TCNT2) is cleared.  
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Figure 21-3. CTC Mode, Timing Diagram 
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An interrupt can be generated each time the counter value reaches the TOP value by 
using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be 
used for updating the TOP value. However, changing TOP to a value close to BOTTOM 
when the counter is running with none or a low prescaler value must be done with care 
since the CTC mode does not have the double buffering feature. If the new value 
written to OCR2A is lower than the current value of TCNT2, the counter will miss the 
compare match. The counter will then have to count to its maximum value (0xFF) and 
wrap around starting at 0x00 before the compare match can occur.  

For generating a waveform output in CTC mode, the OC2A output can be set to toggle 
its logical level on each compare match by setting the Compare Output mode bits to 
toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless 
the data direction for the pin is set to output. The waveform generated will have a 
maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The 
waveform frequency is defined by the following equation 

)1(2

/_

OCRnxN

f
f

OIclk

OCnx
+⋅⋅

=  

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024).  

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle 
that the counter counts from MAX to 0x00.  

21.5.3 Fast PWM Mode 

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If 
the interrupt is enabled, the interrupt handler routine can be used for updating the 
compare value.  

In fast PWM mode, the compare unit allows generation of PWM waveforms on the 
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an 
inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is 
defined as 0xFF when WGM22:0 = 3, and OCR2A when WGM22:0 = 7 (see section 
"Register Description" on page 323 for register TCCR2A). The actual OC2x value will 
only be visible on the port pin if the data direction for the port pin is set as output. The 
PWM waveform is generated by setting (or clearing) the OC2x Register at the compare 
match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the 
timer clock cycle the counter is cleared (changes from TOP to BOTTOM).  
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Figure 21-4. Fast PWM Mode, Timing Diagram 
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The PWM frequency for the output can be calculated by the following equation: 

256

/_

⋅
=

N

f
f

OIclk

OCnxPWM  

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024). 

The extreme values for the OCR2A Register represent special cases when generating 
a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, 
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A 
equal to MAX will result in a constantly high or low output (depending on the polarity of 
the output set by the COM2A1:0 bits.) 

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved 
by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The 
waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is 
set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double 
buffer feature of the Output Compare unit is enabled in the fast PWM mode.  

21.5.4 Phase Correct PWM Mode 

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase 
correct PWM waveform generation option. The phase correct PWM mode is based on a 
dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then 
from TOP to BOTTOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when 
WGM22:0 = 5. In non-inverting Compare Output mode, the Output Compare (OC2x) is 
cleared on the compare match between TCNT2 and OCR2x while up-counting, and set 
on the compare match while down-counting. In inverting Output Compare mode, the 
operation is inverted. The dual-slope operation has lower maximum operation 
frequency than single slope operation. However, due to the symmetric feature of the 
dual-slope PWM modes, these modes are preferred for motor control applications.  

In phase correct PWM mode the counter is incremented until the counter value matches 
TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value 
will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct 
PWM mode is shown on Figure 21-5 on page 315. The TCNT2 value is in the timing 
diagram shown as a histogram for illustrating the dual-slope operation. The diagram 
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includes non-inverted and inverted PWM outputs. The small horizontal line marks on 
the TCNT2 slopes represent compare matches between OCR2x and TCNT2.  

Figure 21-5. Phase Correct PWM Mode, Timing Diagram  

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update

 

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches 
BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the 
counter reaches the BOTTOM value.  

In phase correct PWM mode, the compare unit allows generation of PWM waveforms 
on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. 
An inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is 
defined as 0xFF when WGM22:0 = 3, and OCR2A when WGM22:0 = 7 (see section 
"Register Description" on page 323 for register TCCR2A). The actual OC2x value will 
only be visible on the port pin if the data direction for the port pin is set as output. The 
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare 
match between OCR2x and TCNT2 when the counter increments, and setting (or 
clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the 
counter decrements. The PWM frequency for the output when using phase correct 
PWM can be calculated by the following equation:  

510

/_

⋅
=

N

f
f

OIclk

OCnxPCPWM  

The N variable represents the pre-scale factor (1, 8, 32, 64, 128, 256, or 1024).  

The extreme values for the OCR2A Register represent special cases when generating 
a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to 
BOTTOM, the output will be continuously low and if set equal to MAX the output will be 
continuously high for non-inverted PWM mode. For inverted PWM the output will have 
the opposite logic values.  

At the very start of period 2 in Figure 21-5 above OCnx has a transition from high to low 
even though there is no Compare Match. The point of this transition is to guarantee 
symmetry around BOTTOM. There are two cases that give a transition without 
Compare Match.  
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• OCR2A changes its value from MAX, like in Figure 21-5 on page 315. When the 
OCR2A value is MAX the OCn pin value is the same as the result of a down-
counting compare match. To ensure symmetry around BOTTOM the OCn value at 
MAX must correspond to the result of an up-counting Compare Match.  

• The timer starts counting from a value higher than the one in OCR2A, and for that 
reason misses the Compare Match and hence the OCn change that would have 
happened on the way up. 

21.6 Output Compare Unit 

The 8 bit comparator continuously compares TCNT2 with the Output Compare Register 
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator 
signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the 
next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare 
Flag generates an Output Compare interrupt. The Output Compare Flag is 
automatically cleared when the interrupt is executed. Alternatively, the Output Compare 
Flag can be cleared by software by writing a logical one to its I/O bit location. The 
Waveform Generator uses the match signal to generate an output according to 
operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits. 
The max and bottom signals are used by the Waveform Generator for handling the 
special cases of the extreme values in some modes of operation (chapter "Modes of 
Operation" on page 311). 

Figure 21-6 below shows a block diagram of the Output Compare unit. 

Figure 21-6. Output Compare Unit, Block Diagram  

OCFn (Int.Req.)

= (8-bit Comparator )

OCRn

OCxy

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMn1:0

bottom

 

The OCR2x Register is double buffered when using any of the Pulse Width Modulation 
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of 
operation, the double buffering is disabled. The double buffering synchronizes the 
update of the OCR2x Compare Register to either top or bottom of the counting 
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical 
PWM pulses, thereby making the output glitch-free.  
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The OCR2x Register access may seem complex, but this is not the case. When the 
double buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if 
double buffering is disabled the CPU will access the OCR2x directly.  

21.6.1 Force Output Compare 

In non-PWM waveform generation modes, the match output of the comparator can be 
forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare 
match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be 
updated as if a real compare match had occurred (the COM2x1:0 bits settings define 
whether the OC2x pin is set, cleared or toggled).  

21.6.2 Compare Match Blocking by TCNT2 Write 

All CPU write operations to the TCNT2 Register will block any compare match that 
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows 
OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt 
when the Timer/Counter clock is enabled.  

21.6.3 Using the Output Compare Unit 

Since writing TCNT2 in any mode of operation will block all compare matches for one 
timer clock cycle, there are risks involved when changing TCNT2 when using the 
Output Compare channel, independently of whether the Timer/Counter is running or 
not. If the value written to TCNT2 equals the OCR2x value, the compare match will be 
missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 
value equal to BOTTOM when the counter is down-counting. 

The setup of the OC2x should be performed before setting the Data Direction Register 
for the port pin to output. The easiest way of setting the OC2x value is to use the Force 
Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its 
value even when changing between Waveform Generation modes.  

Be aware that the COM2x1:0 bits are not double buffered together with the compare 
value.  A change of the COM2x1:0 bits will take effect immediately. 

21.7 Compare Match Output Unit 

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform 
Generator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the 
next compare match. Also, the COM2x1:0 bits control the OC2x pin output source. 
Figure 20-7 shows a simplified schematic of the logic affected by the COM2x1:0 bit 
setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only 
the parts of the general I/O Port Control Registers (DDR and PORT) that are affected 
by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for 
the internal OC2x Register, not the OC2x pin.  

The general I/O port function is overridden by the Output Compare (OC2x) from the 
Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin 
direction (input or output) is still controlled by the Data Direction Register (DDR) for the 
port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as 
output before the OC2x value is visible on the pin. The port override function is 
independent of the Waveform Generation mode.  

The design of the Output Compare pin logic allows initialization of the OC2x state 
before the output is enabled. Note that some COM2x1:0 bit settings are reserved for 
certain modes of operation. See section "Register Description" on page 323 for details. 
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Figure 21-7. Compare Match Output Unit, Schematic 
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21.7.1 Compare Output Mode and Waveform Generation 

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM 
modes. Setting the COM2x1:0 = 0 for all modes tells the Waveform Generator that no 
action on the OC2x Register is to be performed on the next compare match. For 
compare output actions in the non-PWM modes for fast PWM mode and for phase 
correct PWM refer to section "Register Description" on page 323 for register TCCR2A. 
A change of the COM2x1:0 bits state will have effect at the first compare match after 
the bits are written. For non-PWM modes, the action can be forced to have immediate 
effect by using the FOC2x strobe bits. 

The following table shows the COM2x1:0 bit functionality when the WGM02:0 bits are 
set to a normal or CTC mode (non-PWM). 

Table 21-3. Compare Output Mode, non-PWM Mode 

COM2x1 COM2x0   Description 

0 0 Normal port operation, OC2x disconnected; 

0 1 Toggle OC2x on Compare Match; 

1 0 Clear OC2x on Compare Match; 

1 1 Set OC2x on Compare Match; 

Table 17-3 shows the COM2x1:0 bit functionality when the WGM21:0 bits are set to fast 
PWM mode. 

Table 21-4. Compare Output Mode, Fast PWM Mode 

COM2x1  COM2x0   Description 

0 0 Normal port operation, OC2x disconnected. 

0 1 

WGM22 = 0: Normal Port Operation, OC2A Disconnected. 

WGM22 = 1: Toggle OC2A on Compare Match. 

OC2B: not applicable, reserved function; 
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COM2x1  COM2x0   Description 

1 0 
Clear OC2x on Compare Match, set OC2x at BOTTOM, (non-
inverting mode). 

1 1 
Set OC2x on Compare Match, clear OC2x at BOTTOM, (inverting 
mode). 

Note: 1.  A special case occurs when OCR2x equals TOP and COM2x1 is set. In this case, 
the Compare Match is ignored, but the set or clear is done at BOTTOM. See "Fast 
PWM Mode" on page 313. 

Table 17-4 shows the COM2x1:0 bit functionality when the WGM22:0 bits are set to 
phase correct PWM mode. 

Table 21-5. Compare Output Mode, Phase Correct PWM Mode 

COM2x1  COM2x0  Description 

0 0 Normal port operation, OC2x disconnected. 

0 1 

WGM22 = 0: Normal Port Operation, OC2A Disconnected. 

WGM22 = 1: Toggle OC2A on Compare Match. 

OC2B: not applicable, reserved function; 

1 0 
Clear OC2x on Compare Match when up-counting. Set OC2x on 

Compare Match when down-counting. 

1 1 
Set OC2x on Compare Match when up-counting. Clear OC2x on 

Compare Match when down-counting. 

Note: 1.  A special case occurs when OCR2x equals TOP and COM2x1 is set. In this case, 
the Compare Match is ignored, but the set or clear is done at TOP. See "Phase 
Correct PWM Mode" on page 314 for more details. 

21.8 Timer/Counter Timing Diagrams 

The following figures show the Timer/Counter in synchronous mode, and the timer clock 
(clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should 
be replaced by the Timer/Counter Oscillator clock. The figures include information on 
when Interrupt Flags are set. Figure 21-8 below contains timing data for basic 
Timer/Counter operation. The figure shows the count sequence close to the MAX value 
in all modes other than phase correct PWM mode.  

Figure 21-8. Timer/Counter Timing Diagram, no Prescaling 
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Figure 21-9 below shows the same timing data, but with the prescaler enabled. 

Figure 21-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) 
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Figure 21-10 below shows the setting of OCF2A in all modes except CTC mode. 

Figure 21-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler 
(fclk_I/O/8) 
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Figure 21-11 below shows the setting of OCF2A and the clearing of TCNT2 in CTC 
mode.  

Figure 21-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, 
with Prescaler (fclk_I/O/8)  
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21.9 Asynchronous Operation of Timer/Counter2 

When Timer/Counter2 operates asynchronously, some considerations must be taken.  
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• Warning: When switching between asynchronous and synchronous clocking of 
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be 
corrupted. A safe procedure for switching clock source is:  

1. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.  

2. Select clock source by setting AS2 as appropriate.  

3. Write new values to TCNT2, OCR2x, and TCCR2x.  

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.  

5. Clear the Timer/Counter2 Interrupt Flags.  

6. Enable interrupts, if needed.  

• The CPU main clock frequency must be more than four times the Oscillator 
frequency. 

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is 
transferred to a temporary register, and latched after two positive edges on TOSC1. 
The user should not write a new value before the contents of the temporary register 
have been transferred to its destination. Each of the five mentioned registers have 
their individual temporary register, which means that e.g. writing to TCNT2 does not 
disturb an OCR2x write in progress. To detect that a transfer to the destination 
register has taken place, the Asynchronous Status Register – ASSR has been 
implemented.  

• When entering Power-save or ADC Noise Reduction mode after having written to 
TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been 
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will 
enter sleep mode before the changes are effective. This is particularly important if 
any of the Output Compare2 interrupt is used to wake up the device, since the 
Output Compare function is disabled during writing to OCR2x or TCNT2. If the write 
cycle is not finished, and the MCU enters sleep mode before the corresponding 
OCR2xUB bit returns to zero, the device will never receive a compare match 
interrupt, and the MCU will not wake up.  

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise 
Reduction mode, precautions must be taken if the user wants to re-enter one of 
these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time 
between wake-up and re-entering sleep mode is less than one TOSC1 cycle, the 
interrupt will not occur, and the device will fail to wake up. If the user is in doubt 
whether the time before re-entering Powersave or ADC Noise Reduction mode is 
sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has 
elapsed: 

1. Write a value to TCCR2x, TCNT2, or OCR2x.  

2. Wait until the corresponding Update Busy Flag in ASSR returns to zero. .  

3. Enter Power-save or ADC Noise Reduction mode.  

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for 
Timer/Counter2 is always running, except in Power-down and Standby modes. After 
a Power-up Reset or wake-up from Power-down or Standby mode, the user should 
be aware of the fact that this Oscillator might take as long as one second to stabilize. 
The user is advised to wait for at least one second before using Timer/Counter2 
after power-up or wake-up from Power-down or Standby mode. The contents of all 
Timer/Counter2 Registers must be considered lost after a wake-up from Power-
down or Standby mode due to unstable clock signal upon start-up, no matter 
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.  

• Description of wake up from Power-save or ADC Noise Reduction mode when the 
timer is clocked asynchronously: When the interrupt condition is met, the wake up 
process is started on the following cycle of the timer clock, that is, the timer is always 
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advanced by at least one before the processor can read the counter value. After 
wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and 
resumes execution from the instruction following SLEEP.  

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an 
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading 
TCNT2 must be done through a register synchronized to the internal I/O clock 
domain. Synchronization takes place for every rising TOSC1 edge. When waking up 
from Powersave mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will 
read as the previous value (before entering sleep) until the next rising TOSC1 edge. 
The phase of the TOSC clock after waking up from Power-save mode is essentially 
unpredictable, as it depends on the wake-up time. The recommended procedure for 
reading TCNT2 is thus as follows:  

1. Write any value to either of the registers OCR2x or TCCR2x.  

2. Wait for the corresponding Update Busy Flag to be cleared.  

3. Read TCNT2.  

• During asynchronous operation, the synchronization of the Interrupt Flags for the 
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is 
therefore advanced by at least one before the processor can read the timer value 
causing the setting of the Interrupt Flag. The Output Compare pin is changed on the 
timer clock and is not synchronized to the processor clock. 

• If the CPU wakes up from asynchronous timer and goes back to sleep again, it may 
wakeup multiple times or the IRQ is called multiple times. This may be avoided if the 
CPU waits with the next sleep instruction until the next asynchronous clock arrives. 

21.10 Timer/Counter Prescaler 

Figure 21-12. Prescaler for Timer/Counter2 
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The register ASSR defines the clock source for the asynchronous Timer/Counter2. The 
clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the 
main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is 
asynchronously clocked either from the TOSC1 or from the AMR pin. This enables the 
use of Timer/Counter2 as a Real Time Counter (RTC).  
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The TOSC1 pin is selected by setting the EXCLKAMR bit in the ASSR register to logic 
zero. Under this condition TOSC1 and TOSC2 are disconnected from Port G and a 
crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an 
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 
32.768 kHz crystal. By setting the EXCLK bit in the ASSR, a 32 kHz external clock can 
be applied on TOSC1.  

Setting the EXCLKAMR bit to logic one selects the AMR pin as the Timer/Counter2 
clock source. Thus the 32 kHz oscillator can be used by the MAC symbol counter while 
the Timer/Counter2 uses pin AMR as clock source, see "MAC Symbol Counter" on 
page 133. 

A complete overview of the implemented asynchronous clock sources can be found in 
Table 21-6 below. The last column mentions which pins are available for GPIO 
functionality. For details about the ASSR register refer to section "Register Description" 
below. 

For Timer/Counter2, the possible pre-scaled selections are: clkT2S/8, clkT2S/32, clkT2S 
/64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may 
be selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the 
user to operate with a predictable prescaler. 

Table 21-6. Asynchronous clock selection for Timer/Counter2 and Symbol-Counter 

AS2 EXCLK EXCLKAMR 

Timer/Counter2 

clock source 

32 kHz crystal Osc. 

(TOSC1/TOSC2) 

PG2, PG3, PG4 

as GPIOs 

0 0 0 cp2io off PG2, PG3, PG4 

0 1 0 not defined not defined not defined 

1 0 0 32 kHz crystal Osc on PG2 

1 1 0 TOSC1 (PG4) off PG2, PG3 

0 0 1 cp2io off PG2, PG3, PG4 

0 1 1 not defined not defined not defined 

1 0 1 AMR (PG2) on  

1 1 1 AMR (PG2) off PG3, PG4 

21.11 Register Description 

21.11.1 TIMSK2 – Timer/Counter Interrupt Mask register 

Bit 7 6 5 4 3 2 1 0  

NA ($70) Res4 Res3 Res2 Res1 Res0 OCIE2B OCIE2A TOIE2 TIMSK2 

Read/Write R R R R R RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:3 – Res4:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 2 – OCIE2B - Timer/Counter2 Output Compare Match B Interrupt Enable 

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), 
the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt 
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is 
set in the Timer/Counter2 Interrupt Flag Register TIFR2. 
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• Bit 1 – OCIE2A - Timer/Counter2 Output Compare Match A Interrupt Enable 

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), 
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt 
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is 
set in the Timer/Counter2 Interrupt Flag Register TIFR2. 

• Bit 0 – TOIE2 - Timer/Counter2 Overflow Interrupt Enable 

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the 
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed 
if an overflow in Timer/Counter2 occurs i.e., when the TOV2 bit is set in the 
Timer/Counter2 Interrupt Flag Register TIFR2. 

 

21.11.2 TIFR2 – Timer/Counter Interrupt Flag Register 

Bit 7 6 5 4 3 2 1 0  

$17 ($37) Res4 Res3 Res2 Res1 Res0 OCF2B OCF2A TOV2 TIFR2 

Read/Write R R R R R RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:3 – Res4:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 2 – OCF2B - Output Compare Flag 2 B 

The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 
and the data in OCR2B Output Compare Register2. OCF2B is cleared by hardware 
when executing the corresponding interrupt handling vector. Alternatively, OCF2B is 
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B 
(Timer/Counter2 Compare Match Interrupt Enable), and OCF2B are set (one), the 
Timer/Counter2 Compare Match Interrupt is executed. 

• Bit 1 – OCF2A - Output Compare Flag 2 A 

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 
and the data in OCR2A Output Compare Register2. OCF2A is cleared by hardware 
when executing the corresponding interrupt handling vector. Alternatively, OCF2A is 
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A 
(Timer/Counter2 Compare Match Interrupt Enable), and OCF2A are set (one), the 
Timer/Counter2 Compare Match Interrupt is executed. 

• Bit 0 – TOV2 - Timer/Counter2 Overflow Flag 

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared 
by hardware when executing the corresponding interrupt handling vector. Alternatively, 
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A 
(Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the 
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when 
Timer/Counter2 changes counting direction at 0x00. 
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21.11.3 TCCR2A – Timer/Counter2 Control Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($B0) COM2A1 COM2A0 COM2B1 COM2B0 Res1 Res0 WGM21 WGM20 TCCR2A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:6 – COM2A1:0 - Compare Match Output A Mode 

These bits control the Output Compare pin (OC2A) behavior. If one or both of the 
COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the 
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit 
corresponding to the OC2A pin must be set in order to enable the output driver. When 
OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the 
WGM22:0 bit setting. The following table shows the COM2A1:0 bit functionality when 
the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Refer to section 
"Compare Match Output Unit" for a description of the functionality in the other modes. 

Table 21-7 COM2A Register Bits 

Register Bits Value Description 

0 Normal port operation, OC2A disconnected 

1 Toggle OC2A on Compare Match 

2 Clear OC2A on Compare Match 

COM2A1:0 

3 Set OC2A on Compare Match 

• Bit 5:4 – COM2B1:0 - Compare Match Output B Mode 

These bits control the Output Compare pin (OC2B) behavior. If one or both of the 
COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the 
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit 
corresponding to the OC2B pin must be set in order to enable the output driver. When 
OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the 
WGM22:0 bit setting. The following table shows the COM2B1:0 bit functionality when 
the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Refer to section 
"Compare Match Output Unit" for a description of the functionality in the other modes. 

Table 21-8 COM2B Register Bits 

Register Bits Value Description 

0 Normal port operation, OC2B disconnected 

1 Toggle OC2B on Compare Match 

2 Clear OC2B on Compare Match 

COM2B1:0 

3 Set OC2B on Compare Match 

• Bit 3:2 – Res1:0 - Reserved 

• Bit 1:0 – WGM21:20 - Waveform Generation Mode 

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. Modes of operation supported by the 
Timer/Counter2 unit are: Normal mode (counter), Clear Timer on Compare Match 
(CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see section 
"Modes of Operation" for details). 
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Table 21-9 WGM2 Register Bits 

Register Bits Value Description 

0x0 Normal mode of operation 

0x1 PWM, phase correct, TOP=0xFF 

0x2 CTC, TOP = OCRA 

0x3 Fast PWM, TOP=0xFF 

0x4 Reserved 

0x5 PWM, Phase correct, TOP = OCRA 

0x6 Reserved 

WGM21:20 

0x7 Fast PWM, TOP=OCRA 

 

21.11.4 TCCR2B – Timer/Counter2 Control Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($B1) FOC2A FOC2B Res1 Res0 WGM22 CS22 CS21 CS20 TCCR2B 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – FOC2A - Force Output Compare A 

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, 
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B 
is written in PWM mode operation. When writing a logical one to the FOC2A bit, an 
immediate Compare Match is forced on the Waveform Generation unit. The OC2A 
output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is 
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that 
determines the effect of the forced compare. A FOC2A strobe will not generate any 
interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit 
is always read as zero. 

• Bit 6 – FOC2B - Force Output Compare B 

The FOC2B bit is only active when the WGM bits specify a non-PWM mode. However, 
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B 
is written in PWM mode operation. When writing a logical one to the FOC2B bit, an 
immediate Compare Match is forced on the Waveform Generation unit. The OC2B 
output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is 
implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that 
determines the effect of the forced compare. A FOC2B strobe will not generate any 
interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP. The FOC2B bit 
is always read as zero. 

• Bit 5:4 – Res1:0 - Reserved 

• Bit 3 – WGM22 - Waveform Generation Mode 

Combined with the WGM21:0 bits found in the TCCR2A Register, this bit controls the 
counting sequence of the counter, the source for maximum (TOP) counter value, and 
what type of waveform generation to be used. See description of "TCCR2A - 
Timer/Counter2 Control Register A" for details. 

• Bit 2:0 – CS22:20 - Clock Select 

The three Clock Select bits select the clock source to be used by the Timer/Counter2. If 
external pin modes are used for the Timer/Counter2, transitions on the T2 pin will clock 
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the counter even if the pin is configured as an output. This feature allows software 
control of the counting. 

Table 21-10 CS2 Register Bits 

Register Bits Value Description 

0x00 No clock source (Timer/Counter2 stopped) 

0x01 clk_T2S/1 (no prescaling) 

0x02 clk_T2S/8 (from prescaler) 

0x03 clk_T2S/32 (from prescaler) 

0x04 clk_T2S/64 (from prescaler) 

0x05 clk_T2S/128 (from prescaler) 

0x06 clk_T2S/256 (from prescaler) 

CS22:20 

0x07 clk_T2S/1024 (from prescaler) 

 

21.11.5 TCNT2 – Timer/Counter2 

Bit 7 6 5 4 3 2 1 0  

NA ($B2) TCNT27:20 TCNT2 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Timer/Counter Register gives direct access, both for read and write operations, to 
the 8-bit counter unit of the Timer/Counter2. Writing to the TCNT2 Register blocks 
(removes) the Compare Match on the following timer clock. Modifying the counter 
(TCNT2) while the counter is running, introduces a risk of missing a Compare Match 
between TCNT2 and the OCR2x Registers.  

• Bit 7:0 – TCNT27:20 - Timer/Counter2 Byte 

 

21.11.6 OCR2A – Timer/Counter2 Output Compare Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($B3) OCR2A7:0 OCR2A 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Output Compare Register A contains an 8-bit value that is continuously compared 
with the counter value (TCNT2). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC2A pin. 

• Bit 7:0 – OCR2A7:0 - Output Compare Register 

 

21.11.7 OCR2B – Timer/Counter2 Output Compare Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($B4) OCR2B7:0 OCR2B 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
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The Output Compare Register B contains an 8-bit value that is continuously compared 
with the counter value (TCNT2). A match can be used to generate an Output Compare 
interrupt, or to generate a waveform output on the OC2B pin. 

• Bit 7:0 – OCR2B7:0 - Output Compare Register 

 

21.11.8 ASSR – Asynchronous Status Register 

Bit 7 6 5 4 3 2 1 0  

NA ($B6) EXCLKAMR EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR 

Read/Write RW RW RW R R R R R  

Initial 0 0 0 0 0 0 0 0   
 

The register ASSR controls the asynchronous clocks for Timer/Counter2 and enables 
the asynchronous 32kHz clock for the symbol counter. Three bits 
(AS2,EXCLK,EXCLKAMR) are used to control the clocks. Note, to prevent clock spikes 
on asynchronous clock wires, every access to ASSR should change only one of the 
three bits. 

• Bit 7 – EXCLKAMR - Enable External Clock Input for AMR 

The bit EXCLKAMR extends the available clock sources for Timer/Counter2. If this bit is 
written to one, and asynchronous clock is selected (bit AS2 set), AMR functionality is 
enabled and Timer/Counter2 is clocked by pin AMR. 

• Bit 6 – EXCLK - Enable External Clock Input 

When EXCLK is written to one, and asynchronous clock is selected, the external clock 
input buffer is enabled and an external clock can be input on Timer Oscillator 1 
(TOSC1) pin instead of a 32 kHz crystal. Writing to EXCLK should be done before 
asynchronous operation is selected. Note that the crystal Oscillator will only run when 
this bit is zero. 

• Bit 5 – AS2 - Timer/Counter2 Asynchronous Mode 

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. 
When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator 
connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, 
the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted. 

• Bit 4 – TCN2UB - Timer/Counter2 Update Busy 

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes 
set. When TCNT2 has been updated from the temporary storage register, this bit is 
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be 
updated with a new value. 

• Bit 3 – OCR2AUB - Timer/Counter2 Output Compare Register A Update Busy 

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit 
becomes set. When OCR2A has been updated from the temporary storage register, 
this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to 
be updated with a new value. 

• Bit 2 – OCR2BUB - Timer/Counter2 Output Compare Register B Update Busy 

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit 
becomes set. When OCR2B has been updated from the temporary storage register, 
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this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to 
be updated with a new value. 

• Bit 1 – TCR2AUB - Timer/Counter2 Control Register A Update Busy 

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit 
becomes set. When TCCR2A has been updated from the temporary storage register, 
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready 
to be updated with a new value. 

• Bit 0 – TCR2BUB - Timer/Counter2 Control Register B Update Busy 

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit 
becomes set. When TCCR2B has been updated from the temporary storage register, 
this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready 
to be updated with a new value. 

 

21.11.9 GTCCR – General Timer Counter Control register 

Bit 7 6 5 4 3 2 1 0  

$23 ($43) TSM      PSRASY  GTCCR 

Read/Write RW      RW   

Initial Value 0      0    
 

• Bit 7 – TSM - Timer/Counter Synchronization Mode 

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this 
mode the value that is written to the PSRASY and PSRSYNC bits is kept, hence 
keeping the corresponding prescaler reset signals asserted. This ensures that the 
corresponding Timer/Counters are halted and can be configured to the same value 
without the risk of one of them advancing during the configuration. When the TSM bit is 
written to zero, the PSRASY and PSRSYNC bits are cleared by hardware and the 
Timer/Counters simultaneously start counting. 

• Bit 1 – PSRASY - Prescaler Reset Timer/Counter2 

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally 
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating 
in asynchronous mode, the bit will remain one until the prescaler has been reset. The 
bit will not be cleared by hardware if the TSM bit is set. 
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22 SPI- Serial Peripheral Interface 

22.1 Features 

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer 
between the ATmega128RFA1 and peripheral devices or between several AVR 
devices. 

The ATmega128RFA1 SPI includes the following features: 

• Full-duplex, Three-wire Synchronous Data Transfer 

• Master or Slave Operation 

• LSB First or MSB First Data Transfer 

• Seven Programmable Bit Rates 

• End of Transmission Interrupt Flag 

• Write Collision Flag Protection 

• Wake-up from Idle Mode 

• Double Speed (CK/2) Master SPI Mode 

22.2 Functional Description 

USART can also be used in Master SPI mode, see "USART in SPI Mode" on page 368. 
The Power Reduction SPI bit, PRSPI, in "PRR0 – Power Reduction Register0" on page 
167 must be written to zero to enable SPI module. The block diagram of the SPI 
interface is shown in Figure 22-1 on page 331. 

The interconnection between Master and Slave CPUs with SPI is shown in Figure 22-2 
on page 331. The system consists of two shift Registers, and a Master clock generator. 
The SPI Master initiates the communication cycle when pulling low the Slave Select SS

__
 

pin of the desired Slave. Master and Slave prepare the data to be sent in their 
respective shift Registers, and the Master generates the required clock pulses on the 
SCK line to interchange data. Data is always shifted from Master to Slave on the Master 
Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out, 
MISO, line. After each data packet, the Master will synchronize the Slave by pulling 
high the Slave Select, SS

__
, line. 

When configured as a Master, the SPI interface has no automatic control of the SS
__

 line. 
This must be handled by user software before communication can start. When this is 
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the 
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock 
generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable 
bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may 
continue to shift the next byte by writing it into SPDR, or signal the end of packet by 
pulling high the Slave Select, SS

__
 line. The last incoming byte will be kept in the Buffer 

Register for later use. 

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated 
as long as the SS

__
 pin is driven high. In this state, software may update the contents of 

the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock 
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely 
shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, 
in the SPCR Register is set, an interrupt is requested. The Slave may continue to place 
new data to be sent into SPDR before reading the incoming data. The last incoming 
byte will be kept in the Buffer Register for later use. 
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Figure 22-1. SPI Block Diagram
(1)
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Note: 1. Refer to Figure 1-1 on page 2 and Table 14-3 on page 193 for SPI pin placement. 

Figure 22-2. SPI Master-slave Interconnection 

SHIFT

ENABLE

 
 
The system is single buffered in the transmit direction and double buffered in the 
receive direction. This means that bytes to be transmitted cannot be written to the SPI 
Data Register before the entire shift cycle is completed. When receiving data, however, 
a received character must be read from the SPI Data Register before the next character 
has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the 
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control logic will sample the incoming signal of the SCK pin. To ensure correct sampling 
of the clock signal, the minimum low and high periods should be: 

Low period: longer than 2 CPU clock cycles 
High period:  longer than 2 CPU clock cycles 

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS
__

 pins is 
overridden according to Table 21-1. For more details on automatic port overrides, refer 
to "Alternate Port Functions" on page 191. 

Table 22-1. Pin Overrides
(1) 

 

Pin Direction, Master SPI  Direction, Slave SPI  

MOSI User Defined  Input  

MISO Input  User Defined  

SCK User Defined  Input  

SS  User Defined  Input  

Note: 1. See "Alternate Functions of Port B" on page 192 for a detailed description of how 
to define the direction of the user defined SPI pins. 

The following code examples show how to initialize the SPI as a Master and how to 
perform a simple transmission. DDR_SPI in the examples must be replaced by the 
actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and 
DD_SCK must be replaced by the actual data direction bits for these pins. E.g. if MOSI 
is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB. 

Assembly Code Example
(1)

  

SPI_MasterInit: 

   ; Set MOSI and SCK output, all others input 

   ldi r17,(1<<DD_MOSI)|(1<<DD_SCK) 

   out DDR_SPI,r17 

   ; Enable SPI, Master, set clock rate fck/16 

   ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0) 

   out SPCR,r17 

   ret 

SPI_MasterTransmit: 

   ; Start transmission of data (r16) 

   out SPDR,r16 

Wait_Transmit: 

   ; Wait for transmission complete 

   sbis SPSR,SPIF 

   rjmp Wait_Transmit 

   ret 
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C Code Example
(1) 

 

void SPI_MasterInit(void) 

{ 

  /* Set MOSI and SCK output, all others input */ 

  DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK); 

  /* Enable SPI, Master, set clock rate fck/16 */ 

  SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0); 

} 

void SPI_MasterTransmit(char cData) 

{ 

  /* Start transmission */ 

  SPDR = cData; 

  /* Wait for transmission complete */ 

 while(!(SPSR & (1<<SPIF))) 

 ; 

} 

Note: 1. See "About Code Examples" on page 7 

 

Assembly Code Example(1)
  

SPI_SlaveInit: 

   ; Set MISO output, all others input 

   ldi r17,(1<<DD_MISO) 

   out DDR_SPI,r17 

   ; Enable SPI 

   ldi r17,(1<<SPE) 

   out SPCR,r17 

   ret 

SPI_SlaveReceive: 

   ; Wait for reception complete 

   sbis SPSR,SPIF 

   rjmp SPI_SlaveReceive 

   ; Read received data and return 

   in r16,SPDR 

   ret 
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C Code Example(1) 
 

void SPI_SlaveInit(void) 

{ 

  /* Set MISO output, all others input */ 

  DDR_SPI = (1<<DD_MISO); 

  /* Enable SPI */ 

  SPCR = (1<<SPE); 

} 

  char SPI_SlaveReceive(void) 

{ 

  /* Wait for reception complete */ 

  while(!(SPSR & (1<<SPIF))) 

  ; 

  /* Return Data Register */ 

  return SPDR; 

} 

Note: 1. See "About Code Examples" on page 7;  

22.3 SS
__

 Pin Functionality 

22.3.1 Slave Mode 

When the SPI is configured as a Slave, the Slave Select (SS
__

) pin is always input. When 
SS
__

 is held low, the SPI is activated, and MISO becomes an output if configured so by 
the user. All other pins are inputs. When SS

__
 is driven high, all pins are inputs, and the 

SPI is passive, which means that it will not receive incoming data. Note that the SPI 
logic will be reset once the SS

__
 pin is driven high. The SS

__
 pin is useful for packet/byte 

synchronization to keep the slave bit counter synchronous with the master clock 
generator. When the SS

__
 pin is driven high, the SPI slave will immediately reset the send 

and receive logic, and drop any partially received data in the Shift Register. 

22.3.2 Master Mode 

When the SPI is configured as a Master (MSTR in SPCR is set), the user can 
determine the direction of the SS

__
 pin. If SS

__
 is configured as an output, the pin is a 

general output pin which does not affect the SPI system. Typically, the pin will be 
driving the SS

__
 pin of the SPI Slave. If SS

__
 is configured as an input, it must be held high 

to ensure Master SPI operation. If the SS
__

 pin is driven low by peripheral circuitry when 
the SPI is configured as a Master with the SS

__
 pin defined as an input, the SPI system 

interprets this as another master selecting the SPI as a slave and starting to send data 
to it. To avoid bus contention, the SPI system takes the following actions: 

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result 
of the SPI becoming a Slave, the MOSI and SCK pins become inputs. 

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in 
SREG is set, the interrupt routine will be executed. 

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists 
a possibility that SS

__
 is driven low, the interrupt should always check that the MSTR bit 

is still set. If the MSTR bit has been cleared by a slave select, it must be set by the user 
to re-enable SPI Master Mode. 
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22.3.3 Data Mode 

There are four combinations of SCK phase and polarity with respect to serial data, 
which are determined by control bits CPHA and CPOL. The SPI data transfer formats 
are shown in Figure 22-3 below and Figure 22-4 below. Data bits are shifted out and 
latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals 
to stabilize. This is clearly seen in the summary of Table 22-2 below: 

Table 22-2. CPOL Functionality 

 Leading Edge Trailing Edge SPI Mode 

CPOL=0, CPHA=0  Sample (Rising) Setup (Falling) 0 

CPOL=0, CPHA=1  Setup (Rising) Sample (Falling) 1 

CPOL=1, CPHA=0  Sample (Falling) Setup (Rising) 2 

CPOL=1, CPHA=1  Setup (Falling) Sample (Rising) 3 

Figure 22-3. SPI Transfer Format with CPHA = 0 
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Figure 22-4. SPI Transfer Format with CPHA = 1 
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22.4 Register Description 

 

22.4.1 SPCR – SPI Control Register 

Bit 7 6 5 4 3 2 1 0  

$2C ($4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – SPIE - SPI Interrupt Enable 

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set 
and the if the Global Interrupt Enable bit in SREG is set.s 

• Bit 6 – SPE - SPI Enable 

When the SPE bit is set (one), the SPI is enabled. This bit must be set to enable any 
SPI operations. 

• Bit 5 – DORD - Data Order 

When the DORD bit is written to one, the LSB of the data word is transmitted first. 
When the DORD bit is written to zero, the MSB of the data word is transmitted first. 

• Bit 4 – MSTR - Master/Slave Select 

This bit selects Master SPI mode when written to one, and Slave SPI mode when 
written logic zero. If the Slave Select pin is configured as an input and is driven low 
while MSTR is set, MSTR will be cleared and SPIF in SPSR are set. The user will then 
have to set MSTR to re-enable SPI Master mode. 

• Bit 3 – CPOL - Clock polarity 

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, 
SCK is low when idle. Refer to the "Data Modes" section for an example. The CPOL 
functionality is summarized below. 

Table 22-3 CPOL Register Bits 

Register Bits Value Description 

0 Rising (Leading Edge), Falling (Trailing 
Edge) 

CPOL 

1 Falling (Leading Egde), Rising (Trailing 
Edge) 

• Bit 2 – CPHA - Clock Phase 

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading 
(first) or trailing (last) edge of SCK. Refer to the "Data Modes" section for an example. 
The CPOL functionality is summarized below. 

Table 22-4 CPHA Register Bits 

Register Bits Value Description 

0 Sample (Leading Edge), Setup (Trailing 
Edge) 

CPHA 

1 Setup (Leading Edge), Sample (Trailing 
Edge) 

• Bit 1:0 – SPR1:0 - SPI Clock Rate Select 1 and 0 
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These two bits control the SCK rate of the device configured as a Master. SPR1 and 
SPR0 have no effect on the Slave. The relationship between SCK and the Oscillator 
Clock frequency fosc is shown in the following table. 

Table 22-5 SPR Register Bits 

Register Bits Value Description 

0x00 fosc/4 

0x01 fosc/16 

0x02 fosc/64 

0x03 fosc/128 

0x04 fosc/2 

0x05 fosc/8 

0x06 fosc/32 

SPR1:0 

0x07 fosc/64 

 

22.4.2 SPSR – SPI Status Register 

Bit 7 6 5 4 3 2 1 0  

$2D ($4D) SPIF WCOL Res4 Res3 Res2 Res1 Res0 SPI2X SPSR 

Read/Write R R R R R R R RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7 – SPIF - SPI Interrupt Flag 

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if 
SPIE in SPCR is set and global interrupts are enabled. The SPIF Flag is also set if the 
Slave Select pin is an input and is driven low when the SPI is in Master mode. SPIF is 
cleared by hardware when executing the corresponding interrupt handling vector. 
Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF 
set and then accessing the SPI Data Register (SPDR). 

• Bit 6 – WCOL - Write Collision Flag 

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. 
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register 
with WCOL set and then accessing the SPI Data Register. 

• Bit 5:1 – Res4:0 - Reserved 

• Bit 0 – SPI2X - Double SPI Speed Bit 

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when 
the SPI is in Master mode. This means that the minimum SCK period will be two CPU 
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work 
at fosc/4 or lower. The SPI interface on the ATmega128RFA1 is also used for program 
memory and EEPROM downloading or uploading. See section "Serial Downloading" for 
serial programming and verification. 
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22.4.3 SPDR – SPI Data Register 

Bit 7 6 5 4 3 2 1 0  

$2E ($4E) SPDR7:0 SPDR 

Read/Write RW RW RW RW RW RW R R  

Initial Value X X X X X X 0 0   
 

The SPI Data Register is a read/write register used for data transfer between the 
Register File and the SPI Shift Register. Writing to the register initiates data 
transmission. Reading the register causes the Shift Register Receive buffer to be read. 

• Bit 7:0 – SPDR7:0 - SPI Data Register 
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23 USART 

23.1 Features 

• Full duplex operation (independent serial receive and transmit registers)  

• Asynchronous or synchronous operation  

• Master or slave clocked synchronous operation  

• High resolution baud rate generator  

• Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  

• Odd or even parity generation and parity check supported by hardware  

• Data overrun detection  

• Framing error detection  

• Noise filtering includes false start bit detection and digital low pass filter  

• 3 separate interrupts on TX complete, TX data register empty and RX complete  

• Multi-processor communication mode  

• Double speed, asynchronous communication mode  

23.2 Overview 

The Universal Synchronous and Asynchronous Serial Receiver and Transmitter 
(USART) is a highly flexible serial communication device.  

The ATmega128RFA1 has two USART’s, USART0 and USART1. The functionality for 
all two USART’s is described below. USART0 and USART1 have different I/O registers 
as shown in "Register Summary" on page 496.  

A simplified block diagram of the USART transmitter is shown in Figure 23-1 on page 
340 on page 340. CPU accessible I/O registers and I/O pins are shown in bold. 

The Power Reduction USART0 bit, PRUSART0, in "PRR0 – Power Reduction 
Register0" on page 167 must be disabled by writing a logical zero to it.  The Power 
Reduction USART1 bit, PRUSART1, in "PRR1 – Power Reduction Register 1" on page 
168 must be disabled by writing a logical zero to it.  

The dashed boxes in the block diagram Figure 23-1 on page 340 separate the three 
main parts of the USART (listed from the top): clock generator, transmitter and receiver. 
Control registers are shared by all units. The clock generation logic consists of 
synchronization logic for external clock input used by synchronous slave operation, and 
the baud rate generator. The XCKn (transfer clock) pin is only used by synchronous 
transfer mode. The transmitter consists of a single write buffer, a serial shift register, 
Parity generator and control logic for handling different serial frame formats. The write 
buffer allows a continuous transfer of data without any delay between frames. The 
receiver is the most complex part of the USART module due to its clock and data 
recovery units. The recovery units are used for asynchronous data reception. In 
addition to the recovery units, the receiver includes a parity checker, control logic, a 
shift register and a two level receive buffer (UDRn). The receiver supports the same 
frame formats as the transmitter, and can detect frame, data overrun and parity errors.  
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Figure 23-1. USART Block Diagram
(1)
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Note: 1. See "Figure 1-1" on page 2, Table 14-6 on page 195and Table 14-9 on page 
197Table 14-9 on page 197for USART pin placement.  

23.3 Clock Generation 

The clock generation logic generates the base clock for the transmitter and receiver. 
The USART supports four modes of clock operation: Normal asynchronous, double 
speed asynchronous, master synchronous and slave synchronous mode. The UMSELn 
bit in USART Control and Status Register C (UCSRnC) selects between asynchronous 
and synchronous operation. Double speed (asynchronous mode only) is controlled by 
the U2Xn found in the UCSRnA register. When using synchronous mode (UMSELn = 
1), the data direction register for the XCKn pin (DDR_XCKn) controls whether the clock 
source is internal (master mode) or external (slave mode). The XCKn pin is only active 
when using synchronous mode.   
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Figure 22-2 on page 331 shows a block diagram of the clock generation logic.  

Figure 23-2. Clock Generation Logic, Block Diagram 
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Signal description:  

txclk  Transmitter clock (internal signal).  

rxclk  Receiver base clock (internal signal).  

xcki  Input from XCK pin (internal signal). Used for synchronous slave operation.  

xcko  Clock output to XCK pin (internal signal). Used for synchronous master 
operation.  

fOSC System clock frequency.  

23.3.1 Internal Clock Generation – The Baud Rate Generator 

Internal clock generation is used for the asynchronous and the synchronous master 
modes of operation. The description in this section refers to Figure 22-2 on page 331.  

The USART Baud Rate Register (UBRRn) and the down-counter connected to it 
function as a programmable prescaler or baud rate generator. The down-counter, 
running at system clock (fOSC), is loaded with the UBRRn value each time the counter 
has counted down to zero or when the UBRRLn register is written. A clock is generated 
each time the counter reaches zero. This clock is the baud rate generator clock output 
(= fOSC/(UBRRn+1)). The transmitter divides the baud rate generator clock output by 2, 
8 or 16 depending on mode. The baud rate generator output is used directly by the 
receiver’s clock and data recovery units. However, the recovery units use a state 
machine that uses 2, 8 or 16 states depending on mode set by the state of the 
UMSELn, U2Xn and DDR_XCKn bits.  

Table 23-1 below contains equations for calculating the baud rate (in bits per second) 
and for calculating the UBRRn value for each mode of operation using an internally 
generated clock source.  

Table 23-1. Equations for Calculating Baud Rate Register Setting 

Operating Mode  Equation for Calculating 

Baud Rate
(1)

  

Equation for Calculating 

UBRR Value  

Asynchronous Normal Mode 
(U2Xn = 0)  

)1(16 +
=

UBRRn

f
BAUD OSC              1

16
−=

BAUD

f
UBRRn OSC  

Asynchronous Double Speed 
Mode (U2Xn = 1)  

)1(8 +
=

UBRRn

f
BAUD OSC  1

8
−=

BAUD

f
UBRRn OSC
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Operating Mode  Equation for Calculating 

Baud Rate
(1)

  

Equation for Calculating 

UBRR Value  

Synchronous Master Mode  

)1(2 +
=

UBRRn

f
BAUD OSC  1

2
−=

BAUD

f
UBRRn OSC

 

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).  

BAUD   Baud rate (in bits per second, bps)  

fOSC   System oscillator clock frequency  

UBRRn  Contents of the UBRRHn and UBRRLn registers, (0-4095)  

Some examples of UBRRn values for some system clock frequencies are found in 
Table 23-14 on page 365.  

23.3.2 Double Speed Operation (U2Xn) 

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit 
only has effect for the asynchronous operation. Set this bit to zero when using 
synchronous operation.  

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively 
doubling the transfer rate for asynchronous communication. Note however that the 
receiver will in this case only use half the number of samples (reduced from 16 to 8) for 
data sampling and clock recovery, and therefore a more accurate baud rate setting and 
system clock are required when this mode is used. For the transmitter, there are no 
downsides.  

23.3.3 External Clock 

External clocking is used by the synchronous slave modes of operation. The description 
in this section refers to Figure 22-2 on page 331 for details.  

External clock input from the XCKn pin is sampled by a synchronization register to 
minimize the chance of meta-stability. The output from the synchronization register 
must then pass through an edge detector before it can be used by the transmitter and 
receiver. This process introduces a two CPU clock period delay and therefore the 
maximum external XCKn clock frequency is limited by the following equation:  

  
4

OSC

XCK

f
f <  

Note that fOSC depends on the stability of the system clock source. It is therefore 
recommended to add some margin to avoid possible loss of data due to frequency 
variations.  

23.3.4 Synchronous Clock Operation 

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either 
clock input (slave) or clock output (master). The dependency between the clock edges 
and data sampling or data change is the same. The basic principle is that data input (on 
RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn) 
is changed.  
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Figure 23-3. Synchronous Mode XCKn Timing 

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample  

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and 
which is used for data change. As Figure 22-3 on page 335 shows, when UCPOLn is 
zero the data will be changed at rising XCKn edge and sampled at falling XCKn edge. If 
UCPOLn is set, the data will be changed at falling XCKn edge and sampled at rising 
XCKn edge.  

23.4 Frame Formats 

A serial frame is defined to be one character of data bits with synchronization bits (start 
and stop bits), and optionally a parity bit for error checking. The USART accepts all 30 
combinations of the following as valid frame formats:  

• 1 start bit  

• 5, 6, 7, 8, or 9 data bits  

• no, even or odd parity bit  

• 1 or 2 stop bits  

A frame starts with the start bit followed by the least significant data bit. Then the next 
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If 
enabled, the parity bit is inserted after the data bits, before the stop bits. When a 
complete frame is transmitted, it can be directly followed by a new frame, or the 
communication line can be set to an idle (high) state. Figure 23-4 below illustrates the 
possible combinations of the frame formats. Bits inside brackets are optional.  

Figure 23-4. Frame Formats 

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

 

St  Start bit, always low  

(n)  Data bits (0 to 8) 

P  Parity bit - can be odd or even 

Sp  Stop bit, always high 

IDLE  No transfers on the communication line (RxDn or TxDn). An IDLE line must be 
high 

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn 
bits in UCSRnB and UCSRnC. The receiver and transmitter use the same setting. Note 
that changing the setting of any of these bits will corrupt all ongoing communication for 
both the receiver and transmitter.  
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The USART Character Size (UCSZn2:0) bits select the number of data bits in the 
frame. The USART Parity Mode (UPMn1:0) bits enable and set the type of parity bit. 
The selection between one or two stop bits is done by the USART Stop Bit Select 
(USBSn) bit. The receiver ignores the second stop bit. A frame error will therefore only 
be detected in cases where the first stop bit is zero.  

23.4.1 Parity Bit Calculation 

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is 
used, the result of the exclusive or is inverted. The parity bit is located between the last 
data bit and first stop bit of a serial frame. The relation between the parity bit and data 
bits is as follows: 

1

0

01231

01231

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

−

−

dddddP

dddddP

nodd

neven

K

K

 

Peven  Parity bit using even parity  

Podd  Parity bit using odd parity  

dn  Data bit n of the character  

23.5 USART Initialization 

The USART has to be initialized before any communication can take place. The 
initialization process normally consists of setting the baud rate, setting frame format and 
enabling the transmitter or the receiver depending on the usage. For interrupt driven 
USART operation, the global interrupt flag should be cleared (and interrupts globally 
disabled) when doing the initialization.  

Before doing a re-initialization with changed baud rate or frame format, be sure that 
there are no ongoing transmissions during the period the registers are changed. The 
TXCn flag can be used to check that the transmitter has completed all transfers, and 
the RXC flag can be used to check that there are no unread data in the receive buffer. 
Note that the TXCn flag must be cleared before each transmission (before UDRn is 
written) if it is used for this purpose.  

The following simple USART initialization code examples show one assembly and one 
C function that are equal in functionality. The examples assume asynchronous 
operation using polling (no interrupts enabled) and a fixed frame format. The baud rate 
is given as a function parameter. For the assembly code, the baud rate parameter is 
assumed to be stored in the r17:r16 Registers.  

Assembly Code Example
(1)

  

USART_Init: 

 ; Set baud rate 

 out UBRRnH, r17 

 out UBRRnL, r16 

 ; Enable receiver and transmitter 

 ldi r16, (1<<RXENn)|(1<<TXENn) 

 out UCSRnB,r16 

 ; Set frame format: 8data, 2stop bit 

 ldi r16, (1<<USBSn)|(3<<UCSZn0) 

 out UCSRnC,r16 

 ret  
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C Code Example
(1)

  

#define FOSC 8000000// Clock Speed 

#define BAUD 9600 

#define (MYUBRR FOSC/16/BAUD-1) 

void main( void ) 

{... 

USART_Init ( MYUBRR ); 

...} // main 

void USART_Init( unsigned int ubrr){ 

/* Set baud rate */ 

UBRRnH = (unsigned char)(ubrr>>8); 

UBRRnL = (unsigned char) ubrr; 

/* Enable receiver and transmitter */ 

UCSRnB = (1<<RXEN)|(1<<TXEN); 

/* Set frame format: 8data, 2stop bit */ 

UCSRnC = (1<<USBS)|(3<<UCSZ0); 

} // USART_Init  

Note: 1. See "About Code Examples" on page 7  

More advanced initialization routines can be made that include frame format as 
parameters, disable interrupts and so on. However, many applications use a fixed 
setting of the baud and control registers, and for these types of applications the 
initialization code can be placed directly in the main routine, or be combined with 
initialization code for other I/O modules.  

23.6 Data Transmission – The USART Transmitter 

The USART transmitter is enabled by setting the Transmit Enable (TXEN) bit in the 
UCSRnB register. When the transmitter is enabled, the normal port operation of the 
TxDn pin is overridden by the USART and gives the function as the transmitter’s serial 
output. The baud rate, mode of operation and frame format must be set up once before 
doing any transmissions. If synchronous operation is used, the clock on the XCKn pin 
will be overridden and used as transmission clock.  

23.6.1 Sending Frames with 5 to 8 Data Bit 

A data transmission is initiated by loading the transmit buffer with the data to be 
transmitted. The CPU can load the transmit buffer by writing to the UDRn I/O location. 
The buffered data in the transmit buffer will be moved to the shift register when the shift 
register is ready to send a new frame. The shift register is loaded with new data if it is in 
idle state (no ongoing transmission) or immediately after the last stop bit of the previous 
frame is transmitted. When the shift register is loaded with new data, it will transfer one 
complete frame at the rate given by the baud rate register, U2Xn bit or by XCKn 
depending on mode of operation.  

The following code examples show a simple USART transmit function based on polling 
of the Data Register Empty Flag (UDREn). When using frames with less than eight bits, 
the most significant bits written to the UDRn are ignored. The USART has to be 
initialized before the function can be used. For the assembly code, the data to be sent 
is assumed to be stored in register r16. 
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Assembly Code Example
(1)

  

USART_Transmit: 

 ; Wait for empty transmit buffer 

 sbis UCSRnA,UDREn rjmp USART_Transmit 

 ; Put data (r16) into buffer, sends the data 

 out UDRn,r16 

 ret 

C Code Example
(1)

  

void USART_Transmit( unsigned char data ) 

{ 

 /* Wait for empty transmit buffer */ 

 while ( !( UCSRnA & (1<<UDREn)) ); 

 /* Put data into buffer, sends the data */ 

 UDRn = data; 

}  

Note: 1. See "About Code Examples" on page 7  

The function simply waits for the transmit buffer to be empty by checking the UDREn 
flag, before loading it with new data to be transmitted. If the data register empty 
interrupt is utilized, the interrupt routine writes the data into the buffer. 

23.6.2 Sending Frames with 9 Data Bit 

If 9 bit characters are used (UCSZn2:0 = 7), the ninth bit must be written to the TXB8 bit 
in UCSRnB before the low byte of the character is written to UDRn. The following code 
examples show a transmit function that handles 9 bit characters. For the assembly 
code, the data to be sent is assumed to be stored in registers r17:r16.  

 

Assembly Code Example
(1)(2)

 

USART_Transmit: 

 ; Wait for empty transmit buffer 

 sbis UCSRnA,UDREn 

 rjmp USART_Transmit 

 ; Copy 9th bit from r17 to TXB8 

 cbi UCSRnB,TXB8 

 sbrc r17,0 

 sbi UCSRnB,TXB8 

 ; Put LSB data (r16) into buffer, sends the data 

 out UDRn,r16 

 ret  
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C Code Example
(1)(2)

 

void USART_Transmit( unsigned int data ) 

{  

 /* Wait for empty transmit buffer */ 

 while ( !( UCSRnA & (1<<UDREn))) ); 

 /* Copy 9th bit to TXB8 */ 

 UCSRnB &= ~(1<<TXB8); 

 if ( data & 0x0100 )  

   UCSRnB |= (1<<TXB8); 

 /* Put data into buffer, sends the data */ 

 UDRn = data; 

}  

Note: 1. These transmit functions are written to be general functions. They can be 
optimized if the content of the UCSRnB is static. For example, only the TXB8 bit 
of the UCSRnB register is used after initialization.  

2. See "About Code Examples" on page 7  

The 9
th
 bit can be used for indicating an address frame when using multi processor 

communication mode or for other protocol handling as for example synchronization.  

23.6.3 Transmitter Flags and Interrupts 

The USART transmitter has two flags that indicate its state: USART Data Register 
Empty (UDREn) and Transmit Complete (TXCn). Both flags can be used for generating 
interrupts.  

The Data Register Empty Flag (UDREn) indicates whether the transmit buffer is ready 
to receive new data. This bit is set when the transmit buffer is empty, and cleared when 
the transmit buffer contains data to be transmitted that has not yet been moved into the 
shift register. For compatibility with future devices, always write this bit to zero when 
writing the UCSRnA register.  

When the USART Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is 
written to one, the USART data register empty interrupt will be executed as long as 
UDREn is set (provided that global interrupts are enabled). UDREn is cleared by writing 
UDRn. When interrupt-driven data transmission is used, the data register empty 
interrupt routine must either write new data to UDRn in order to clear UDREn or disable 
the data register empty interrupt, otherwise a new interrupt will occur once the interrupt 
routine terminates.  

The Transmit Complete Flag (TXCn) bit is set one when the entire frame in the transmit 
shift register has been shifted out and there are no new data currently present in the 
transmit buffer. The TXCn flag bit is automatically cleared when a transmission 
complete interrupt is executed, or it can be cleared by writing a one to its bit location. 
The TXCn flag is useful in half-duplex communication interfaces (like the RS-485 
standard), where a transmitting application must enter receive mode and free the 
communication bus immediately after completing the transmission.  

When the Transmission Complete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the 
USART transmission complete interrupt will be executed when the TXCn flag becomes 
set (provided that global interrupts are enabled). When the transmission complete 
interrupt is used, the interrupt handling routine does not have to clear the TXCn flag. 
This is done automatically when the interrupt is executed.  
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23.6.4 Parity Generator 

The parity generator calculates the parity bit for the serial frame data. When parity bit is 
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last 
data bit and the first stop bit of the frame that is sent.  

23.6.5 Disabling the Transmitter 

The disabling of the transmitter (setting the TXEN to zero) will not become effective until 
ongoing and pending transmissions are completed, i.e., when the transmit shift register 
and transmit buffer register do not contain data to be transmitted. The transmitter will no 
longer override the TxDn pin when disabled.  

23.7 Data Reception – The USART Receiver 

The USART receiver is enabled by writing the Receive Enable (RXENn) bit in the 
UCSRnB register to one. When the receiver is enabled, the normal pin operation of the 
RxDn pin is overridden by the USART and given the function as the receiver’s serial 
input. The baud rate, mode of operation and frame format must be set up once before 
any serial reception can be done. If synchronous operation is used, the clock on the 
XCKn pin will be used as transfer clock.  

23.7.1 Receiving Frames with 5 to 8 Data Bits 

The receiver starts data reception when it detects a valid start bit. Each bit that follows 
the start bit will be sampled at the baud rate or XCKn clock, and shifted into the receive 
shift register until the first stop bit of a frame is received. A second stop bit will be 
ignored by the receiver. When the first stop bit is received, i.e., a complete serial frame 
is present in the receive shift register, the contents of the shift register will be moved 
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O 
location.  

The following code example shows a simple USART receive function based on polling 
of the Receive Complete Flag (RXCn). When using frames with less than eight bits the 
most significant bits of the data read from the UDRn will be masked to zero. The 
USART has to be initialized before the function can be used. The function simply waits 
for data to be present in the receive buffer by checking the RXCn flag before reading 
the buffer and returning the value. 

Assembly Code Example
(1)

  

USART_Receive: 

 ; Wait for data to be received 

 sbis UCSRnA, RXCn 

 rjmp USART_Receive 

 ; Get and return received data from buffer 

 in r16, UDRn 

 ret  
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C Code Example
(1)

  

unsigned char USART_Receive( void ) 

{ 

 /* Wait for data to be received */ 

 while ( !(UCSRnA & (1<<RXCn)) ); 

 /* Get and return received data from buffer */ 

 return UDRn; 

}  

Note: 1. See "About Code Examples" on page 7  

23.7.2 Receiving Frames with 9 Data Bits 

If 9 bit characters are used (UCSZn2:0=7) the 9
th
 bit must be read from the RXB8n bit in 

UCSRnB before reading the low bits from the UDRn register. This rule applies to the 
FEn, DORn and UPEn status flags as well. Read status from UCSRnA, then data from 
UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO 
and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the 
FIFO, will change.  

The following code example shows a simple USART receive function that handles both 
nine bit characters and the status bits.  

Assembly Code Example
(1)

  

USART_Receive:  

 ; Wait for data to be received 

 sbis UCSRnA, RXCn 

 rjmp USART_Receive 

 ; Get status and 9th bit, then data from buffer 

 in r18, UCSRnA 

 in r17, UCSRnB 

 in r16, UDRn 

 ; If error, return -1 

 andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn) 

 breq USART_ReceiveNoError 

 ldi r17, HIGH(-1) 

 ldi r16, LOW(-1) 

USART_ReceiveNoError: 

 ; Filter the 9th bit, then return 

 lsr r17 

 andi r17, 0x01 

 ret 
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C Code Example
(1)

  

unsigned int USART_Receive( void ) 

{ 

 unsigned char status, resh, resl; 

 /* Wait for data to be received */ 

 while ( !(UCSRnA & (1<<RXCn)) ); 

 /* Get status and 9th bit, then data */ 

 /* from buffer */ 

 status = UCSRnA; 

 resh = UCSRnB; 

 resl = UDRn; 

 /* If error, return -1 */ 

 if ( status & (1<<FEn)|(1<<DORn)|(1<<UPEn) ) 

   return -1; 

 /* Filter the 9th bit, then return */ 

 resh = (resh >> 1) & 0x01; 

 return ((resh << 8) | resl); 

} 

Note: 1. See "About Code Examples" on page 7  

The receive function example reads all the I/O registers into the register file before any 
computation is done. This gives an optimal receive buffer utilization since the buffer 
location read will be free to accept new data as early as possible. 

23.7.3 Receive Complete Flag and Interrupt 

The USART receiver has one flag that indicates the receiver state.  

The Receive Complete Flag (RXCn) indicates if there are unread data present in the 
receive buffer. This flag is one when unread data exist in the receive buffer, and zero 
when the receive buffer is empty (i.e., does not contain any unread data). If the receiver 
is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn 
bit will become zero.  

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART 
receive complete interrupt will be executed as long as the RXCn flag is set (provided 
that global interrupts are enabled). When interrupt-driven data reception is used, the 
receive complete routine must read the received data from UDRn in order to clear the 
RXCn flag, otherwise a new interrupt will occur once the interrupt routine terminates.  

23.7.4 Receiver Error Flags 

The USART receiver has three error flags: Frame Error (FEn), Data OverRun (DORn) 
and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the 
error flags is that they are located in the receive buffer together with the frame for which 
they indicate the error status. Due to the buffering of the error flags, the UCSRnA must 
be read before the receive buffer (UDRn), since reading the UDRn I/O location changes 
the buffer read location. The error flags cannot be altered by the application software 
doing a write to the flag location. However, all flags must be set to zero when the 
UCSRnA is written for upward compatibility of future USART implementations. None of 
the error flags can generate interrupts.  

The Frame Error Flag (FEn) indicates the state of the first stop bit of the next readable 
frame stored in the receive buffer. The FEn flag is zero when the stop bit was correctly 
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read (as one), and the FEn flag will be one when the stop bit was incorrect (zero). This 
flag can be used for detecting out-of-sync conditions, detecting break conditions and 
protocol handling. The FEn flag is not affected by the setting of the USBSn bit in 
UCSRnC since the receiver ignores all, except for the first, stop bits. For compatibility 
with future devices, always set this bit to zero when writing to UCSRnA.  

The Data OverRun Flag (DORn) indicates data loss due to a receiver buffer full 
condition. A data overrun occurs when the receive buffer is full (two characters), it is a 
new character waiting in the receive shift register, and a new start bit is detected. If the 
DORn flag is set there was one or more serial frame lost between the frame last read 
from UDRn, and the next frame read from UDRn. For compatibility with future devices, 
always write this bit to zero when writing to UCSRnA. The DORn flag is cleared when 
the frame received was successfully moved from the shift register to the receive buffer.  

The Parity Error Flag (UPEn) indicates that the next frame in the receive buffer had a 
parity error when received. If parity check is not enabled the UPEn bit will always be 
read zero. For compatibility with future devices, always set this bit to zero when writing 
to UCSRnA. For more details see "Parity Bit Calculation" on page 344 and "Parity 
Checker" below.  

23.7.5 Parity Checker 

The parity checker is active when the high USART parity mode (UPMn1) bit is set. Type 
of parity check to be performed (odd or even) is selected by the UPMn0 bit. When 
enabled, the parity checker calculates the parity of the data bits in incoming frames and 
compares the result with the parity bit from the serial frame. The result of the check is 
stored in the receive buffer together with the received data and stop bits. The Parity 
Error Flag (UPEn) can then be read by software to check if the frame had a parity error.  

The UPEn bit is set if the next character that can be read from the receive buffer had a 
parity error when received .The parity checking was enabled at that point (UPMn1 = 1). 
This bit is valid until the receive buffer (UDRn) is read.  

23.7.6 Disabling the Receiver 

In contrast to the transmitter, disabling of the receiver will be immediate. Data from 
ongoing receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) 
the receiver will no longer override the normal function of the RxDn port pin. The 
receiver buffer FIFO will be flushed when the receiver is disabled. Remaining data in 
the buffer will be lost  

23.7.7 Flushing the Receive Buffer 

The receiver buffer FIFO will be flushed when the receiver is disabled, i.e., the buffer 
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed 
during normal operation, due to for instance an error condition, read the UDRn I/O 
location until the RXCn flag is cleared. The following code example shows how to flush 
the receive buffer.  

Assembly Code Example
(1)

  

USART_Flush: 

 sbis UCSRnA, RXCn 

 ret 

 in r16, UDRn 

 rjmp USART_Flush  
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C Code Example
(1)

  

void USART_Flush( void ) 

{  

 unsigned char dummy; 

 while ( UCSRnA & (1<<RXCn) ) dummy = UDRn; 

}  

Note: 1. See "About Code Examples" on page 7  

23.8 Asynchronous Data Reception 

The USART includes a clock recovery and a data recovery unit for handling 
asynchronous data reception. The clock recovery logic is used for synchronizing the 
internally generated baud rate clock to the incoming asynchronous serial frames at the 
RxDn pin. The data recovery logic samples and low pass filters each incoming bit, 
thereby improving the noise immunity of the receiver. The asynchronous reception 
operational range depends on the accuracy of the internal baud rate clock, the rate of 
the incoming frames, and the frame size in number of bits.  

23.8.1 Asynchronous Clock Recovery 

The clock recovery logic synchronizes internal clock to the incoming serial frames. 
Figure 23-5 below illustrates the sampling process of the start bit of an incoming frame. 
The sample rate is 16 times the baud rate for Normal mode, and eight times the baud 
rate for double speed mode. The horizontal arrows illustrate the synchronization 
variation due to the sampling process. Note the larger time variation when using the 
double speed mode (U2Xn = 1) of operation. Samples denoted zero are samples done 
when the RxDn line is idle (i.e., no communication activity).  

Figure 23-5. Start Bit Sampling 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

 

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn 
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-
sample as shown in the figure. The clock recovery logic then uses samples 8, 9 and 10 
for Normal mode, and samples 4, 5 and 6 for double speed mode (indicated with 
sample numbers inside boxes on the figure), to decide if a valid start bit is received. If 
two or more of these three samples have logical high levels (the majority wins), the start 
bit is rejected as a noise spike and the receiver starts looking for the next high to low-
transition. If however, a valid start bit is detected, the clock recovery logic is 
synchronized and the data recovery can begin. The synchronization process is 
repeated for each start bit.  

23.8.2 Asynchronous Data Recovery 

When the receiver clock is synchronized to the start bit, the data recovery can begin. 
The data recovery unit uses a state machine that has 16 states for each bit in Normal 
mode and eight states for each bit in double speed mode. Figure 23-6 on page 353 
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shows the sampling of the data bits and the parity bit. Each of the samples is given a 
number that is equal to the state of the recovery unit.  

Figure 23-6. Sampling of Data and Parity Bit 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

 

The decision of the logic level of the received bit is taken by doing a majority voting of 
the logic value to the three samples in the centre of the received bit. The centre 
samples are emphasized on the figure by having the sample number inside boxes. The 
majority voting process is done as follows: 

If two or all three samples have high levels, the received bit is registered to be logic 1. If 
two or all three samples have low levels, the received bit is registered to be logic 0. This 
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. 
The recovery process is then repeated until a complete frame is received including the 
first stop bit. Note that the receiver only uses the first stop bit of a frame.  

Figure 23-7 below shows the sampling of the stop bit and the earliest possible 
beginning of the start bit of the next frame.  

Figure 23-7. Stop Bit Sampling and Next Start Bit Sampling 

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

 

The same majority voting is done to the stop bit as done for the other bits in the frame. 
If the stop bit is registered to have a logic 0 value, the Frame Error Flag (FEn) will be 
set.  

A new high to low transition indicating the start bit of a new frame can come right after 
the last of the bits used for majority voting. For normal speed mode, the first low level 
sample can be at point marked (A) in Figure 23-7 above. For double speed mode the 
first low level must be delayed to (B). (C) marks a stop bit of full length. The early start 
bit detection influences the operational range of the receiver.  

23.8.3 Asynchronous Operational Range 

The operational range of the receiver is dependent on the mismatch between the 
received bit rate and the internally generated baud rate. If the transmitter is sending 
frames at too fast or too slow bit rates, or the internally generated baud rate of the 
receiver does not have a similar (see Table 23-2 on page 354) base frequency, the 
receiver will not be able to synchronize the frames to the start bit.  
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The following equations can be used to calculate the ratio of the incoming data rate and 
internal receiver baud rate.  

MF

fast

F

slow
SSD

SD
R

SSDS

SD
R

++

+
=

+⋅+−

+
=

)1(

)2(

1

)1(
 

D Sum of character size and parity size (D = 5 to 10 bit)  

S  Samples per bit. S = 16 for normal speed mode and S = 8 for double speed 
mode.  

SF First sample number used for majority voting. SF = 8 for normal speed and      
SF = 4 for double speed mode.  

SM Middle sample number used for majority voting. SM = 9 for normal speed and 
SM = 5 for double speed mode.  

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to 
the receiver baud rate.  

Rfast  is the ratio of the fastest incoming data rate that can be accepted in relation to 
the receiver baud rate.  

Table 23-2 below and Table 23-3 below list the maximum receiver baud rate error that 
can be tolerated. Note that normal speed mode has higher tolerance of baud rate 
variations.  

Table 23-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode 
(U2Xn = 0) 

D  

# (Data+Parity Bit)  

 

Rslow (%)  

 

Rfast (%)  

 

Max Total Error (%)  

Recommended Max 

Receiver Error (%)  

5  93.20  106.67  +6.67/-6.8  ± 3.0  

6  94.12  105.79  +5.79/-5.88  ± 2.5  

7  94.81  105.11  +5.11/-5.19  ± 2.0  

8  95.36  104.58  +4.58/-4.54  ± 2.0  

9  95.81  104.14  +4.14/-4.19  ± 1.5  

10  96.17  103.78  +3.78/-3.83  ± 1.5  

Table 23-3. Recommended Maximum Receiver Baud Rate Error for Double Speed 
Mode (U2Xn = 1) 

D  

# (Data+Parity Bit)  

 

Rslow (%)  

 

Rfast (%)  

 

Max Total Error (%)  

Recommended Max 

Receiver Error (%)  

5  94.12  105.66  +5.66/-5.88  ± 2.5  

6  94.92  104.92  +4.92/-5.08  ± 2.0  

7  95.52  104,35  +4.35/-4.48  ± 1.5  

8  96.00  103.90  +3.90/-4.00  ± 1.5  

9  96.39  103.53  +3.53/-3.61  ± 1.5  

10  96.70  103.23  +3.23/-3.30  ± 1.0  

The recommendations of the maximum receiver baud rate error were made under the 
assumption that the receiver and transmitter equally divides the maximum total error.  

There are two possible sources for the receiver baud rate error. The receiver’s system 
clock will always have some minor instability over the supply voltage range and the 
temperature range. When using the radio transceiver crystal oscillator (XOSC) to 
generate the system clock, this is rarely a problem, but for the internal RC oscillator the 
system clock may differ more than 2% over the temperature range. The second source 
for the error is more controllable. The baud rate generator can not always do an exact 
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division of the system frequency to get the baud rate wanted. In this case an UBRR 
value that gives an acceptable low error can be used if possible.  

23.9 Multi-processor Communication Mode 

Setting the Multi-processor Communication Mode (MPCMn) bit in UCSRnA enables a 
filtering function of incoming frames received by the USART receiver. Frames that do 
not contain address information will be ignored and not put into the receive buffer. This 
effectively reduces the number of incoming frames that has to be handled by the MCU, 
in a system with multiple MCUs that communicate via the same serial bus. The 
transmitter is unaffected by the MPCMn setting, but has to be used differently when it is 
a part of a system utilizing the multi-processor communication mode.  

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop 
bit indicates if the frame contains data or address information. If the receiver is set up 
for frames with nine data bits, then the ninth bit (RXB8n) is used for identifying address 
and data frames. When the frame type bit (the first stop or the ninth bit) is one, the 
frame contains an address. When the frame type bit is zero the frame is a data frame.  

The multi-processor communication mode enables several slave MCUs to receive data 
from a master MCU. This is done by first decoding an address frame to find out which 
MCU has been addressed. If a particular slave MCU has been addressed, it will receive 
the following data frames as normal, while the other slave MCUs will ignore the 
received frames until another address frame is received.  

23.9.1 Using MPCMn 

For an MCU to act as a master MCU, it can use a 9 bit character frame format 
(UCSZn2:0 = 7). The 9

th
 bit (TXB8n) must be set when an address frame (TXB8n = 1) 

or cleared when a data frame (TXB = 0) is being transmitted. The slave MCUs must in 
this case be set to use a 9 bit character frame format.  

The following procedure should be used to exchange data in multi-processor 
communication mode:  

1. All slave MCUs are in multi-processor communication mode (MPCMn in UCSRnA is 
set).  

2. The master MCU sends an address frame, and all slaves receive and read this 
frame. In the slave MCUs, the RXCn flag in UCSRnA will be set as normal.  

3. Each slave MCU reads the UDRn register and determines if it has been selected. If 
so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte 
and keeps the MPCMn setting.  

4. The addressed MCU will receive all data frames until a new address frame is 
received. The other slave MCUs, which still have the MPCMn bit set, will ignore the 
data frames.  

5. When the last data frame is received by the addressed MCU, the addressed MCU 
sets the MPCMn bit and waits for a new address frame from master. The process 
then repeats from 2.  

Using any of the 5 to 8 bit character frame formats is possible, but impractical since the 
receiver must change between using n and n+1 character frame formats. This makes 
full-duplex operation difficult since the transmitter and receiver uses the same character 
size setting. If 5 to 8 bit character frames are used, the transmitter must be set to use 
two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame type.  
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Do not use read-modify-write instructions (SBI and CBI) to set or clear the MPCMn bit. 
The MPCMn bit shares the same I/O location as the TXCn flag and this might 
accidentally be cleared when using SBI or CBI instructions.  

23.10 Register Description 

23.10.1 UDR0 – USART0 I/O Data Register 

Bit 7 6 5 4 3 2 1 0  

NA ($C6) UDR07:00 UDR0 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers 
share the same I/O address referred to as USART Data Register or UDR0. The 
Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR0 
Register location. Reading the UDR0 Register location will return the contents of the 
Receive Data Buffer Register (RXB). For 5-, 6-, or 7-bit characters the upper unused 
bits will be ignored by the Transmitter and set to zero by the Receiver. The transmit 
buffer can only be written when the UDRE0 Flag in the UCSR0A Register is set. Data 
written to UDR0 when the UDRE0 Flag is not set, will be ignored by the USART 
Transmitter. When data is written to the transmit buffer and the Transmitter is enabled, 
the Transmitter will load the data into the Transmit Shift Register when the Shift 
Register is empty. Then the data will be serially transmitted on the TxD0 pin. The 
receive buffer consists of a two level FIFO. The FIFO will change its state whenever the 
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-
Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit test 
instructions (SBIC and SBIS), since these also will change the state of the FIFO. 

• Bit 7:0 – UDR07:00 - USART I/O Data Register 

 

23.10.2 UCSR0A – USART0 Control and Status Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($C0) RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 UCSR0A 

Read/Write R RW R R R R RW RW  

Initial Value 0 0 1 0 0 0 0 0   
 

• Bit 7 – RXC0 - USART Receive Complete 

This flag bit is set when there are unread data in the receive buffer and cleared when 
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is 
disabled, the receive buffer will be flushed and consequently the RXC0 bit will become 
zero. The RXC0 Flag can be used to generate a Receive Complete interrupt (see 
description of the RXCIE0 bit). 

• Bit 6 – TXC0 - USART Transmit Complete 

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted 
out and there are no new data currently present in the transmit buffer (UDR0). The 
TXC0 Flag bit is automatically cleared when a transmit complete interrupt is executed, 
or it can be cleared by writing a one to its bit location. The TXC0 Flag can generate a 
Transmit Complete interrupt (see description of the TXCIE0 bit). 
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• Bit 5 – UDRE0 - USART Data Register Empty 

The UDRE0 Flag indicates if the transmit buffer (UDR0) is ready to receive new data. If 
UDRE0 is one, the buffer is empty, and therefore ready to be written. The UDRE0 Flag 
can generate a Data Register Empty interrupt (see description of the UDRIE0 bit). 
UDRE0 is set after a reset to indicate that the Transmitter is ready. 

• Bit 4 – FE0 - Frame Error 

This bit is set if the next character in the receive buffer had a Frame Error when 
received. I.e., when the first stop bit of the next character in the receive buffer is zero. 
This bit is valid until the receive buffer (UDR0) is read. The FE0 bit is zero when the 
stop bit of received data is one. Always set this bit to zero when writing to UCSR0A. 

• Bit 3 – DOR0 - Data OverRun 

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when 
the receive buffer is full (two characters), it is a new character waiting in the Receive 
Shift Register and a new start bit is detected. This bit is valid until the receive buffer 
(UDR0) is read. Always set this bit to zero when writing to UCSR0A. 

• Bit 2 – UPE0 - USART Parity Error 

This bit is set if the next character in the receive buffer had a Parity Error when received 
and the Parity Checking was enabled at that point (UPM01 = 1). This bit is valid until the 
receive buffer (UDR0) is read. Always set this bit to zero when writing to UCSR0A. 

• Bit 1 – U2X0 - Double the USART Transmission Speed 

This bit only has effect for the asynchronous operation. Write this bit to zero when using 
synchronous operation. Writing this bit to one will reduce the divisor of the baud rate 
divider from 16 to 8 effectively doubling the transfer rate for asynchronous 
communication. 

• Bit 0 – MPCM0 - Multi-processor Communication Mode 

This bit enables the Multi-processor Communication mode. When the MPCM0 bit is 
written to one, all the incoming frames received by the USART Receiver that do not 
contain address information will be ignored. The Transmitter is unaffected by the 
MPCM0 setting. For more detailed information see section "Multi-processor 
Communication Mode". 

 

23.10.3 UCSR0B – USART0 Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($C1) RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 UCSR0B 

Read/Write RW RW RW RW RW RW R W  

Initial Value 0 0 1 0 0 0 0 0   
 

• Bit 7 – RXCIE0 - RX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the RXC0 Flag. A USART Receive Complete 
interrupt will be generated only if the RXCIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the RXC0 bit in UCSR0A is set. 

• Bit 6 – TXCIE0 - TX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the TXC0 Flag. A USART Transmit Complete 
interrupt will be generated only if the TXCIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the TXC0 bit in UCSR0A is set. 

• Bit 5 – UDRIE0 - USART Data Register Empty Interrupt Enable 
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Writing this bit to one enables interrupt on the UDRE0 Flag. A Data Register Empty 
interrupt will be generated only if the UDRIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the UDRE0 bit in UCSR0A is set. 

• Bit 4 – RXEN0 - Receiver Enable 

Writing this bit to one enables the USART Receiver. The Receiver will override normal 
port operation for the RxD0 pin when enabled. Disabling the Receiver will flush the 
receive buffer invalidating the FE0, DOR0 and UPE0 Flags. 

• Bit 3 – TXEN0 - Transmitter Enable 

Writing this bit to one enables the USART Transmitter. The Transmitter will override 
normal port operation for the TxD0 pin when enabled. The disabling of the Transmitter 
(writing TXEN0 to zero) will not become effective until ongoing and pending 
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer 
Register do not contain data to be transmitted. When disabled, the Transmitter will no 
longer override the TxD0 port. 

• Bit 2 – UCSZ02 - Character Size 

The UCSZ02 bits combined with the UCSZ01:0 bit in UCSR0C sets the number of data 
bits (Character Size) in the frame that the Receiver and Transmitter use. 

• Bit 1 – RXB80 - Receive Data Bit 8 

RXB80 is the 9th data bit of the received character when operating with serial frames 
with nine data bits. The bit must be read before reading the lower 8 bits from UDR0. 

• Bit 0 – TXB80 - Transmit Data Bit 8 

TXB80 is the 9th data bit in the character to be transmitted when operating with serial 
frames with nine data bits. The bit must be written before writing the lower 8 bits to 
UDR0. 

 

23.10.4 UCSR0C – USART0 Control and Status Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($C2) UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 1 0   
 

• Bit 7:6 – UMSEL01:00 - USART Mode Select 

These bits select the mode of operation of the USART0 as shown in the following table. 
See section "USART in SPI Mode" for a full description of the Master SPI Mode 
(MSPIM) operation. 

Table 23-4 UMSEL0 Register Bits 

Register Bits Value Description 

0x00 Asynchronous USART 

0x01 Synchronous USART 

0x02 Reserved 

UMSEL01:00 

0x03 Master SPI (MSPIM) 

• Bit 5:4 – UPM01:00 - Parity Mode 

These bits enable and set type of parity generation and check. If enabled, the 
Transmitter will automatically generate and send the parity of the transmitted data bits 
within each frame. The Receiver will generate a parity value for the incoming data and 
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compare it to the UPM0 setting. If a mismatch is detected, the UPE0 Flag in UCSR0A 
will be set. 

Table 23-5 UPM0 Register Bits 

Register Bits Value Description 

0x00 Disabled 

0x01 Reserved 

0x02 Enabled, Even Parity 

UPM01:00 

0x03 Enabled, Odd Parity 

• Bit 3 – USBS0 - Stop Bit Select 

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver 
ignores this setting. 

Table 23-6 USBS0 Register Bits 

Register Bits Value Description 

0x00 1-bit USBS0 

0x01 2-bit 

• Bit 2:1 – UCSZ01:00 - Character Size 

The UCSZ01:0 bits combined with the UCSZ02 bit in UCSR0B sets the number of data 
bits (Character Size) in the frame that the Receiver and Transmitter use. 

Table 23-7 UCSZ0 Register Bits 

Register Bits Value Description 

0 5-bit 

1 6-bit 

2 7-bit 

3 8-bit 

4 Reserved 

5 Reserved 

6 Reserved 

UCSZ01:00 

7 9-bit 

• Bit 0 – UCPOL0 - Clock Polarity 

This bit is used for synchronous mode only. Write this bit to zero when asynchronous 
mode is used. The UCPOL0 bit sets the relationship between data output change and 
data input sample, and the synchronous clock (XCK0). 

Table 23-8 UCPOL0 Register Bits 

Register Bits Value Description 

0 Rising XCKn Edge (Transmitted Data 
Changed), Falling XCKn Edge (Received 
Data Sampled) 

UCPOL0 

1 Falling XCKn Edge (Transmitted Data 
Changed), Rising XCKn Edge (Received 
Data Sampled) 
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23.10.5 UBRR0H – USART0 Baud Rate Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($C5) Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 UBRR0H 

Read/Write R R R R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

UBRR0 is a 12-bit register which contains the USART baud rate. The UBRR0H 
contains the four most significant bits, and the UBRR0L contains the eight least 
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and 
Receiver will be corrupted if the baud rate is changed. Writing UBRR0L will trigger an 
immediate update of the baud rate prescaler. 

• Bit 7:4 – Res3:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 3:0 – UBRR11:8 - USART Baud Rate Register 

These bits represent bits [11:8] of the Baud Rate Register. Sample values for 
commonly used clock frequencies can be found in section "Examples of Baud Rate 
Setting". 

 

23.10.6 UBRR0L – USART0 Baud Rate Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($C4) UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 UBRR0L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

UBRR0 is a 12-bit register which contains the USART baud rate. The UBRR0H 
contains the four most significant bits, and the UBRR0L contains the eight least 
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and 
Receiver will be corrupted if the baud rate is changed. Writing UBRR0L will trigger an 
immediate update of the baud rate prescaler. 

• Bit 7:0 – UBRR7:0 - USART Baud Rate Register 

These bits represent bits [7:0] of the Baud Rate Register. Sample values for commonly 
used clock frequencies can be found in section "Examples of Baud Rate Setting". 

 

23.10.7 UDR1 – USART1 I/O Data Register 

Bit 7 6 5 4 3 2 1 0  

NA ($CE) UDR17:10 UDR1 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers 
share the same I/O address referred to as USART Data Register or UDR1. The 
Transmit Data Buffer Register (TXB) will be the destination for data written to the UDR1 
Register location. Reading the UDR1 Register location will return the contents of the 
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Receive Data Buffer Register (RXB). For 5-, 6-, or 7-bit characters the upper unused 
bits will be ignored by the Transmitter and set to zero by the Receiver. The transmit 
buffer can only be written when the UDRE1 Flag in the UCSR1A Register is set. Data 
written to UDR1 when the UDRE1 Flag is not set, will be ignored by the USART 
Transmitter. When data is written to the transmit buffer and the Transmitter is enabled, 
the Transmitter will load the data into the Transmit Shift Register when the Shift 
Register is empty. Then the data will be serially transmitted on the TxD1 pin. The 
receive buffer consists of a two level FIFO. The FIFO will change its state whenever the 
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-
Modify-Write instructions (SBI and CBI) on this location. Be careful when using bit test 
instructions (SBIC and SBIS), since these also will change the state of the FIFO. 

• Bit 7:0 – UDR17:10 - USART I/O Data Register 

 

23.10.8 UCSR1A – USART1 Control and Status Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($C8) RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 UCSR1A 

Read/Write R RW R R R R RW RW  

Initial Value 0 0 1 0 0 0 0 0   
 

• Bit 7 – RXC1 - USART Receive Complete 

This flag bit is set when there are unread data in the receive buffer and cleared when 
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is 
disabled, the receive buffer will be flushed and consequently the RXC1 bit will become 
zero. The RXC1 Flag can be used to generate a Receive Complete interrupt (see 
description of the RXCIE1 bit). 

• Bit 6 – TXC1 - USART Transmit Complete 

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted 
out and there are no new data currently present in the transmit buffer (UDR1). The 
TXC1 Flag bit is automatically cleared when a transmit complete interrupt is executed, 
or it can be cleared by writing a one to its bit location. The TXC1 Flag can generate a 
Transmit Complete interrupt (see description of the TXCIE1 bit). 

• Bit 5 – UDRE1 - USART Data Register Empty 

The UDRE1 Flag indicates if the transmit buffer (UDR1) is ready to receive new data. If 
UDRE1 is one, the buffer is empty, and therefore ready to be written. The UDRE1 Flag 
can generate a Data Register Empty interrupt (see description of the UDRIE1 bit). 
UDRE1 is set after a reset to indicate that the Transmitter is ready. 

• Bit 4 – FE1 - Frame Error 

This bit is set if the next character in the receive buffer had a Frame Error when 
received. I.e., when the first stop bit of the next character in the receive buffer is zero. 
This bit is valid until the receive buffer (UDR1) is read. The FE1 bit is zero when the 
stop bit of received data is one. Always set this bit to zero when writing to UCSR1A. 

• Bit 3 – DOR1 - Data OverRun 

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when 
the receive buffer is full (two characters), it is a new character waiting in the Receive 
Shift Register and a new start bit is detected. This bit is valid until the receive buffer 
(UDR1) is read. Always set this bit to zero when writing to UCSR1A. 

• Bit 2 – UPE1 - USART Parity Error 
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This bit is set if the next character in the receive buffer had a Parity Error when received 
and the Parity Checking was enabled at that point (UPM11 = 1). This bit is valid until the 
receive buffer (UDR1) is read. Always set this bit to zero when writing to UCSR1A. 

• Bit 1 – U2X1 - Double the USART Transmission Speed 

This bit only has effect for the asynchronous operation. Write this bit to zero when using 
synchronous operation. Writing this bit to one will reduce the divisor of the baud rate 
divider from 16 to 8 effectively doubling the transfer rate for asynchronous 
communication. 

• Bit 0 – MPCM1 - Multi-processor Communication Mode 

This bit enables the Multi-processor Communication mode. When the MPCM1 bit is 
written to one, all the incoming frames received by the USART Receiver that do not 
contain address information will be ignored. The Transmitter is unaffected by the 
MPCM1 setting. For more detailed information see section "Multi-processor 
Communication Mode". 

 

23.10.9 UCSR1B – USART1 Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($C9) RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B 

Read/Write RW RW RW RW RW RW R W  

Initial Value 0 0 1 0 0 0 0 0   
 

• Bit 7 – RXCIE1 - RX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the RXC1 Flag. A USART Receive Complete 
interrupt will be generated only if the RXCIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the RXC1 bit in UCSR1A is set. 

• Bit 6 – TXCIE1 - TX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the TXC1 Flag. A USART Transmit Complete 
interrupt will be generated only if the TXCIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the TXC1 bit in UCSR1A is set. 

• Bit 5 – UDRIE1 - USART Data Register Empty Interrupt Enable 

Writing this bit to one enables interrupt on the UDRE1 Flag. A Data Register Empty 
interrupt will be generated only if the UDRIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the UDRE1 bit in UCSR1A is set. 

• Bit 4 – RXEN1 - Receiver Enable 

Writing this bit to one enables the USART Receiver. The Receiver will override normal 
port operation for the RxD1 pin when enabled. Disabling the Receiver will flush the 
receive buffer invalidating the FE1, DOR1 and UPE1 Flags. 

• Bit 3 – TXEN1 - Transmitter Enable 

Writing this bit to one enables the USART Transmitter. The Transmitter will override 
normal port operation for the TxD1 pin when enabled. The disabling of the Transmitter 
(writing TXEN1 to zero) will not become effective until ongoing and pending 
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer 
Register do not contain data to be transmitted. When disabled, the Transmitter will no 
longer override the TxD1 port. 

• Bit 2 – UCSZ12 - Character Size 
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The UCSZ12 bits combined with the UCSZ11:0 bit in UCSR1C sets the number of data 
bits (Character Size) in the frame that the Receiver and Transmitter use. 

• Bit 1 – RXB81 - Receive Data Bit 8 

RXB81 is the 9th data bit of the received character when operating with serial frames 
with nine data bits. The bit must be read before reading the lower 8 bits from UDR1. 

• Bit 0 – TXB81 - Transmit Data Bit 8 

TXB81 is the 9th data bit in the character to be transmitted when operating with serial 
frames with nine data bits. The bit must be written before writing the lower 8 bits to 
UDR1. 

 

23.10.10 UCSR1C – USART1 Control and Status Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($CA) UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 UCSR1C 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 1 1 0   
 

• Bit 7:6 – UMSEL11:10 - USART Mode Select 

These bits select the mode of operation of the USART1 as shown in the following table. 
See section "USART in SPI Mode" for a full description of the Master SPI Mode 
(MSPIM) operation. 

Table 23-9 UMSEL1 Register Bits 

Register Bits Value Description 

0x00 Asynchronous USART 

0x01 Synchronous USART 

0x02 Reserved 

UMSEL11:10 

0x03 Master SPI (MSPIM) 

• Bit 5:4 – UPM11:10 - Parity Mode 

These bits enable and set type of parity generation and check. If enabled, the 
Transmitter will automatically generate and send the parity of the transmitted data bits 
within each frame. The Receiver will generate a parity value for the incoming data and 
compare it to the UPM1 setting. If a mismatch is detected, the UPE1 Flag in UCSR1A 
will be set. 

Table 23-10 UPM1 Register Bits 

Register Bits Value Description 

0x00 Disabled 

0x01 Reserved 

0x02 Enabled, Even Parity 

UPM11:10 

0x03 Enabled, Odd Parity 

• Bit 3 – USBS1 - Stop Bit Select 

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver 
ignores this setting. 
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Table 23-11 USBS1 Register Bits 

Register Bits Value Description 

0x00 1-bit USBS1 

0x01 2-bit 

• Bit 2:1 – UCSZ11:10 - Character Size 

The UCSZ11:0 bits combined with the UCSZ12 bit in UCSR1B sets the number of data 
bits (Character Size) in the frame that the Receiver and Transmitter use. 

Table 23-12 UCSZ1 Register Bits 

Register Bits Value Description 

0 5-bit 

1 6-bit 

2 7-bit 

3 8-bit 

4 Reserved 

5 Reserved 

6 Reserved 

UCSZ11:10 

7 9-bit 

• Bit 0 – UCPOL1 - Clock Polarity 

This bit is used for synchronous mode only. Write this bit to zero when asynchronous 
mode is used. The UCPOL1 bit sets the relationship between data output change and 
data input sample, and the synchronous clock (XCK1). 

Table 23-13 UCPOL1 Register Bits 

Register Bits Value Description 

0 Rising XCKn Edge (Transmitted Data 
Changed), Falling XCKn Edge (Received 
Data Sampled) 

UCPOL1 

1 Falling XCKn Edge (Transmitted Data 
Changed), Rising XCKn Edge (Received 
Data Sampled) 

 

23.10.11 UBRR1H – USART1 Baud Rate Register High Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($CD) Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 UBRR1H 

Read/Write R R R R RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

UBRR1 is a 12-bit register which contains the USART baud rate. The UBRR1H 
contains the four most significant bits, and the UBRR1L contains the eight least 
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and 
Receiver will be corrupted if the baud rate is changed. Writing UBRR1L will trigger an 
immediate update of the baud rate prescaler. 

• Bit 7:4 – Res3:0 - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 
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• Bit 3:0 – UBRR11:8 - USART Baud Rate Register 

These bits represent bits [11:8] of the Baud Rate Register. Sample values for 
commonly used clock frequencies can be found in section "Examples of Baud Rate 
Setting". 

 

23.10.12 UBRR1L – USART1 Baud Rate Register Low Byte 

Bit 7 6 5 4 3 2 1 0  

NA ($CC) UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 UBRR1L 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

UBRR1 is a 12-bit register which contains the USART baud rate. The UBRR1H 
contains the four most significant bits, and the UBRR1L contains the eight least 
significant bits of the USART baud rate. Ongoing transmissions by the Transmitter and 
Receiver will be corrupted if the baud rate is changed. Writing UBRR1L will trigger an 
immediate update of the baud rate prescaler. 

• Bit 7:0 – UBRR7:0 - USART Baud Rate Register 

These bits represent bits [7:0] of the Baud Rate Register. Sample values for commonly 
used clock frequencies can be found in section "Examples of Baud Rate Setting". 

 

23.11 Examples of Baud Rate Setting 

For standard crystal and resonator frequencies, the most commonly used baud rates for 
asynchronous operation can be generated by using the UBRR settings in Table 23-14 
below to Table 23-16 on page 367. UBRR values which yield an actual baud rate 
differing less than 0.5% from the target baud rate, are bold in the table. Higher error 
ratings are acceptable, but the Receiver will have less noise resistance when the error 
ratings are high, especially for large serial frames (see "Asynchronous Operational 
Range" on page 353). The error values are calculated using the following equation:  

[ ] %1001% ⋅









−=

BaudRate

BaudRate
Error

MatchClosest
 

Table 23-14. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies 

fOSC = 1.8432 MHz  fOSC = 2.0000 MHz  fOSC = 3.6864  MHz  

U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  
Baud  

Rate  

(bps)  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  

2400 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0% 

4800 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0% 

9600 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0% 

14.4k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0% 

19.2k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 

28.8k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 

38.4k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 
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fOSC = 1.8432 MHz  fOSC = 2.0000 MHz  fOSC = 3.6864  MHz  

U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  
Baud  

Rate  

(bps)  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  

57.6k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0% 

76.8k 1 -25.0% 2 0.0% 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 

115.2k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0% 

230.4k - - 0 0.0% - - - - 0 0.0% 1 0.0% 

250k - - - - - - 0 0.0%% 0 -7.8% 1 -7.8% 

Max. 
(1)

  115.2 kbps  230.4 kbps  125 kbps  250 kbps  230.4 kbps 460.8 kbps 

Notes: 1. UBRR = 0, Error = 0.0%  

 

Table 23-15. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued) 

fOSC = 4.0000 MHz  fOSC = 7.3728 MHz  fOSC = 8.0000 MHz 

U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  

 

Baud  

Rate  

(bps)  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  

2400 103 0.2% 207 0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1% 

4800 51 0.2% 103 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2% 

9600 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2% 

14.4k 16 2.1% 34 -0.8% 31 0.0% 63 0.0% 34 -0.8% 68 0.6% 

19.2k 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2% 

28.8k 8 -3.5% 16 2.1% 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 

38.4k 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2% 

57.6k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 

76.8k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 

115.2k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 

230.4k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5% 

250k 0 0.0% 1 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0% 

0.5M - - 0 0.0% 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 

1M - - - - - - 0 -7.8% - - 0 0.0% 

Max. 
(1)

  250 kbps 0.5 Mbps  460.8 kbps  921.6 kbps 0.5 Mbps 1 Mbps 

Notes: 1. UBRR = 0, Error = 0.0%  
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Table 23-16. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued) 

fOSC = 11.0592 MHz  fOSC = 14.7456 MHz  fOSC = 16.0000 MHz 

U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  U2Xn = 0  U2Xn = 1  

 

Baud  

Rate  

(bps)  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  UBRR  Error  

2400 287 0.0% 575 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0% 

4800 143 0.0% 287 0.0% 191 0.0% 383 0.0% 207 0.2% 416 -0.1% 

9600 71 0.0% 143 0.0% 95 0.0% 191 0.0% 103 0.2% 207 0.2% 

14.4k 47 0.0% 95 0.0% 63 0.0% 127 0.0% 68 0.6% 138 -0.1% 

19.2k 35 0.0% 71 0.0% 47 0.0% 95 0.0% 51 0.2% 103 0.2% 

28.8k 23 0.0% 47 0.0% 31 0.0% 63 0.0% 34 -0.8% 68 0.6% 

38.4k 17 0.0% 35 0.0% 23 0.0% 47 0.0% 25 0.2% 51 0.2% 

57.6k 11 0.0% 23 0.0% 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 

76.8k 8 0.0% 17 0.0% 11 0.0% 23 0.0% 12 0.2% 25 0.2% 

115.2k 5 0.0% 11 0.0% 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 

230.4k 2 0.0% 5 0.0% 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 

250k 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3% 3 0.0% 7 0.0% 

0.5M - - 2 -7.8% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0% 

1M - - - - 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 

Max. 
(1)

  691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps 

Notes: 1. UBRR = 0, Error = 0.0%  
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24 USART in SPI Mode 

The Universal Synchronous and Asynchronous Serial Receiver and Transmitter 
(USART) can be set to a master SPI compliant mode of operation. The Master SPI 
Mode (MSPIM) has the following features:  

• Full duplex, three-wire synchronous data transfer  

• Master operation  

• Supports all four SPI modes of operation (mode 0, 1, 2, and 3)  

• LSB first or MSB first data transfer (configurable data order)  

• Queued operation (double buffered)  

• High resolution baud rate generator  

• High speed operation (fXCK,MAX = fCK/2)  

• Flexible interrupt generation  

24.1 Overview 

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode 
of operation the SPI master control logic takes direct control over the USART 
resources. These resources include the transmitter and receiver shift register and 
buffers, and the baud rate generator. The parity generator and checker, the data and 
clock recovery logic, and the RX and TX control logic is disabled. The USART RX and 
TX control logic is replaced by a common SPI transfer control logic. However, the pin 
control logic and interrupt generation logic is identical in both modes of operation.  

The I/O register locations are the same in both modes. However, some of the 
functionality of the control registers changes when using MSPIM.  

24.2 USART MSPIM vs. SPI 

The ATmega128RFA1 USART in MSPIM mode is fully compatible with the 
ATmega128RFA1 SPI regarding:  

• Master mode timing diagram.  

• The UCPOLn bit functionality is identical to the SPI CPOL bit.  

• The UCPHAn bit functionality is identical to the SPI CPHA bit.  

• The UDORDn bit functionality is identical to the SPI DORD bit.  

However, since the USART in MSPIM mode reuses the USART resources, the use of 
the USART in MSPIM mode is somewhat different compared to the SPI. In addition to 
differences of the control register bits, and that only master operation is supported by 
the USART in MSPIM mode, the following features differ between the two modules:  

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI 
has no buffer.  

• The USART in MSPIM mode receiver includes an additional buffer level.  

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.  

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is 
achieved by setting UBRRn accordingly.  

• Interrupt timing is not compatible.  

• Pin control differs due to the master only operation of the USART in MSPIM mode.  

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 24–3 
on page 373.  
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24.2.1 Clock Generation 

The Clock Generation logic generates the base clock for the Transmitter and Receiver. 
For USART MSPIM mode of operation only internal clock generation (i.e. master 
operation) is supported. The Data Direction Register for the XCKn pin (DDR_XCKn) 
must therefore be set to one (i.e. as output) for the USART in MSPIM to operate 
correctly. Preferably the DDR_XCKn should be set up before the USART in MSPIM is 
enabled (i.e. TXENn and RXENn bit set to one).  

The internal clock generation used in MSPIM mode is identical to the USART 
synchronous master mode. The baud rate or UBRRn setting can therefore be 
calculated using the same equations, see Table 24-1 below: 

Table 24-1. Equations for Calculating Baud Rate Register Setting 

 Operating Mode  Equation for Calculating 

Baud Rate
(1)

  

Equation for Calculating 

UBRR Value  

Synchronous Master mode  

)1(2 +
=

UBRRn

f
BAUD OSC

 1
2

−=
BAUD

f
UBRRn OSC

 

Note:  The Baud rate is defined to be the transfer rate in bit per second (bps)  

BAUD  Baud rate (in bits per second, bps)  

fOSC  System Oscillator clock frequency  

UBRRn  Contents of the UBRRHn and UBRRLn Registers, (0-4095)  

24.3 SPI Data Modes and Timing 

There are four combinations of XCKn (SCK) phase and polarity with respect to serial 
data, which are determined by control bits UCPHAn and UCPOLn. The data transfer 
timing diagrams are shown in Figure 24-1 below. Data bits are shifted out and latched 
in on opposite edges of the XCKn signal, ensuring sufficient time for data signals to 
stabilize. The UCPOLn and UCPHAn functionality is summarized in Table 24-2 below. 
Note that changing the setting of any of these bits will corrupt all ongoing 
communication for both the receiver and transmitter. 

Figure 24-1. UCPHAn and UCPOLn data transfer timing diagrams 
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Table 24-2. UCPOLn and UCPHAn Functionality 

UCPOLn  UCPHAn  SPI Mode  Leading Edge  Trailing Edge  

0  0  0  Sample (Rising)  Setup (Falling)  

0  1  1  Setup (Rising)  Sample (Falling)  

1  0  2  Sample (Falling)  Setup (Rising)  
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UCPOLn  UCPHAn  SPI Mode  Leading Edge  Trailing Edge  

1  1  3  Setup (Falling)  Sample (Rising)  

24.4 Frame Formats 

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART 
in MSPIM mode has two valid frame formats:  

• 8-bit data with MSB first  

• 8-bit data with LSB first  

A frame starts with the least or most significant data bit. Then the next data bits, up to a 
total of eight, are succeeding, ending with the most or least significant bit accordingly. 
When a complete frame is transmitted, a new frame can directly follow it, or the 
communication line can be set to an idle (high) state.  

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM 
mode. The Receiver and Transmitter use the same setting. Note that changing the 
setting of any of these bits will corrupt all ongoing communication for both the Receiver 
and Transmitter.  

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART 
transmit complete interrupt will then signal that the 16-bit value has been shifted out.  

24.4.1 USART MSPIM Initialization 

The USART in MSPIM mode has to be initialized before any communication can take 
place. The initialization process normally consists of setting the baud rate, setting 
master mode of operation (by setting DDR_XCKn to one), setting frame format and 
enabling the Transmitter and the Receiver. Only the transmitter can operate 
independently. For interrupt driven USART operation, the Global Interrupt Flag should 
be cleared (and thus interrupts globally disabled) when doing the initialization.  

Note: To ensure immediate initialization of the XCKn output the baud-rate register 
(UBRRn) must be zero at the time the transmitter is enabled. Contrary to the 
normal mode USART operation the UBRRn must then be written to the desired 
value after the transmitter is enabled, but before the first transmission is 
started. Setting UBRRn to zero before enabling the transmitter is not necessary 
if the initialization is done immediately after a reset since UBRRn is reset to 
zero.  

Before doing a re-initialization with changed baud rate, data mode, or frame format, be 
sure that there is no ongoing transmissions during the period the registers are changed. 
The TXCn Flag can be used to check that the Transmitter has completed all transfers, 
and the RXCn Flag can be used to check that there are no unread data in the receive 
buffer. Note that the TXCn Flag must be cleared before each transmission (before 
UDRn is written) if it is used for this purpose.  

The following simple USART initialization code examples show one assembly and one 
C function that are equal in functionality. The examples assume polling (no interrupts 
enabled). The baud rate is given as a function parameter. For the assembly code, the 
baud rate parameter is assumed to be stored in the r17:r16 registers.  
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Assembly Code Example
(1)

  

USART_Init: 

 clr r18 

 out UBRRnH,r18 

 out UBRRnL,r18 

 ; Setting the XCKn port pin as output, enables master mode. 

 sbi XCKn_DDR, XCKn 

 ; Set MSPI mode of operation and SPI data mode 0. 

 ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn) 

 out UCSRnC,r18 

 ; Enable receiver and transmitter. 

 ldi r18, (1<<RXENn)|(1<<TXENn) 

 out UCSRnB,r18 ; Set baud rate. 

 ; IMPORTANT:  

 ; The Baud Rate must be set after the transmitter is enabled! 

 out UBRRnH, r17 

 out UBRRnL, r18 

 ret  

C Code Example
(1)

  

void USART_Init( unsigned int baud ) 

{ 

  UBRRn = 0; 

  /* Setting the XCKn port pin as output, enables master mode. */ 

  XCKn_DDR |= (1<<XCKn); 

  /* Set MSPI mode of operation and SPI data mode 0. */ 

  UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn); 

  /* Enable receiver and transmitter. */ 

  UCSRnB = (1<<RXENn)|(1<<TXENn); 

  /* Set baud rate. */  

  /* IMPORTANT:     */ 

  /* The Baud Rate must be set after the transmitter is enabled */ 

  UBRRn = baud; 

   }  

Note: 1. See "About Code Examples" on page 7  

24.5 Data Transfer 

Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn 
bit in the UCSRnB register is set to one. When the Transmitter is enabled, the normal 
port operation of the TxDn pin is overridden and given the function as the Transmitter's 
serial output. Enabling the receiver is optional and is done by setting the RXENn bit in 
the UCSRnB register to one. When the receiver is enabled, the normal pin operation of 
the RxDn pin is overridden and given the function as the Receiver's serial input. The 
XCKn will in both cases be used as the transfer clock.  

After initialization the USART is ready for doing data transfers. A data transfer is 
initiated by writing to the UDRn I/O location. This is the case for both sending and 
receiving data since the transmitter controls the transfer clock. The data written to 
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UDRn is moved from the transmit buffer to the shift register when the shift register is 
ready to send a new frame.  

Note: To keep the input buffer in sync with the number of data bytes transmitted, the 
UDRn register must be read once for each byte transmitted. The input buffer 
operation is identical to normal USART mode, i.e. if an overflow occurs the 
character last received will be lost, not the first data in the buffer. This means 
that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the 
UDRn is not read before all transfers are completed, then byte 3 to be received 
will be lost, and not byte 1.  

The following code examples show a simple USART in MSPIM mode transfer function 
based on polling of the Data Register Empty (UDREn) Flag and the Receive Complete 
(RXCn) Flag. The USART has to be initialized before the function can be used. For the 
assembly code, the data to be sent is assumed to be stored in Register r16 and the 
data received will be available in the same register (r16) after the function returns.  

The function simply waits for the transmit buffer to be empty by checking the UDREn 
Flag, before loading it with new data to be transmitted. The function then waits for data 
to be present in the receive buffer by checking the RXCn Flag, before reading the buffer 
and returning the value.  

Assembly Code Example
(1)

  

USART_MSPIM_Transfer: 

 ; Wait for empty transmit buffer 

 sbis UCSRnA, UDREn 

 rjmp USART_MSPIM_Transfer 

 ; Put data (r16) into buffer, sends the data 

 out UDRn,r16 

 ; Wait for data to be received  

USART_MSPIM_Wait_RXCn: 

 sbis UCSRnA, RXCn 

 rjmp USART_MSPIM_Wait_RXCn 

 ; Get and return received data from buffer 

 in r16, UDRn 

 ret  

C Code Example
(1)

  

unsigned char USART_Receive( void )  

{  

  /* Wait for empty transmit buffer */ 

  while ( !( UCSRnA & (1<<UDREn)) ); 

  /* Put data into buffer, sends the data */ 

  UDRn = data; 

  /* Wait for data to be received */ 

  while ( !(UCSRnA & (1<<RXCn)) ); 

  /* Get and return received data from buffer */ 

  return UDRn; 

}  

Notes: 1. See "About Code Examples" on page 7  
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24.5.1 Transmitter and Receiver Flags and Interrupts 

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM 
mode are identical in function to the normal USART operation. However, the receiver 
error status flags (FE, DOR, and PE) are not in use and are always read as zero.  

24.5.2 Disabling the Transmitter or Receiver 

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in 
function to the normal USART operation.  

24.6 USART MSPIM Register Description 

The following section describes the registers used for SPI operation using the USART. 

24.6.1 UDRn – USART MSPIM I/O Data Register 

The function and bit description of the USART data register (UDRn) in MSPI mode is 
identical to normal USART operation. See "UDR0 – USART0 I/O Data Register" on 
page 356. 

24.6.2 UBRRnL and UBRRnH – USART MSPIM Baud Rate Registers 

The function and bit description of the baud rate registers in MSPI mode is identical to 
normal USART operation. See "UBRR0L – USART0 Baud Rate Register Low Byte" on 
page 360 and "UBRR0H – USART0 Baud Rate Register High Byte" on page 360. 

Table 24–3. Comparison of USART in MSPIM mode and SPI pins 

USART_MSPIM SPI Comment 

TxDn MOSI Master Out only 

RxDn MISO Master In only 

XCKn SCK (Functional identical) 

(N/A) SS¯ ¯  Not supported by USART in MSPIM 

 

24.6.3 UCSR0A – USART0 MSPIM Control and Status Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($C0) RXC0 TXC0 UDRE0      UCSR0A 

Read/Write R RW R       

Initial Value 0 0 0        
 

• Bit 7 – RXC0 - USART Receive Complete 

This flag bit is set when there are unread data in the receive buffer and cleared when 
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is 
disabled, the receive buffer will be flushed and consequently the RXC0 bit will become 
zero. The RXC0 Flag can be used to generate a Receive Complete interrupt (see 
description of the RXCIE0 bit). 

• Bit 6 – TXC0 - USART Transmit Complete 

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted 
out and there are no new data currently present in the transmit buffer (UDR0). The 
TXC0 Flag bit is automatically cleared when a transmit complete interrupt is executed, 
or it can be cleared by writing a one to its bit location. The TXC0 Flag can generate a 
Transmit Complete interrupt (see description of the TXCIE0 bit). 
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• Bit 5 – UDRE0 - USART Data Register Empty 

The UDRE0 Flag indicates if the transmit buffer (UDR0) is ready to receive new data. If 
UDRE0 is one, the buffer is empty, and therefore ready to be written. The UDRE0 Flag 
can generate a Data Register Empty interrupt (see description of the UDRIE0 bit). 
UDRE0 is set after a reset to indicate that the Transmitter is ready. 

 

24.6.4 UCSR0B – USART0 MSPIM Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($C1) RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0    UCSR0B 

Read/Write RW RW RW RW RW     

Initial Value 0 0 1 0 0      
 

• Bit 7 – RXCIE0 - RX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the RXC0 Flag. A USART Receive Complete 
interrupt will be generated only if the RXCIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the RXC0 bit in UCSR0A is set. 

• Bit 6 – TXCIE0 - TX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the TXC0 Flag. A USART Transmit Complete 
interrupt will be generated only if the TXCIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the TXC0 bit in UCSR0A is set. 

• Bit 5 – UDRIE0 - USART Data Register Empty Interrupt Enable 

Writing this bit to one enables interrupt on the UDRE0 Flag. A Data Register Empty 
interrupt will be generated only if the UDRIE0 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the UDRE0 bit in UCSR0A is set. 

• Bit 4 – RXEN0 - Receiver Enable 

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will 
override normal port operation for the RxD0 pin when enabled. Disabling the Receiver 
will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. setting 
RXEN0=1 and TXEN0=0) has no meaning since it is the transmitter that controls the 
transfer clock and since only master mode is supported. 

• Bit 3 – TXEN0 - Transmitter Enable 

Writing this bit to one enables the USART Transmitter. The Transmitter will override 
normal port operation for the TxD0 pin when enabled. The disabling of the Transmitter 
(writing TXEN0 to zero) will not become effective until ongoing and pending 
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer 
Register do not contain data to be transmitted. When disabled, the Transmitter will no 
longer override the TxD0 port. 

 

24.6.5 UCSR0C – USART0 MSPIM Control and Status Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($C2)      UDORD0 UCPHA0 UCPOL0 UCSR0C 

Read/Write      RW RW RW  

Initial Value      1 1 0   
 

• Bit 2 – UDORD0 - Data Order 
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When set to one the LSB of the data word is transmitted first. When set to zero the 
MSB of the data word is transmitted first. Refer to section "Frame Formats" for details. 

• Bit 1 – UCPHA0 - Clock Phase 

The UCPHA0 bit setting determines if data is sampled on the leading (first) or tailing 
(last) edge of XCK0. Refer to the section "SPI Data Modes and Timing" for details. 

• Bit 0 – UCPOL0 - Clock Polarity 

The UCPOL0 bit sets the polarity of the XCK0 clock. The combination of the UCPOL0 
and UCPHA0 bit settings determine the timing of the data transfer. Refer to the section 
"SPI Data Modes and Timing" for details. 

 

24.6.6 UCSR1A – USART1 MSPIM Control and Status Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($C8) RXC1 TXC1 UDRE1      UCSR1A 

Read/Write R RW R       

Initial Value 0 0 0        
 

• Bit 7 – RXC1 - USART Receive Complete 

This flag bit is set when there are unread data in the receive buffer and cleared when 
the receive buffer is empty (i.e., does not contain any unread data). If the Receiver is 
disabled, the receive buffer will be flushed and consequently the RXC1 bit will become 
zero. The RXC1 Flag can be used to generate a Receive Complete interrupt (see 
description of the RXCIE1 bit). 

• Bit 6 – TXC1 - USART Transmit Complete 

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted 
out and there are no new data currently present in the transmit buffer (UDR1). The 
TXC1 Flag bit is automatically cleared when a transmit complete interrupt is executed, 
or it can be cleared by writing a one to its bit location. The TXC1 Flag can generate a 
Transmit Complete interrupt (see description of the TXCIE1 bit). 

• Bit 5 – UDRE1 - USART Data Register Empty 

The UDRE1 Flag indicates if the transmit buffer (UDR1) is ready to receive new data. If 
UDRE1 is one, the buffer is empty, and therefore ready to be written. The UDRE1 Flag 
can generate a Data Register Empty interrupt (see description of the UDRIE1 bit). 
UDRE1 is set after a reset to indicate that the Transmitter is ready. 

 

24.6.7 UCSR1B – USART1 MSPIM Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($C9) RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1    UCSR1B 

Read/Write RW RW RW RW RW     

Initial Value 0 0 1 0 0      
 

• Bit 7 – RXCIE1 - RX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the RXC1 Flag. A USART Receive Complete 
interrupt will be generated only if the RXCIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the RXC1 bit in UCSR1A is set. 
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• Bit 6 – TXCIE1 - TX Complete Interrupt Enable 

Writing this bit to one enables interrupt on the TXC1 Flag. A USART Transmit Complete 
interrupt will be generated only if the TXCIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the TXC1 bit in UCSR1A is set. 

• Bit 5 – UDRIE1 - USART Data Register Empty Interrupt Enable 

Writing this bit to one enables interrupt on the UDRE1 Flag. A Data Register Empty 
interrupt will be generated only if the UDRIE1 bit is written to one, the Global Interrupt 
Flag in SREG is written to one and the UDRE1 bit in UCSR1A is set. 

• Bit 4 – RXEN1 - Receiver Enable 

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will 
override normal port operation for the RxD1 pin when enabled. Disabling the Receiver 
will flush the receive buffer. Only enabling the receiver in MSPI mode (i.e. setting 
RXEN1=1 and TXEN1=0) has no meaning since it is the transmitter that controls the 
transfer clock and since only master mode is supported. 

• Bit 3 – TXEN1 - Transmitter Enable 

Writing this bit to one enables the USART Transmitter. The Transmitter will override 
normal port operation for the TxD1 pin when enabled. The disabling of the Transmitter 
(writing TXEN1 to zero) will not become effective until ongoing and pending 
transmissions are completed, i.e., when the Transmit Shift Register and Transmit Buffer 
Register do not contain data to be transmitted. When disabled, the Transmitter will no 
longer override the TxD1 port. 

 

24.6.8 UCSR1C – USART1 MSPIM Control and Status Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($CA)      UDORD1 UCPHA1 UCPOL1 UCSR1C 

Read/Write      RW RW RW  

Initial Value      1 1 0   
 

• Bit 2 – UDORD1 - Data Order 

When set to one the LSB of the data word is transmitted first. When set to zero the 
MSB of the data word is transmitted first. Refer to section "Frame Formats" for details. 

• Bit 1 – UCPHA1 - Clock Phase 

The UCPHA1 bit setting determines if data is sampled on the leading (first) or tailing 
(last) edge of XCK1. Refer to the section "SPI Data Modes and Timing" for details. 

• Bit 0 – UCPOL1 - Clock Polarity 

The UCPOL1 bit sets the polarity of the XCK1 clock. The combination of the UCPOL1 
and UCPHA1 bit settings determine the timing of the data transfer. Refer to the section 
"SPI Data Modes and Timing" for details. 
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25 2-wire Serial Interface 

25.1 Features 

• Simple yet powerful and flexible communication interface, only two bus lines 
needed  

• Both master and slave operation supported  

• Device can operate as transmitter or receiver  

• 7-bit address space allows up to 128 different slave addresses  

• Multi-master arbitration support  

• Up to 400 kHz data transfer speed  

• Slew-rate limited output drivers  

• Noise suppression circuitry rejects spikes on bus lines  

• Fully programmable slave address with general call support  

• Address recognition causes wake-up when microcontroller is in sleep mode  

25.2 2-wire Serial Interface Bus Definition 

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. 
The TWI protocol allows the systems designer to interconnect up to 128 different 
devices using only two bi-directional bus lines, one for clock (SCL) and one for data 
(SDA). The only external hardware needed to implement the bus is a single pull-up 
resistor for each of the TWI bus lines. All devices connected to the bus have individual 
addresses, and mechanisms for resolving bus contention are inherent in the TWI 
protocol. 

Figure 25-1. TWI Bus Interconnection  

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD
 

 

25.2.1 TWI Terminology 

The following definitions are frequently encountered in this section. 

Table 25-1. TWI Terminology 

Term  Description  

Master  The device that initiates and terminates a transmission. The Master also 
generates the SCL clock.  

Slave  The device addressed by a Master.  

Transmitter  The device placing data on the bus.  

Receiver  The device reading data from the bus.  
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The Power Reduction TWI bit, PRTWI bit in "PRR0 – Power Reduction Register0" on 
page 167 must be written to zero to enable the 2-wire Serial Interface. 

25.2.2 Electrical Interconnection 

As depicted in Figure 25-1 on page 377, both bus lines are connected to the positive 
supply voltage through pull-up resistors. The bus drivers of all TWI-compliant devices 
are open-drain or open-collector. This implements a wired-AND function which is 
essential to the operation of the interface. A low level on a TWI bus line is generated 
when one or more TWI devices output a zero. A high level is output when all TWI 
devices trim-state their outputs, allowing the pull-up resistors to pull the line high. Note 
that all AVR devices connected to the TWI bus must be powered in order to allow any 
bus operation.  

The number of devices that can be connected to the bus is only limited by the bus 
capacitance limit of 400 pF and the 7-bit slave address space. A detailed specification 
of the electrical characteristics of the TWI is given in "2-wire Serial Interface 
Characteristics" on page 503. Two different sets of specifications are presented there, 
one relevant for bus speeds below 100 kHz, and one valid for bus speeds up to 400 
kHz. 

25.3 Data Transfer and Frame Format 

25.3.1 Transferring Bits 

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. 
The level of the data line must be stable when the clock line is high. The only exception 
to this rule is for generating start and stop conditions.  

Figure 25-2. Data Validity 

SDA

SCL

Data Stable Data Stable

Data Change  

25.3.2 START and STOP Conditions 

The Master initiates and terminates a data transmission. The transmission is initiated 
when the Master issues a START condition on the bus, and it is terminated when the 
Master issues a STOP condition. Between a START and a STOP condition, the bus is 
considered busy, and no other master should try to seize control of the bus. A special 
case occurs when a new START condition is issued between a START and STOP 
condition. This is referred to as a REPEATED START condition, and is used when the 
Master wishes to initiate a new transfer without relinquishing control of the bus. After a 
REPEATED START, the bus is considered busy until the next STOP. This is identical to 
the START behavior, and therefore START is used to describe both START and 
REPEATED START for the remainder of this datasheet, unless otherwise noted. As 
depicted below, START and STOP conditions are signaled by changing the level of the 
SDA line when the SCL line is high.  
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Figure 25-3. START, REPEATED START and STOP conditions  

SDA

SCL

START STOPREPEATED STARTSTOP START  

25.3.3 Address Packet Format 

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address 
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is 
set, a read operation is to be performed, otherwise a write operation should be 
performed. When a Slave recognizes that it is being addressed, it should acknowledge 
by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is busy, or for 
some other reason can not service the Master’s request, the SDA line should be left 
high in the ACK clock cycle. The Master can then transmit a STOP condition, or a 
REPEATED START condition to initiate a new transmission. An address packet 
consisting of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W, 
respectively. 

The MSB of the address byte is transmitted first. Slave addresses can freely be 
allocated by the designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in 
the ACK cycle. A general call is used when a Master wishes to transmit the same 
message to several slaves in the system. When the general call address followed by a 
Write bit is transmitted on the bus, all slaves set up to acknowledge the general call will 
pull the SDA line low in the ack cycle. The following data packets will then be received 
by all the slaves that acknowledged the general call. Note that transmitting the general 
call address followed by a Read bit is meaningless, as this would cause contention if 
several slaves started transmitting different data.  

All addresses of the format 1111 xxx should be reserved for future purposes. 

Figure 25-4. Address Packet Format 

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

 

25.3.4 Data Packet Format 

All data packets transmitted on the TWI bus are nine bits long, consisting of one data 
byte and an acknowledge bit. During a data transfer, the Master generates the clock 
and the START and STOP conditions, while the Receiver is responsible for 
acknowledging the reception. An Acknowledge (ACK) is signaled by the Receiver 
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pulling the SDA line low during the ninth SCL cycle. If the Receiver leaves the SDA line 
high, a NACK is signaled. When the Receiver has received the last byte, or for some 
reason cannot receive any more bytes, it should inform the Transmitter by sending a 
NACK after the final byte. The MSB of the data byte is transmitted first.  

Figure 25-5. Data Packet Format 

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte  

25.3.5 Combining Address and Data Packets into a Transmission 

A transmission basically consists of a START condition, a SLA+R/W, one or more data 
packets and a STOP condition. An empty message, consisting of a START followed by 
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to 
implement handshaking between the Master and the Slave. The Slave can extend the 
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by 
the Master is too fast for the Slave, or the Slave needs extra time for processing 
between the data transmissions. The Slave extending the SCL low period will not affect 
the SCL high period, which is determined by the Master. As a consequence, the Slave 
can reduce the TWI data transfer speed by prolonging the SCL duty cycle.  

Figure 25-6 below shows a typical data transmission. Note that several data bytes can 
be transmitted between the SLA+R/W and the STOP condition, depending on the 
software protocol implemented by the application software. 

Figure 25-6. Typical Data Transmission 

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

 

25.4 Multi-master Bus Systems, Arbitration and Synchronization 

The TWI protocol allows bus systems with several masters. Special concerns have 
been taken in order to ensure that transmissions will proceed as normal, even if two or 
more masters initiate a transmission at the same time. Two problems arise in multi-
master systems: 



 

 

 

 

 

 

 

 
 

   
 381

 

 

 

8266A-MCU Wireless-12/09 

 ATmega128RFA1 

• An algorithm must be implemented allowing only one of the masters to complete the 
transmission. All other masters should cease transmission when they discover that 
they have lost the selection process. This selection process is called arbitration. 
When a contending master discovers that it has lost the arbitration process, it should 
immediately switch to Slave mode to check whether it is being addressed by the 
winning master. The fact that multiple masters have started transmission at the 
same time should not be detectable to the slaves, i.e. the data being transferred on 
the bus must not be corrupted.  

• Different masters may use different SCL frequencies. A scheme must be devised to 
synchronize the serial clocks from all masters, in order to let the transmission 
proceed in a lockstep fashion. This will facilitate the arbitration process.  

The wired-ANDing of the bus lines is used to solve both these problems. The serial 
clocks from all masters will be wired-ANDed, yielding a combined clock with a high 
period equal to the one from the Master with the shortest high period. The low period of 
the combined clock is equal to the low period of the Master with the longest low period. 
Note that all masters listen to the SCL line, effectively starting to count their SCL high 
and low time-out periods when the combined SCL line goes high or low, respectively.  

Figure 25-7. SCL Synchronization Between Multiple Masters  

 

TA
low

TA
high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TB
low

TB
high

Masters Start
Counting Low Period

Masters Start
Counting High Period  

Arbitration is carried out by all masters continuously monitoring the SDA line after 
outputting data. If the value read from the SDA line does not match the value the 
Master had output, it has lost the arbitration. Note that a Master can only lose arbitration 
when it outputs a high SDA value while another Master outputs a low value. The losing 
Master should immediately go to Slave mode, checking if it is being addressed by the 
winning Master. The SDA line should be left high, but losing masters are allowed to 
generate a clock signal until the end of the current data or address packet. Arbitration 
will continue until only one Master remains, and this may take many bits. If several 
masters are trying to address the same Slave, arbitration will continue into the data 
packet. 

Note that arbitration is not allowed between:  

• A REPEATED START condition and a data bit.  

• A STOP condition and a data bit.  

• A REPEATED START and a STOP condition.  

It is the user software’s responsibility to ensure that these illegal arbitration conditions 
never occur. This implies that in multi-master systems, all data transfers must use the 
same composition of SLA+R/W and data packets. In other words: All transmissions 
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must contain the same number of data packets, otherwise the result of the arbitration is 
undefined. 

Figure 25-8. Arbitration Between Two Masters  

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
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START Master A Loses
Arbitration, SDA

A
   SDA

 

25.5 Overview of the TWI Module 

The TWI module is comprised of several sub-modules, as shown in Figure 25-9 below. 
All registers drawn in a thick line are accessible through the AVR data bus.  

Figure 25-9. Overview of the TWI Module  
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25.5.1 SCL and SDA Pins 

These pins interface the AVR TWI with the rest of the MCU system. The output drivers 
contain a slew-rate limiter in order to conform to the TWI specification. The input stages 
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the 
internal pull-ups in the AVR pads can be enabled by setting the PORT bits 
corresponding to the SCL and SDA pins, as explained in the I/O Port section. The 
internal pull-ups can in some systems eliminate the need for external ones. 

25.5.2 Bit Rate Generator Unit 

This unit controls the period of SCL when operating in a Master mode. The SCL period 
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in 
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or 
Prescaler settings, but the CPU clock frequency in the Slave must be at least 16 times 
higher than the SCL frequency. Note that slaves may prolong the SCL low period, 
thereby reducing the average TWI bus clock period. The SCL frequency is generated 
according to the following equation:  

( ) TWPSTWBR

frequencyClockCPU
frequencySCL

4216 ⋅+
=  

• TWBR = Value of the TWI Bit Rate Register.  

• TWPS = Value of the prescaler bits in the TWI Status Register.  

Note that pull-up resistor values should be selected according to the SCL frequency 
and the capacitive bus line load. See in "2-wire Serial Interface Characteristics" on page 
503 for value of pull-up resistor. 

25.5.3 Bus Interface Unit 

This unit contains the Data and Address Shift Register (TWDR), a START/STOP 
Controller and Arbitration detection hardware. The TWDR contains the address or data 
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit 
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be 
transmitted or received. This (N)ACK Register is not directly accessible by the 
application software. However, when receiving, it can be set or cleared by manipulating 
the TWI Control Register (TWCR). When in Transmitter mode, the value of the received 
(N)ACK bit can be determined by the value in the TWSR.  

The START/STOP Controller is responsible for generation and detection of START, 
REPEATED START, and STOP conditions. The START/STOP controller is able to 
detect START and STOP conditions even when the AVR MCU is in one of the sleep 
modes, enabling the MCU to wake up if addressed by a Master.  

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware 
continuously monitors the transmission trying to determine if arbitration is in process. If 
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be 
taken and appropriate status codes generated. 

25.5.4 Address Match Unit 

The Address Match unit checks if received address bytes match the seven-bit address 
in the TWI Address Register (TWAR). If the TWI General Call Recognition Enable 
(TWGCE) bit in the TWAR is written to one, all incoming address bits will also be 
compared against the General Call address. Upon an address match, the Control Unit 
is informed, allowing correct action to be taken. The TWI may or may not acknowledge 
its address, depending on settings in the TWCR. The Address Match unit is able to 
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compare addresses even if the AVR MCU is in sleep mode, enabling the MCU to wake 
up if addressed by a Master. If another interrupt (e.g., INT0) occurs during TWI Power-
down address match and wakes up the CPU, the TWI aborts operation and return to it’s 
idle state. If this cause any problems, ensure that TWI Address Match is the only 
enabled interrupt when entering Power-down.  

25.5.5 Control Unit 

The Control unit monitors the TWI bus and generates responses corresponding to 
settings in the TWI Control Register (TWCR). When an event requiring the attention of 
the application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In 
the next clock cycle, the TWI Status Register (TWSR) is updated with a status code 
identifying the event. The TWSR only contains relevant status information when the 
TWI Interrupt Flag is asserted. At all other times, the TWSR contains a special status 
code indicating that no relevant status information is available. As long as the TWINT 
Flag is set, the SCL line is held low. This allows the application software to complete its 
tasks before allowing the TWI transmission to continue. 

The TWINT Flag is set in the following situations:  

• After the TWI has transmitted a START/REPEATED START condition.  

• After the TWI has transmitted SLA+R/W.  

• After the TWI has transmitted an address byte.  

• After the TWI has lost arbitration.  

• After the TWI has been addressed by own slave address or general call.  

• After the TWI has received a data byte.  

• After a STOP or REPEATED START has been received while still addressed as a 
Slave. 

• When a bus error has occurred due to an illegal START or STOP condition.  

25.6 Using the TWI 

The ATmega128RFA1  TWI is byte-oriented and interrupt based. Interrupts are issued 
after all bus events, like reception of a byte or transmission of a START condition. 
Because the TWI is interrupt-based, the application software is free to carry on other 
operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in 
TWCR together with the Global Interrupt Enable bit in SREG allow the application to 
decide whether or not assertion of the TWINT Flag should generate an interrupt 
request. If the TWIE bit is cleared, the application must poll the TWINT Flag in order to 
detect actions on the TWI bus. 

When the TWINT Flag is asserted, the TWI has finished an operation and awaits 
application response. In this case, the TWI Status Register (TWSR) contains a value 
indicating the current state of the TWI bus. The application software can then decide 
how the TWI should behave in the next TWI bus cycle by manipulating the TWCR and 
TWDR Registers.  

Figure 25-10 on page 385 is a simple example of how the application can interface to 
the TWI hardware. In this example, a Master wishes to transmit a single data byte to a 
Slave. This description is quite abstract, a more detailed explanation follows later in this 
section. A simple code example implementing the desired behavior is also presented. 
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Figure 25-10. Interfacing the Application to the TWI in a Typical Transmission 
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1. The first step in a TWI transmission is to transmit a START condition. This is done by 
writing a specific value into TWCR, instructing the TWI hardware to transmit a 
START condition. Which value to write is described later on. However, it is important 
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. 
The TWI will not start any operation as long as the TWINT bit in TWCR is set. 
Immediately after the application has cleared TWINT, the TWI will initiate 
transmission of the START condition.  

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, 
and TWSR is updated with a status code indicating that the START condition has 
successfully been sent.  

3. The application software should now examine the value of TWSR, to make sure that 
the START condition was successfully transmitted. If TWSR indicates otherwise, the 
application software might take some special action, like calling an error routine. 
Assuming that the status code is as expected, the application must load SLA+W into 
TWDR. Remember that TWDR is used both for address and data. After TWDR has 
been loaded with the desired SLA+W, a specific value must be written to TWCR, 
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value 
to write is described later on. However, it is important that the TWINT bit is set in the 
value written. Writing a one to TWINT clears the flag. The TWI will not start any 
operation as long as the TWINT bit in TWCR is set. Immediately after the application 
has cleared TWINT, the TWI will initiate transmission of the address packet. 

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, 
and TWSR is updated with a status code indicating that the address packet has 
successfully been sent. The status code will also reflect whether a Slave 
acknowledged the packet or not.  

5. The application software should now examine the value of TWSR, to make sure that 
the address packet was successfully transmitted, and that the value of the ACK bit 
was as expected. If TWSR indicates otherwise, the application software might take 
some special action, like calling an error routine. Assuming that the status code is as 
expected, the application must load a data packet into TWDR. Subsequently, a 
specific value must be written to TWCR, instructing the TWI hardware to transmit the 
data packet present in TWDR. Which value to write is described later on. However, it 
is important that the TWINT bit is set in the value written. Writing a one to TWINT 
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clears the flag. The TWI will not start any operation as long as the TWINT bit in 
TWCR is set. Immediately after the application has cleared TWINT, the TWI will 
initiate transmission of the data packet.  

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the data packet has successfully 
been sent. The status code will also reflect whether a Slave acknowledged the 
packet or not.  

7. The application software should now examine the value of TWSR, to make sure that 
the data packet was successfully transmitted, and that the value of the ACK bit was 
as expected. If TWSR indicates otherwise, the application software might take some 
special action, like calling an error routine. Assuming that the status code is as 
expected, the application must write a specific value to TWCR, instructing the TWI 
hardware to transmit a STOP condition. Which value to write is described later on. 
However, it is important that the TWINT bit is set in the value written. Writing a one 
to TWINT clears the flag. The TWI will not start any operation as long as the TWINT 
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI 
will initiate transmission of the STOP condition. Note that TWINT is NOT set after a 
STOP condition has been sent.  

Even though this example is simple, it shows the principles involved in all TWI 
transmissions. These can be summarized as follows:  

• When the TWI has finished an operation and expects application response, the 
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.  

• When the TWINT Flag is set, the user must update all TWI Registers with the value 
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the 
value to be transmitted in the next bus cycle.  

• After all TWI Register updates and other pending application software tasks have 
been completed, TWCR is written. When writing TWCR, the TWINT bit should be 
set. Writing a one to TWINT clears the flag. The TWI will then commence executing 
whatever operation was specified by the TWCR setting. 

In the following an assembly and C implementation of the example is given. Note that 
the code below assumes that several definitions have been made, for example by using 
include-files. 

Table 25-2. Code example 

 Assembly Code Example  C Example  Comments  

1  ldi 

r16,(1<<TWINT)|(1<<TWSTA)| 

    (1<<TWEN) 

out TWCR, r16  

TWCR = (1<<TWINT)|(1<<TWSTA)| 

       (1<<TWEN) 

Send START condition  

2  wait1: 

in r16,TWCR 

sbrs r16,TWINT 

rjmp wait1  

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This 
indicates that the START condition 
has been transmitted  

in r16,TWSR 

andi r16, 0xF8 

cpi r16, START  

brne ERROR  

if ((TWSR & 0xF8) != START) 

   ERROR(); 

Check value of TWI Status Register. 
Mask prescaler bits. If status different 
from START go to ERROR  

3  

ldi r16, SLA_W 

out TWDR, r16 

ldi r16, (1<<TWINT)|(1<<TWEN) 

out TWCR, r16  

TWDR = SLA_W; 

TWCR = (1<<TWINT)|(1<<TWEN); 

Load SLA_W into TWDR Register. 
Clear TWINT bit in TWCR to start 
transmission of address  
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 Assembly Code Example  C Example  Comments  

4  wait2: 

in r16,TWCR 

sbrs r16,TWINT 

rjmp wait2 

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This 
indicates that the SLA+W has been 
transmitted, and ACK/NACK has 
been received.  

in r16,TWSR 

andi r16, 0xF8 

cpi r16, MT_SLA_ACK 

brne ERROR  

if ((TWSR & 0xF8) != MT_SLA_ACK)  

   ERROR(); 

Check value of TWI Status Register. 
Mask prescaler bits. If status different 
from MT_SLA_ACK go to ERROR  

5  

ldi r16, DATA 

out TWDR, r16 

ldi r16, (1<<TWINT)|(1<<TWEN) 

out TWCR, r16 

TWDR = DATA; 

TWCR = (1<<TWINT) | (1<<TWEN); 

Load DATA into TWDR Register. 
Clear TWINT bit in TWCR to start 
transmission of data  

6  wait3: 

in r16,TWCR 

sbrs r16,TWINT 

rjmp wait3 

while (!(TWCR & (1<<TWINT))); Wait for TWINT Flag set. This 
indicates that the DATA has been 
transmitted, and ACK/NACK has 
been received.  

in r16,TWSR 

andi r16, 0xF8 

cpi r16, MT_DATA_ACK 

brne ERROR  

if ((TWSR & 0xF8) != MT_DATA_ACK) 

   ERROR(); 

Check value of TWI Status Register. 
Mask prescaler bits. If status different 
from MT_DATA_ACK go to ERROR  

7  

ldi r16,(1<<TWINT)|(1<<TWEN)| 

        (1<<TWSTO) 

out TWCR, r16  

TWCR = (1<<TWINT)|(1<<TWEN)| 

(1<<TWSTO); 
Transmit STOP condition  

25.7 Transmission Modes 

The TWI can operate in one of four major modes. These are named Master Transmitter 
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several 
of these modes can be used in the same application. As an example, the TWI can use 
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the 
EEPROM. If other masters are present in the system, some of these might transmit 
data to the TWI, and then SR mode would be used. It is the application software that 
decides which modes are legal.  

The following sections describe each of these modes. Possible status codes are 
described along with figures detailing data transmission in each of the modes. These 
figures contain the following abbreviations:  

S: START condition   Rs: REPEATED START condition  
R: Read bit (high level at SDA)  W: Write bit (low level at SDA)  
Data: 8-bit data byte    P: STOP condition  
SLA: Slave Address    A: Acknowledge bit (low level at SDA)  
A
_

: Not acknowledge bit (high level at SDA)  

In Figure 25-12 on page 389 to Figure 25-18 on page 399 circles are used to indicate 
that the TWINT Flag is set. The numbers in the circles show the status code held in 
TWSR, with the prescaler bits masked to zero. At these points, actions must be taken 
by the application to continue or complete the TWI transfer. The TWI transfer is 
suspended until the TWINT Flag is cleared by software.  

When the TWINT Flag is set, the status code in TWSR is used to determine the 
appropriate software action. For each status code, the required software action and 
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details of the following serial transfer are given in Table 25-3 on page 390 to Table 25-6 
on page 398. Note that the prescaler bits are masked to zero in these tables. 

25.7.1 Master Transmitter Mode  

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave 
Receiver (see Figure 25-11 below). In order to enter a Master mode, a START 
condition must be transmitted. The format of the following address packet determines 
whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is 
transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All 
status codes mentioned in this section assume that the prescaler bits are zero or are 
masked to zero. 

Figure 25-11. Data Transfer in Master Transmitter Mode 

Device 1
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TRANSMITTER

Device 2
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Device 3 Device n
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........ R1 R2
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A START condition is sent by writing the following value to TWCR: 

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 1 0 X 1 0 X 

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one 
to transmit a START condition and TWINT must be written to one to clear the TWINT 
Flag. The TWI will then test the 2-wire Serial Bus and generate a START condition as 
soon as the bus becomes free. After a START condition has been transmitted, the 
TWINT Flag is set by hardware, and the status code in TWSR will be 0x08 (see Table 
25-3 on page 390). In order to enter MT mode, SLA+W must be transmitted. This is 
done by writing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by 
writing it to one) to continue the transfer. This is accomplished by writing the following 
value to TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 0 0 X 1 0 X 

When SLA+W have been transmitted and an acknowledgement bit has been received, 
TWINT is set again and a number of status codes in TWSR are possible. Possible 
status codes in Master mode are 0x18, 0x20, or 0x38. The appropriate action to be 
taken for each of these status codes is detailed in Table 25-3 on page 390.  

When SLA+W has been successfully transmitted, a data packet should be transmitted. 
This is done by writing the data byte to TWDR. TWDR must only be written when 
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC) 
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be 
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the 
following value to TWCR:  
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TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 0 0 X 1 0 X 

This scheme is repeated until the last byte has been sent and the transfer is ended by 
generating a STOP condition or a repeated START condition. A STOP condition is 
generated by writing the following value to TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 0 1 X 1 0 X 

A REPEATED START condition is generated by writing the following value to TWCR: 

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value X 1 0 X 1 0 X  

After a REPEATED START condition (state 0x10) the 2-wire Serial Interface can 
access the same Slave again, or a new Slave without transmitting a STOP condition. 
Repeated START enables the Master to switch between Slaves, Master Transmitter 
mode and Master Receiver mode without losing control of the bus.  

Figure 25-12. Formats and States in the Master Transmitter Mode  
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Table 25-3. Status codes for Master Transmitter Mode  

Application Software Response 

To TWCR 

Status Code 

(TWSR) 

Prescaler 

Bits are 0 

Status of the 2-wire 

Serial Bus and 2-wire 

Serial Interface 

Hardware To/from TWDR STA STO TWINT TWEA 
Next Action Taken by TWI 

Hardware 

0x08  A START condition has 

been transmitted  

Load SLA+W  0 0 1 X SLA+W will be transmitted; ACK or 

NOT ACK will be received  

0x10  A repeated START 

condition has been 

transmitted  

Load SLA+W or 

 

Load SLA+R 

 

0 

 

0 

0 

 

0 

1 

 

1 

X 

 

X 

SLA+W will be transmitted; ACK or 

NOT ACK will be received 

SLA+R will be transmitted; Logic will 

switch to Master Receiver mode  

0x18  SLA+W has been 

transmitted; ACK has 

been received  

Load data byte o 

 

No TWDR action or 

 

No TWDR action or 

 

No TWDR action  

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

X 

 

X 

 

X 

 

X 

Data byte will be transmitted and 

ACK or NOT ACK will be received 

Repeated START will be transmitted 

 

STOP condition will be transmitted 

and TWSTO Flag will be reset 

STOP condition followed by a START 

condition will be transmitted and 

TWSTO Flag will be reset  

0x20  SLA+W has been 

transmitted; NOT ACK 

has been received  

Load data byte or 

 

No TWDR action or 

 

No TWDR action or 

 

No TWDR action  

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

X 

 

X 

 

X 

 

X 

Data byte will be transmitted and 

ACK or NOT ACK will be received 

Repeated START will be transmitted  

 

STOP condition will be transmitted 

and TWSTO Flag will be rese 

STOP condition followed by a START 

condition will be transmitted and 

TWSTO Flag will be reset  

0x28  Data byte has been 

transmitted; ACK has 

been received  

Load data byte or 

 

No TWDR action or 

 

No TWDR action or 

 

No TWDR action 

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

X 

 

X 

 

X 

 

X 

Data byte will be transmitted and 

ACK or NOT ACK will be received 

Repeated START will be transmitted 

 

STOP condition will be transmitted 

and TWSTO Flag will be reset 

STOP condition followed by a START 

condition will be transmitted and 

TWSTO Flag will be reset  

0x30  Data byte has been 

transmitted; NOT ACK 

has been received  

Load data byte or 

 

No TWDR action or 

 

No TWDR action or 

 

No TWDR action  

0 

 

1 

 

0 

 

1 

0 

 

0 

 

1 

 

1 

1 

 

1 

 

1 

 

1 

X 

 

X 

 

X 

 

X 

Data byte will be transmitted and 

ACK or NOT ACK will be received 

Repeated START will be transmitted  

 

STOP condition will be transmitted 

and TWSTO Flag will be reset 

STOP condition followed by a START 

condition will be transmitted and 

TWSTO Flag will be reset 

0x38  Arbitration lost in SLA+W 

or data bytes  

No TWDR action or 

 

No TWDR action 

0 

 

1 

0 

 

0 

1 

 

1 

X 

 

X 

2-wire Serial Bus will be released and 

not addressed Slave mode entered 

A START condition will be 

transmitted when the bus be-comes 

free 

25.7.2 Master Receiver Mode  

In the Master Receiver mode, a number of data bytes are received from a Slave 
Transmitter (for Slave see Figure 25-13 on page 391). In order to enter a Master mode, 
a START condition must be transmitted. The format of the following address packet 
determines whether Master Transmitter or Master Receiver mode is to be entered. If 
SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is 
entered. All the status codes mentioned in this section assume that the prescaler bits 
are zero or are masked to zero.  
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Figure 25-13. Data Transfer in Master Receiver Mode 
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A START condition is sent by writing the following value to TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 1 0 X 1 0 X 

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be 
written to one to transmit a START condition and TWINT must be set to clear the 
TWINT Flag. The TWI will then test the 2-wire Serial Bus and generate a START 
condition as soon as the bus becomes free. After a START condition has been 
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be 
0x08 (see Table 25-4 on page 392). In order to enter MR mode, SLA+R must be 
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should 
be cleared (by writing it to one) to continue the transfer. This is accomplished by writing 
the following value to TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 0 0 X 1 0 X 

When SLA+R have been transmitted and an acknowledgement bit has been received, 
TWINT is set again and a number of status codes in TWSR are possible. Possible 
status codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be 
taken for each of these status codes is detailed in Table 25-4 on page 392. Received 
data can be read from the TWDR Register when the TWINT Flag is set high by 
hardware. This scheme is repeated until the last byte has been received. After the last 
byte has been received, the MR should inform the ST by sending a NACK after the last 
received data byte. The transfer is ended by generating a STOP condition or a repeated 
START condition. A STOP condition is generated by writing the following value to 
TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

value  1 X 0 1 X 1 0 X 

A REPEATED START condition is generated by writing the following value to TWCR:  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  1 X 1 0 X 1 0 X 

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access 
the same Slave again, or a new Slave without transmitting a STOP condition. Repeated 
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START enables the Master to switch between Slaves, Master Transmitter mode and 
Master Receiver mode without losing control over the bus.  

Table 25-4. Status codes for Master Receiver Mode  

Application Software Response 

To TWCR 

Status Code 

(TWSR) 

Prescaler 

Bits are 0 

Status of the 2-wire 

Serial Bus and 2-wire 

Serial Interface Hard-

ware To/from TWDR STA STD TWINT TWEA 

Next Action Taken by TWI 

Hardware 

0x08  A START condition has 

been transmitted  

Load SLA+R  0 0 1 X SLA+R will be transmitted ACK or 

NOT ACK will be received  

0x10  A repeated START 

condition has been 

transmitted  

Load SLA+R or 

 

Load SLA+W  

0 

 

0 

0 

 

0 

1 

 

1 

X 

 

X 

SLA+R will be transmitted ACK or 

NOTACK will be received 

SLA+W will be transmitted Logic will 

switch to Master Transmitter mode  

0x38  Arbitration lost in SLA+R 

or NOT ACK bit  

No TWDR action or  

 

No TWDR action  

0 

 

1 

0 

 

0 

1 

 

1 

X 

 

X 

2-wire Serial Bus will be released 

and not addressed Slave mode will 

be entered 

A START condition will be 

transmitted when the bus becomes 

free  

0x40  SLA+R has been 

transmitted; ACK has 

been received  

No TWDR action or 

 

No TWDR action  

0 

 

0 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x48  SLA+R has been 

transmitted; NOT ACK 

has been received  

No TWDR action or 

 

No TWDR action or  

 

No TWDR action  

1 

 

0 

 

1 

0 

 

1 

 

1 

1 

 

1 

 

1 

X 

 

X 

 

X 

Repeated START will be transmitted  

 

STOP condition will be transmitted 

and TWSTO Flag will be reset 

STOP condition followed by a 

START condition will be transmitted 

and TWSTO Flag will be reset  

0x50  Data byte has been 

received; ACK has been 

returned  

Read data byte or 

 

Read data byte  

0 

 

0 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x58  Data byte has been 

received; NOT ACK has 

been returned  

Read data byte or 

 

Read data byte or 

 

Read data byte  

1 

 

0 

 

1 

0 

 

1 

 

1 

1 

 

1 

 

1 

X 

 

X 

 

X 

Repeated START will be transmitted 

 

STOP condition will be transmitted 

and TWSTO Flag will be reset 

STOP condition followed by a 

START condition will be transmitted 

and TWSTO Flag will be reset 
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Figure 25-14. Formats and States in the Master Receiver Mode  

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P
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A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues
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To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The 
prescaler bits are zero or masked to zero

PDATA A

$58

A

 

RS

 

25.7.3 Slave Receiver Mode  

In the Slave Receiver mode, a number of data bytes are received from a Master 
Transmitter (see Figure 25-15 below). All the status codes mentioned in this section 
assume that the prescaler bits are zero or are masked to zero.  

Figure 25-15. Data transfer in Slave Receiver mode  

Device 3 Device n

SDA

SCL

........ R1 R2

DEVDD
 

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER

 

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:  

TWAR  TWA6  TWA5  TWA4  TWA3  TWA2  TWA1  TWA0  TWGCE 

Value Device’s Own Slave Address  
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The upper 7 bits are the address to which the 2-wire Serial Interface will respond when 
addressed by a Master. If the LSB is set, the TWI will respond to the general call 
address (0x00), otherwise it will ignore the general call address.  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  0 1 0 0 0 1 0 X 

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one 
to enable the acknowledgement of the device’s own slave address or the general call 
address. TWSTA and TWSTO must be written to zero.  

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its 
own slave address (or the general call address if enabled) followed by the data direction 
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode 
is entered. After its own slave address and the write bit have been received, the TWINT 
Flag is set and a valid status code can be read from TWSR. The status code is used to 
determine the appropriate software action. The appropriate action to be taken for each 
status code is detailed in Table 25-5 below. The Slave Receiver mode may also be 
entered if arbitration is lost while the TWI is in the Master mode (see states 0x68 and 
0x78).  

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) 
to SDA after the next received data byte. This can be used to indicate that the Slave is 
not able to receive any more bytes. While TWEA is zero, the TWI does not 
acknowledge its own slave address. However, the 2-wire Serial Bus is still monitored 
and address recognition may resume at any time by setting TWEA. This implies that the 
TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial Bus.  

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the 
TWEA bit is set, the interface can still acknowledge its own slave address or the 
general call address by using the 2-wire Serial Bus clock as a clock source. The part 
will then wake up from sleep and the TWI will hold the SCL clock low during the wake 
up and until the TWINT Flag is cleared (by writing it to one). Further data reception will 
be carried out as normal, with the AVR clocks running as normal. Observe that if the 
AVR is set up with a long start-up time, the SCL line may be held low for a long time, 
blocking other data transmissions.  

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last 
byte present on the bus when waking up from these Sleep modes. 

Table 25-5. Status Codes for Slave Receiver Mode  

Application Software Response 

To TWCR 

Status Code 

(TWSR) 

Prescaler 

Bits are 0 

Status of the 2-wire 

Serial Bus and 2-wire 

Serial Interface 

Hardware To/from TWDR STA STO TWINT TWEA 
Next Action Taken by TWI 

Hardware 

0x60  Own SLA+W has been 

received; ACK has been 

returned  

No TWDR action or  

 

No TWDR action  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned  

Data byte will be received and ACK 

will be returned  

0x68  Arbitration lost in 

SLA+R/W as Master; 

own SLA+W has been 

received; ACK has been 

returned  

No TWDR action or 

 

No TWDR action  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x70  General call address has 

been received; ACK has 

been returned  

No TWDR action or 

 

No TWDR action 

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  
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0x78  Arbitration lost in 

SLA+R/W as Master; 

General call address has 

been received; ACK has 

been returned  

No TWDR action or 

 

No TWDR action  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x80  Previously addressed 

with own SLA+W; data 

has been received; ACK 

has been returned  

Read data byte or 

 

Read data byte  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x88  Previously addressed 

with own SLA+W; data 

has been received; NOT 

ACK has been returned  

Read data byte or 

 

Read data byte or 

 

 

Read data byte or 

 

 

 

Read data byte  

0 

 

0 

 

 

1 

 

 

 

1 

0 

 

0 

 

 

0 

 

 

 

0 

1 

 

1 

 

 

1 

 

 

 

1 

0 

 

1 

 

 

0 

 

 

 

1 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1” 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA; a START condition will be 

transmitted when the bus becomes 

free 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”; a START condition will be 

transmitted when the bus becomes 

free  

0x90  Previously addressed 

with general call; data 

has been re-ceived; ACK 

has been returned  

Read data byte or 

 

Read data byte  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Data byte will be received and NOT 

ACK will be returned 

Data byte will be received and ACK 

will be returned  

0x98  Previously addressed 

with general call; data 

has been received; NOT 

ACK has been returned  

Read data byte or 

 

Read data byte or 

 

Read data byte or 

 

Read data byte 

0 

 

0 

 

 

1 

 

 

 

1 

0 

 

0 

 

 

0 

 

 

 

0 

1 

 

1 

 

 

1 

 

 

 

1 

0 

 

1 

 

 

0 

 

 

 

1 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1” 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA; a START condition will be 

transmitted when the bus becomes 

free 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”; a START condition will be 

transmitted when the bus becomes 

free  
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0xA0  A STOP condition or 

repeated START 

condition has been 

received while still 

addressed as Slave  

No action  0 

 

0 

 

 

1 

 

 

 

1 

0 

 

0 

 

 

0 

 

 

 

0 

1 

 

1 

 

 

1 

 

 

 

1 

0 

 

1 

 

 

0 

 

 

 

1 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1” 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA; a START condition will be 

transmitted when the bus becomes 

free 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”; a START condition will be 

transmitted when the bus becomes 

free  

Figure 25-16. Formats and States in the Slave Receiver Mode  

S SLA W A DATA A
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Reception of the general call
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n

From master to slave
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Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

 

25.7.4 Slave Transmitter Mode 

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master 
Receiver (see Figure 25-17 on page 397). All the status codes mentioned in this section 
assume that the prescaler bits are zero or are masked to zero.  
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Figure 25-17. Data Transfer in Slave Transmitter Mode  
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SDA
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To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:  

TWAR  TWA6  TWA5  TWA4  TWA3  TWA2  TWA1  TWA0  TWGCE 

Value Device’s Own Slave Address  

The upper seven bits are the address to which the 2-wire Serial Interface will respond 
when addressed by a Master. If the LSB is set, the TWI will respond to the general call 
address (0x00), otherwise it will ignore the general call address.  

TWCR  TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 

Value  0 1 0 0 0 1 0 X 

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one 
to enable the acknowledgement of the device’s own slave address or the general call 
address. TWSTA and TWSTO must be written to zero.  

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its 
own slave address (or the general call address if enabled) followed by the data direction 
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode 
is entered. After its own slave address and the write bit have been received, the TWINT 
Flag is set and a valid status code can be read from TWSR. The status code is used to 
determine the appropriate software action. The appropriate action to be taken for each 
status code is detailed in Table 25-6 on page 398. The Slave Transmitter mode may 
also be entered if arbitration is lost while the TWI is in the Master mode (see state 
0xB0).  

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of 
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the 
Master Receiver transmits a NACK or ACK after the final byte. The TWI is switched to 
the not addressed Slave mode, and will ignore the Master if it continues the transfer. 
Thus the Master Receiver receives all “1” as serial data. State 0xC8 is entered if the 
Master demands additional data bytes (by transmitting ACK), even though the Slave 
has transmitted the last byte (TWEA zero and expecting NACK from the Master).  

While TWEA is zero, the TWI does not respond to its own slave address. However, the 
2-wire Serial Bus is still monitored and address recognition may resume at any time by 
setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the 
TWI from the 2-wire Serial Bus.  

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the 
TWEA bit is set, the interface can still acknowledge its own slave address or the 
general call address by using the 2-wire Serial Bus clock as a clock source. The part 
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will then wake up from sleep and the TWI will hold the SCL clock will low during the 
wake up and until the TWINT Flag is cleared (by writing it to one). Further data 
transmission will be carried out as normal, with the AVR clocks running as normal. 
Observe that if the AVR is set up with a long start-up time, the SCL line may be held 
low for a long time, blocking other data transmissions.  

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last 
byte present on the bus when waking up from these sleep modes.  

Table 25-6. Status Code for Slave Transmitter Mode 

Application Software Response 

To TWCR 

Status Code 

(TWSR) 

Prescaler 

Bits are 0 

Status of the 2-wire 

Serial Bus and 2-wire 

Serial Interface 

Hardware To/from TWDR STA STD TWINT TWEA 
Next Action Taken by TWI 

Hardware 

0xA8  Own SLA+R has been 

received; ACK has been 

returned  

Load data byte or 

 

Load data byte  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Last data byte will be transmitted and 

NOT ACK should be received Data 

byte will be transmitted and ACK 

should be received  

0xB0  Arbitration lost in SLA+R/W 

as Master; own SLA+R has 

been received; ACK has 

been returned  

Load data byte or 

 

Load data byte  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Last data byte will be transmitted and 

NOT ACK should be received Data 

byte will be transmitted and ACK 

should be received  

0xB8  Data byte in TWDR has 

been transmitted; ACK has 

been received  

Load data byte or 

 

Load data byte  

X 

 

X 

0 

 

0 

1 

 

1 

0 

 

1 

Last data byte will be transmitted and 

NOT ACK should be received 

Data byte will be transmitted and 

ACK should be received  

0xC0  Data byte in TWDR has 

been transmitted; NOT 

ACK has been received  

No TWDR action or 

 

No TWDR action or  

 

 

No TWDR action or  

 

 

 

No TWDR action  

0 

 

0 

 

 

1 

 

 

 

1 

0 

 

0 

 

 

0 

 

 

 

0 

1 

 

1 

 

 

1 

 

 

 

1 

0 

 

1 

 

 

0 

 

 

 

1 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”  

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA; a START condition will be 

transmitted when the bus becomes 

free 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”; a START condition will be 

transmitted when the bus becomes 

free  

0xC8  Last data byte in TWDR 

has been transmitted 

(TWEA = “0”); ACK has 

been received  

No TWDR action or 

 

No TWDR action or 

 

 

No TWDR action or 

 

 

 

No TWDR action 

0 

 

0 

 

 

1 

 

 

 

1 

0 

 

0 

 

 

0 

 

 

 

0 

1 

 

1 

 

 

1 

 

 

 

1 

0 

 

1 

 

 

0 

 

 

 

1 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1” 

Switched to the not addressed Slave 

mode; no recognition of own SLA or 

GCA; a START condition will be 

transmitted when the bus becomes 

free 

Switched to the not addressed Slave 

mode; own SLA will be recognized; 

GCA will be recognized if TWGCE = 

“1”; a START condition will be 

transmitted when the bus becomes 

free  
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Figure 25-18. Formats and States in the Slave Transmitter Mode  
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From master to slave
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to a defined state of the Two-Wire Serial Bus. The 
prescaler bits are zero or masked to zero
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$C0

DATA A

A

$C8

P or SAll 1’s

A

 

 

25.7.5 Miscellaneous States 

There are two status codes that do not correspond to a defined TWI state, see Table 
25-7 below. 

Status 0xF8 indicates that no relevant information is available because the TWINT Flag 
is not set. This occurs between other states, and when the TWI is not involved in a 
serial transfer.  

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. 
A bus error occurs when a START or STOP condition occurs at an illegal position in the 
format frame. Examples of such illegal positions are during the serial transfer of an 
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is 
set. To recover from a bus error, the TWSTO Flag must set and TWINT must be 
cleared by writing a logic one to it. This causes the TWI to enter the not addressed 
Slave mode and to clear the TWSTO Flag (no other bits in TWCR are affected). The 
SDA and SCL lines are released, and no STOP condition is transmitted.  

Table 25-7. Miscellaneous States  

Application Software Response 

To TWCR 

Status Code 

(TWSR) 

Prescaler 

Bits are 0 

Status of the 2-wire 

Serial Bus and 2-wire 

Serial Interface Hard-

ware To/from TWDR STA STO TWINT TWEA 
Next Action Taken by TWI 

Hardware 

0xF8 No relevant state 

information available 

TWDR action No TWCR action Wait or proceed current transfer 

0x00  Bus error due to an illegal 

START or STOP condition  

No TWDR action  0 1 1 X Only the internal hardware is 

affected, no STOP condi-tion is sent 

on the bus. In all cases, the bus is 

released and TWSTO is cleared.  

25.7.6 Combining Several TWI Modes 

In some cases, several TWI modes must be combined in order to complete the desired 
action. Consider for example reading data from a serial EEPROM. Typically, such a 
transfer involves the following steps:  

1. The transfer must be initiated.  

2. The EEPROM must be instructed what location should be read.  
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3. The reading must be performed.  

4. The transfer must be finished.  

Note that data is transmitted both from Master to Slave and vice versa. The Master 
must instruct the Slave what location it wants to read, requiring the use of the MT mode. 
Subsequently, data must be read from the Slave, implying the use of the MR mode. 
Thus, the transfer direction must be changed. The Master must keep control of the bus 
during all these steps, and the steps should be carried out as an atomic operation. If 
this principle is violated in a multi-master system, another Master can alter the data 
pointer in the EEPROM between steps 2 and 3, and the Master will read the wrong data 
location. Such a change in transfer direction is accomplished by transmitting a 
REPEATED START between the transmission of the address byte and reception of the 
data. After a REPEATED START, the Master keeps ownership of the bus. The following 
figure shows the flow in this transfer.  

Figure 25-19. Combining Several TWI Modes to Access a Serial EEPROM  

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

 

25.8 Multi-master Systems and Arbitration  

If multiple masters are connected to the same bus, transmissions may be initiated 
simultaneously by one or more of them. The TWI standard ensures that such situations 
are handled in such a way that one of the masters will be allowed to proceed with the 
transfer, and that no data will be lost in the process. An example of an arbitration 
situation is depicted below, where two masters are trying to transmit data to a Slave 
Receiver.  

Figure 25-20. An Arbitration Example  

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER

Device n

SDA

SCL

........ R1 R2

DEVDD
 

 

Several different scenarios may arise during arbitration, as described below:  

• Two or more masters are performing identical communication with the same Slave. 
In this case, neither the Slave nor any of the masters will know about the bus 
contention.  

• Two or more masters are accessing the same Slave with different data or direction 
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data 
bits. The masters trying to output a one on SDA while another Master outputs a zero 
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will lose the arbitration. Losing masters will switch to not addressed Slave mode or 
wait until the bus is free and transmit a new START condition, depending on 
application software action.  

• Two or more masters are accessing different slaves. In this case, arbitration will 
occur in the SLA bits. Masters trying to output a one on SDA while another Master 
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to 
Slave mode to check if they are being addressed by the winning Master. If 
addressed, they will switch to SR or ST mode, depending on the value of the 
READ/WRITE bit. If they are not being addressed, they will switch to not addressed 
Slave mode or wait until the bus is free and transmit a new START condition, 
depending on application software action.  

This is summarized in Figure 25-21 below. Possible status values are given in circles. 

Figure 25-21. Possible Status Codes Caused by Arbitration  

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

 

25.9 Register Description 

25.9.1 TWBR – TWI Bit Rate Register 

Bit 7 6 5 4 3 2 1 0  

NA ($B8) TWBR7:0 TWBR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The SCL period is controlled by settings in the TWI Bit Rate Register (TWBR) and the 
Prescaler bits in the TWI Status Register (TWSR). Slave operation does not depend on 
Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave must be at 
least 16 times higher than the SCL frequency. 

• Bit 7:0 – TWBR7:0 - TWI Bit Rate Register Value 

The TWBR register selects the division factor for the bit rate generator. The bit rate 
generator is a frequency divider which generates the SCL clock frequency in the Master 
modes. See section "Bit Rate Generator Unit" for calculating bit rates. 
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25.9.2 TWCR – TWI Control Register 

Bit 7 6 5 4 3 2 1 0  

NA ($BC) TWINT TWEA TWSTA TWSTO TWWC TWEN Res TWIE TWCR 

Read/Write RW RW RW RW RW RW R RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to 
initiate a Master access by applying a START condition to the bus, to generate a 
Receiver acknowledge, to generate a stop condition, and to control halting of the bus 
while the data to be written to the bus are put into the TWDR. It also indicates a write 
collision if data writing to TWDR is attempted while the register is inaccessible. 

• Bit 7 – TWINT - TWI Interrupt Flag 

This bit is set by hardware when the TWI has finished its current job and expects 
application software response. If the I-bit in SREG and TWIE in TWCR are set, the 
MCU will jump to the TWI Interrupt Vector. While the TWINT Flag is set, the SCL low 
period is stretched. The TWINT Flag must be cleared by software by writing a logic one 
to it. Note that this flag is not automatically cleared by hardware when executing the 
interrupt routine. Also note that clearing this flag starts the operation of the TWI. So all 
accesses to the TWI Address Register (TWAR), TWI Status Register (TWSR) and TWI 
Data Register (TWDR) must be complete before clearing this flag. 

• Bit 6 – TWEA - TWI Enable Acknowledge Bit 

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is 
written to one, the ACK pulse is generated on the TWI bus if the following conditions 
are met: 1. The devices own slave address has been received; 2. A general call has 
been received, while the TWGCE bit in the TWAR is set. 3. A data byte has been 
received in Master Receiver or Slave Receiver mode. By writing the TWEA bit to zero, 
the device can be virtually disconnected from the 2-wire Serial Bus temporarily. 
Address recognition can then be resumed by writing the TWEA bit to one again. 

• Bit 5 – TWSTA - TWI START Condition Bit 

The application writes the TWSTA bit to one when it desires to become a Master on the 
2-wire Serial Bus. The TWI hardware checks if the bus is available and generates a 
START condition on the bus if it is free. However, if the bus is not free, the TWI waits 
until a STOP condition is detected and then generates a new START condition to claim 
the bus Master status. TWSTA must be cleared by software when the START condition 
has been transmitted. 

• Bit 4 – TWSTO - TWI STOP Condition Bit 

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-
wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is 
cleared automatically. In Slave mode, setting the TWSTO bit can be used to recover 
from an error condition. This will not generate a STOP condition, but the TWI returns to 
a well-defined not-addressed Slave mode and releases the SCL and SDA lines to a 
high impedance state. 

• Bit 3 – TWWC - TWI Write Collision Flag 

The TWWC bit is set when attempting to write to the TWI Data Register TWDR when 
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high. 

• Bit 2 – TWEN - TWI Enable Bit 

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is 
written to one, the TWI takes control over the I/O ports connected to the SCL and SDA 
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pins enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI 
is switched off and all TWI transmissions are terminated regardless of any ongoing 
operation. 

• Bit 1 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 0 – TWIE - TWI Interrupt Enable 

When this bit is written to one and the I-bit in SREG is set, the TWI interrupt request will 
be activated for as long as the TWINT Flag is high. 

 

25.9.3 TWSR – TWI Status Register 

Bit 7 6 5 4 3 2 1 0  

NA ($B9) TWS7 TWS6 TWS5 TWS4 TWS3 Res TWPS1 TWPS0 TWSR 

Read/Write RW RW RW RW RW R RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:3 – TWS4:0 - TWI Status 

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different 
status codes for both transmitter and receiver mode are described in the following table. 
Note that the value read from TWSR contains both the 5-bit status value and the 2-bit 
prescaler value. The application designer should mask the prescaler bits to zero when 
checking the Status bits. This makes status checking independent of prescaler setting. 
This approach is used in this datasheet, unless otherwise noted. 

Table 25-8 TWS Register Bits 

Register Bits Value Description 

0x00 Bus error due to illegal START or STOP 
condition. 

0x08 A START condition has been transmitted. 

0x10 A repeated START condition has been 
transmitted. 

0x18 SLA+W has been transmitted; ACK has 
been received. 

0x20 SLA+W has been transmitted; NOT ACK has 
been received. 

0x28 Data byte has been transmitted; ACK has 
been received. 

0x30 Data byte has been transmitted; NOT ACK 
has been received. 

0x38 Arbitration lost in SLA+W or data bytes 
(Transmitter); Arbitration lost in SLA+R or 
NOT ACK bit (Receiver). 

0x40 SLA+R has been transmitted; ACK has been 
received. 

0x48 SLA+R has been transmitted; NOT ACK has 
been received. 

TWS4:0 

0x50 Data byte has been received; ACK has been 
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Register Bits Value Description 

returned. 

0x58 Data byte has been received; NOT ACK has 
been returned. 

0x60 Own SLA+W has been received; ACK has 
been returned. 

0x68 Arbitration lost in SLA+R/W as Master; own 
SLA+W has been received; ACK has been 
returned. 

0x70 General call address has been received; 
ACK has been returned. 

0x78 Arbitration lost in SLA+R/W as Master; 
general call address has been received; 
ACK has been returned. 

0x80 Previously addressed with own SLA+W; data 
has been received; ACK has been returned. 

0x88 Previously addressed with own SLA+W; data 
has been received; NOT ACK has been 
returned. 

0x90 Previously addressed with general call; data 
has been received; ACK has been returned. 

0x98 Previously addressed with general call; data 
has been received; NOT ACK has been 
returned. 

0xA0 A STOP condition or repeated START 
condition has been received while still 
addressed as Slave. 

0xA8 Own SLA+R has been received; ACK has 
been returned. 

0xB0 Arbitration lost in SLA+R/W as Master; own 
SLA+R has been received; ACK has been 
returned. 

0xB8 Data byte in TWDR has been transmitted; 
ACK has been received. 

0xC0 Data byte in TWDR has been transmitted; 
NO ACK has been received. 

0xC8 Last data byte in TWDR has been 
transmitted (TWEA = 0); ACK has been 
received. 

0xF8 No relevant state information available; 
TWINT = 0. 

• Bit 2 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 

• Bit 1:0 – TWPS1:0 - TWI Prescaler Bits 

These bits can be read and written and control the bit rate of the prescaler. 

Table 25-9 TWPS Register Bits 

Register Bits Value Description 

TWPS1:0 0x00 1 
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Register Bits Value Description 

0x01 4 

0x02 16 

0x03 64 

 

25.9.4 TWDR – TWI Data Register 

Bit 7 6 5 4 3 2 1 0  

NA ($BB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 1 1 1 1 1 1 1 1   
 

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, 
the TWDR contains the last byte received. It is writable while the TWI is not in the 
process of shifting a byte. This occurs when the TWI Interrupt Flag (TWINT) is set by 
hardware. Note that the Data Register cannot be initialized by the user before the first 
interrupt occurs. The data in TWDR remains stable as long as TWINT is set. While data 
is shifted out, data on the bus is simultaneously shifted in. TWDR always contains the 
last byte present on the bus, except after a wake up from a sleep mode by the TWI 
interrupt. In this case, the contents of TWDR is undefined. In the case of a lost bus 
arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit 
is automatically controlled by the TWI logic. The CPU cannot access the ACK bit 
directly. 

• Bit 7:0 – TWD7:0 - TWI Data Register Byte 

 

25.9.5 TWAR – TWI (Slave) Address Register 

Bit 7 6 5 4 3 2 1 0  

NA ($BA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant 
bits of TWAR) to which the TWI will respond when programmed as a Slave Transmitter 
or Receiver. This register is not needed in the Master modes. In multi-master systems 
TWAR must be set in Masters which can be addressed as Slaves by other Masters. 
The LSB of TWAR is used to enable the recognition of the general call address (0x00). 
There is an associated address comparator that looks for the slave address (or general 
call address if enabled) in the received serial address. If a match is found, an interrupt 
request is generated. 

• Bit 7:1 – TWA6:0 - TWI (Slave) Address 

These bits contain the TWI address operated as a Slave device. 

• Bit 0 – TWGCE - TWI General Call Recognition Enable Bit 

If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus. 
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25.9.6 TWAMR – TWI (Slave) Address Mask Register 

Bit 7 6 5 4 3 2 1 0  

NA ($BD) TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 Res TWAMR 

Read/Write RW RW RW RW RW RW RW R  

Initial Value 0 0 0 0 0 0 0 0   
 

• Bit 7:1 – TWAM6:0 - TWI Address Mask 

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in 
TWAMR can mask (disable) the corresponding address bit in the TWI Address Register 
(TWAR). If the mask bit is set to one then the address match logic ignores the compare 
between the incoming address bit and the corresponding bit in TWAR. 

• Bit 0 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 
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26 AC – Analog Comparator 

The Analog Comparator compares the input values on the positive pin AIN0 and 
negative pin AIN1. When the voltage on the positive pin AIN0 is higher than the voltage 
on the negative pin AIN1, the Analog Comparator output, ACO, is set. The comparator’s 
output can be set to trigger the Timer/Counter1 Input Capture function. In addition, the 
comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The 
user can select Interrupt triggering on comparator output rise, fall or toggle. A block 
diagram of the comparator and its surrounding logic is shown in Figure 26-1 below. 

The Power Reduction ADC bit PRADC in PRR0 (see "PRR0 – Power Reduction 
Register0" on page 167) must be disabled by writing a logical zero to be able to use the 
ADC input multiplexer.  

Figure 26-1. Analog Comparator Block Diagram 

 

Note: 1. See Table 26-1 below.  

2. Refer to Figure 1-1 on page 2 and Table 14-9 on page 197 for Analog Comparator 
pin placement. 

26.1 Analog Comparator Multiplexed Input 

It is possible to select any of the ADC7:0 pins as the negative input of the Analog 
Comparator. The ADC multiplexer is used to select this input and consequently the 
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer 
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is 
zero), MUX5 and MUX2:0 in ADMUX select the input pin to replace the negative input 
to the Analog Comparator, as shown in Table 26-1 below. If ACME is cleared or ADEN 
is set, AIN1 is applied to the negative input to the Analog Comparator. 

Table 26-1. Analog Comparator Multiplexed Input 

ACME ADEN MUX5 MUX2:0 Analog Comparator Negative Input 

0 x x xxx AIN1 

1 1 x xxx AIN1 

1 0 0 000 ADC0 

1 0 0 001 ADC1 

1 0 0 010 ADC2 

1 0 0 011 ADC3 

1 0 0 100 ADC4 
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ACME ADEN MUX5 MUX2:0 Analog Comparator Negative Input 

1 0 0 101 ADC5 

1 0 0 110 ADC6 

1 0 0 111 ADC7 

26.2 Register Description 

26.2.1 ACSR – Analog Comparator Control And Status Register 

Bit 7 6 5 4 3 2 1 0  

$30 ($50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR 

Read/Write RW RW R RW RW RW RW RW  

Initial Value 0 0 NA 0 0 0 0 0   
 

• Bit 7 – ACD - Analog Comparator Disable 

When this bit is written logic one, the power to the Analog Comparator is switched off. 
This bit can be set at any time to turn off the Analog Comparator. This will reduce power 
consumption in Active and Idle mode. When changing the ACD bit, the Analog 
Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an 
interrupt can occur when the bit is changed. 

• Bit 6 – ACBG - Analog Comparator Bandgap Select 

When this bit is set, a fixed bandgap reference voltage connects to the positive input of 
the Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of 
the Analog Comparator. When the bandgap reference is used as the input of the 
Analog Comparator, it will take a certain time for the voltage to stabilize. If not 
stabilized, the first comparison may give a wrong value. See section "Internal Voltage 
Reference" for details. 

• Bit 5 – ACO - Analog Compare Output 

The output of the analog comparator is synchronized and then directly connected to 
ACO. The synchronization introduces a delay of 1-2 clock cycles. 

• Bit 4 – ACI - Analog Comparator Interrupt Flag 

This bit is set by hardware when a comparator output event triggers the interrupt mode 
defined by ACIS1 and ACIS0. The Analog Comparator Interrupt routine is executed if 
the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hard-ware when 
executing the corresponding interrupt handling vector. Alternatively, ACI is cleared by 
writing a logic one to the flag. 

• Bit 3 – ACIE - Analog Comparator Interrupt Enable 

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the 
analog comparator interrupt is activated. When written logic zero, the interrupt is 
disabled. 

• Bit 2 – ACIC - Analog Comparator Input Capture Enable 

When written logic one, this bit enables the input capture function in Timer/Counter1 to 
be triggered by the Analog Comparator. The comparator output is in this case directly 
connected to the input capture front-end logic, making the comparator utilize the noise 
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When 
written logic zero, no connection between the Analog Comparator and the input capture 
function exists. To make the comparator trigger the Timer/Counter1 Input Capture 
interrupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set. 
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• Bit 1:0 – ACIS1:0 - Analog Comparator Interrupt Mode Select 

These bits determine which comparator events that trigger the Analog Comparator 
interrupt. The different settings are shown in the following table. When changing the 
ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by clearing its 
Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the 
bits are changed. 

Table 26-2 ACIS Register Bits 

Register Bits Value Description 

0x00 Interrupt on Toggle 

0x01 Reserved 

0x02 Interrupt on Falling Edge 

ACIS1:0 

0x03 Interrupt on Rising Edge 

 

26.2.2 ADCSRB – ADC Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($7B)  ACME       ADCSRB 

Read/Write  RW        

Initial Value  0         
 

• Bit 6 – ACME - Analog Comparator Multiplexer Enable 

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is 
zero), the ADC multiplexer defines the negative input of the Analog Comparator. When 
this bit is written logic zero, AIN1 is applied to the negative input of the Analog 
Comparator. For a detailed description of this bit, see section "Analog Comparator 
Multiplexed Input". 

 

26.2.3 DIDR1 – Digital Input Disable Register 1 

Bit 7 6 5 4 3 2 1 0  

NA ($7F)       AIN1D AIN0D DIDR1 

Read/Write       RW RW  

Initial Value       0 0   
 

• Bit 1 – AIN1D - AIN1 Digital Input Disable 

When this bit is written logic one, the digital input buffer on the AIN1 pin is disabled. The 
corresponding PIN Register bit will always read as zero when this bit is set. When an 
analog signal is applied to the AIN1 pin and the digital input from this pin is not needed, 
this bit should be written logic one to reduce power consumption in the digital input 
buffer. 

• Bit 0 – AIN0D - AIN0 Digital Input Disable 

When this bit is written logic one, the digital input buffer on the AIN0 pin is disabled. The 
corresponding PIN Register bit will always read as zero when this bit is set. When an 
analog signal is applied to the AIN0 pin and the digital input from this pin is not needed, 
this bit should be written logic one to reduce power consumption in the digital input 
buffer. 
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27 ADC – Analog to Digital Converter 

27.1 Features 

• 10-bit Resolution 

• Differential Non-Linearity is less than ± 0.5 LSB 

• 2 LSB Integral Non-Linearity 

• 3 - 240 µs Conversion Time 

• Up to 330 kSPS (Up to 570 kSPS with 8-bit Resolution) 

• 8 Multiplexed Single Ended Input Channels 

• 11 Differential Input Channels 

• 2 Differential Input Channels with an Optional Gain of 10x and 200x 

• Internal Linear Temperature Sensor 

• Optional Left Adjustment for ADC Result Readout 

• 0 - VAVDD ADC Input Voltage Range 

• 0 - VEVDD Differential ADC Input Voltage Range 

• Selectable 1.5V, 1.6V or VAVDD ADC Reference Voltage 

• Free Running or Single Conversion Mode 

• Interrupt on ADC Conversion Complete 

• Sleep Mode Noise Canceller 

The ATmega128RFA1 features a 10-bit successive approximation ADC. The ADC is 
connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage 
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V 
(AVSS). 

The device also supports multiple differential voltage input combinations. Two of the 
differential inputs (ADC1 & ADC0 and ADC3 & ADC2) are equipped with a 
programmable gain stage, providing amplification steps of 0 dB (1x), 20 dB (10x) or 46 
dB (200x) on the differential input voltage before the A/D conversion. The differential 
input channels are constructed of pairs out of the 8 single-ended inputs. They share a 
common negative terminal (ADC0, ADC1 or ADC2), while most of the other ADC inputs 
can be selected as the positive input terminal. If 1x or 10x gain is used, 8 bit resolution 
can be expected. If 200x gain is used, 6 bit resolution can be expected. 

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the 
ADC is held at a constant level during conversion. A block diagram of the ADC is shown 
in Figure 27-1 on page 411. 

The analog components of the ADC are supplied from the analog supply voltage AVDD. 
AVDD is generated from EVDD by an internal voltage generator. The logic part of the 
ADC is supplied from the digital supply voltage DVDD. DVDD is generated from 
DEVDD also by an internal voltage generator. 

Internal reference voltages of nominally 1.5V, 1.6V or AVDD (1.8V) are provided on-
chip. The 1.6V reference is calibrated to ± 1 LSB during manufacturing. The reference 
voltage can be monitored at the AREF pin. Additional de-coupling capacitance at AREF 
is not required. A high capacitive loading of AREF will de-stabilize the internal reference 
voltage generation. An external reference voltage in the range of 0 < VAREF,EXT ≤ VAVDD 
may be used but must be supplied with a very low impedance. 
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The Power Reduction ADC bit, PRADC (see "PRR0 – Power Reduction Register0" on 
page 167) must be disabled by writing a logical zero to enable the ADC. 

Figure 27-1. Analog to Digital Converter Block Schematic 
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27.2 Operation 

The ADC converts an analog input voltage to a 10-bit digital value through successive 
approximation. The minimum value represents 0V (conversion result 0x000) and the 
maximum value in single ended mode represents the reference voltage minus 1 LSB 
(conversion result 0x3FF). The reference voltage can be measured at the AREF pin. 
The internal, generated reference voltage can have the values 1.5V, 1.6V or AVDD 
where the 1.6V has the highest absolute accuracy. The reference voltage is selected by 
writing to the REFSn bits in the ADMUX Register. An external reference voltage can 
also be selected. Such an external voltage must be supplied with a very low impedance 
RAREF,EXT (see "ADC Electrical Characteristics" on page 505). The load current IL,AREF 

(see "ADC Electrical Characteristics" on page 505) seen by the external source is code 
dependent and changes in the course of the successive approximation process (load 
current steps). The internal voltage reference (except AVDD) must not be decoupled by 
an external capacitor. Adding unnecessary external capacitance at the AREF pin will 
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cause instable operation of the internal reference voltage buffer and will not improve 
noise immunity. 

The analog input channel is selected by writing to the MUX bits in ADMUX and 
ADCSRB. Any of the ADC input pins, as well as AVSS and a fixed bandgap voltage 
reference can be selected as single ended inputs to the ADC. A choice of ADC input 
pins can be selected as positive and negative inputs to the differential amplifier. 
Furthermore the temperature sensor and the DRT voltages of SRAM2 can also be 
processed with the ADC. 

If differential channels are selected, the amplified voltage difference between the 
selected input channel pair then becomes the input of the ADC. The respective pin 
voltages for a differential measurement can be in the range from 0V to EVDD. In this 
way it is possible to handle differential input voltages with a common mode value higher 
than AVDD e.g. process a 50mV differential signal with a 2.5V common mode voltage. 
If single ended channels are used, the gain amplifier is bypassed altogether. Any ADC 
input voltage (single-ended or amplified-differential) exceeding AVDD will be internally 
clamped to AVDD to avoid damaging the ADC circuitry. Note that the pin input current 
will not increase if the clamp circuit is active.  

The ADC is enabled by setting ADEN bit in ADCSRA. Voltage reference and input 
channel selections will not go into effect until ADEN is set. The ADC does not consume 
power when ADEN is cleared. It is required to disable the ADC before entering power 
saving sleep modes. 

The ADC generates a 10-bit result which is presented in the ADC Data Registers, 
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally 
be presented left adjusted by setting the ADLAR bit in ADMUX. 

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to 
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the 
content of the Data Registers belongs to the same conversion. Once ADCL is read, 
ADC access to Data Registers is blocked. This means that if ADCL has been read, and 
a conversion completes before ADCH is read, neither register is updated and the result 
from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL 
Registers is re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes. 
When ADC access to the Data Registers is prohibited between reading of ADCH and 
ADCL, the interrupt will trigger even if the result is lost. 

27.3 ADC Start-Up 

After the ADC is enabled by setting ADEN, it will go through a start-up phase. The 
analog supply voltage AVDD is turned on. It takes time tAVREG (see "Power Management 
Electrical Characteristics" on page 503) µs for AVDD to stabilize. A stable AVDD 
voltage is indicated by the AVDDOK bit in ADCSRB. After this the ADC and, for 
differential input channels also the gain amplifier, is powered up. The duration of this 
phase depends on the ADC clock period and the configuration of the Start-Up and 
Track-And–Hold Time bits, ADSUT4:0 and ADTHT1:0 in ADCSRC. For details about 
the start-up timing refer to section "Pre-scaling and Conversion Timing" on page 413. 

During the ADC start-up phase a conversion start can already be requested by writing a 
logical one to the ADC Start Conversion bit, ADSC in ADCSRA. In this case a 
conversion is started directly after the start-up phase. During the start-up phase it is still 
possible to change the analog input channel until the AVDDOK bit changes to logic one 
or, if the AVDDOK bit is one, until  the ADSC bit is set. 
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27.4 Starting a Conversion 

A single conversion is started by writing a logical one to the ADC Start Conversion bit, 
ADSC. This bit stays high as long as the conversion is in progress and will be cleared 
by hardware when the conversion is completed. If a different data channel is selected 
while a conversion is in progress, the ADC will finish the current conversion before 
performing the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto 
Triggering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. 
The trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB 
(See description of the ADTS bits for a list of the trigger sources). When a positive edge 
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is 
started. This provides a method of starting conversions at fixed intervals. If the trigger 
signal still is set when the conversion completes, a new conversion will not be started. If 
another positive edge occurs on the trigger signal during conversion, the edge will be 
ignored. Note that an Interrupt Flag will be set even if the specific interrupt is disabled or 
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered 
without causing an interrupt. However, the Interrupt Flag must be cleared in order to 
trigger a new conversion at the next interrupt event. 

Figure 27-2. ADC Auto Trigger Logic 
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Using the ADC Interrupt Flag as a trigger source makes the ADC start a new 
conversion as soon as the ongoing conversion has finished. The ADC then operates in 
Free Running mode, constantly sampling and updating the ADC Data Register. The first 
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this 
mode the ADC will perform successive conversions independently of whether the ADC 
Interrupt Flag, ADIF is cleared or not. 

If Auto Triggering is enabled, single conversions can be started by writing ADSC in 
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress. 
The ADSC bit will be read as one during a conversion, independently of how the 
conversion was started. 

27.5 Pre-scaling and Conversion Timing 

27.5.1 Prescaler 

By default, the successive approximation circuitry requires an input clock frequency 
between 50 kHz and 4 MHz. If a lower resolution than 10 bits is needed, the input clock 



 

 

 

 

 

 

 

 
 

  
 

414 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

frequency to the ADC can be as high as 8 MHz to get a higher sample rate. For 
differential input channels the ADC clock speed is restricted to a maximum of 2 MHz.  

Figure 27-3. ADC Prescaler 
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The ADC module contains a prescaler, which generates an acceptable ADC clock 
frequency from any CPU frequency above 100 kHz. The pre-scaling is set by the ADPS 
bits in ADCSRA. The prescaler starts counting from the moment when the ADC is 
enabled. The prescaler keeps running for as long as the ADEN bit is set, and is 
continuously reset when ADEN is low. 

27.5.2 Start-Up Timing 

The ADC is enabled by setting the ADEN bit in ADCSRA. First the analog voltage 
regulator is powered up which takes tAVREG (see "Power Management Electrical 
Characteristics" on page 503). A stable AVDD is indicated by the AVDDOK bit in 
ADCSRB.  

After AVDD has stabilized, the ADC is started. The ADC start-up time has a length of 
tADSU and can be adjusted by the Start-Up time bits ADSUT4:0 in ADCSRC. If 
differential input channels are used, then an additional initialization period tAINIT is 
required by the gain amplifier. This period is configured by the Track-And-Hold Time 
bits, ADTHT1:0 in ADCSRC. ADSUT4:0 and ADTHT1:0 are fixed numbers of ADC 
clock cycles and can be setup for different ADC clock speeds.  

The minimum required ADC start-up time is 20 µs. Note that for the maximum ADC 
speed of 8 MHz the start-up time can not be set higher than 16 µs in ADSUT4:0. Under 
this condition the user has either to ensure that a conversion is not started earlier than 
20 µs after the ADC is enabled or the first conversion result should be discarded. 

For a summary of start-up times and sequences see Table 27-1 below, Table 27-2 
below, Figure 27-4 on page 415 and Figure 27-5 on page 415. 

Table 27-1. Start-Up Time, Single Ended Channels 

Parameter Duration in ADC Clock Cycles 
ADC Start-Up Time tADSU 4(ADSUT+1), minimum 20 µs 

Table 27-2. Start-Up Time, Differential Channels 

Parameter Duration in ADC Clock Cycles 
ADC Start-Up Time tADSU 4(ADSUT+1), minimum 20 µs 
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Parameter Duration in ADC Clock Cycles 
Gain Amplifier Initialization Time tAINIT 2(ADTHT+2) 

 

Figure 27-4. ADC Timing Diagram, Start-Up for Single Ended Channels 
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Figure 27-5. ADC Timing Diagram, Start-Up for Differential Channels 

A D C  C lo c k

A D E N

A D S C  

A V D D O K

A D IF

A D C H

A D C L

A D C
S ta r t -U p

 

tA V P U tA D S U

M U X  a n d  R E F S  U p d a te

1 1  T A D C _ C L K

C o n v e rs io n
A V D D

P o w e r -U p

S ig n  a n d  M S B

L S B  o f R e s u lt

S a m p le
 &  H o ld

C o n v e rs io n
C o m p le te

A m p lifie r
In it

tA IN IT

 

27.5.3 Conversion Timing 

The delay from requesting a conversion start by setting the ADSC bit in ADCSRA to the 
moment where the sample-and-hold takes place is fixed. The same fixed delay also 
applies for auto triggered conversions. In this case three additional CPU clock cycles 
are used for the trigger event synchronization logic. The delay depends on the 
prescaler configuration ADPS and if single-ended or differential channels are used. A 
summary is given in Table 27-3 on page 416. All conversions take 11 ADC clock cycles.  

When a conversion is complete, the result is written to the ADC Data Registers, and 
ADIF is set. In Single Conversion mode, ADSC is cleared simultaneously. The software 
may then set ADSC again, and a new conversion will be initiated at the earliest after the 
following tracking phase. The tracking phase is required after each conversion. Its 
duration can be adjusted according to the ADC clock speed by the ADTHT bits in 
ADCSRC and is different for single-ended and differential channels. For details see 
Table 27-4 on page 416. 

In Free Running mode, a new conversion will be started immediately after the tracking 
phase of the previous conversion while ADSC remains high. The calculation of the 
resulting sample rate is given in  Table 27-5 on page 416. 

For timing diagrams of single and auto triggered and free running conversions see 
Figure 27-6 on page 416 to Figure 27-8 on page 417. 
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Table 27-3. Conversion Start Delay 

Channel ADPS Delay from Conversion Start Request to Sample & 

Hold tSCSMP 

0, 1 2 CPU clock cycles 

2 4 CPU clock cycles 

3 0 CPU clock cycles 

Single-Ended 

4…7 0 CPU clock cycles 

Differential 0…7 2 ADC clock cycles 

Table 27-4. Tracking Time 

Channel Tracking Phase Duration tTRCK in ADC Clock Cycles 

Single-Ended ADTHT+1, minimum 500 ns 

Differential 2ADTHT+3 

Table 27-5. Sample Rate in Free Running Mode 

Channel Sample Rate in ADC Clock Cycles 

Single-Ended ADTHT+12 

Differential 2ADTHT+14 

Figure 27-6. ADC Timing Diagram, Single Conversion 
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Figure 27-7. ADC Timing Diagram, Auto Triggered Conversion 
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Figure 27-8. ADC Timing Diagram, Free Running Conversion 
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27.6 Changing Channel or Reference Selection 

The MUXn and REFSn bits in the ADMUX and ADCSRB Register are single buffered 
through a temporary register to which the CPU has random access. This ensures that 
the channels and reference selection only takes place at a safe point during the 
conversion.  The channel and reference selection is continuously updated either during 
the AVDD power-up phase or until a conversion is started by setting ADSC. After this 
the channel and reference selection is locked to ensure a sufficient initialization and 
sampling time for the ADC. Continuous updating of the channel selection resumes after 
the conversion has completed (ADIF in ADCSRA is set). The reference selection can 
only be updated if the ADC is disabled and enabled again.  

If Auto Triggering is used, the exact time of the triggering event can be undetermined. 
Special care must be taken when updating the ADMUX Register, in order to control 
which conversion will be affected by the new settings. 

If both ADATE and ADEN in the ADSCRA Register are written to one, an interrupt 
event can occur at any time. If the ADMUX Register is changed in this period, the user 
cannot tell if the next conversion is based on the old or the new settings. ADMUX can 
be safely updated in the following ways: 

1. When ADATE or ADEN is cleared. 

2. During a conversion 

3. After a conversion, before the Interrupt Flag used as trigger source is cleared. 

When updating ADMUX in one of these conditions, the new settings will affect the next 
A/D conversion. 

After the channel or reference voltage selection is updated a settling time is required for 
the ADC and the gain amplifier or the reference voltage to stabilize.  When changing 
the channel selection while the ADC is enabled the required settling phase is 
automatically inserted by the ADC interface, see section "ADC Input Channels" on page 
418. For consideration on changing the reference voltage selection please refer to 
section"ADC Voltage Reference" on page 419. 

27.6.1 Accessing the ADMUX Register 

The channel selection bits MUX4:0 and MUX5 are located in two different register, the 
ADMUX and the ADCSRB register. To ensure that changes go only into effect after 
both register have been changed they are internally buffered (see Figure 27-9 on page 
419 and Figure 27-10 on page 419). The MUX5 bit has to written first followed by a 
write access to the MUX4:0 bits which triggers the update of the internal buffer. If only 
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the MUX4:0 bits need to be modified then a write access to the MUX4:0 bits is 
sufficient. 

27.6.2 ADC Input Channels 

The ADC input channels can be changed while the ADC is running under the condition 
that the previous channel was a single-ended one. Changing between differential 
channels however requires that the ADC is disabled and enabled again to make the 
ADC go through the initial start-up phase. 

If changing from single-ended to single-ended or from single-ended to differential input 
channels a settling phase is automatically inserted by the ADC interface logic after the 
input channel is modified. The settling phase is required by the ADC and the gain 
amplifier to stabilize. If a conversions start is requested during this settling phase, by 
setting ADSC or by a trigger event in Auto Triggered mode then the conversion is 
started only after the settling phase has completed.  

In case the MUXn bits are altered during an ongoing conversion, the ADC input channel 
is changed after the conversion has completed. MUXn changes occurring during the 
tracking phase, which follows a conversion, will stop the tracking phase and the ADC 
settling phase will be entered. 

In Free Running mode MUXn can also be modified. In this case the ADC input channel 
is changed after the conversion end or from the subsequent tracking phase. As a 
consequence the time from one conversion to the next is extended by the duration of 
the ADC settling phase. 

The ADC settling time tASET depends on the previous and the new channel and on the 
configuration of the ADSUT4:0 and ADTHT1:0 bits as shown in Table 27-6 below. 
Additionally a synchronization delay tCHDLY from 2 CPU to 2 ADC Clock cycles is 
required between changing the ADC input channel selection and the beginning of the 
settling phase. For details see the timing diagrams Figure 27-9 on page 419 and Figure 
27-10 on page 419. 

If the analog input signal encounters large variations it can be useful to manually reset 
the ADC and the gain amplifier before starting a new conversion. To achieve this, the 
settling phase can be forced without modifying MUXn by writing a logic one to the 
Analog Channel Change bit ACCH in ADCSRB. Using the ACCH bit is only 
recommended for single-ended input channels. For differential input channels the ADC 
and the gain amplifier can be reset if the ADC is disabled and enabled again.  

 

Table 27-6. Settling Time after Channel Changes 

Channel Transition Settling Time tASET in ADC Clock Cycles 
Single-Ended or Differential to Single-Ended ADTHT+2 

Single-Ended to Differential 4(ADSUT+1) + 2(ADTHT+2) 

Differential to Differential Requires the ADC to be disabled and enabled 
again. 
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Figure 27-9. ADC Timing Diagram, Changing MUXn after a Conversion 
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Figure 27-10. ADC Timing Diagram, Changing MUXn during a Conversion 
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27.6.3 ADC Voltage Reference 

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. 
Single ended channels that exceed VREF will result 0x3FF. VREF can be selected by the 
REFSn bits in the ADMUX register as either AVDD (1.8V), internal 1.5V or 1.6V 
reference or an external voltage at the AREF pin. 

AVDD is connected to the ADC through a passive switch. The internal 1.5V and 1.6V 
references are generated from a bandgap reference (VBG) through an amplifier. In 
either case, the external AREF pin is directly connected to the ADC and the reference 
voltage can be measured at the AREF pin with a high impedance voltmeter. When 
using the internal 1.5V or 1.6V references no external de-coupling capacitor must be 
connected to AREF. High capacitive loading will de-stabilize the internal voltage 
amplifier. The 1.6V reference voltage is calibrated to an absolute accuracy of 1 LSB 
during the manufacturing process. 

If the user has a fixed voltage source connected to the AREF pin, the user may not use 
the other reference voltage options in the application, as they will be shorted to the 
external voltage. An external reference voltage must be supplied with a very low 
impedance RAREF,EXT (see "ADC Electrical Characteristics" on page 505). The load 
current IL,AREF (see "ADC Electrical Characteristics" on page 505) seen by the external 
source is code dependent and changes (current steps) in the course of the successive 
approximation process. If no external voltage is applied to the AREF pin, the user may 
switch between AVDD, 1.5V and 1.6V as reference selection. 

Changes of the reference selection bits REFSn will only take effect until the first 
conversion start is requested by setting ADSC in ADCSRA. After this the ADC has to be 
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disabled and enabled again for new reference selections. For internal references a 
stable voltage is indicated by the REFOK bit in ADCSRB. 

27.7 ADC Noise Canceller 

The ADC features a noise canceller that enables conversion during sleep mode to 
reduce noise induced from the CPU core and other I/O peripherals. The noise canceller 
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the 
following procedure should be used: 

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion 
mode must be selected and the ADC Conversion Complete interrupt must be 
enabled. 

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion 
once the CPU has been halted. 

3. If no other interrupts occur before the A/D conversion completes, the ADC interrupt 
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. 
If another interrupt wakes up the CPU before the A/D conversion is complete, that 
interrupt will be executed, and an ADC Conversion Complete interrupt request will 
be generated when the A/D conversion completes. The CPU will remain in active 
mode until a new sleep command is executed. 

Note that the ADC will not be automatically turned off when entering other sleep modes 
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to 
ADEN before entering such sleep modes to avoid excessive power consumption. 

27.7.1 Analog Input Circuitry 

The analog input circuitry for single ended channels is illustrated in Figure 27-11 on 
page 421. An analog source applied to ADCn is subjected to the pin capacitance and 
input leakage of that pin, regardless of whether that channel is selected as input for the 
ADC. When the channel is selected, the source must drive the S/H capacitor through 
the series resistance (combined resistance in the input path). 

The ADC is optimized for analog signals having output impedance ZOUT of 
approximately 3 kΩ or less. If such a source is used, the sampling time will be 
negligible. If a source with higher impedance is used, the correct sampling time will 
depend on how much time is needed to charge the S/H capacitor, which can vary 
widely. The user is recommended to only use low impedance sources with slowly 
varying signals, since this minimizes the required charge transfer to the S/H capacitor. 
The required tracking time (input sampling switch closed) tDTRCK to settle to within 1 LSB 
can be estimated to 

nskZt OUTDTRCK 097.0)2000/( ⋅+Ω=  

for ZOUT > 3kΩ (worst case: maximum input step). A minimum tracking time of 500ns is 
guaranteed by the conversion logic. Based on the ADC clock frequency the bits 
ADTHT[1:0] of register ADCSRC allow the adjustment of the tracking time to the user’s 
requirements.  

Tracking time requirements should also be considered for the differential mode. The 
input signal is sampled by the gain amplifier. The value of the input capacitance CS/H 
depends on the selected gain (~7pF for 200x gain, <1pF otherwise). The tracking is 
equal to 50% of the clock period of CKADC2. Hence in differential mode a slower clock 
frequency is required for input sources with high impedance. 
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Figure 27-11. Analog Input Circuitry 
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Signal components higher than the Nyquist frequency (fADC/2) should not be present for 
either kind of channels, to avoid distortion from unpredictable signal convolution. The 
user is advised to remove high frequency components with a low-pass filter before 
applying the signals as inputs to the ADC. 

27.7.2 Analog Noise Canceling Techniques 

Digital circuitry inside and outside the device generates EMI which might affect the 
accuracy of analog measurements. If conversion accuracy is critical, the noise level can 
be reduced by applying the following techniques: 

1. Keep analog signal paths as short as possible. Make sure analog tracks run over the 
ground plane, and keep them well away from high-speed switching digital tracks. 

2. Use the ADC noise canceller function to reduce induced noise from the CPU. 

3. If any ADC port pins are used as digital outputs, it is essential that these do not 
switch while a conversion is in progress. 

27.7.3 Offset Compensation Schemes 

The differential amplifier has a built-in offset cancellation circuitry that nulls the offset of 
differential measurements as much as possible. The remaining offset in the analog path 
can be measured directly by selecting the same channel for both differential inputs. This 
offset residue can then be subtracted in software from the measurement results. The 
offset on any channel can be reduced below one LSB using this kind of software based 
offset correction. 

27.7.4 ADC Accuracy Definitions 

An n-bit single-ended ADC converts a voltage linearly between 0V and VREF in 2
n
 steps 

(LSB’s). The lowest code is read as 0, and the highest code is read as 2
n
-1. 

Several parameters describe the deviation from the ideal behavior: 

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal 
transition (at 0.5 LSB). Ideal value: 0 LSB. 
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Figure 27-12. Offset Error 
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• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the 
last transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below 
maximum). Ideal value: 0 LSB. 

Figure 27-13. Gain Error 
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• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the 
maximum deviation of an actual transition compared to an ideal transition for any 
code. Ideal value: 0 LSB. 
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Figure 27-14. Integral Non-linearity (INL) 
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• Differential Non-linearity (DNL): The maximum deviation of the actual code width 
(the interval between two adjacent transitions) from the ideal code width (1 LSB). 
Ideal value: 0 LSB. 

Figure 27-15. Differential Non-linearity (DNL) 
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• Quantization Error: Due to the quantization of the input voltage into a finite number 
of codes, a range of input voltages (1 LSB wide) will code to the same value. It is 
always ±0.5 LSB. 

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition 
compared to an ideal transition for any code. This is the compound effect of offset, 
gain error, differential error, non-linearity, and quantization error. Ideal value: ±0.5 
LSB. 

27.8 ADC Conversion Result 

After the conversion is complete (ADIF is high), the conversion result can be found in 
the ADC Result Registers (ADCL, ADCH). 
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For single ended conversion, the result is 

REF

IN

V

V
ADC

1024⋅
=  

where VIN is the voltage on the selected input pin and VREF the selected voltage 
reference (see "Table 27-10" on page 427 and "Table 27-11" on page 428). 0x000 
represents analog ground, and 0x3FF represents the selected reference voltage minus 
one LSB. 

If differential channels are used, the result is 

( )

REF

NEGPOS

V

GAINVV
ADC

512⋅⋅−
=  

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative 
input pin, and VREF the selected voltage reference. The result is presented in two’s 
complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user 
wants to perform a quick polarity check of the result, it is sufficient to read the MSB of 
the result (ADC9 in ADCH). If the bit is one, the result is negative, and if this bit is zero, 
the result is positive. Figure 27-16 below shows the decoding of the differential input 
range. 

Table 27-7 on page 425 shows the resulting output codes if the differential input 
channel pair (ADCn - ADCm) is selected with a gain of GAIN and a reference voltage of 
VREF. 

Figure 27-16. Differential Measurement Range 
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Table 27-7. Correlation Between Input Voltage and Output Codes 

VADCn Read Code Corresponding Decimal Value 

VADCm + VREF / GAIN 0x1FF 511 

VADCm + 0.999 VREF / GAIN 0x1FF 511 

VADCm + 0.998 VREF / GAIN 0x1FE 510 

… … … 

VADCm + 0.001 VREF / GAIN 0x001 1 

VADCm 0x000 0 

VADCm - 0.001 VREF / GAIN 0x3FF -1 

… … … 

VADCm - 0.999 VREF / GAIN 0x201 -511 

VADCm - VREF / GAIN 0x200 -512 

Example: 

ADMUX = 0xED (ADC3 - ADC2, 10x gain, 1.6V reference, left adjusted result) 

The voltage on ADC3 is 300 mV; the voltage on ADC2 is 425 mV. 

ADCR = 512 * 10 * (300 - 425) / 1600 = -400 = 0x270. 

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right 
adjusts the result: ADCL = 0x70, ADCH = 0x02. 

27.9 Internal Temperature Measurement 

The on-chip temperature can be measured using a special setup of the A/D converter 
inputs. The integrated temperature sensor provides a linear, medium-accurate voltage 
proportional to the absolute temperature (in Kelvin). This voltage is first amplified with 
the programmable gain amplifier and then processed with the A/D converter. A low 
frequency of the conversion clock must be selected due to the nature of the input 
signal. The absolute accuracy of the temperature measurement is limited by 
manufacturing tolerances, noise from supply and ground voltages and the exactness of 
the reference voltage. The following table summarizes the preferred setup of the 
temperature measurement: 

Table 27-8. Recommended ADC Setup for Temperature Measurement 

Parameter Register Recommended Setup 

ADC Channel ADMUX, 
ADCSRB 

Select the Temperature Sensor, MUX4:0 = 01001; 
MUX5 = 1; 

ADC Clock ADCSRA Select a clock frequency of 500kHz or lower; 

VREF ADMUX Select the internal 1.6V reference voltage; 

Start-up time ADCSRC Standard requirement of 20µs is sufficient;  

Tracking time ADCSRC Setting ADTHT = 0 is sufficient; 

The A/D conversion result ADCTEMP will always be a positive number. The ideal result 
can be calculated when using the internal 1.6V reference voltage according to the 
following equation: 

CADCTEMP °⋅+= /885.04.241 θ

 
Similar the Celsius-temperature θ can be extracted from the A/D conversion result with 
this formula: 
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8.27213.1/ −⋅=° TEMPADCCθ

 
Note that the above equations are only valid in the allowed operating temperature 
range. The translation of the A/D measurement result to a Celsius-temperature value 
can be easily achieved with a look-up table in software. The accuracy of the 
temperature reading can be improved by averaging of multiple A/D conversion results. 
In this way the impact of noise is reduced. The temperature sensor is connected to a 
differential input channel with a gain of 10. The offset error of the channel can be 
corrected to the first order by using an appropriate channel (e.g. MUX4:0=01000, 
MUX5=0, see Table 27-11 on page 428). The in that manner measured error of the 
differential signal processing is then subtracted from the temperature sensor ADC 
reading. 

Note that changing between the temperature sensor channel and the channel for the 
offset error correction can lead to a large difference of the analog input voltage. 
Therefore it is recommended to disable the ADC, select the new channel and then 
enable the ADC again. 

 

27.10 SRAM DRT Voltage Measurement 

The decrease of the supply voltage of SRAM block 2 for the leakage current reduction 
can also be measured using a special setup of the A/D converter inputs. The details of 
the SRAM leakage current reduction are described in section "SRAM with Data 
Retention" on page 163. The supply voltage of a disabled SRAM block can be reduced 
to save leakage power while maintaining data retention. This feature applies to all four 
SRAM blocks however only the voltage of SRAM block 2 can be verified using the A/D 
converter. 

The default factory setting for the data retention (DRT) voltage normally guarantees the 
best leakage performances. Other values are nevertheless possible and can be 
selected by the application software. The true value of the supply voltage reduction is 
depending on the manufacturing process and environmental conditions like 
temperature. The A/D converter allows determining the value of the DRT voltage of 
SRAM block 2. The same voltage setting results for all practical purposes in the same 
supply voltage for all other SRAM blocks. 

Care must be taken when verifying the DRT voltage of SRAM block 2 with the A/D 
converter because it will be put into sleep mode and hence it is not available for the 
application program. Addressing the disabled SRAM will return invalid data (all data 
read zero). The voltage measurement is split into two parts. One setting allows 
measuring the voltage drop from DVDD. The other setting allows verifying the voltage 
shift from DVSS. Both measurements are differential and use the programmable gain 
amplifier. A low frequency of the conversion clock must be selected due to the high-
impedance nature of the input signal. Accurate and stable voltage readings may just be 
available after a long waiting time of up to 100 ms. This limitation is the consequence of 
the small leakage currents that discharge the internal de-coupling capacitances before 
the supply voltage settles to the DRT value. The following table summarizes the 
preferred setup of the DRT voltage measurement: 

Table 27-9. Recommended ADC Setup for DRT Voltage Measurements 

Parameter Register Recommended Setup 

SRAM DRT on DRTRAM2 Set bits DISPC and ENDRT to 1; 

ADC Channel ADMUX,    

 

Select MUX4:0 = 10100 to measure VDRTBBP; 

Select MUX4:0 = 11101 to measure VDRTBBN; 
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Parameter Register Recommended Setup 

ADCSRB MUX5 = 1; 

ADC Clock ADCSRA Select a clock frequency of 500kHz or lower; 

VREF ADMUX Select the internal 1.6V reference voltage; 

Start-up time ADCSRC Standard requirement of 20µs is sufficient;  

Tracking time ADCSRC Setting ADTHT = 0 is sufficient; 

 

The A/D conversion result will always be a positive number for both VDRTBBP and 
VDRTBBN. The SRAM supply voltage is easily calculated according to the following 
equation (see chapter "SRAM with Data Retention" on page 163): 

)(,, DRTBBNDRTBBPDDDRTSRAMDD VVVV +−=
 

The conversion result is coded as described in "ADC Conversion Result" on page 423 
with a GAIN of 0.5. It is not possible to read both VDRTBBP and VDRTBBN at the same time. 
However the time required for the A/D conversion is short compared to the time 
constant of a DRT voltage change. 

27.11 Register Description 

27.11.1 ADMUX – ADC Multiplexer Selection Register 

Bit 7 6 5 4 3 2 1 0  

NA ($7C) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   

• Bit 7:6 – REFS1:0: Reference Selection Bits 

These bits select the voltage reference for the ADC, as shown in the following table. 
Changes of these bits will only take effect until the first conversion start is requested by 
setting ADSC. After this the ADC has to be disabled and enabled again for new 
reference selections. The internal voltage reference options may not be used if an 
external reference voltage is being applied to the AREF pin. 

Table 27-10. Reference Voltage Selections for ADC 

REFS1 REFS0 Reference Voltage Selection 

0 0 AREF, Internal VREF turned off 

0 1 AVDD (1.8V) 

1 0 Internal 1.5V Voltage Reference (no external capacitor at AREF pin) 

1 1 Internal 1.6V Voltage Reference (no external capacitor at AREF pin) 

• Bit 5 – ADLAR: ADC Left Adjust Result 

The ADLAR bit affects the presentation of the A/D conversion result in the ADC Data 
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right 
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately, 
regardless of any ongoing conversions. For a complete description of this bit, see 
"ADCL and ADCH – The ADC Data Register" on page 432. 

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits 

The value of these bits selects which combination of analog inputs is connected to the 
ADC. See Table 27-11 on page 428 for details. If these bits are changed during a 
conversion, the change will not go in effect until this conversion is complete (ADIF in 
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ADCSRA is set). Note that the MUX5 bit is located in the ADCSRB register. A write 
access to the MUX4:0 bits triggers the update of the internally buffered MUX5 bit, see 
"Accessing the ADMUX Register" on page 417 . 

27.11.2 ADCSRB – ADC Control and Status Register B 

Bit 7 6 5 4 3 2 1 0  

NA ($7B) AVDDOK ACME REFOK ACCH MUX5 ADTS2 ADTS1 ADTS0 ADCSRB 

Read/Write R R/W R R/W R/W R/W R/W R/W  

Initial Value 0 0 0 0 0 0 0 0  

• Bit 7 – AVDDOK: AVDD Supply Voltage OK 

The analog functions of the ADC are powered from the AVDD domain. AVDD is 
supplied from an internal voltage regulator. Setting the ADEN bit in register ADCSRA 
will power-up the AVDD domain if not already requested by another functional group of 
the device. The bit allows the user to monitor (poll) the status of the AVDD domain. A 
status of 1 indicates that AVDD has been powered-up. 

• Bit 6 – ACME: Analog Comparator Multiplexer Enable 

This bit is used for the Analog Comparator only. See "ADCSRB – ADC Control and 
Status Register B" on page 409 for details. 

• Bit 5 – REFOK: Reference Voltage OK 

The status of the internal generated reference voltage can be monitored through this 
bit. Setting the ADEN bit in register ADCSRA will enable the reference voltage for the 
ADC according to the REFSn bits in the ADMUX register. The reference voltage will be 
available after a start-up delay. A REFOK value of 1 indicates that the internal 
generated reference voltage is approaching  final levels. 

• Bit 4 – ACCH: Analog Channel Change 

The user can force a reset of the analog blocks by setting this bit to 1 without 
requesting a different channel. The analog blocks of the ADC will be reset to handle 
possible new voltage ranges. Such a reset phase is especially important for the gain 
amplifier. It could be temporarily disabled by a large step of its input common voltage 
leading to erroneous A/D conversion results. ACCH will read as one until the reset 
phase of the analog blocks can be entered.  

• Bit 3 – MUX5: Analog Channel and Gain Selection Bit 

This bit is used together with MUX4:0 in ADMUX to select the analog input signals 
connected to the ADC. See the following table for details. If this bit is changed during a 
conversion, the change will not go in effect until this conversion is complete. Note that 
the MUX5 bit is internally buffered and a write access to the MUX4:0 bits is required to 
trigger the update of the MUX5 bit, see "Accessing the ADMUX Register" on page 417 . 

Table 27-11. Input Channel Selections 

MUX5:0 

Single Ended 

Input 

Positive Differential 

Input 

Negative Differential 

Input Gain 

000000 ADC0 

000001 ADC1 

000010 ADC2 

000011 ADC3 

000100 ADC4 

000101 ADC5 

N/A 
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MUX5:0 

Single Ended 

Input 

Positive Differential 

Input 

Negative Differential 

Input Gain 

000110 ADC6 

000111 ADC7 

001000 ADC0 ADC0 10x 

001001 ADC1 ADC0 10x 

001010 ADC0 ADC0 200x 

001011 ADC1 ADC0 200x 

001100 ADC2 ADC2 10x 

001101 ADC3 ADC2 10x 

001110 ADC2 ADC2 200x 

001111 

N/A 

ADC3 ADC2 200x 

010000 ADC0 ADC1 1x 

010001 ADC1 ADC1 1x 

010010 ADC2 ADC1 1x 

010011 ADC3 ADC1 1x 

010100 ADC4 ADC1 1x 

010101 ADC5 ADC1 1x 

010110 ADC6 ADC1 1x 

010111 

N/A 

ADC7 ADC1 1x 

011000 ADC0 ADC2 1x 

011001 ADC1 ADC2 1x 

011010 ADC2 ADC2 1x 

011011 ADC3 ADC2 1x 

011100 ADC4 ADC2 1x 

011101 

N/A 

ADC5 ADC2 1x 

011110 1.2V (VBG) 

011111 0V (AVSS) 
N/A 

100000 Reserved 

100001 Reserved 

100010 Reserved 

100011 Reserved 

100100 Reserved 

100101 Reserved 

100110 Reserved 

100111 Reserved 

N/A 

101000 Reserved 

101001 Temperature Sensor 

101010 Reserved 

101011 Reserved 

101100 Reserved 

101101 Reserved 

101110 

N/A 

Reserved 
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MUX5:0 

Single Ended 

Input 

Positive Differential 

Input 

Negative Differential 

Input Gain 

101111 Reserved 

110000 Reserved 

110001 Reserved 

110010 Reserved 

110011 Reserved 

110100 SRAM Back-bias Voltage VDRTBBP 

110101 Reserved 

110110 Reserved 

110111 

N/A 

Reserved 

111000 Reserved 

111001 Reserved 

111010 Reserved 

111011 Reserved 

111100 Reserved 

111101 

N/A 

SRAM Back-bias Voltage VDRTBBN 

111110 Reserved 

111111 Reserved 
N/A 

• Bits 2:0 – ADTS2:0: ADC Auto Trigger Source 

If ADATE in ADCSRA is written to one, the value of these bits selects which source will 
trigger an A/D conversion. If ADATE is cleared, the ADTS2:0 settings will have no 
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag. 
Note that switching from a trigger source that is cleared, to a trigger source that is set, 
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will 
start a conversion. Switching to Free Running mode (ADTS2:0=0) will not cause a 
trigger event, even if the ADC Interrupt Flag is set. 

Table 27-12. ADC Auto Trigger Source Selections 

ADTS2 ADTS1 ADTS0 Trigger Source 

0 0 0 Free Running mode 

0 0 1 Analog Comparator 

0 1 0 External Interrupt Request 0 

0 1 1 Timer/Counter0 Compare Match A 

1 0 0 Timer/Counter0 Overflow 

1 0 1 Timer/Counter1 Compare Match B 

1 1 0 Timer/Counter1 Overflow 

1 1 1 Timer/Counter1 Capture Event 

27.11.3 ADCSRA – ADC Control and Status Register A 

Bit 7 6 5 4 3 2 1 0  

NA ($7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA 

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W  

Initial Value 0 0 0 0 0 0 0 0  
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• Bit 7 – ADEN: ADC Enable 

Writing this bit to one enables the ADC. The AVDD supply voltage will also be enabled 
if not already available. By writing it to zero, the ADC is turned off. Turning the ADC off 
while a conversion is in progress will terminate this conversion. 

• Bit 6 – ADSC: ADC Start Conversion 

In Single Conversion mode, write this bit to one to start each conversion. In Free 
Running mode, write this bit to one to start the first conversion. The first conversion 
after ADSC has been written after the ADC has been enabled, or if ADSC is written at 
the same time as the ADC is enabled, will include a start-up time to initialize the analog 
blocks of the ADC. The start-up time is defined by the ADSUT bits of register ADCSRC.  

ADSC will read as one as long as a conversion is in progress. When the conversion is 
complete, it returns to zero. Writing zero to this bit has no effect. 

• Bit 5 – ADATE: ADC Auto Trigger Enable 

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will 
start a conversion on a positive edge of the selected trigger signal. The trigger source is 
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB. 

• Bit 4 – ADIF: ADC Interrupt Flag 

This bit is set when an A/D conversion is completed and the Data Register are updated. 
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in 
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt 
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag. 
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be 
disabled. This also applies if the SBI and CBI instructions are used. 

• Bit 3 – ADIE: ADC Interrupt Enable 

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion 
Complete Interrupt is activated. 

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits 

These bits determine the division factor between the CPU frequency and the input clock 
to the ADC. 

Table 27-13. ADC Prescaler Selections 

ADPS2 ADPS1 ADPS0 Division Factor 

0 0 0 2 

0 0 1 2 

0 1 0 4 

0 1 1 8 

1 0 0 16 

1 0 1 32 

1 1 0 64 

1 1 1 128 

27.11.4 ADCSRC – ADC Control and Status Register C 

Bit 7 6 5 4 3 2 1 0  

NA ($77) ADTHT1 ADTHT0 Res0 ADSUT4 ADSUT3 ADSUT2 ADSUT1 ADSUT0 ADCSRC 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 1 0 1 0 1 0 0  
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This register defines the track-and-hold time for sampling the analog input voltage of 
the ADC and it defines the start-up time for the analog blocks based on a number of 
ADC clock cycles. The ADC clock is generated from the system clock with the ADC 
prescaler. The bits ADPS2:0 of register ADCSRA set the prescaler ratio. Correct start-
up and track-and-hold times are important for precise conversion results.  

• Bits 7:6 – ADTHT1:0: ADC Track-and-Hold Time 

These bits define the number of ADC clock cycles for the sampling time of the analog 
input voltage. For a complete description of this bit, see "Pre-scaling and Conversion 
Timing" on page 413. 

• Bit 5 – Res0: Reserved 

• Bits 4:0 – ADSUT4:0: ADC Start-up Time 

These bits define the number of ADC clock cycles for the start-up time of the analog 
blocks. For a complete description of this bit, see "Pre-scaling and Conversion Timing" 
on page 413. 

27.11.5 ADCL and ADCH – The ADC Data Register 

27.11.5.1 ADLAR = 0 

Bit 15 14 13 12 11 10 9 8  

NA ($79) –   – – – – – ADC9 ADC8 ADCH 

NA ($78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL 

 7 6 5 4 3 2 1 0  

Read/Write R R R R R R R R  

 R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0  

27.11.5.2 ADLAR = 1 

Bit 15 14 13 12 11 10 9 8  

NA ($79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 

NA ($78) ADC1 ADC0 – – – – – – ADCL 

 7 6 5 4 3 2 1 0  

Read/Write R R R R R R R R  

 R R R R R R R R  

Initial Value 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0  

When an A/D conversion is complete, the result is found in these two registers. If 
differential channels are used, the result is presented in two’s complement form. 

When ADCL is read, the ADC Data Register is not updated until ADCH is read. 
Consequently, if the result is left adjusted and no more than 8-bit precision (7 bit + sign 
bit for differential input channels) is required, it is sufficient to read ADCH. Otherwise, 
ADCL must be read first, then ADCH. 

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is 
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared 
(default), the result is right adjusted. 
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• ADC9:0: A/D Conversion Result 

These bits represent the result from the conversion as detailed in "ADC Conversion 
Result" on page 423. 

27.11.6 DIDR0 – Digital Input Disable Register 0 

Bit 7 6 5 4 3 2 1 0  

NA ($7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0  

• Bits 7:0 – ADC7D:ADC0D: Digital Input Disable 

When this bit is written logic one, the digital input buffer on the corresponding ADC pin 
is disabled. The corresponding PIN Register bit will always read as zero when this bit is 
set. When an analog signal is applied to the ADC7:0 pin and the digital input from this 
pin is not needed, this bit should be written logic one to reduce power consumption in 
the digital input buffer. 

27.11.7 DIDR2 – Digital Input Disable Register 2 

Bit 7 6 5 4 3 2 1 0  

NA ($7D) ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D DIDR2 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

Reserved for future use. 

• Bit 7:0 – ADC15D:ADC8D - Reserved Bits 

This bit is reserved for future use. For ensuring compatibility with future devices, this bit 
must be written to zero. 

 

27.11.8 BGCR – Reference Voltage Calibration Register 

Bit 7 6 5 4  

NA ($67) Res BGCAL_FINE3 BGCAL_FINE2 BGCAL_FINE1 BGCR 

Read/Write R RW RW RW  

Initial Value 0 0 0 0   
Bit 3 2 1 0  

NA ($67) BGCAL_FINE0 BGCAL2 BGCAL1 BGCAL0 BGCR 

Read/Write RW RW RW RW  

Initial Value 0 0 0 0   
 

This register contains the calibration values of the reference voltage of the ADC. The 
values are loaded from the fuse memory after power-up. They can be corrected by the 
application software e.g. to compensate for temperature changes. The internal 1.6V 
reference voltage is calibrated and has therefore the highest accuracy compared to the 
1.5V or AVDD reference. 

• Bit 7 – Res - Reserved Bit 

This bit is reserved for future use. A read access always will return zero. A write access 
does not modify the content. 
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• Bit 6:3 – BGCAL_FINE3:0 - Fine Calibration Bits 

These bits allow the calibration of the AREF voltage with a resolution of 2mV. 

Table 27-14 BGCAL_FINE Register Bits 

Register Bits Value Description 

0 Center value 

1 Voltage step up 

8 Voltage step down 

7 Setting for highest voltage 

BGCAL_FINE3:0 

15 Setting for lowest voltage 

• Bit 2:0 – BGCAL2:0 - Coarse Calibration Bits 

These bits allow the calibration of the AREF voltage with a resolution of 10mV. 

Table 27-15 BGCAL Register Bits 

Register Bits Value Description 

4 Center value 

3 Voltage step up 

5 Voltage step down 

0 Setting for highest voltage 

BGCAL2:0 

7 Setting for lowest voltage 
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28 JTAG Interface and On-chip Debug System 

28.1 Features 

• JTAG (IEEE std. 1149.1 Compliant) Interface 

• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) 
Standard 

• Debugger Access to: 

o All Internal Peripheral Units 

o Internal and External RAM  

o The Internal Register File–Program Counter 

o EEPROM and Flash Memories 

• Extensive on-chip debug Support for Break Conditions, Including 

o AVR Break Instruction 

o Break on Change of Program Memory Flow 

o Single Step Break 

o Program Memory Breakpoints on Single Address or Address Range 

o Data Memory Breakpoints on Single Address or Address Range 

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG 
Interface 

• On-chip debugging Supported by AVR Studio
® 

 

28.2 Overview 

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for 

• Testing PCBs by using the JTAG Boundary-scan capability 

• Programming the non-volatile memories, Fuses and Lock bits 

• On-chip debugging 

A brief description is given in the following sections. Detailed descriptions for 
Programming via the JTAG interface, and using the Boundary-scan Chain can be found 
in the sections "Programming via the JTAG Interface" on page 481 and "Programming 
via the JTAG Interface" on page 481, respectively. The on-chip debug support is 
considered being private JTAG instructions, and distributed within ATMEL and to 
selected third party vendors only. 

Figure 28-1 on page 436 shows a block diagram of the JTAG interface and the on-chip 
debug system. The TAP Controller is a state machine controlled by the TCK and TMS 
signals. The TAP Controller selects either the JTAG Instruction Register or one of 
several Data Registers as the scan chain (Shift Register) between the TDI – input and 
TDO – output. The Instruction Register holds JTAG instructions controlling the behavior 
of a Data Register. 

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data 
Registers used for board-level testing. The JTAG Programming Interface (actually 
consisting of several physical and virtual Data Registers) is used for serial programming 
via the JTAG interface. The internal scan-chain and breakpoint scan-chain are used for 
on-chip debugging only. 
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Figure 28-1. Block Diagram 
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28.3 TAP - Test Access Port 

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, 
these pins constitute the Test Access Port – TAP. These pins are: 

• TMS: Test mode select. This pin is used for navigating through the TAP-controller 
state machine. 

• TCK: Test Clock. JTAG operation is synchronous to TCK. 

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data 
Register (Scan Chains). 

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register. 

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – 
which is not provided. 

When the JTAGEN Fuse is un-programmed, these four TAP pins are normal port pins, 
and the TAP controller is in reset. When programmed the input TAP signals are 
internally pulled high and the JTAG is enabled for Boundary-scan and programming. 
The device is shipped with this fuse programmed. 

For the on-chip debug system, in addition to the JTAG interface pins, the RESET pin is 
monitored by the debugger to be able to detect external reset sources. The debugger 
can also pull the RESET pin low to reset the whole system, assuming only open 
collectors on the reset line are used in the application. 
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Figure 28-2. TAP Controller State Diagram 
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28.4 TAP Controller 

The TAP controller is a 16-state finite state machine that controls the operation of the 
Boundary-scan circuitry, JTAG programming circuitry, or on-chip debug system. The 
state transitions depicted in Figure 28-2 above depend on the signal present on TMS 
(shown adjacent to each state transition) at the time of the rising edge at TCK. The 
initial state after a Power-on Reset is Test-Logic-Reset. 

As a definition in this document, the LSB is shifted in and out first for all Shift Registers. 

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG 
interface is: 

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter 
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of 
the JTAG instructions into the JTAG Instruction Register from the TDI input at the 
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in 
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when 
this state is left by setting TMS high. While the instruction is shifted in from the TDI 
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction 
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selects a particular Data Register as path between TDI and TDO and controls the 
circuitry surrounding the selected Data Register. 

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction 
is latched onto the parallel output from the Shift Register path in the Update-IR state. 
The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the state 
machine. 

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the 
Shift Data Register – Shift-DR state. While in this state, upload the selected Data 
Register (selected by the present JTAG instruction in the JTAG Instruction Register) 
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state, 
the TMS input must be held low during input of all bits except the MSB. The MSB of 
the data is shifted in when this state is left by setting TMS high. While the Data 
Register is shifted in from the TDI pin, the parallel inputs to the Data Register 
captured in the Capture-DR state is shifted out on the TDO pin. 

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected 
Data Register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating 
the state machine. 

As shown in the state diagram, the Run-Test/Idle state need not be entered between 
selecting JTAG instruction and using Data Registers, and some JTAG instructions may 
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an 
Idle state. 

Note that independent of the initial state of the TAP Controller, the Test-Logic-Reset 
state can always be entered by holding TMS high for five TCK clock periods. For 
detailed information on the JTAG specification, refer to the literature listed in 
"Bibliography" on page 440. 

28.5 Using the Boundary-scan Chain 

A complete description of the Boundary-scan capabilities are given in the section "IEEE 
1149.1 (JTAG) Boundary-scan" on page 441. 

28.6 Using the On-chip Debug System 

As shown in Figure 28-1, the hardware support for on-chip debugging consists mainly 
of  

• A scan chain on the interface between the internal AVR CPU and the internal 
peripheral units. 

• Breakpoint unit. 

• Communication interface between the CPU and JTAG system. 

All read or modify/write operations needed for implementing the debugger are done by 
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the 
result to an I/O memory mapped location which is part of the communication interface 
between the CPU and the JTAG system. 

The Breakpoint Unit implements Break on Change of Program Flow, Single Step Break, 
two program memory breakpoints and two combined breakpoints. Together, the four 
breakpoints can be configured as either: 

• 4 single program memory breakpoints; 

• 3 single program memory breakpoint + 1 single data memory breakpoint; 

• 2 single program memory breakpoints + 2 single data memory breakpoints; 
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• 2 single program memory breakpoints + 1 program memory breakpoint with mask 
(“range breakpoint”). 

• 2 single program memory breakpoints + 1 data memory breakpoint with mask 
(“range breakpoint”). 

A debugger, like the AVR Studio, may however use one or more of these resources for 
its internal purpose, leaving less flexibility to the end-user. 

A list of the on-chip debug specific JTAG instructions is given in "On-chip Debug 
Specific JTAG Instructions" below. 

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In 
addition, the OCDEN Fuse must be programmed and no Lock bits must be set for the 
on-chip debug system to work. As a security feature, the on-chip debug system is 
disabled when either of the LB1 or LB2 Lock-bits are set. Otherwise, the on-chip debug 
system would have provided a back-door into a secured device. 

The AVR Studio enables the user to fully control execution of programs on an AVR 
device with on-chip debug capability, AVR In-Circuit Emulator, or the built-in AVR 
Instruction Set Simulator. AVR Studio supports source level execution of Assembly 
programs assembled with Atmel Corporation’s AVR Assembler and C programs 
compiled with third party vendors’ compilers. For a full description of the AVR Studio, 
please refer to the AVR Studio User Guide. Only highlights are presented in this 
document. 

All necessary execution commands are available in AVR Studio, both on source level 
and on disassembly level. The user can execute the program, single step through the 
code either by tracing into or stepping over functions, step out of functions, place the 
cursor on a statement and execute until the statement is reached, stop the execution, 
and reset the execution target. In addition, the user can have an unlimited number of 
code breakpoints (using the BREAK instruction) and up to two data memory 
Breakpoints, alternatively combined as a mask (range) breakpoint. 

28.7 On-chip Debug Specific JTAG Instructions 

The on-chip debug support is considered being private JTAG instructions, and 
distributed within ATMEL and to selected third party vendors only. Instruction operation 
codes are listed for reference. 

28.7.1 PRIVATE0; 0x8 
Private JTAG instruction for accessing on-chip debug system; 

28.7.2 PRIVATE1; 0x9 
Private JTAG instruction for accessing on-chip debug system; 

28.7.3 PRIVATE2; 0xA 
Private JTAG instruction for accessing on-chip debug system;  

28.7.4 PRIVATE3; 0xB 
Private JTAG instruction for accessing on-chip debug system; 

28.8 Using the JTAG Programming Capabilities 

Programming of the ATmega128RFA1 via JTAG is performed via the 4-pin JTAG port, 
TCK, TMS, TDI, and TDO. These are the only pins that need to be controlled and 
observed to perform JTAG programming (in addition to power pins). The JTAGEN Fuse 
must be programmed and the JTD bit in the MCUCR Register must be cleared to 
enable the JTAG Test Access Port. 
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The JTAG programming capability supports: 

• Flash programming and verifying. 

• EEPROM programming and verifying. 

• Fuse programming and verifying. 

• Lock bit programming and verifying. 

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or 
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a 
chip erase. This is a security feature that ensures no back-door exists for reading out 
the content of a secured device. 

The details on programming through the JTAG interface and programming specific 
JTAG instructions are given in the section "Programming via the JTAG Interface" on 
page 481. 

28.9 Bibliography 

For more information about general Boundary-scan, the following literature can be 
consulted: 

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan 
Architecture, IEEE, 1993. 

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992. 

28.10 On-chip Debug Related Register in I/O Memory 

28.10.1 OCDR – On-Chip Debug Register 

Bit 7 6 5 4 3 2 1 0  

$31 ($51) OCDR7:0 OCDR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The OCDR Register provides a communication channel from the running program in 
the microcontroller to the debugger. The CPU can transfer a byte to the debugger by 
writing to this location. At the same time, an internal flag; I/O Debug Register Dirty  
IDRD  is set to indicate to the debugger that the register has been written. When the 
CPU reads the OCDR Register the 7 LSB will be from the OCDR Register, while the 
MSB is the IDRD bit. The debugger clears the IDRD bit when it has read the 
information. In some AVR devices, this register is shared with a standard I/O location. 
In this case, the OCDR Register can only be accessed if the OCDEN Fuse is 
programmed, and the debugger enables access to the OCDR Register. In all other 
cases, the standard I/O location is accessed. 

• Bit 7:0 – OCDR7:0 - On-Chip Debug Register Data 

Table 28-16 OCDR Register Bits 

Register Bits Value Description 

OCDR7:0 0 Refer to the debugger documentation for 
further information on how to use this 
register. 
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29 IEEE 1149.1 (JTAG) Boundary-scan 

29.1 Features 

• JTAG (IEEE std. 1149.1 compliant) Interface 

• Boundary-scan Capabilities According to the JTAG Standard 

• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip 
Connections 

• Supports the Optional IDCODE Instruction 

• Additional Public AVR_RESET Instruction to Reset the ATmega128RFA1 

29.2 System Overview 

The Boundary-scan chain has the capability of driving and observing the logic levels on 
the digital I/O pins, as well as the boundary between digital and analog logic for analog 
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities 
are connected serially by the TDI/TDO signals to form a long Shift Register. An external 
controller sets up the devices to drive values at their output pins, and observe the input 
values received from other devices. The controller compares the received data with the 
expected result. In this way, Boundary-scan provides a mechanism for testing 
interconnections and integrity of components on Printed Circuits Boards by using the 
four TAP signals only. 

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, 
SAMPLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction 
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the 
Data Register path will show the ID-Code of the device, since IDCODE is the default 
JTAG instruction. It may be desirable to have the AVR device in reset during test mode. 
If not reset, inputs to the device may be determined by the scan operations, and the 
internal software may be in an undetermined state when exiting the test mode. Entering 
reset, the outputs of any port pin will instantly enter the high impedance state, making 
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to 
make the shortest possible scan chain through the device. The device can be set in the 
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET 
instruction with appropriate setting of the Reset Data Register. 

The EXTEST instruction is used for sampling external pins and loading output pins with 
data. The data from the output latch will be driven out on the pins as soon as the 
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the 
SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to 
avoid damaging the board when issuing the EXTEST instruction for the first time. 
SAMPLE/PRELOAD can also be used for taking a snapshot of the external pins during 
normal operation of the part. 

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR 
must be cleared to enable the JTAG Test Access Port. 

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency 
higher than the internal chip frequency is possible. The chip clock is not required to run. 

29.3 Data Registers 

The Data Registers relevant for Boundary-scan operations are: 

• Bypass Register 

• Device Identification Register 
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• Reset Register 

• Boundary-scan Chain 

29.3.1 Bypass Register 

The Bypass Register consists of a single Shift Register stage. When the Bypass 
Register is selected as path between TDI and TDO, the register is reset to 0 when 
leaving the Capture-DR controller state. The Bypass Register can be used to shorten 
the scan chain on a system when the other devices are to be tested. 

29.3.2 Device Identification Register 

Figure 29-1. The Format of the Device Identification Register 

 MSB      LSB 

Bit 31 28 27 12 11 1 0 

Device ID Version Part Number Manufacturer ID 1 

 4 bits 16 bits 11 bits 1 bit 

29.3.2.1 Version 

Version is a 4-bit number identifying the revision of the component. The JTAG version 
number follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so 
on. 

29.3.2.2 Part Number 

The part number is a 16-bit code identifying the component. The JTAG Part Number for 
ATmega128RFA1 is listed in Table 31-6 on page 467. 

29.3.2.3 Manufacturer ID 

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG 
manufacturer ID for ATMEL is listed in Table 31-6 on page 467. 

29.3.3 Reset Register 

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-
states Port Pins when reset, the Reset Register can also replace the function of the 
unimplemented optional JTAG instruction HIGHZ. 

A high value in the Reset Register corresponds to pulling the external Reset low. The 
part is reset as long as there is a high value present in the Reset Register. Depending 
on the fuse settings for the clock options, the part will remain reset for a reset time-out 
period (see "Clock Sources" on page 148) after releasing the Reset Register. The 
output from this Data Register is not latched, so the reset will take place immediately, 
as shown in Figure 29-2 on page 443. 
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Figure 29-2. Reset Register 
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29.3.4 Boundary-scan Chain 

The Boundary-scan Chain has the capability of driving and observing the logic levels on 
the digital I/O pins, as well as the boundary between digital and analog logic for analog 
circuitry having off-chip connections.  

See "Boundary-scan Chain" on page 444 for a complete description. 

29.4 Boundary-scan Specific JTAG Instructions 

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are 
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ 
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedance state by using the AVR_RESET instruction, since the initial state for all port 
pins is tri-state. 

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers. 

The OPCODE for each instruction is shown behind the instruction name in hex format. 
The text describes which Data Register is selected as path between TDI and TDO for 
each instruction. 

29.4.1 EXTEST; 0x0 

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for 
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output 
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog 
circuits having off-chip connections, the interface between the analog and the digital 
logic is in the scan chain. The contents of the latched outputs of the Boundary-scan 
chain is driven out as soon as the JTAG IR-Register is loaded with the EXTEST 
instruction. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Internal Scan Chain is shifted by the TCK input. 

• Update-DR: Data from the scan chain is applied to output pins. 

29.4.2 IDCODE; 0x1 

Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-
Register consists of a version number, a device number and the manufacturer code 
chosen by JEDEC. This is the default instruction after power-up. 



 

 

 

 

 

 

 

 
 

  
 

444 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

The active states are: 

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan 
Chain. 

• Shift-DR: The IDCODE scan chain is shifted by the TCK input. 

29.4.3 SAMPLE_PRELOAD; 0x2 

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of 
the input/output pins without affecting the system operation. However, the output 
latches are not connected to the pins. The Boundary-scan Chain is selected as Data 
Register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. 
However, the output latches are not connected to the pins. 

29.4.4 AVR_RESET; 0xC 

The AVR specific public JTAG instruction for forcing the AVR device into the Reset 
mode or releasing the JTAG reset source. The TAP controller is not reset by this 
instruction. The one bit Reset Register is selected as Data Register. Note that the reset 
will be active as long as there is a logic “one” in the Reset Chain. The output from this 
chain is not latched. 

The active states are: 

• Shift-DR: The Reset Register is shifted by the TCK input. 

29.4.5 BYPASS; 0xF 

Mandatory JTAG instruction selecting the Bypass Register for Data Register. 

The active states are: 

• Capture-DR: Loads a logic “0” into the Bypass Register. 

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted. 

29.5 Boundary-scan Chain 

The Boundary-scan chain has the capability of driving and observing the logic levels on 
the digital I/O pins, as well as the boundary between digital and analog logic for analog 
circuitry having off-chip connection. 

29.5.1 Scanning the Digital Port Pins 

Figure 29-3 on page 445 shows the Boundary-scan Cell for a bi-directional port pin. The 
pull-up function is disabled during Boundary-scan when the JTAG IC contains EXTEST 
or SAMPLE_PRELOAD. The cell consists of a bi-directional pin cell that combines the 
three signals Output Control - OCxn, Output Data - ODxn, and Input Data - IDxn, into 
only a two-stage Shift Register. The port and pin indexes are not used in the following 
description. 

The Boundary-scan logic is not included in the figures in the datasheet. Figure 29-4 on 
page 446 shows a simple digital port pin as described in the section "I/O-Ports" on page 
186. The Boundary-scan details from Figure 29-3 on page 445 replaces the dashed box 
in Figure 29-4 on page 446. 
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When no alternate port function is present, the Input Data - ID - corresponds to the 
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the 
PORT Register, Output Control corresponds to the Data Direction - DD Register, and 
the Pull-up Enable - PUExn – corresponds to logic expression: 

PORTxnDDxnPUD ⋅⋅  

Digital alternate port functions are connected outside the dotted box Figure 29-4 on 
page 446 to make the scan chain read the actual pin value. For analog function, there is 
a direct connection from the external pin to the analog circuit. There is no scan chain on 
the interface between the digital and the analog circuitry, but some digital control signal 
to analog circuitry are turned off to avoid driving contention on the pads. 

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on 
the port pins even if the CKOUT fuse is programmed. Even though the clock is output 
when the JTAG IR contains SAMPLE_PRELOAD, the clock is not sampled by the 
boundary scan. 

Figure 29-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function 
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Figure 29-4. General Port Pin Schematic Diagram 
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29.5.2 Scanning the RSTN, CLKI and TST Pin 

An observe-only cell as shown in Figure 29-5 below is inserted for the active low reset 
signal RSTN, for the active high programming and test mode enable signal TSTN and 
for the clock input CLKI. 

Figure 29-5. Observe-only Cell 
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29.5.3 Scanning the RSTON Pin 

For the low-active reset output pin RSTON a boundary-scan cell as shown in Figure 
29-6 below is inserted. 

Figure 29-6. Boundary-scan Cell for Output Pins without Pull-up Function 
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29.6 Boundary-scan Related Register in I/O Memory 

29.6.1 MCUCR – MCU Control Register 

Bit 7 6 5 4 3 2 1 0  

$35 ($55) JTD        MCUCR 

Read/Write RW         

Initial Value 0          
 

The MCU Control Register contains control bits for general Microcontroller Unit 
functions. 

• Bit 7 – JTD - JTAG Interface Disable 

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is 
programmed. If this bit is one, the JTAG interface is disabled. In order to avoid 
unintentional disabling or enabling of the JTAG interface, a timed sequence must be 
followed when changing this bit: The application software must write this bit to the 
desired value twice within four cycles to change its value. Note that this bit must not be 
altered when using the On-chip Debug system. 

 

29.6.2 MCUSR – MCU Status Register 

Bit 7 6 5 4 3 2 1 0  

$34 ($54)    JTRF     MCUSR 

Read/Write    RW      

Initial Value    0       
 

The MCU Status Register provides information on which reset source caused an MCU 
reset. 
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• Bit 4 – JTRF - JTAG Reset Flag 

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register 
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, 
or by writing a logic zero to the flag. 

 

29.7 Boundary-scan Description Language Files 

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable 
devices in a standard format used by automated test-generation software. The order 
and function of bits in the Boundary-scan Data Register are included in this description. 
BSDL files are available for ATmega128RFA1. 

29.8 ATmega128RFA1 Boundary-scan Order 

Table 29-1 on page 449 shows the Scan order between TDI and TDO when the 
Boundary-scan chain is selected as data path. Bit 0 is the LSB; the first bit scanned in, 
and the first bit scanned out. The scan order follows the pin-out order. In Figure 29-3 on 
page 445, PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, PXn. Bit 4, 
5, 6 and 7 of Port F is not in the scan chain, since these pins constitute the TAP pins 
when the JTAG is enabled. 
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Table 29-1. ATmega128RFA1 Boundary-Scan Order 

Bit 

Number Signal Name Module  

Bit 

Number Signal Name Module 

0  PF1.Control      36 CLKI.Data    Clock Input (Input Only) 

1  PF1.Data      37 PD7.Control      

2  PF0.Control      38 PD7.Data    

3  PF0.Data     

Port F 

 39 PD6.Control     

4  PE7.Control       40 PD6.Data    

5  PE7.Data     41 PD5.Control     

6  PE6.Control      42 PD5.Data    

7  PE6.Data     43 PD4.Control     

8  PE5.Control      44 PD4.Data    

9  PE5.Data     45 PD3.Control     

10 PE4.Control      46 PD3.Data    

11 PE4.Data     47 PD2.Control     

12 PE3.Control      48 PD2.Data              

13 PE3.Data     49 PD1.Control     

14 PE2.Control      50 PD1.Data       

15 PE2.Data     51 PD0.Control     

16 PE1.Control      52 PD0.Data      

Port D 

17 PE1.Data     53 PG5.Control      

18 PE0.Control      54 PG5.Data    

19 PE0.Data     

Port E 

 55 PG4.Control    

20 PB7.Control       56 PG4.Data    

21 PB7.Data     57 PG3.Control    

22 PB6.Control      58 PG3.Data    

23 PB6.Data     59 PG2.Control    

24 PB5.Control      60 PG2.Data    

25 PB5.Data     61 PG1.Control    

26 PB4.Control      62 PG1.Data     

27 PB4.Data     63 PG0.Control    

28 PB3.Control      64 PG0.Data      

Port G  

29 PB3.Data     65 RSTON.Data   
Reset Logic Output (Output Only 
without Pull-up) 

30 PB2.Control      66 RSTT.Data     Reset Logic (Observe Only) 

31 PB2.Data     67 TST.Data      
Test and Programming Mode 
Enable (Observe Only) 

32 PB1.Control      68 PF3.Control      

33 PB1.Data     69 PF3.Data    

34 PB0.Control      70 PF2.Control     

35 PB0.Data     

Port B 

 71 PF2.Data      

Port F 
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30 Boot Loader Support – Read-While-Write Self-Programming 

The Boot Loader Support provides a real Read-While-Write Self-Programming 
mechanism for downloading and uploading program code by the MCU itself. This 
feature allows flexible application software updates controlled by the MCU using a 
Flash-resident Boot Loader program. The Boot Loader program can use any available 
data interface and associated protocol to read code and write that (program) code into 
the Flash memory, or read the code from the program memory. The program code 
within the Boot Loader section has the capability to write into the entire Flash, including 
the Boot Loader memory. The Boot Loader can thus even modify itself (including 
erasing) from the code if the feature is not needed anymore. The size of the Boot 
Loader memory is configurable with fuses and the Boot Loader has two separate sets 
of Boot Lock bits which can be set independently. This gives the user a unique flexibility 
to select different levels of protection. 

30.1 Features 

• Read-While-Write Self-Programming 

• Flexible Boot Memory Size 

• High Security (Separate Boot Lock Bits for a Flexible Protection) 

• Separate Fuse to Select Reset Vector 

• Optimized Page
(1)

 Size 

• Code Efficient Algorithm 

• Efficient Read-Modify-Write Support 

Note: 1. A page is a section in the Flash consisting of several bytes (see "Table 31-7" on 
page 467) used during programming. The page organization does not affect normal 
operation. 

30.2 Application and Boot Loader Flash Sections 

The Flash memory is organized in two main sections: the Application section and the 
Boot Loader section (see Figure 30-2 on page 452). The size of the different sections is 
configured by the BOOTSZ Fuses as shown in Table 30-7 on page 461 and Figure 30-2 
on page 452. These two sections can have different level of protection since they have 
different sets of Lock bits. 

30.2.1 Application Section 

The Application section is the region of the Flash that is used for storing the application 
code. The protection level for the Application section can be selected by the application 
Boot Lock bits (Boot Lock bits 0, BLB0), see Table 31-2 on page 464. The Application 
section can never store any Boot Loader code since the SPM instruction is disabled 
when executed from the Application section. 

30.2.2 BLS – Boot Loader Section 

While the Application section is used for storing the application code, the Boot Loader 
software must be located in the BLS. The SPM instruction can only initiate 
programming when executed from the BLS. The SPM instruction can access the entire 
Flash, including the BLS itself. The protection level for the Boot Loader section can be 
selected by the Boot Loader Lock bits (Boot Lock bits 1, BLB1), see Table 31-2 on page 
464. 
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30.3 Read-While-Write and No Read-While-Write Flash Sections 

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot 
Loader software update is dependent on the address that is being programmed. In 
addition to the two sections that are configurable by the BOOTSZ Fuses as described 
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW) 
section and the No Read-While-Write (NRWW) section. The limit between the RWW- 
and NRWW sections is given in Table 30-1 on page 452 and Figure 30-1 below. The 
main differences between the two sections are: 

• When erasing or writing a page located inside the RWW section, the NRWW section 
can be read during the operation. 

• When erasing or writing a page located inside the NRWW section, the CPU is halted 
during the entire operation. 

Note that the user software can never read any code that is located inside the RWW 
section during a Boot Loader software operation. The syntax “Read-While-Write 
section” refers to the section that is being programmed (erased or written) and not to 
the section that actually is being read during a Boot Loader software update. 

Figure 30-1. Read-While-Write vs. No Read-While-Write 
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30.3.1 RWW – Read-While-Write Section 

If a Boot Loader software update is programming a page inside the RWW section, it is 
possible to read code from the Flash, but only code that is located in the NRWW 
section. During an ongoing programming, the software must ensure that the RWW 
section never is being read. If the user software is trying to read code that is located 
inside the RWW section (i.e., by load program memory, call, or jump instructions or an 
interrupt) during programming, the software might end up in an unknown state. To avoid 
this, the interrupts should either be disabled or moved to the Boot Loader section. The 
Boot Loader section is always located in the NRWW section. The RWW Section Busy 
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will 
be read as logical one as long as the RWW section is blocked for reading. After a 



 

 

 

 

 

 

 

 
 

  
 

452 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

programming is completed, the RWWSB must be cleared by software before reading 
code located in the RWW section. See "SPMCSR – Store Program Memory Control 
Register" on page 462 for details on how to clear RWWSB. 

30.3.2 NRWW – No Read-While-Write Section 

The code located in the NRWW section can be read when the Boot Loader software is 
updating a page in the RWW section. When the Boot Loader code updates the NRWW 
section, the CPU is halted during the entire Page Erase or Page Write operation. 

Table 30-1. Read-While-Write Features 

Which Section does the Z-pointer 

Address during the Programming? 

Which Section can be Read 

during Programming? CPU Halted? 

Read-While-Write 

Supported? 

RWW Section NRWW Section No Yes 

NRWW Section None Yes No 

Figure 30-2. Memory Sections 
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Note: 1. The parameters in the figure above are given in Table 30-7 on page 461. 
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30.4 Boot Loader Lock Bits 

If no Boot Loader capability is needed, the entire Flash is available for application code. 
The Boot Loader has two separate sets of Boot Lock bits which can be set 
independently. This gives the user a unique flexibility to select different levels of 
protection. 

The user can select: 

• To protect the entire Flash from a software update by the MCU. 

• To protect only the Boot Loader Flash section from a software update by the MCU. 

• To protect only the Application Flash section from a software update by the MCU. 

• Allow software update in the entire Flash. 

See Table 31-2 on page 464 for further details. The Boot Lock bits can be set in 
software and in Serial or Parallel Programming mode, but they can be cleared by a 
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control 
the programming of the Flash memory by SPM instruction. Similarly, the general 
Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by 
(E)LPM/SPM, if it is attempted. 

30.4.1 Entering the Boot Loader Program 

Entering the Boot Loader takes place by a jump or call from the application program. 
This may be initiated by a trigger such as a command received via USART, or SPI 
interface. Alternatively, the Boot Reset Fuse can be programmed so that the Reset 
Vector is pointing to the Boot Flash start address after a reset. In this case, the Boot 
Loader is started after a reset. After the application code is loaded, the program can 
start executing the application code. Note that the fuses cannot be changed by the 
MCU itself. This means that once the Boot Reset Fuse is programmed, the Reset 
Vector will always point to the Boot Loader Reset and the fuse can only be changed 
through the serial or parallel programming interface. 

Table 30-2. Boot Reset Fuse
(1)

 

BOOTRST Reset Address 

1 Reset Vector = Application Reset (address 0x0000) 

0 Reset Vector = Boot Loader Reset (see Table 30-7 on page 461) 

Note: 1. “1” means unprogrammed, “0” means programmed 

30.5 Addressing the Flash During Self-Programming 

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-
registers ZL and ZH in the register file, and RAMPZ in the I/O space. The number of 
bits actually used is implementation dependent. Note that the RAMPZ register is only 
implemented when the program space is larger than 64K bytes. 

23 22 21 20 19 18 17 16 Bit 

15 14 13 12 11 10 9 8 

RAMPZ       RAMPZ1 RAMPZ0 

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8 

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 

 7 6 5 4 3 2 1 0 
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Since the Flash is organized in pages (see "Table 31-7" on page 467), the Program 
Counter can be treated as having two different sections. One section, consisting of the 
least significant bits, is addressing the words within a page, while the most significant 
bits are addressing the pages. This is shown in Figure 30-3 below. Note that the Page 
Erase and Page Write operations are addressed independently. Therefore it is of major 
importance that the Boot Loader software addresses the same page in both the Page 
Erase and Page Write operation. Once a programming operation is initiated, the 
address is latched and the Z-pointer can be used for other operations. 

The (E)LPM instruction uses the Z-pointer to store the address. Since this instruction 
addresses the Flash byte-by-byte, also bit Z0 of the Z-pointer is used. 

Figure 30-3. Addressing the Flash during SPM 
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Note: 1. The different variables used in Figure 30-3 above are listed in Table 30-6 on page 
461. 

30.6 Self-Programming the Flash 

The program memory is updated in a page by page fashion. Before programming a 
page with the data stored in the temporary page buffer, the page must be erased. The 
temporary page buffer is filled one word at a time using SPM and the buffer can be filled 
either before the Page Erase command or between a Page Erase and a Page Write 
operation: 

Alternative 1, fill the buffer before a Page Erase 

• Fill temporary page buffer, 

• Perform a Page Erase, 

• Perform a Page Write; 

Alternative 2, fill the buffer after Page Erase 

• Perform a Page Erase, 
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• Fill temporary page buffer, 

• Perform a Page Write; 

If only a part of the page needs to be changed, the rest of the page must be stored (for 
example in the temporary page buffer) before the erase, and then be rewritten. When 
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature 
which allows the user software to first read the page, do the necessary changes, and 
then write back the modified data. If alternative 2 is used, it is not possible to read the 
old data while loading since the page is already erased. The temporary page buffer can 
be accessed in a random sequence. It is essential that the page address used in both 
the Page Erase and Page Write operation is addressing the same page. For an 
assembly code example see "Simple Assembly Code Example for a Boot Loader" on 
page 458. 

30.6.1 Performing Page Erase by SPM 

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to 
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in 
R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-register. 
Other bits in the Z-pointer will be ignored during this operation. 

• Page Erase to the RWW section: The NRWW section can be read during the Page 
Erase. 

• Page Erase to the NRWW section: The CPU is halted during the operation. 

30.6.2 Filling the Temporary Buffer (Page Loading) 

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, 
write “00000001” to SPMCSR and execute SPM within four clock cycles after writing 
SPMCSR. The content of PCWORD in the Z-register is used to address the data in the 
temporary buffer. The temporary buffer will be auto-erased after a Page Write operation 
or by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset. Note 
that it is not possible to write more than one time to each address without erasing the 
temporary buffer. 

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded 
is still buffered. 

30.6.3 Performing a Page Write 

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to 
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in 
R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in the 
Z-pointer must be written to zero during this operation. 

• Page Write to the RWW section: The NRWW section can be read during the Page 
Write. 

• Page Write to the NRWW section: The CPU is halted during the operation. 

30.6.4 Using the SPM Interrupt 

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt 
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used 
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the 
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is 
accessing the RWW section when it is blocked for reading. How to move the interrupts 
is described in "Interrupts" on page 211. 
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30.6.5 Consideration While Updating BLS 

Special care must be taken if the user allows the Boot Loader section to be updated by 
leaving Boot Lock bit11 un-programmed. An accidental write to the Boot Loader itself 
can corrupt the entire Boot Loader, and further software updates might be impossible. If 
it is not necessary to change the Boot Loader software itself, it is recommended to 
program the Boot Lock bit11 to protect the Boot Loader software from any internal 
software changes. 

30.6.6 Prevent Reading the RWW Section During Self-Programming 

During Self-Programming (either Page Erase or Page Write), the RWW section is 
always blocked for reading. The user software itself must prevent that this section is 
addressed during the self programming operation. The RWWSB in the SPMCSR will be 
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector 
table should be moved to the BLS as described in "Interrupts" on page 211, or the 
interrupts must be disabled. Before addressing the RWW section after the programming 
is completed, the user software must clear the RWWSB by writing the RWWSRE. See 
"Simple Assembly Code Example for a Boot Loader" on page 458 for an example. 

30.6.7 Setting the Boot Loader Lock Bits by SPM 

To set the Boot Loader Lock bits and general Lock bits, write the desired data to R0, 
write “X0001001” to SPMCSR and execute SPM within four clock cycles after writing 
SPMCSR. 

Bit 7 6 5 4 3 2 1 0  

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1  

See Table 31-2 on page 464 for how the different settings of the Boot Loader bits affect 
the Flash access. 

If bits 5:0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an 
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in 
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it 
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock 
bits). For future compatibility it is also recommended to set bits 7 and 6 in R0 to “1” 
when writing the Lock bits. When programming the Lock bits the entire Flash can be 
read during the operation. 

30.6.8 EEPROM Write Prevents Writing to SPMCSR 

Note that an EEPROM write operation will block all software programming to Flash. 
Reading the Signature Row, Fuses and Lock bits from software will also be prevented 
during the EEPROM write operation. It is recommended that the user checks the status 
bit (EEPE) in the EECR Register and verifies that the bit is cleared before writing to the 
SPMCSR Register. 

30.6.9 Reading the Fuse and Lock Bits from Software 

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, 
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. 
When an (E)LPM instruction is executed within three CPU cycles after the BLBSET and 
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the 
destination register. The BLBSET and SPMEN bits will auto-clear upon completion of 
reading the Lock bits or if no (E)LPM instruction is executed within three CPU cycles or 
no SPM instruction is executed within four CPU cycles. When BLBSET and SPMEN are 
cleared, (E)LPM will work as described in the Instruction Set Manual. 
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Bit 7 6 5 4 3 2 1 0  

Rd - - BLB12 BLB11 BLB02 BLB01 LB2 LB1  

The algorithm for reading the Fuse Low byte is similar to the one described above for 
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and 
set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed 
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the 
value of the Fuse Low byte (FLB) will be loaded in the destination register as shown on 
the next page. Refer to (see "Table 31-5" on page 466) for a detailed description and 
mapping of the Fuse Low byte. 

Bit 7 6 5 4 3 2 1 0  

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0  

Similarly, load 0x0003 in the Z-pointer for reading the Fuse High byte. When an (E)LPM 
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in 
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination 
register as shown below. Refer to "Table 31-4" on page 465 for detailed description and 
mapping of the Fuse High byte. 

Bit 7 6 5 4 3 2 1 0  

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0  

Load 0x0002 in the Z-pointer for reading the Extended Fuse byte. When an (E)LPM 
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in 
the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the 
destination register as shown below. Refer to Table 31-3 on page 465 for detailed 
description and mapping of the Extended Fuse byte. 

Bit 7 6 5 4 3 2 1 0  

Rd - - - - - EFB2 EFB1 EFB0  

Fuse and Lock bits that are programmed will be read as zero. Fuse and Lock bits that 
are un-programmed will be read as one. 

30.6.10 Reading the Signature Row from Software 

To read the Signature Row from software, load the Z-pointer with the signature byte 
address given in Table 30-3 below and set the SIGRD and SPMEN bits in SPMCSR. 
When a LPM instruction is executed within three CPU cycles after the SIGRD and 
SPMEN bits are set in SPMCSR, the signature byte value will be loaded in the 
destination register. The SIGRD and SPMEN bits will auto-clear upon completion of 
reading the Signature Row or if no LPM instruction is executed within three CPU cycles. 
When SIGRD and SPMEN are cleared, LPM will work as described in the Instruction 
Set Manual. The Signature Row cannot be read during an EEPROM write/erase 
operation. 

Table 30-3. Signature Row Addressing 

Signature Byte Z-Pointer Address 

Device Signature Byte 1 0x0000 

Device Signature Byte 2 0x0002 

Device Signature Byte 3 0x0004 

RC Oscillator Calibration Byte 0x0001 

Note: 2. All other addresses are reserved for future use. 



 

 

 

 

 

 

 

 
 

  
 

458 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

30.6.11 Preventing Flash Corruption 

During periods of VDEVDD<1.8V, the Flash program can be corrupted because the supply 
voltage is too low for the CPU and the Flash to operate properly. These issues are the 
same as for board level systems using Flash, and the same design solutions should be 
applied. 

A Flash program corruption can be caused by two situations when the voltage is too 
low. First, a regular write sequence to the Flash requires a minimum voltage to operate 
correctly. Secondly, the CPU itself can execute instructions incorrectly, if the supply 
voltage for executing instructions is too low. 

Flash corruption can easily be avoided by following these design recommendations 
(one is sufficient): 

1. If there is no need for a Boot Loader update in the system, program the Boot Loader 
Lock bits to prevent any Boot Loader software updates. 

2. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if the 
operating voltage matches the detection level. If not, an external low VDEVDD reset 
protection circuit can be used. If a reset occurs while a write operation is in progress, 
the write operation will be completed under the condition that the power supply 
voltage is sufficient. 

3. Keep the AVR core in Power-down sleep mode during periods of low VDEVDD. This 
will prevent the CPU from attempting to decode and execute instructions, effectively 
protecting the SPMCSR Register and thus the Flash from unintentional writes. 

30.6.12 Programming Time for Flash when Using SPM 

The calibrated RC Oscillator is used to time Flash accesses. Table 30-4 below shows 
the typical programming time for Flash accesses from the CPU. 

Table 30-4. SPM Programming Time 

Symbol Min Programming Time Max Programming Time 

Flash write (Page Write, and write 
Lock bits by SPM) 

3.7 ms 4.5 ms 

Flash write (Page Erase) 7.3 ms 8.9 ms 

30.6.13 Simple Assembly Code Example for a Boot Loader 

Assembly Code Example
(1)

 

;-the routine writes one page of data from RAM to Flash 

; the first data location in RAM is pointed to by the Y pointer 

; the first data location in Flash is pointed to by the Z-pointer 

;-error handling is not included 

;-the routine must be placed inside the Boot space 

; (at least the Do_spm sub routine). Only code inside NRWW section 

; can be read during Self-Programming (Page Erase and Page Write). 

;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 

; loophi (r25), spmcrval (r20) 

; storing and restoring of registers is not included in the routine 

; register usage can be optimized at the expense of code size 

;-It is assumed that either the interrupt table is moved to the 

; Boot loader section or that the interrupts are disabled. 
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Assembly Code Example
(1)

 

.equ PAGESIZEB=PAGESIZE*2 ;PAGESIZEB is page in BYTES, not words 

.org SMALLBOOTSTART 

Write_page: 

  ; Page Erase 

  ldi spmcrval, (1<<PGERS) | (1<<SPMEN) 

  call Do_spm 

; re-enable the RWW section 

  ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN) 

  call Do_spm 

  ; transfer data from RAM to Flash page buffer 

  ldi looplo, low(PAGESIZEB)   ;init loop variable 

  ldi loophi, high(PAGESIZEB)  ;not required for PAGESIZEB<=256 

Wrloop: 

  ld r0, Y+ 

  ld r1, Y+ 

  ldi spmcrval, (1<<SPMEN) 

  call Do_spm 

  adiw ZH:ZL, 2 

  sbiw loophi:looplo, 2        ;use subi for PAGESIZEB<=256 

  brne Wrloop 

  ; execute Page Write 

  subi ZL, low(PAGESIZEB)      ;restore pointer 

  sbci ZH, high(PAGESIZEB)     ;not required for PAGESIZEB<=256 

  ldi spmcrval, (1<<PGWRT) | (1<<SPMEN) 

  call Do_spm 

  ; re-enable the RWW section 

  ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN) 

  call Do_spm 

  ; read back and check, optional 

  ldi looplo, low(PAGESIZEB)      ;init loop variable 

  ldi loophi, high(PAGESIZEB)     ;not required for PAGESIZEB<=256 

  subi YL, low(PAGESIZEB)         ;restore pointer 

  sbci YH, high(PAGESIZEB) 

Rdloop: 

  elpm r0, Z+ 

  ld r1, Y+ 

  cpse r0, r1 

  jmp Error 

  sbiw loophi:looplo, 1           ;use subi for PAGESIZEB<=256 

  brne Rdloop 

  ; return to RWW section 

  ; verify that RWW section is safe to read 

Return: 

  in temp1, SPMCSR 
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Assembly Code Example
(1)

 

  ; If RWWSB is set, the RWW section is not ready yet 

  sbrs temp1, RWWSB 

  ret 

  ; re-enable the RWW section 

  ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN) 

  call Do_spm 

  rjmp Return 

Do_spm: 

  ; check for previous SPM complete 

Wait_spm: 

  in temp1, SPMCSR 

  sbrc temp1, SPMEN 

  rjmp Wait_spm 

  ; input: spmcrval determines SPM action 

  ; disable interrupts if enabled, store status 

  in temp2, SREG 

  cli 

  ; check that no EEPROM write access is present 

Wait_ee: 

  sbic EECR, EEPE 

  rjmp Wait_ee 

  ; SPM timed sequence 

  out SPMCSR, spmcrval 

  spm 

  ; restore SREG (to enable interrupts if originally enabled) 

  out SREG, temp2 

  ret 

Notes: 1. See "About Code Examples" on page 7. 

30.6.14 Boot Loader Parameters for 128kByte of Flash Memory 

In Table 30-7 on page 461 through Table 30-6 on page 461, the parameters used in the 
description of the Self-Programming are given. 

Table 30-5. Read-While-Write Limit with 128kByte of Flash Memory 

Section
(1)

 Pages Address 

Read-While-Write section (RWW) 480 0x0000 – 0xEFFF 

No Read-While-Write section (NRWW) 32 0xF000 – 0xFFFF 

Note: 1. For details about these two sections see "NRWW – No Read-While-Write Section" 
on page 452 .  
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Table 30-6. Explanation of different variables used in Figure 30-3 on page 454 and the 
mapping to the Z-pointer for 128kByte of Flash Memory 

Variable Value 

Corresponding 

Z-value
(2)

 Description
(1)

 

PCMSB 15  
Most significant bit in the Program Counter. 
(The Program Counter is 16 bits PC[15:0]) 

PAGEMSB 6  
Most significant bit which is used to address 
the words within one page (128 words in a 
page requires seven bits PC [6:0]). 

ZPCMSB  Z16
(3)

 
Bit in Z-pointer that is mapped to PCMSB. 
Because Z0 is not used, the ZPCMSB 
equals PCMSB + 1. 

ZPAGEMSB  Z7 
Bit in Z-pointer that is mapped to PCMSB. 
Because Z0 is not used; the ZPAGEMSB 
equals PAGEMSB + 1. 

PCPAGE PC[15:7] Z16
(3)

:Z8 
Program Counter page address: Page 
select, for Page Erase and Page Write. 

PCWORD PC[6:0] Z7:Z1 
Program Counter word address: Word 
select, for filling temporary buffer (must be 
zero during Page Write operation) 

Notes: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction. 

2. See "Addressing the Flash During Self-Programming" on page 453 for details 
about the use of Z-pointer during Self-Programming. 

3. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the 
I/O map. 

Table 30-7. Boot Size Configuration with 128kByte of Flash Memory
(1)
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1 1 
512 

words 
4 

0x0000 – 
0xFDFF 

0xFE00 – 
0xFFFF 

0xFDFF 0xFE00 

1 0 
1024 
words 

8 
0x0000 – 
0xFBFF 

0xFC00 – 
0xFFFF 

0xFBFF 0xFC00 

0 1 
2048 
words 

16 
0x0000 – 
0xF7FF 

0xF800 – 
0xFFFF 

0xF7FF 0xF800 

0 0 
4096 
words 

32 
0x0000 – 
0xEFFF 

0xF000 – 
0xFFFF 

0xEFFF 0xF000 

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 30-2 on page 452. 
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30.7 Register Description 

30.7.1 SPMCSR – Store Program Memory Control Register 

Bit 7 6 5 4 3 2 1 0  

$37 ($57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR 

Read/Write RW R RW RW RW RW RW RW  

Initial Value 0 0 0 0 0 0 0 0   
 

The Store Program Memory Control Register contains the control bits needed to control 
the Boot Loader operations. Note: Only one SPM instruction should be active at any 
time. 

• Bit 7 – SPMIE - SPM Interrupt Enable 

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), 
the SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as 
long as the SPMEN bit in the SPMCR register is cleared. 

• Bit 6 – RWWSB - Read While Write Section Busy 

When a self-programming (page erase or page write) operation to the RWW section is 
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the 
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit 
is written to one after a self-programming operation is completed. Alternatively the 
RWWSB bit will automatically be cleared if a page load operation is initiated. 

• Bit 5 – SIGRD - Signature Row Read 

If this bit is written to one at the same time as SPMEN, the next LPM instruction within 
three clock cycles will read a byte from the signature row into the destination register. A 
SPM instruction within four cycles after SIGRD and SPMEN are set, will have no effect. 
This operation is reserved for future use and should not be used. 

• Bit 4 – RWWSRE - Read While Write Section Read Enable 

When programming (page erase or page write) to the RWW section, the RWW section 
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW 
section, the user software must wait until the programming is completed (SPMEN will 
be cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, 
the next SPM instruction within four clock cycles re-enables the RWW section. The 
RWW section cannot be re-enabled while the Flash is busy with a page erase or a page 
write (SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the 
Flash load operation will abort and the data loaded will be lost. 

• Bit 3 – BLBSET - Boot Lock Bit Set 

If this bit is written to one at the same time as SPMEN, the next SPM instruction within 
four clock cycles sets Boot Lock bits, according to the data in R0. The data in R1 and 
the address in the Z pointer are ignored. The BLBSET bit will automatically be cleared 
upon completion of the lock bit set, or if no SPM instruction is executed within four clock 
cycles. A LPM instruction within three cycles after BLBSET and SPMEN are set in the 
SPMCR register, will read either the Lock-bits or the Fuse bits (depending on Z0 in the 
Z pointer) into the destination register. 

• Bit 2 – PGWRT - Page Write 

If this bit is written to one at the same time as SPMEN, the next SPM instruction within 
four clock cycles executes page write, with the data stored in the temporary buffer. The 
page address is taken from the high part of the Z pointer. The data in R1 and R0 are 
ignored. The PGWRT bit will auto-clear upon completion of a page write, or if no SPM 
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instruction is executed within four clock cycles. The CPU is halted during the entire 
page write operation if the NRWW section is addressed. 

• Bit 1 – PGERS - Page Erase 

If this bit is written to one at the same time as SPMEN, the next SPM instruction within 
four clock cycles executes page erase. The page address is taken from the high part of 
the Z pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon 
completion of a page erase, or if no SPM instruction is executed within four clock 
cycles. The CPU is halted during the entire page write operation if the NRWW section is 
addressed. 

• Bit 0 – SPMEN - Store Program Memory Enable 

This bit enables the SPM instruction for the next four clock cycles. If written to one 
together with either RWWSRE, BLB-SET, PGWRT or PGERS, the following SPM 
instruction will have a special meaning, see description above. If only SPMEN is written, 
the following SPM instruction will store the value in R1:R0 in the temporary page buffer 
addressed by the Z pointer. The LSB of the Z pointer is ignored. The SPMEN bit will 
auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed 
within four clock cycles. During page erase and page write, the SPMEN bit remain high 
until the operation is completed. Writing any other combination than "10001", "01001", 
"00101", "00011" or "00001" in the lower five bits will have no effect. 

 

30.7.2 NEMCR – Flash Extended-Mode Control-Register 

Bit 7 6 5 4 3 2 1 0  

NA ($75) Resx7 ENEAM AEAM1 AEAM0 Resx3 Resx2 Resx1 Resx0 NEMCR 

Read/Write RW RW RW RW RW RW RW RW  

Initial Value 0 0 0 0 1 0 1 0   
 

The Flash Extended-Mode Control-Register handles the extended address-mode of the 
extra rows. 

• Bit 7 – Resx7 - Reserved 

• Bit 6 – ENEAM - Enable Extended Address Mode for Extra Rows 

When active high, the extended address mode of the extra rows is enabled. The 
address is decoded from bits AEAM1:0 of this register. 

• Bit 5:4 – AEAM1:0 - Address for Extended Address Mode of Extra Rows 

These bits are only used when bit ENEAM of this register is set high. Then AEAM1:0 
are used to decode the addresses of the extra rows. A value of 0 decodes the default 
factory row that is also accessible when the extended address mode is deactivated. 

Table 30-8 AEAM Register Bits 

Register Bits Value Description 

0 Factory Row 

1 User Row 1 

2 User Row 2 

AEAM1:0 

3 User Row 3 

• Bit 3:0 – Resx3:0 - Reserved 
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31 Memory Programming 

31.1 Program And Data Memory Lock Bits 

The ATmega128RFA1 provides six Lock bits which can be left un-programmed (“1”) or 
can be programmed (“0”) to obtain the additional features listed in Table 31-2 below. 
The Lock bits can only be erased to “1” with the Chip Erase command.  

Table 31-1. Lock Bit Byte
 (1)

 

Lock Bit Byte Bit No Description Default Value 

− 7 − 1 (un-programmed) 

− 6 − 1 (un-programmed) 

BLB12 5 Boot Lock bit 1 (un-programmed) 

BLB11 4 Boot Lock bit 1 (un-programmed) 

BLB02 3 Boot Lock bit 1 (un-programmed) 

BLB01 2 Boot Lock bit 1 (un-programmed) 

LB2 1 Lock bit 1 (un-programmed) 

LB1 0 Lock bit 1 (un-programmed) 

Note: 1. “1” means un-programmed, “0” means programmed. 

Table 31-2. Lock Bit Protection Modes
 (1)(2)

 

Memory Lock Bits Protection Type 

LB Mode LB2 LB1  

1 1 1 No memory lock features enabled. 

2 1 0 

Further programming of the Flash and EEPROM is 
disabled in Parallel and Serial Programming mode. 
The Fuse bits are locked in both Serial and Parallel 
Programming mode.

(1)
 

3 0 0 

Further programming and verification of the Flash and 
EEPROM is disabled in Parallel and Serial 
Programming mode. The Boot Lock bits and Fuse bits 
are locked in both Serial and Parallel Programming 
mode.

(1)
 

BLB0 Mode BL02 BL01  

1 1 1 
No restrictions for SPM or (E)LPM accessing the 
Application section. 

2 1 0 SPM is not allowed to write to the Application section. 

3 0 0 

SPM is not allowed to write to the Application section, 
and (E)LPM executing from the Boot Loader section 
is not allowed to read from the Application section. If 
Interrupt Vectors are placed in the Boot Loader 
section, interrupts are disabled while executing from 
the Application section. 

4 0 1 

(E)LPM executing from the Boot Loader section is not 
allowed to read from the Application section. If 
Interrupt Vectors are placed in the Boot Loader 
section, interrupts are disabled while executing from 
the Application section. 
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Memory Lock Bits Protection Type 

BLB1 Mode BL12 BL11  

1 1 1 
No restrictions for SPM or (E)LPM accessing the Boot 
Loader section. 

2 1 0 
SPM is not allowed to write to the Boot Loader 
section. 

3 0 0 

SPM is not allowed to write to the Boot Loader 
section, and (E)LPM executing from the Application 
section is not allowed to read from the Boot Loader 
section. If Interrupt Vectors are placed in the 
Application section, interrupts are disabled while 
executing from the Boot Loader section. 

4 0 1 

(E)LPM executing from the Application section is not 
allowed to read from the Boot Loader section. If 
Interrupt Vectors are placed in the Application 
section, interrupts are disabled while executing from 
the Boot Loader section. 

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and 
LB2. 

2. “1” means un-programmed, “0” means programmed. 

31.2 Fuse Bits 

The ATmega128RFA1 has three Fuse bytes. Table 31-3 below – Table 31-5 on page 
466 describe briefly the functionality of all the fuses and how they are mapped into the 
Fuse bytes. Note that the fuses are read as logical zero, “0”, if they are programmed. 

Table 31-3. Extended Fuse Byte 

Fuse Low Byte Bit No Description Default Value 

− 7 − 1 

− 6 − 1 

− 5 − 1 

− 4 − 1 

− 3 − 1 

BODLEVEL2
(1)

 2 Brown-out Detector trigger level 1 (un-programmed) 

BODLEVEL1
(1)

 1 Brown-out Detector trigger level 1 (un-programmed) 

BODLEVEL0
(1)

 0 Brown-out Detector trigger level 1 (un-programmed) 

Notes: 1. See Table 34-23 on page 503 for BODLEVEL Fuse decoding. 

Table 31-4. Fuse High Byte 

Fuse High Byte Bit No Description Default Value 

OCDEN
(4)

 7 Enable On-chip debugging 
(OCD) 

1 (un-programmed, OCD 
disabled) 

JTAGEN 6 Enable JTAG interface 0 (programmed, JTAG 
enabled) 

SPIEN
(1)

 5 Enable Serial Program and Data 
Downloading (SPI) 

0 (programmed, SPI 
programming enabled) 

WDTON
(3)

 4 Watchdog Timer always on 1 (un-programmed) 
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Fuse High Byte Bit No Description Default Value 

EESAVE 3 EEPROM memory is preserved 
through the Chip Erase 

1 (un-programmed, 
EEPROM not preserved) 

BOOTSZ1 2 Select Boot Size (see Table 30-7 
on page 461 for details) 

0 (programmed)
(2)

 

BOOTSZ0 1 Select Boot Size (see Table 30-7 
on page 461for details) 

0 (programmed)
 (2)

 

BOOTRST 0 Select Reset Vector 1 (un-programmed) 

Notes: 1. The SPIEN Fuse is not accessible in serial programming mode. 

2. The default value of BOOTSZ1:0 results in maximum Boot Size. See Table 30-7 
on page 461 for details. 

3. See "WDTCSR – Watchdog Timer Control Register" on page 183 for details. 

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting 
of Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some 
parts of the clock system to be running in all sleep modes. This may increase the 
power consumption.  

Table 31-5. Fuse Low Byte 

Fuse Low Byte Bit No Description Default Value 

CKDIV8
(4)

 7 Divide clock by 8 0 (programmed) 

CKOUT
(3)

 6 Clock output 1 (un-programmed) 

SUT1 5 Select start-up time 1 (un-programmed)
(1)

 

SUT0 4 Select start-up time 0 (programmed)
 (1)

 

CKSEL3 3 Select Clock source 0 (programmed)
(2)

 

CKSEL2 2 Select Clock source 0 (programmed) 
(2)

 

CKSEL1 1 Select Clock source 1 (un-programmed)
 (2)

 

CKSEL0 0 Select Clock source 0 (programmed)
 (2)

 

Notes: 1. The default value of SUT1:0 results in maximum start-up time for the default clock 
source. See "System Control and Reset" on page 176 for details. 

2. The default setting of CKSEL3:0 results in internal RC Oscillator @ 8 MHz. See 
"Table 11-1" on page 148 for details. 

3. The CKOUT Fuse allows the system clock to be output on PORTE7. See "Clock 
Output Buffer" on page 152 for details. 

4. See "System Clock Prescaler" on page 152 for details. 

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are 
locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming 
the Lock bits. 

31.2.1 Latching of Fuses 

The fuse values are latched when the device enters programming mode and changes 
of the fuse values will have no effect until the part leaves Programming mode. This 
does not apply to the EESAVE Fuse which will take effect once it is programmed. The 
fuses are also latched on Power-up in Normal mode. 

31.3 Signature Bytes 

All Atmel microcontrollers have a three-byte signature code which identifies the device. 
This code can be read in both serial and parallel mode, also when the device is locked. 
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The three bytes reside in a separate address space. For the ATmega128RFA1 the 
signature bytes are given in Table 31-6 below. Accessing the signature bytes from 
software is described in section "Reading the Signature Row from Software" on page 
457. 

Table 31-6. Device and JTAG ID 

Signature Byte Number JTAG 

Part 0 1 2 Part Number Manufacturer ID 

ATmega128RFA1 0x1E 0xA7 0x01 0xA701 0x1F 

31.4 Calibration Byte 

The ATmega128RFA1 has a byte calibration value for the internal RC Oscillator. This 
byte resides in the high byte of address 0x000 in the signature address space. During 
reset, this byte is automatically written into the OSCCAL Register to ensure correct 
frequency of the calibrated RC Oscillator. 

31.5 Page Size 

Table 31-7. Number of Words in a Page and Number of Pages in the Flash 

Flash Size Page Size PCWORD No. of 

Pages 

PCPAGE PCMSB 

64k words (128k bytes) 128 words PC[6:0] 512 PC[15:7] 15 

Table 31-8. Number of Bytes in a Page and Number of Pages in the EEPROM 

EEPROM Size Page Size PCWORD No. of 

Pages 

PCPAGE EEAMSB 

4k bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11 

31.6 Parallel Programming Parameters, Pin Mapping, and Commands 

This section describes how to parallel program and verify Flash Program memory, 
EEPROM Data memory, Memory Lock bits, and Fuse bits in the ATmega128RFA1.  

31.6.1 Signal Names 

In this section, some pins of the ATmega128RFA1 are referenced by signal names 
describing their functionality during parallel programming; see Figure 31-1 on page 468 
and Table 31-9 on page 468. Pins not described in this table are referenced by their 
default pin names. 

The XA1/XA0 pins determine the action executed when the CLKI pin is given a positive 
pulse. The bit coding is shown in Table 31-12 on page 469. 

When pulsing  WR
___

 or OE
__

 or, the command loaded determines the action executed. The 
different commands are shown in Table 31-13 on page 469.  
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Figure 31-1. Parallel Programming
 (1)

 

 

Note: 1. Unused Pins should be left floating. 

 

Table 31-9. Pin Name Mapping 

Signal Name in 

Programming Mode Pin Name I/O Function 

 RDY/BSY
___

 PD1 O 
0: Device is busy programming, 1: Device is 
ready for new command. 

OE
__

 PD2 I Output Enable (Active low). 

WR
___

 PD3 I Write Pulse (Active low). 

BS1 PD4 I Byte Select 1. 

XA0 PD5 I XTAL Action Bit 0. 

XA1 PD6 I XTAL Action Bit 1. 

PAGEL PD7 I 
Program Memory and EEPROM data Page 
Load. 

BS2 PE2 I Byte Select 2. 

DATA PB7-0 I/O 
Bi-directional Data bus (Output when OE¯ ¯ ¯  is 
low). 

 

Table 31-10. BS2 and BS1 Encoding 

BS2 BS1 

Flash / EEPROM 

Address 

Flash Data 

Loading / Reading 

Fuse 

Programming 

Reading Fuse 

and Lock Bits 

0 0 Low Byte Low Byte Low Byte Fuse Low Byte 

0 1 High Byte High Byte High Byte Lock Bits 

1 0 
Extended High 

Byte 
Reserved Extended Byte 

Extended Fuse 
Byte 

1 1 Reserved Reserved Reserved Fuse High Byte 
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Table 31-11. Pin Values Used to Enter Programming Mode 

Pin Symbol Value 

PAGEL Prog_enable[3] 0 

XA1 Prog_enable[2] 0 

XA0 Prog_enable[1] 0 

BS1 Prog_enable[0] 0 

 

Table 31-12. XA1 and XA0 Encoding 

XA1 XA0 Action when CLKI is Pulsed 

0 0 
Load Flash or EEPROM Address (High or low address byte 
determined by BS2 and BS1). 

0 1 
Load Data (High or Low data byte for Flash determined by 
BS1). 

1 0 Load Command. 

1 1 No Action, Idle. 

 

Table 31-13. Command Byte Bit Encoding 

Command Byte Command Executed 

1000 0000 Chip Erase 

0100 0000 Write Fuse bits 

0010 0000 Write Lock bits 

0001 0000 Write Flash 

0001 0001 Write EEPROM 

0000 1000 Read Signature bytes and Calibration byte 

0000 0100 Read Fuse and Lock bits 

0000 0010 Read Flash 

0000 0011 Read EEPROM 

31.7 Parallel Programming 

Pulses of CLKI and in the following command sequences are assumed to be at least 
250 ns wide unless otherwise noted. 

31.7.1 Enter Programming Mode 

The following algorithm puts the device in parallel programming mode: 

1. Apply 3.3V between DEVDD and DVSS. 

2. Set RSTN to 0 and TST to 0. 

3. Set the Prog_enable pins listed in Table 31-11 above to “0000” and wait at least 
100ns. 

4. Set TST to 1. TST can be set high any time before but not after the rising edge of 
RSTN (tTSTRNH). 

5. Set RSTN to 1. Any activity on Prog_enable pins within 100 ns after RSTN is set to 1 
will cause the device to fail entering programming mode. 

6. Wait at least 50 µs before sending a command. 



 

 

 

 

 

 

 

 
 

  
 

470 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

31.7.2 Considerations for Efficient Programming 

The loaded command and address are retained in the device during programming. For 
efficient programming, the following should be considered. 

• The command needs only be loaded once when writing or reading multiple memory 
locations. 

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless 
the EESAVE Fuse is programmed) and Flash after a Chip Erase. 

• Address high byte needs only be loaded before programming or reading a new 256 
word window in Flash or 256 byte EEPROM. This consideration also applies to 
Signature bytes reading. 

31.7.3 Chip Erase 

The Chip Erase will erase the Flash and EEPROM
 (1)

 memories plus Lock bits. The 
Lock bits are not reset until the program memory has been completely erased. The 
Fuse bits are not changed. A Chip Erase must be performed before the Flash and/or 
EEPROM are reprogrammed. 

Note: 1. The EEPROM memory is preserved during Chip Erase if the EESAVE Fuse is 
programmed. 

 

Load Command “Chip Erase” 

1. Set XA1, XA0 to “10”. This enables command loading. 

2. Set BS1 to “0”. 

3. Set DATA to “1000 0000”. This is the command for Chip Erase. 

4. Give CLKI a positive pulse. This loads the command. 

5. Give WR
___

 a negative pulse. This starts the Chip Erase. RDY/ BSY
___

 goes low. 

6. Wait until RDY/BSY
___

 goes high before loading a new command. 

31.7.4 Programming the Flash 

The Flash is organized in pages; see Table 31-7 on page 467. When programming the 
Flash, the program data is latched into a page buffer. This allows one page of program 
data to be programmed simultaneously. The following procedure describes how to 
program the entire Flash memory: 

A. Load Command “Write Flash” 

1. Set XA1, XA0 to “10”. This enables command loading. 

2. Set BS1 to “0”. 

3. Set DATA to “0001 0000”. This is the command for Write Flash. 

4. Give CLKI a positive pulse. This loads the command. 

 

B. Load Address Low byte (Address bits 7:0) 

1. Set XA1, XA0 to “00”. This enables address loading. 

2. Set BS2, BS1 to “00”. This selects the address low byte. 

3. Set DATA = Address low byte (0x00 - 0xFF). 

4. Give CLKI a positive pulse. This loads the address low byte. 
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C. Load Data Low Byte 

1. Set XA1, XA0 to “01”. This enables data loading. 

2. Set DATA = Data low byte (0x00 - 0xFF). 

3. Give CLKI a positive pulse. This loads the data byte. 

 

D. Load Data High Byte 

1. Set BS1 to “1”. This selects high data byte. 

2. Set XA1, XA0 to “01”. This enables data loading. 

3. Set DATA = Data high byte (0x00 - 0xFF). 

4. Give CLKI a positive pulse. This loads the data byte. 

 

E. Latch Data 

1.  Set BS1 to “1”. This selects high data byte. 

2. Give PAGEL a positive pulse. This latches the data bytes. (see Figure 31-3 on page 
472 for signal waveforms).  

F. Repeat B through E until the entire buffer is filled or until all data within the page is 
loaded. 

While the lower bits in the address are mapped to words within the page, the higher bits 
address the pages within the FLASH. This is illustrated in Figure 31-5 on page 472. 
Note that if less than eight bits are required to address words in the page (page size < 
256), the most significant bit(s) in the address low byte are used to address the page 
when performing a Page Write. 

G. Load Address High byte (Address bits15:8) 

1.  Set XA1, XA0 to “00”. This enables address loading. 

2. Set BS2, BS1 to “01”. This selects the address high byte. 

3. Set DATA = Address high byte (0x00 - 0xFF). 

4. Give CLKI a positive pulse. This loads the address high byte. 

 

H. Program Page 

1. Set BS2, BS1 to “00” 

2. Give WR
___

 a negative pulse. This starts programming of the entire page of data. 
RDY/BSY

___
  goes low. 

3. Wait until RDY/BSY
___

  goes high (See Figure 31-3 on page 472 for signal waveforms). 

 

I. Repeat B through H until the entire Flash is programmed or until all data has been 
programmed. 

J. End Page Programming 

1. Set XA1, XA0 to “10”. This enables command loading. 

2. Set DATA to “0000 0000”. This is the command for No Operation. 

3. Give CLKI a positive pulse. This loads the command, and the internal write signals 
are reset. 
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Figure 31-5. Addressing the Flash which is Organized in Pages
 (1)

 

PROGRAM MEMORY

WORD ADDRESS


WITHIN A PAGE

PAGE ADDRESS


WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM


COUNTER

 

Note: 1. PCPAGE and PCWORD are listed in Table 31-7 on page 467. 

Figure 31-3. Programming the Flash Waveforms
 (1)

 

 

Note: 1. “XX” is don’t care. The letters refer to the programming description above. 

31.7.5 Programming the EEPROM 

The EEPROM is organized in pages; see Table 31-8 on page 467. When programming 
the EEPROM, the program data is latched into a page buffer. This allows one page of 
data to be programmed simultaneously. The programming algorithm for the EEPROM 
data memory is as follows (refer to "Programming the Flash" on page 470 for details on 
Command, Address and Data loading): 

1. A: Load Command “0001 0001”. 

2. G: Load Address High Byte (0x00 - 0xFF). 

3. B: Load Address Low Byte (0x00 - 0xFF). 

4. C: Load Data (0x00 - 0xFF). 

5. E: Latch data (give PAGEL a positive pulse). 
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K: Repeat 3 through 5 until the entire buffer is filled. 

L: Program EEPROM page 

1. Set BS2, BS1 to “00”. 

2. Give WR
___

 a negative pulse. This starts programming of the EEPROM page. RDY/BSY
___

 
goes low. 

3. Wait until to RDY/BSY
___

 goes high before programming the next page (See Figure 31-
7 below for signal waveforms). 

Figure 31-7. Programming the EEPROM Waveforms 

DATA

XA1

XA0

BS1

BS2

CLKI

WR

RDY/BSY

RSTN

OE

PAGEL

0x11 ADDR. LOW DATA XX ADDR. LOW DATA XXADDR. HIGH

A G B C E B C E L

K

 

31.7.6 Reading the Flash 

The algorithm for reading the Flash memory is as follows (refer to "Programming the 
Flash" on page 470 for details on Command and Address loading): 

1. A: Load Command “0000 0010”. 

2. G: Load Address High Byte (0x00 - 0xFF). 

3. B: Load Address Low Byte (0x00 - 0xFF). 

4. Set  OE
__

 to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA. 

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA. 

6. Set  OE
__

 to “1”. 

31.7.7 Reading the EEPROM 

The algorithm for reading the EEPROM memory is as follows (refer to "Programming 
the Flash" on page 470 for details on Command and Address loading): 

1. A: Load Command “0000 0011”. 

2. G: Load Address High Byte (0x00 - 0xFF). 

3. B: Load Address Low Byte (0x00 - 0xFF). 

4. Set OE
__

 to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA. 

5. Set OE
__

 to “1”.  

31.7.8 Programming the Fuse Low Bits 

The algorithm for programming the Fuse Low bits is as follows (refer to "Programming 
the Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0100 0000”. 
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2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit. 

3. Give WR
___

 a negative pulse and wait for RDY/BSY
___

 to go high. 

31.7.9 Programming the Fuse High Bits 

The algorithm for programming the Fuse High bits is as follows (refer to "Programming 
the Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0100 0000”. 

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit. 

3. Set BS2, BS1 to “01”. This selects high data byte. 

4. Give WR
___

 a negative pulse and wait for RDY/BSY
___

 to go high. 

5. Set BS2, BS1 to “00”. This selects low data byte. 

31.7.10 Programming the Extended Fuse Bits 

The algorithm for programming the Extended Fuse bits is as follows (refer to 
"Programming the Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0100 0000”. 

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit. 

3. Set BS2, BS1 to “10”. This selects extended data byte. 

4. Give WR
___

 a negative pulse and wait for RDY/BSY
___

 to go high. 

5. Set BS2, BS1 to “00”. This selects low data byte. 

Figure 31-8. Programming the Fuses Waveforms 

 

31.7.11 Programming the Lock Bits 

The algorithm for programming the Lock bits is as follows (refer to "Programming the 
Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0010 0000”. 

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is active 
(LB1 and LB2 are programmed), it is not possible to program the Boot Lock bits by 
any External Programming mode. 

3. Give WR
___

 a negative pulse and wait for RDY/BSY
___

 to go high. 

The Lock bits can only be cleared by executing Chip Erase. 
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31.7.12 Reading the Fuse and Lock Bits 

The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming 
the Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0000 0100”. 

2. Set OE
__

 to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be 
read at DATA (“0” means programmed). 

3. Set OE
__

 to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be 
read at DATA (“0” means programmed). 

4. Set OE
__

 to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can now 
be read at DATA (“0” means programmed). 

5. Set OE
__

 to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read at 
DATA (“0” means programmed). 

6. Set OE
__

 to “1”. 

Figure 31-9. Mapping between BS1, BS2 and the Fuse and Lock Bits during Read 

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte

 

31.7.13 Reading the Signature Bytes 

The algorithm for reading the Signature bytes is as follows (refer to "Programming the 
Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0000 1000”. 

2. B: Load Address Low Byte (0x00 - 0x02). 

3. Set OE
__

 to “0” and BS to “0”. The selected Signature byte can now be read at DATA. 

4. Set OE
__

 to “1”. 

31.7.14 Reading the Calibration Byte 

The algorithm for reading the Calibration byte is as follows (refer to "Programming the 
Flash" on page 470 for details on Command and Data loading): 

1. A: Load Command “0000 1000”. 

2. B: Load Address Low Byte, 0x00. 

3. Set OE
__

 to “0” and BS1 to “1”. The Calibration byte can now be read at DATA. 

4. Set OE
__

 to “1”. 
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31.7.15 Parallel Programming Characteristics 

Figure 31-10. Parallel programming timing including some general timing requirements 

Data & Control
(DATA, XA0/1, BS1, BS2)

   CLKI
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

 

Figure 31-11. Parallel programming loading sequence with timing requirements 
(1)

 

  CLKI

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

LOAD DATA 

(LOW BYTE)

LOAD DATA

(HIGH BYTE)

LOAD DATA




LOAD ADDRESS

(LOW BYTE)

 

Note: 1. The timing requirements shown in Figure 31-10 above (i.e., tDVXH, tXHXL, and tXLDX) 
also apply to loading operation. 

Figure 31-12. Parallel programming reading sequence (within the same page) with 
timing requirements 

(1)
 

  CLKI

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS

(LOW BYTE)

READ DATA 

(LOW BYTE)

READ DATA

(HIGH BYTE)

LOAD ADDRESS

(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

 

Note: 1. The timing requirements shown in Figure 31-10 above (i.e., tDVXH, tXHXL, and tXLDX) 
also apply to reading operation. 
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Table 31-14. Parallel Programming Characteristics, VDEVDD = 3.3V ± 10% 

Symbol Parameter Min Typ Max Units 

tTSTRNH Delay TST High before RSTN High 0   ns 

tDVXH Data and Control Valid before CLKI High 67   ns 

tXLXH CLKI Low to CLKI High 200   ns 

tXHXL CLKI Pulse Width High 150   ns 

tXLDX Data and Control Hold after CLKI Low 67   ns 

tXLWL CLKI Low to WR
___

 Low 0   ns 

tXLPH CLKI Low to PAGEL high 0   ns 

tPLXH PAGEL low to CLKI high 150   ns 

tBVPH BS1 Valid before PAGEL High 67   ns 

tPHPL PAGEL Pulse Width High 150   ns 

tPLBX BS1 Hold after PAGEL Low 67   ns 

tWLBX BS2/1 Hold after WR
___

 Low 67   ns 

tPLWL PAGEL Low to WR
___

 Low 67   ns 

tBVWL BS2/1 Valid to WR
___

 Low 67   ns 

tWLWH WR
___

 Pulse Width Low 150   ns 

tWLRL WR
___

 Low to RDY/BSY
___

 Low 0  1 µs 

tWLRH WR
___

 Low to RDY/BSY
___

 High
(1)

 3.7  4.5 ms 

tWLRH_CE WR
___

 Low to RDY/BSY
___

 High for Chip Erase
(2)

 12  14.5 ms 

tXLOL CLKI Low to OE
__

 Low 0   ns 

tBVDV BS1 Valid to DATA valid 0  250 ns 

tOLDV OE
__

 Low to DATA Valid   250 ns 

tOHDZ OE
__

 High to DATA Tri-stated   250 ns 

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock 
bits commands. 

2.  tWLRH_CE is valid for the Chip Erase command. 

31.8 Serial Downloading 

Both the Flash and EEPROM memory arrays can be programmed using a serial 
programming bus while RSTN is pulled to DVSS. The serial programming interface 
consists of pins SCK, PDI (input) and PDO (output). After RSTN is set low, the 
Programming Enable instruction needs to be executed first before program/erase 
operations can be executed. NOTE, in Table 31-15 below, the pin mapping for serial 
programming is listed. 

31.8.1 Serial Programming Pin Mapping 

Table 31-15. Pin Mapping Serial Programming 

Symbol Pins I/O Description 

PDI PB2 I Serial Data In 

PDO PB3 O Serial Data Out 

SCK PB1 I Serial Clock 
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Figure 31-13. Serial Programming and Verify 
(1)(2)

 

 

Notes: 1. If the device is clocked by the internal Oscillator, it is not required to connect a 
clock source to the CLKI pin. 

2. VDEVDD-0.3V < VEVDD < VDEVDD+0.3V, both VEVDD and VDEVDD must stay in valid 
supply voltage limits. 

When programming the EEPROM, an auto-erase cycle is built into the self-timed 
programming operation (in the Serial mode ONLY) and there is no need to first execute 
the Chip Erase instruction. The Chip Erase operation turns the content of every memory 
location in both the Program and EEPROM arrays into 0xFF. 

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high 
periods for the serial clock (SCK) input are defined as follows: 

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz; 

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz; 

31.8.2 Serial Programming Algorithm 

When writing serial data to the ATmega128RFA1, data is clocked on the rising edge of 
SCK.  

When reading data from the ATmega128RFA1, data is clocked on the falling edge of 
SCK. See Figure 31-15 on page 481 for timing details. 

To program and verify the ATmega128RFA1 in the serial programming mode, the 
following sequence is recommended (See four byte instruction formats in Table 31-17 
on page 479): 

1. Power-up sequence: Apply power between DEVDD and DVSS while RSTN and 
SCK are set to “0”. In some systems, the programmer can not guarantee that SCK is 
held low during power-up. In this case, RSTN must be given a positive pulse of at 
least two CPU clock cycles duration after SCK has been set to “0”. 

2. Wait for at least 20 ms and enable serial programming by sending the Programming 
Enable serial instruction to pin PDI. 

3. The serial programming instructions will not work if the communication is out of 
synchronization. When in sync. the second byte (0x53), will echo back when issuing 
the third byte of the Programming Enable instruction. Whether the echo is correct or 
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not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo 
back, give RSTN a positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte 
at a time by supplying the 7 LSB of the address and data together with the Load 
Program Memory Page instruction. To ensure correct loading of the page, the data 
low byte must be loaded before data high byte is applied for a given address. The 
Program Memory Page is stored by loading the Write Program Memory Page 
instruction with the address lines 15:8. If polling (RDY/BSY¯ ¯ ¯ ) is not used, the user 
must wait at least tWD_FLASH before issuing the next page (see Table 31-16 below). 
Accessing the serial programming interface before the Flash write operation 
completes can result in incorrect programming. 

5. The EEPROM array is programmed one byte at a time by supplying the address and 
data together with the appropriate Write instruction. An EEPROM memory location is 
first automatically erased before new data is written. If polling is not used, the user 
must wait at least tWD_EEPROM before issuing the next byte (see Table 31-16 below). 
In a chip erased device, no 0xFFs in the data file(s) need to be programmed. 

6. Any memory location can be verified by using the Read instruction which returns the 
content at the selected address at serial output PDO. 

7. At the end of the programming session, RSTN can be set high to commence normal 
operation. 

8. Power-off sequence (if needed): Set RESET to “1”. Turn DEVDD power off. 

Table 31-16. Minimum Wait Delay before Writing the Next Flash or EEPROM Location 

Symbol Minimum Wait Delay 

tWD_FLASH 4.5 ms 

tWD_EEPROM 9 ms 

tWD_CHIPERASE 14.5 ms 

31.8.3 Serial Programming Instruction Set 

Table 31-17 below and Figure 31-14 on page 480 describe the Instruction set. 

Table 31-17. Serial Programming Instruction Set 
(4)(5)

 

Instruction Format 
(1)

 

Instruction/Operation Byte1 Byte2 Byte3 Byte4 

Programming Enable $AC $53 $00 $00 

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00 

Poll RDY/BSY¯ ¯ ¯  $F0 $00 $00 data byte out 

Load Instruction 

Load Program Memory Page, High Byte $48 $00 addr. LSB high data byte in 

Load Program Memory Page, Low Byte $40 $00 addr. LSB low data byte in 

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in 

Read Instruction 

Read Program Memory, High byte $28 addr. MSB addr. LSB high data byte out 

Read Program Memory, Low byte $20 addr. MSB addr. LSB low data byte out 

Read EEPROM Memory $A0 0000 aaaa aaaa aaaa data byte out 

Read Lock Bits $58 $00 $00 data byte out 

Read Signature Byte $30 $00 0000 000aa data byte out 
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Instruction Format 
(1)

 

Read Fuse Bits $50 $00 $00 data byte out 

Read Fuse High Bits $58 $08 $00 data byte out 

Read Extended Fuse Bits $50 $08 $00 data byte out 

Read Calibration Byte $38 $00 $00 data byte out 

Write Instructions 
(2)(3)

 

Write Program Memory Page $4C addr. MSB addr. LSB $00 

Write EEPROM Memory $C0 0000 aaaa aaaa aaaa data byte in 

Write EEPROM Memory Page (page access) $C2 0000 aaaa aaaa 00 $00 

Write Lock Bits $AC $E0 $00 data byte in 

Write Fuse Bits $AC $A0 $00 data byte in 

Write Fuse High Bits $AC $A8 $00 data byte in 

Write Extended Fuse Bits $AC $A4 $00 data byte in 

Notes: 1. a = address. 

2. Bits are programmed ‘0’, un-programmed ‘1’. 

3. To ensure future compatibility, unused Fuses and Lock bits should be un-programmed (‘1’). 

4. Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size. 

5. See http://www.atmel.com/avr for Application Notes regarding programming and programmers. 

If the LSB in  RDY/BSY¯ ¯ ¯  data byte out is ‘1’, a programming operation is still pending. 
Wait until this bit returns ‘0’ before the next instruction is carried out. Within the same 
page, the low data byte must be loaded prior to the high data byte. After data is loaded 
to the page buffer, program the EEPROM page; see Figure 31-14 below. 

Figure 31-14. Serial Programming Instruction Example 

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15  B        0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15  B        0

Adr MSB

Page Offset

Page Number

Adr MSBAdr MSBAdr MSBAdr MSBAdr MSB Adr LSBAdr LSBAdr LSBAdr LSBAdr LSB
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31.8.4 Serial Programming Characteristics 

For characteristics of the Serial Programming module see "SPI Timing Characteristics" 
on page 504. 

Figure 31-15. Serial Programming Waveforms 

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT

 

31.9 Programming via the JTAG Interface 

Programming through the JTAG interface requires control of the four JTAG specific 
pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required. 

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The 
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCR 
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low. 
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available 
for programming. This provides a means of using the JTAG pins as normal port pins in 
running mode while still allowing In-System Programming via the JTAG interface. Note 
that this technique can not be used when using the JTAG pins for Boundary-scan or 
On-chip Debug. In these cases the JTAG pins must be dedicated for this purpose. 

During programming the clock frequency of the TCK Input must be less than the 
maximum frequency of the chip. The System Clock Prescaler can not be used to divide 
the TCK Clock Input into a sufficiently low frequency. 

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers. 

31.9.1 Programming Specific JTAG Instructions 

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG 
instructions useful for programming are listed below. 

The OPCODE for each instruction is shown behind the instruction name in hex format. 
The text describes which Data Register is selected as path between TDI and TDO for 
each instruction. 

The Run-Test/Idle state of the TAP-controller is used to generate internal clocks. It can 
also be used as an idle state between JTAG sequences. The state machine sequence 
for changing the instruction word is shown in Figure 31-16 on page 482. 
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Figure 31-16. State Machine Sequence for Changing the Instruction Word 

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR
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Pause-IR

Exit2-IR
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Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11

 

31.9.2 AVR_RESET (0xC) 

The AVR specific public JTAG instruction is used for setting the AVR device in the 
Reset mode or taking the device out from the Reset mode. The TAP-controller is not 
reset by this instruction. The one bit Reset Register is selected as Data Register. Note 
that the reset will be active as long as there is a logic “one” in the Reset Chain. The 
output from this chain is not latched. 

The active states are: 

• Shift-DR: The Reset Register is shifted by the TCK input. 

31.9.3 PROG_ENABLE (0x4) 

The AVR specific public JTAG instruction enables programming via the JTAG port. The 
16-bit Programming Enable Register is selected as Data Register. The active states are 
the following: 

• Shift-DR: The programming enable signature is shifted into the Data Register. 
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• Update-DR: The programming enable signature is compared to the correct value, 
and Programming mode is entered if the signature is valid. 

31.9.4 PROG_COMMANDS (0x5) 

The AVR specific public JTAG instruction is used for entering programming commands 
via the JTAG port. The 15-bit Programming Command Register is selected as Data 
Register. The active states are the following: 

• Capture-DR: The result of the previous command is loaded into the Data Register. 

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the 
previous command and shifting in the new command. 

• Update-DR: The programming command is applied to the Flash inputs. 

• Run-Test/Idle: One clock cycle is generated, executing the applied command. 

31.9.5 PROG_PAGELOAD (0x6) 

The AVR specific public JTAG instruction directly loads the Flash data page via the 
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is 
physically the 8 LSB’s of the Programming Command Register. The active states are 
the following: 

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input. 

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary 
register. A write sequence is initiated that within 11 TCK cycles loads the content of 
the temporary register into the Flash page buffer. The AVR automatically alternates 
between writing the low and the high byte for each new Update-DR state, starting 
with the low byte for the first Update-DR encountered after entering the 
PROG_PAGELOAD command. The Program Counter is pre-incremented before 
writing the low byte, except for the first written byte. This ensures that the first data is 
written to the address set up by PROG_COMMANDS, and loading the last location 
in the page buffer does not make the program counter increment into the next page. 

31.9.6 PROG_PAGEREAD (0x7) 

The AVR specific public JTAG instruction directly captures the Flash content via the 
JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is 
physically the 8 LSB’s of the Programming Command Register. The active states are 
the following: 

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data 
Byte Register. The AVR automatically alternates between reading the low and the 
high byte for each new Capture-DR state, starting with the low byte for the first 
Capture-DR encountered after entering the PROG_PAGEREAD command. The 
Program Counter is post-incremented after reading each high byte, including the first 
read byte. This ensures that the first data is captured from the first address set up by 
PROG_COMMANDS, and reading the last location in the page makes the program 
counter increment into the next page. 

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input. 

31.9.7 Data Registers 

The Data Registers are selected by the JTAG instruction registers described in section 
"Programming Specific JTAG Instructions" on page 481. The Data Registers relevant 
for programming operations are: 

• Reset Register 
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• Programming Enable Register 

• Programming Command Register 

• Flash Data Byte Register 

31.9.8 Reset Register 

The Reset Register is a Test Data Register used to reset the part during programming. 
It is required to reset the part before entering Programming mode. 

A high value in the Reset Register corresponds to pulling the external reset low. The 
part is reset as long as there is a high value present in the Reset Register. Depending 
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-
out period (refer to "Clock Sources" on page 148) after releasing the Reset Register. 
The output from this Data Register is not latched, so the reset will take place 
immediately, as shown in "Figure 29-2" on page 443. 

31.9.9 Programming Enable Register 

The Programming Enable Register is a 16-bit register. The content of this register is 
compared to the programming enable signature, binary code 1010_0011_0111_0000. 
When the content of the register is equal to the programming enable signature, 
programming via the JTAG port is enabled. The register is reset to 0 on Power-on 
Reset, and should always be reset when leaving Programming mode. 

Figure 31-17. Programming Enable Register 
TDI

TDO

D


A


T


A

= D Q

ClockDR & PROG_ENABLE

Programming Enable

0xA370

 

31.9.10 Programming Command Register 

The Programming Command Register is a 15-bit register. This register is used to 
serially shift in programming commands, and to serially shift out the result of the 
previous command, if any. The JTAG Programming Instruction Set is shown in Table 
31-18 on page 485. The state sequence when shifting in the programming commands 
is illustrated in Figure 31-19 on page 488. 
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Figure 31-18. Programming Command Register 
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Table 31-18. JTAG Programming Instruction (set a = address high bits, b = address low bits, c = address extended bits, 
H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care) 

Instruction TDI Sequence TDO Sequence Notes 

1a. Chip Erase 

0100011_10000000 

0110001_10000000 

0110011_10000000 

0110011_10000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

 

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2) 

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx  

2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10) 

2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx  

2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx  

2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx  

2g. Latch Data 

0110111_00000000 

1110111_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

2h. Write Flash Page 

0110111_00000000 

0110101_00000000 

0110111_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx  

3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10) 

3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx  

3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

3e. Read Data Low and High Byte 

0110010_00000000 

0110110_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 

xxxxxxx_oooooooo 

 

Low byte 

High byte 



 

 

 

 

 

 

 

 
 

  
 

486 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

Instruction TDI Sequence TDO Sequence Notes 

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx  

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10) 

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx  

4e. Latch Data 

0110111_00000000 

1110111_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

4f. Write EEPROM Page 

0110011_00000000 

0110001_00000000 

0110011_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx  

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10) 

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

5d. Read Data Byte 

0110011_bbbbbbbb 

0110010_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 

 

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx  

6b. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(6) 

6c. Write Fuse Extended Byte 

0111011_00000000 

0111001_00000000 

0111011_00000000 

0111011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 

6e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(7) 

6f. Write Fuse High Byte 

0110111_00000000 

0110101_00000000 

0110111_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 

6h. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)(8) 

6i. Write Fuse Low Byte 

0110011_00000000 

0110001_00000000 

0110011_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx  

7b. Load Data Byte 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)(9) 

7c. Write Lock Bits 

0110011_00000000 

0110001_00000000 

0110011_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 

(1) 

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 
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Instruction TDI Sequence TDO Sequence Notes 

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx  

8b. Read Extended Fuse Byte 
0111010_00000000 

0111011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 
(6)(5) 

8c. Read Fuse High Byte 
0111110_00000000 

0111111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 
(7)(5) 

8d. Read Fuse Low Byte 
0110010_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 
(8)(5) 

8e. Read Lock Bits 
0110110_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxoooooo 
(9)(5) 

8f. Read Fuses and Lock Bits 

0111010_00000000 

0111110_00000000 

0110010_00000000 

0110110_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 

xxxxxxx_oooooooo 

xxxxxxx_oooooooo 

xxxxxxx_oooooooo 

(5) 

Fuse Ext. byte 

Fuse High byte 

Fuse Low byte 

Lock bits 

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx  

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

9c. Read Signature Byte 
0110010_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 
 

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx  

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx  

10c. Read Calibration Byte 
0110110_00000000 

0110111_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_oooooooo 
 

11a. Load No Operation Command 
0100011_00000000 

0110011_00000000 

xxxxxxx_xxxxxxxx 

xxxxxxx_xxxxxxxx 
 

Notes: 1. This command sequence is not required if the seven MSB’s are correctly set by the previous command sequence 
(which is normally the case). 

2. Repeat until o = “1”. 

3. Set bits to “0” to program the corresponding Fuse, “1” to un-program the Fuse. 

4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged. 

5. “0” = programmed, “1” = un-programmed. 

6. The bit mapping for Fuses Extended byte is listed in Table 31-3 on page 465. 

7. The bit mapping for Fuses High byte is listed in Table 31-4 on page 465. 

8. The bit mapping for Fuses Low byte is listed in Table 31-5 on page 466 

9. The bit mapping for Lock bits byte is listed in Table 31-1 on page 464. 

10. Address bits exceeding PCMSB and EEAMSB (Table 31-7 on page 467 and Table 31-8 on page 467) are don’t care. 

11. All TDI and TDO sequences are represented by binary digits. 
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Figure 31-19. State Machine Sequence for Changing/Reading the Data Word 
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31.9.11 Flash Data Byte Register 

The Flash Data Byte Register provides an efficient way to load the entire Flash page 
buffer before executing Page Write, or to read out/verify the content of the Flash. A 
state machine sets up the control signals to the Flash and senses the strobe signals 
from the Flash, thus only the data words need to be shifted in/out. 

The Flash Data Byte Register actually consists of the 8-bit scan chain and an 8-bit 
temporary register. During page load, the Update-DR state copies the content of the 
scan chain over to the temporary register and initiates a write sequence that within 11 
TCK cycles loads the content of the temporary register into the Flash page buffer. The 
AVR automatically alternates between writing the low and the high byte for each new 
Update-DR state, starting with the low byte for the first Update-DR encountered after 
entering the PROG_PAGELOAD command. The Program Counter is pre-incremented 
before writing the low byte, except for the first written byte. This ensures that the first 
data is written to the address set up by PROG_COMMANDS, and loading the last 
location in the page buffer does not make the Program Counter increment into the next 
page. 
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During Page Read, the content of the selected Flash byte is captured into the Flash 
Data Byte Register during the Capture-DR state. The AVR automatically alternates 
between reading the low and the high byte for each new Capture-DR state, starting with 
the low byte for the first Capture-DR encountered after entering the 
PROG_PAGEREAD command. The Program Counter is post-incremented after reading 
each high byte, including the first read byte. This ensures that the first data is captured 
from the first address set up by PROG_COMMANDS, and reading the last location in 
the page makes the program counter increment into the next page. 

Figure 31-20. Flash Data Byte Register 
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The state machine controlling the Flash Data Byte Register is clocked by TCK. During 
normal operation in which eight bits are shifted for each Flash byte, the clock cycles 
needed to navigate through the TAP-controller automatically feeds the state machine 
for the Flash Data Byte Register with sufficient number of clock pulses to complete its 
operation transparently for the user. However, if too few bits are shifted between each 
Update-DR state during page load, the TAP-controller should stay in the Run-Test/Idle 
state for some TCK cycles to ensure that there are at least 11 TCK cycles between 
each Update-DR state. 

31.9.12 Programming Algorithm 

All references below of type “1a”, “1b”, and so on, refer to Table 31-18 on page 485. 

31.9.13 Entering Programming Mode 

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register. 

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the 
Programming Enable Register. 

31.9.14 Leaving Programming Mode 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Disable all programming instructions by using no operation instruction 11a. 

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the 
programming Enable Register. 

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register. 
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31.9.15 Performing Chip Erase 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Start Chip Erase using programming instruction 1a. 

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE 
(refer to Table 31-14 on page 477). 

31.9.16 Programming the Flash 

Before programming the Flash a Chip Erase must be performed, see section 
"Performing Chip Erase" above. 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Flash write using programming instruction 2a. 

3. Load High byte of address using programming instruction 2c. 

4. Load Low byte of address using programming instruction 2d. 

5. Load data using programming instructions 2e, 2f and 2g. 

6. Repeat steps 5 and 6 for all instruction words in the page. 

7. Write the page using programming instruction 2h. 

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer 
to Table 31-14 on page 477). 

9. Repeat steps 3 to 8 until all data have been programmed. 

A more efficient data transfer can be achieved using the PROG_PAGELOAD 
instruction: 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Flash write using programming instruction 2a. 

3. Load the page address using programming instructions 2c and 2d. PCWORD (refer 
to Table 31-7 on page 467) is used to address within one page and must be written 
as 0. 

4. Enter JTAG instruction PROG_PAGELOAD. 

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, 
starting with the LSB of the first instruction in the page and ending with the MSB of 
the last instruction in the page. Use Update-DR to copy the contents of the Flash 
Data Byte Register into the Flash page location and to auto-increment the Program 
Counter before each new word. 

6. Enter JTAG instruction PROG_COMMANDS. 

7. Write the page using programming instruction 2h. 

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer 
to Table 31-14 on page 477). 

9. Repeat steps 3 to 8 until all data have been programmed. 

31.9.17 Reading the Flash 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Flash read using programming instruction 3a. 

3. Load address using programming instructions 3c and 3d. 

4. Read data using programming instruction 3e. 

5. Repeat steps 3 and 4 until all data have been read. 

A more efficient data transfer can be achieved using the PROG_PAGEREAD 
instruction: 
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1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Flash read using programming instruction 3a. 

3. Load the page address using programming instructions 3c and 3d. PCWORD (refer 
to Table 31-7 on page 467) is used to address within one page and must be written 
as 0. 

4. Enter JTAG instruction PROG_PAGEREAD. 

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or 
Flash), starting with the LSB of the first instruction in the page (Flash) and ending 
with the MSB of the last instruction in the page (Flash). The Capture-DR state both 
captures the data from the Flash, and also auto-increments the program counter 
after each word is read. Note that Capture-DR comes before the shift-DR state. 
Hence, the first byte which is shifted out contains valid data. 

6. Enter JTAG instruction PROG_COMMANDS. 

7. Repeat steps 3 to 6 until all data have been read. 

31.9.18 Programming the EEPROM 

Before programming the EEPROM a Chip Erase must be performed, see "Performing 
Chip Erase" on page 490. 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable EEPROM write using programming instruction 4a. 

3. Load High byte of address using programming instruction 4b. 

4. Load Low byte of address using programming instruction 4c. 

5. Load data using programming instructions 4d and 4e. 

6. Repeat steps 4 and 5 for all data bytes in the page. 

7. Write the data using programming instruction 4f. 

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH 

(refer to Table 31-14 on page 477). 

9. Repeat steps 3 to 8 until all data have been programmed. 

Note that the PROG_PAGELOAD instruction can not be used when programming the 
EEPROM. 

31.9.19 Reading the EEPROM 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable EEPROM read using programming instruction 5a. 

3. Load address using programming instructions 5b and 5c. 

4. Read data using programming instruction 5d. 

5. Repeat steps 3 and 4 until all data have been read. 

Note that the PROG_PAGEREAD instruction can not be used when reading the 
EEPROM. 

31.9.20 Programming the Fuses 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Fuse write using programming instruction 6a. 

3. Load data high byte using programming instructions 6b. A bit value of “0” will 
program the corresponding fuse; a “1” will un-program the fuse. 

4. Write Fuse High byte using programming instruction 6c. 
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5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH 
(refer to Table 31-14 on page 477). 

6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a 
“1” will un-program the fuse. 

7. Write Fuse low byte using programming instruction 6f. 

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH 
(refer to Table 31-14 on page 477). 

31.9.21 Programming the Lock Bits 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Lock bit write using programming instruction 7a. 

3. Load data using programming instructions 7b. A bit value of “0” will program the 
corresponding lock bit, a “1” will leave the lock bit unchanged. 

4. Write Lock bits using programming instruction 7c. 

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH 
(refer to Table 31-14 on page 477). 

31.9.22 Reading the Fuses and Lock Bits 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Fuse/Lock bit read using programming instruction 8a. 

3. To read all Fuses and Lock bits, use programming instruction 8e.  

To only read Fuse High byte, use programming instruction 8b. 

To only read Fuse Low byte, use programming instruction 8c. 

To only read Lock bits, use programming instruction 8d. 

31.9.23 Reading the Signature Bytes 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Signature byte read using programming instruction 9a. 

3. Load address 0x00 using programming instruction 9b. 

4. Read first signature byte using programming instruction 9c. 

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and 
third signature bytes, respectively. 

31.9.24 Reading the Calibration Byte 

1. Enter JTAG instruction PROG_COMMANDS. 

2. Enable Calibration byte read using programming instruction 10a. 

3. Load address 0x00 using programming instruction 10b. 

4. Read the calibration byte using programming instruction 10c. 
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32 Application Circuits 

32.1 Basic Application Schematic 

A basic application schematic of the ATmega128RFA1 with a single-ended RF 
connector is shown in Figure 32-1 below. The 50Ω single-ended RF input is 
transformed to the 100Ω differential RF port impedance using Balun B1. The capacitors 
C1 and C2 provide AC coupling of the RF input to the RF port, capacitor C4 improves 
matching. 

Figure 32-1. Basic Application schematic (Table 32-1 on page 494) 

8

7

6

5

4

3

2

1

17 18 19 20 21 22 23 24

5657585960616263

ATmega128RFA1

A
R

E
F

A
V

S
S

AVSS

RFP

RFN

AVSS

TST

D
V

S
S

D
V

D
D

D
V

D
D

X
T

A
L

2

D
E

V
D

D

D
V

S
S

A
V

D
D

E
V

D
D

A
V

S
S

X
T

A
L

1

41

42

43

44

45

46

47

48

PB0

DVSS

PE0

PB7

CB3 CB4

RSTN

VDD

XTAL
CX1 CX2

CB1

VDD

CB2

C1

C2

B1

RF

C4

25 26 27 28 29 30 31 32

16

14

13

12

11

10

9

15

64 5455 4950515253

33

34

35

36

37

38

39

40

RSTON

CR1

XTAL
32kHzCX3 CX4

CLKI

DEVDD

DVSS

DEVDD

P
E

7

D
V

S
S

D
E

V
D

D

P
F

0

PF7

PG0

P
G

5

P
D

0

P
D

7

 

The power supply bypass capacitors (CB2, CB4) are connected to the external analog 
supply pin (EVDD, pin 59) and external digital supply pin (DEVDD, pin 23). Pins 34, 44 
and 54 supply the digital port pins.  

Capacitors CB1 and CB3 are bypass capacitors for the integrated analog and digital 
voltage regulators to ensure stable operation and to improve noise immunity. 
Capacitors should be placed as close as possible to the pins and should have a low-
resistance and low-inductance connection to ground to achieve the best performance. 
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The crystal (XTAL), the two load capacitors (CX1, CX2), and the internal circuitry 
connected to pins XTAL1 and XTAL2 form the 16MHz crystal oscillator for the 2.4GHz 
transceiver. To achieve the best accuracy and stability of the reference frequency, large 
parasitic capacitances must be avoided. Crystal lines should be routed as short as 
possible and not in proximity of digital I/O signals. This is especially required for the 
High Data Rate Modes. 

The 32.768 kHz crystal connected to the internal low power (sub 1µA) crystal oscillator 
provides a stable time reference for all low power modes including 32 Bit IEEE 802.15.4 
Symbol Counter ("MAC Symbol Counter" on page 133) and real time clock application 
using the asynchronous timer T/C2 ("8-bit Timer/Counter2 with PWM and 
Asynchronous Operation" on page 309). Total capacitance including CX3, CX4 should 
not exceed 15pF on both pins. The very low supply current of the oscillator requires 
careful layout of the PCB and any leakage path must be avoided. 

Crosstalk and radiation from switching digital signals to the crystal pins or the RF pins 
can degrade the system performance. The programming of minimum drive strength 
settings for the digital output signal is recommended (see "DPDS0 – Port Driver 
Strength Register 0" on page 174). 

Table 32-1. Example Bill of Materials (BoM) for "Basic Application Schematic" on page 493 

Designator Description Value Manufacturer Part Number Comment 

B1 SMD balun 

SMD balun / filter 

2.4 GHz Wuerth 

Johanson 

Technology 

748421245 

2450FB15L0001 

 

 

Filter included 

 

CB1 

CB3 

LDO VREG  

bypass capacitor 

1 µF 

(100nF minimum) 

CB2 

CB4 

Power supply bypass 

capacitor 

1 µF 

(100nF minimum) 

AVX 

Murata 

0603YD105KAT2A 

GRM188R61C105KA12D 

X5R  

(0603) 

10% 16V 

CX1, CX2 

 

Crystal load capacitor 

 

12 pF 

 

AVX 

Murata 

06035A120JA 

GRP1886C1H120JA01 

COG 

(0603) 

5% 50V 

C0G 5% C1, C2 

 

RF coupling capacitor 

 

22 pF 

 

Epcos 

Epcos 

AVX 

B37930 

B37920 

06035A220JAT2A 
(0402 or 0603) 

50V 

C4 (optional) RF matching 0.47 pF Johnstech     

R1 CLKM low-pass  

filter resistor 

680Ω   Designed for fCLKM = 1 MHz 

XTAL Crystal CX-4025 16 MHz 

SX-4025 16 MHz 

ACAL Taitjen 

Siward 

XWBBPL-F-1 

A207-011 

 

XTAL 32kHz Crystal    Rs=100 kOhm 

32.2 Extended Feature Set Application Schematic 

The ATmega128RFA1 supports additional features like: 

• Security Module (AES) 

• High Data Rate Mode up to 2MBits/s 

• Antenna Diversity using alternate pin function DIG1/2 at Port G and F 

• RX/TX Indicator using alternate pin function DIG3/4 at Port G and F 

An extended feature set application schematic illustrating the use of the 
ATmega128RFA1 Extended Feature Set, is shown in Figure 32-2 on page 495. 
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Figure 32-2. Extended Feature Application schematic 
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Although this example shows all additional hardware features combined, it is possible to 
use all features separately or in various combinations. 
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33 Register Summary 

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 

(0x1FF) TRXFBEND TRXFBEND7 TRXFBEND6 TRXFBEND5 TRXFBEND4 TRXFBEND3 TRXFBEND2 TRXFBEND1 TRXFBEND0 132 

...           

(0x180) TRXFBST TRXFBST7 TRXFBST6 TRXFBST5 TRXFBST4 TRXFBST3 TRXFBST2 TRXFBST1 TRXFBST0 132 

(0x17F) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x17E) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x17D) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x17C) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x17B) TST_RX_LENGTH RX_LENGTH7 RX_LENGTH6 RX_LENGTH5 RX_LENGTH4 RX_LENGTH3 RX_LENGTH2 RX_LENGTH1 RX_LENGTH0 131 

(0x17A) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x179) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x178) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x177) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x176) TST_CTRL_DIGI Res7 Res6 Res5 Res4 TST_CTRL_DIG3 TST_CTRL_DIG2 TST_CTRL_DIG1 TST_CTRL_DIG0 131 

(0x175) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

...           

(0x173) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x172) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x171) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x170) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x16F) CSMA_BE MAX_BE3 MAX_BE2 MAX_BE1 MAX_BE0 MIN_BE3 MIN_BE2 MIN_BE1 MIN_BE0 130 

(0x16E) CSMA_SEED_1 AACK_FVN_MODE1 AACK_FVN_MODE0 AACK_SET_PD AACK_DIS_ACK AACK_I_AM_COORD CSMA_SEED_12 CSMA_SEED_11 CSMA_SEED_10 129 

(0x16D) CSMA_SEED_0 CSMA_SEED_07 CSMA_SEED_06 CSMA_SEED_05 CSMA_SEED_04 CSMA_SEED_03 CSMA_SEED_02 CSMA_SEED_01 CSMA_SEED_00 128 

(0x16C) XAH_CTRL_0 MAX_FRAME_RETRIES3 MAX_FRAME_RETRIES2 MAX_FRAME_RETRIES1 MAX_FRAME_RETRIES0 MAX_CSMA_RETRIES2 MAX_CSMA_RETRIES1 MAX_CSMA_RETRIES0 SLOTTED_OPERATION 127 

(0x16B) IEEE_ADDR_7 IEEE_ADDR_77 IEEE_ADDR_76 IEEE_ADDR_75 IEEE_ADDR_74 IEEE_ADDR_73 IEEE_ADDR_72 IEEE_ADDR_71 IEEE_ADDR_70 126 

(0x16A) IEEE_ADDR_6 IEEE_ADDR_67 IEEE_ADDR_66 IEEE_ADDR_65 IEEE_ADDR_64 IEEE_ADDR_63 IEEE_ADDR_62 IEEE_ADDR_61 IEEE_ADDR_60 126 

(0x169) IEEE_ADDR_5 IEEE_ADDR_57 IEEE_ADDR_56 IEEE_ADDR_55 IEEE_ADDR_54 IEEE_ADDR_53 IEEE_ADDR_52 IEEE_ADDR_51 IEEE_ADDR_50 126 

(0x168) IEEE_ADDR_4 IEEE_ADDR_47 IEEE_ADDR_46 IEEE_ADDR_45 IEEE_ADDR_44 IEEE_ADDR_43 IEEE_ADDR_42 IEEE_ADDR_41 IEEE_ADDR_40 126 

(0x167) IEEE_ADDR_3 IEEE_ADDR_37 IEEE_ADDR_36 IEEE_ADDR_35 IEEE_ADDR_34 IEEE_ADDR_33 IEEE_ADDR_32 IEEE_ADDR_31 IEEE_ADDR_30 125 

(0x166) IEEE_ADDR_2 IEEE_ADDR_27 IEEE_ADDR_26 IEEE_ADDR_25 IEEE_ADDR_24 IEEE_ADDR_23 IEEE_ADDR_22 IEEE_ADDR_21 IEEE_ADDR_20 125 

(0x165) IEEE_ADDR_1 IEEE_ADDR_17 IEEE_ADDR_16 IEEE_ADDR_15 IEEE_ADDR_14 IEEE_ADDR_13 IEEE_ADDR_12 IEEE_ADDR_11 IEEE_ADDR_10 125 

(0x164) IEEE_ADDR_0 IEEE_ADDR_07 IEEE_ADDR_06 IEEE_ADDR_05 IEEE_ADDR_04 IEEE_ADDR_03 IEEE_ADDR_02 IEEE_ADDR_01 IEEE_ADDR_00 124 

(0x163) PAN_ID_1 PAN_ID_17 PAN_ID_16 PAN_ID_15 PAN_ID_14 PAN_ID_13 PAN_ID_12 PAN_ID_11 PAN_ID_10 124 

(0x162) PAN_ID_0 PAN_ID_07 PAN_ID_06 PAN_ID_05 PAN_ID_04 PAN_ID_03 PAN_ID_02 PAN_ID_01 PAN_ID_00 124 

(0x161) SHORT_ADDR_1 SHORT_ADDR_17 SHORT_ADDR_16 SHORT_ADDR_15 SHORT_ADDR_14 SHORT_ADDR_13 SHORT_ADDR_12 SHORT_ADDR_11 SHORT_ADDR_10 124 

(0x160) SHORT_ADDR_0 SHORT_ADDR_07 SHORT_ADDR_06 SHORT_ADDR_05 SHORT_ADDR_04 SHORT_ADDR_03 SHORT_ADDR_02 SHORT_ADDR_01 SHORT_ADDR_00 123 

(0x15F) MAN_ID_1 MAN_ID_17 MAN_ID_16 MAN_ID_15 MAN_ID_14 MAN_ID_13 MAN_ID_12 MAN_ID_11 MAN_ID_10 123 

(0x15E) MAN_ID_0 MAN_ID_07 MAN_ID_06 MAN_ID_05 MAN_ID_04 MAN_ID_03 MAN_ID_02 MAN_ID_01 MAN_ID_00 123 

(0x15D) VERSION_NUM VERSION_NUM7 VERSION_NUM6 VERSION_NUM5 VERSION_NUM4 VERSION_NUM3 VERSION_NUM2 VERSION_NUM1 VERSION_NUM0 122 

(0x15C) PART_NUM PART_NUM7 PART_NUM6 PART_NUM5 PART_NUM4 PART_NUM3 PART_NUM2 PART_NUM1 PART_NUM0 122 

(0x15B) PLL_DCU PLL_DCU_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 121 

(0x15A) PLL_CF PLL_CF_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 121 

(0x159) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x158) FTN_CTRL FTN_START Res6 Res5 Res4 Res3 Res2 Res1 Res0 120 

(0x157) XAH_CTRL_1 Res1 Res0 AACK_FLTR_RES_FT AACK_UPLD_RES_FT Res AACK_ACK_TIME AACK_PROM_MODE Res 119 

... Reserved          

(0x155) RX_SYN RX_PDT_DIS Res2 Res1 Res0 RX_PDT_LEVEL3 RX_PDT_LEVEL2 RX_PDT_LEVEL1 RX_PDT_LEVEL0 118 

... Reserved          

(0x152) XOSC_CTRL XTAL_MODE3 XTAL_MODE2 XTAL_MODE1 XTAL_MODE0 XTAL_TRIM3 XTAL_TRIM2 XTAL_TRIM1 XTAL_TRIM0 117 

(0x151) BATMON BAT_LOW BAT_LOW_EN BATMON_OK BATMON_HR BATMON_VTH3 BATMON_VTH2 BATMON_VTH1 BATMON_VTH0 116 

(0x150) VREG_CTRL AVREG_EXT AVDD_OK Res5 Res4 Res3 DVDD_OK Res1 Res0 115 

(0x14F) IRQ_STATUS AWAKE TX_END AMI CCA_ED_DONE RX_END RX_START PLL_UNLOCK PLL_LOCK 114 

(0x14E) IRQ_MASK AWAKE_EN TX_END_EN AMI_EN CCA_ED_DONE_EN RX_END_EN RX_START_EN PLL_UNLOCK_EN PLL_LOCK_EN 114 

(0x14D) ANT_DIV ANT_SEL Res2 Res1 Res0 ANT_DIV_EN ANT_EXT_SW_EN ANT_CTRL1 ANT_CTRL0 112 

(0x14C) TRX_CTRL_2 RX_SAFE_MODE Res4 Res3 Res2 Res1 Res0 OQPSK_DATA_RATE1 OQPSK_DATA_RATE0 112 

(0x14B) SFD_VALUE SFD_VALUE7 SFD_VALUE6 SFD_VALUE5 SFD_VALUE4 SFD_VALUE3 SFD_VALUE2 SFD_VALUE1 SFD_VALUE0 111 

(0x14A) RX_CTRL Res7 Res6 Res5 Res4 PDT_THRES3 PDT_THRES2 PDT_THRES1 PDT_THRES0 111 

(0x149) CCA_THRES CCA_CS_THRES3 CCA_CS_THRES2 CCA_CS_THRES1 CCA_CS_THRES0 CCA_ED_THRES3 CCA_ED_THRES2 CCA_ED_THRES1 CCA_ED_THRES0 110 

(0x148) PHY_CC_CCA CCA_REQUEST CCA_MODE1 CCA_MODE0 CHANNEL4 CHANNEL3 CHANNEL2 CHANNEL1 CHANNEL0 109 

(0x147) PHY_ED_LEVEL ED_LEVEL7 ED_LEVEL6 ED_LEVEL5 ED_LEVEL4 ED_LEVEL3 ED_LEVEL2 ED_LEVEL1 ED_LEVEL0 108 

(0x146) PHY_RSSI RX_CRC_VALID RND_VALUE1 RND_VALUE0 RSSI4 RSSI3 RSSI2 RSSI1 RSSI0 107 

(0x145) PHY_TX_PWR PA_BUF_LT1 PA_BUF_LT0 PA_LT1 PA_LT0 TX_PWR3 TX_PWR2 TX_PWR1 TX_PWR0 106 
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(0x144) TRX_CTRL_1 PA_EXT_EN IRQ_2_EXT_EN TX_AUTO_CRC_ON Res4 Res3 Res2 Res1 Res0 105 

(0x143) TRX_CTRL_0 Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0 105 

(0x142) TRX_STATE TRAC_STATUS2 TRAC_STATUS1 TRAC_STATUS0 TRX_CMD4 TRX_CMD3 TRX_CMD2 TRX_CMD1 TRX_CMD0 104 

(0x141) TRX_STATUS CCA_DONE CCA_STATUS TST_STATUS TRX_STATUS4 TRX_STATUS3 TRX_STATUS2 TRX_STATUS1 TRX_STATUS0 102 

... Reserved          

(0x13F) AES_KEY AES_KEY7 AES_KEY6 AES_KEY5 AES_KEY4 AES_KEY3 AES_KEY2 AES_KEY1 AES_KEY0 102 

(0x13E) AES_STATE AES_STATE7 AES_STATE6 AES_STATE5 AES_STATE4 AES_STATE3 AES_STATE2 AES_STATE1 AES_STATE0 102 

(0x13D) AES_STATUS AES_ER Res5 Res4 Res3 Res2 Res1 Res0 AES_DONE 101 

(0x13C) AES_CTRL AES_REQUEST Res AES_MODE Res AES_DIR AES_IM Res1 Res0 100 

(0x13B) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

... Reserved          

(0x139) TRXPR Res3 Res2 Res1 Res0 Res3 Res2 SLPTR TRXRST 169 

... Reserved          

(0x137) DPDS1 Res5 Res4 Res3 Res2 Res1 Res0 PGDRV1 PGDRV0 175 

(0x136) DPDS0 PFDRV1 PFDRV0 PEDRV1 PEDRV0 PDDRV1 PDDRV0 PBDRV1 PBDRV0 174 

(0x135) DRTRAM0 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 170 

(0x134) DRTRAM1 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 170 

(0x133) DRTRAM2 Res7 Res DRTSWOK ENDRT Res3 Res2 Res1 Res0 171 

(0x132) DRTRAM3 Res1 Res0 DRTSWOK ENDRT Res3 Res2 Res1 Res0 171 

(0x131) LLDRH Res2 Res1 Res0 LLDRH4 LLDRH3 LLDRH2 LLDRH1 LLDRH0 173 

(0x130) LLDRL Res3 Res2 Res1 Res0 LLDRL3 LLDRL2 LLDRL1 LLDRL0 173 

(0x12F) LLCR Res1 Res0 LLDONE LLCOMP LLCAL LLTCO LLSHORT LLENCAL 172 

... Reserved          

(0x12D) OCR5CH OCR5CH7 OCR5CH6 OCR5CH5 OCR5CH4 OCR5CH3 OCR5CH2 OCR5CH1 OCR5CH0 300 

(0x12C) OCR5CL OCR5CL7 OCR5CL6 OCR5CL5 OCR5CL4 OCR5CL3 OCR5CL2 OCR5CL1 OCR5CL0 301 

(0x12B) OCR5BH OCR5BH7 OCR5BH6 OCR5BH5 OCR5BH4 OCR5BH3 OCR5BH2 OCR5BH1 OCR5BH0 299 

(0x12A) OCR5BL OCR5BL7 OCR5BL6 OCR5BL5 OCR5BL4 OCR5BL3 OCR5BL2 OCR5BL1 OCR5BL0 300 

(0x129) OCR5AH OCR5AH7 OCR5AH6 OCR5AH5 OCR5AH4 OCR5AH3 OCR5AH2 OCR5AH1 OCR5AH0 299 

(0x128) OCR5AL OCR5AL7 OCR5AL6 OCR5AL5 OCR5AL4 OCR5AL3 OCR5AL2 OCR5AL1 OCR5AL0 299 

(0x127) ICR5H ICR5H7 ICR5H6 ICR5H5 ICR5H4 ICR5H3 ICR5H2 ICR5H1 ICR5H0 301 

(0x126) ICR5L ICR5L7 ICR5L6 ICR5L5 ICR5L4 ICR5L3 ICR5L2 ICR5L1 ICR5L0 301 

(0x125) TCNT5H TCNT5H7 TCNT5H6 TCNT5H5 TCNT5H4 TCNT5H3 TCNT5H2 TCNT5H1 TCNT5H0 298 

(0x124) TCNT5L TCNT5L7 TCNT5L6 TCNT5L5 TCNT5L4 TCNT5L3 TCNT5L2 TCNT5L1 TCNT5L0 298 

... Reserved          

(0x122) TCCR5C FOC5A FOC5B FOC5C Res4 Res3 Res2 Res1 Res0 297 

(0x121) TCCR5B ICNC5 ICES5 Res WGM53 WGM52 CS52 CS51 CS50 296 

(0x120) TCCR5A COM5A1 COM5A0 COM5B1 COM5B0 COM5C1 COM5C0 WGM51 WGM50 294 

... Reserved          

(0xF8) SCOCR1HH SCOCR1HH7 SCOCR1HH6 SCOCR1HH5 SCOCR1HH4 SCOCR1HH3 SCOCR1HH2 SCOCR1HH1 SCOCR1HH0 140 

(0xF7) SCOCR1HL SCOCR1HL7 SCOCR1HL6 SCOCR1HL5 SCOCR1HL4 SCOCR1HL3 SCOCR1HL2 SCOCR1HL1 SCOCR1HL0 141 

(0xF6) SCOCR1LH SCOCR1LH7 SCOCR1LH6 SCOCR1LH5 SCOCR1LH4 SCOCR1LH3 SCOCR1LH2 SCOCR1LH1 SCOCR1LH0 141 

(0xF5) SCOCR1LL SCOCR1LL7 SCOCR1LL6 SCOCR1LL5 SCOCR1LL4 SCOCR1LL3 SCOCR1LL2 SCOCR1LL1 SCOCR1LL0 141 

(0xF4) SCOCR2HH SCOCR2HH7 SCOCR2HH6 SCOCR2HH5 SCOCR2HH4 SCOCR2HH3 SCOCR2HH2 SCOCR2HH1 SCOCR2HH0 141 

(0xF3) SCOCR2HL SCOCR2HL7 SCOCR2HL6 SCOCR2HL5 SCOCR2HL4 SCOCR2HL3 SCOCR2HL2 SCOCR2HL1 SCOCR2HL0 142 

(0xF2) SCOCR2LH SCOCR2LH7 SCOCR2LH6 SCOCR2LH5 SCOCR2LH4 SCOCR2LH3 SCOCR2LH2 SCOCR2LH1 SCOCR2LH0 142 

(0xF1) SCOCR2LL SCOCR2LL7 SCOCR2LL6 SCOCR2LL5 SCOCR2LL4 SCOCR2LL3 SCOCR2LL2 SCOCR2LL1 SCOCR2LL0 142 

(0xF0) SCOCR3HH SCOCR3HH7 SCOCR3HH6 SCOCR3HH5 SCOCR3HH4 SCOCR3HH3 SCOCR3HH2 SCOCR3HH1 SCOCR3HH0 142 

(0xEF) SCOCR3HL SCOCR3HL7 SCOCR3HL6 SCOCR3HL5 SCOCR3HL4 SCOCR3HL3 SCOCR3HL2 SCOCR3HL1 SCOCR3HL0 143 

(0xEE) SCOCR3LH SCOCR3LH7 SCOCR3LH6 SCOCR3LH5 SCOCR3LH4 SCOCR3LH3 SCOCR3LH2 SCOCR3LH1 SCOCR3LH0 143 

(0xED) SCOCR3LL SCOCR3LL7 SCOCR3LL6 SCOCR3LL5 SCOCR3LL4 SCOCR3LL3 SCOCR3LL2 SCOCR3LL1 SCOCR3LL0 143 

(0xEC) SCTSRHH SCTSRHH7 SCTSRHH6 SCTSRHH5 SCTSRHH4 SCTSRHH3 SCTSRHH2 SCTSRHH1 SCTSRHH0 138 

(0xEB) SCTSRHL SCTSRHL7 SCTSRHL6 SCTSRHL5 SCTSRHL4 SCTSRHL3 SCTSRHL2 SCTSRHL1 SCTSRHL0 139 

(0xEA) SCTSRLH SCTSRLH7 SCTSRLH6 SCTSRLH5 SCTSRLH4 SCTSRLH3 SCTSRLH2 SCTSRLH1 SCTSRLH0 139 

(0xE9) SCTSRLL SCTSRLL7 SCTSRLL6 SCTSRLL5 SCTSRLL4 SCTSRLL3 SCTSRLL2 SCTSRLL1 SCTSRLL0 139 

(0xE8) SCBTSRHH SCBTSRHH7 SCBTSRHH6 SCBTSRHH5 SCBTSRHH4 SCBTSRHH3 SCBTSRHH2 SCBTSRHH1 SCBTSRHH0 139 

(0xE7) SCBTSRHL SCBTSRHL7 SCBTSRHL6 SCBTSRHL5 SCBTSRHL4 SCBTSRHL3 SCBTSRHL2 SCBTSRHL1 SCBTSRHL0 140 

(0xE6) SCBTSRLH SCBTSRLH7 SCBTSRLH6 SCBTSRLH5 SCBTSRLH4 SCBTSRLH3 SCBTSRLH2 SCBTSRLH1 SCBTSRLH0 140 

(0xE5) SCBTSRLL SCBTSRLL7 SCBTSRLL6 SCBTSRLL5 SCBTSRLL4 SCBTSRLL3 SCBTSRLL2 SCBTSRLL1 SCBTSRLL0 140 

(0xE4) SCCNTHH SCCNTHH7 SCCNTHH6 SCCNTHH5 SCCNTHH4 SCCNTHH3 SCCNTHH2 SCCNTHH1 SCCNTHH0 137 

(0xE3) SCCNTHL SCCNTHL7 SCCNTHL6 SCCNTHL5 SCCNTHL4 SCCNTHL3 SCCNTHL2 SCCNTHL1 SCCNTHL0 138 

(0xE2) SCCNTLH SCCNTLH7 SCCNTLH6 SCCNTLH5 SCCNTLH4 SCCNTLH3 SCCNTLH2 SCCNTLH1 SCCNTLH0 138 

(0xE1) SCCNTLL SCCNTLL7 SCCNTLL6 SCCNTLL5 SCCNTLL4 SCCNTLL3 SCCNTLL2 SCCNTLL1 SCCNTLL0 138 

(0xE0) SCIRQS Res2 Res1 Res0 IRQSBO IRQSOF IRQSCP3 IRQSCP2 IRQSCP1 145 

(0xDF) SCIRQM Res2 Res1 Res0 IRQMBO IRQMOF IRQMCP3 IRQMCP2 IRQMCP1 146 
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(0xDE) SCSR Res6 Res5 Res4 Res3 Res2 Res1 Res0 SCBSY 145 

(0xDD) SCCR1 Res6 Res5 Res4 Res4 Res3 Res2 Res1 SCENBO 144 

(0xDC) SCCR0 SCRES SCMBTS SCEN SCCKSEL SCTSE SCCMP3 SCCMP2 SCCMP1 143 

... Reserved          

(0xD1) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0xD0) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

... Reserved          

(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 360 

(0xCD) UBRR1H Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 364 

(0xCC) UBRR1L UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 365 

... Reserved          

(0xCA) UCSR1C UMSEL11 UMSEL10 UPM11 UPM10 USBS1 UDORD1 UCPHA1 UCPOL1 376 

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 375 

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 375 

... Reserved          

(0xC6) UDR0 UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 356 

(0xC5) UBRR0H Res3 Res2 Res1 Res0 UBRR11 UBRR10 UBRR9 UBRR8 360 

(0xC4) UBRR0L UBRR7 UBRR6 UBRR5 UBRR4 UBRR3 UBRR2 UBRR1 UBRR0 360 

... Reserved          

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UDORD0 UCPHA0 UCPOL0 374 

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 374 

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 373 

... Reserved          

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 Res 406 

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN Res TWIE 402 

(0xBB) TWDR TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 405 

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 405 

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 Res TWPS1 TWPS0 403 

(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 401 

... Reserved          

(0xB6) ASSR EXCLKAMR EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 328 

... Reserved          

(0xB4) OCR2B OCR2B7 OCR2B6 OCR2B5 OCR2B4 OCR2B3 OCR2B2 OCR2B1 OCR2B0 327 

(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 327 

(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 327 

(0xB1) TCCR2B FOC2A FOC2B Res1 Res0 WGM22 CS22 CS21 CS20 326 

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 Res1 Res0 WGM21 WGM20 325 

... Reserved          

(0xAD) OCR4CH OCR4CH7 OCR4CH6 OCR4CH5 OCR4CH4 OCR4CH3 OCR4CH2 OCR4CH1 OCR4CH0 291 

(0xAC) OCR4CL OCR4CL7 OCR4CL6 OCR4CL5 OCR4CL4 OCR4CL3 OCR4CL2 OCR4CL1 OCR4CL0 292 

(0xAB) OCR4BH OCR4BH7 OCR4BH6 OCR4BH5 OCR4BH4 OCR4BH3 OCR4BH2 OCR4BH1 OCR4BH0 291 

(0xAA) OCR4BL OCR4BL7 OCR4BL6 OCR4BL5 OCR4BL4 OCR4BL3 OCR4BL2 OCR4BL1 OCR4BL0 291 

(0xA9) OCR4AH OCR4AH7 OCR4AH6 OCR4AH5 OCR4AH4 OCR4AH3 OCR4AH2 OCR4AH1 OCR4AH0 290 

(0xA8) OCR4AL OCR4AL7 OCR4AL6 OCR4AL5 OCR4AL4 OCR4AL3 OCR4AL2 OCR4AL1 OCR4AL0 290 

(0xA7) ICR4H ICR4H7 ICR4H6 ICR4H5 ICR4H4 ICR4H3 ICR4H2 ICR4H1 ICR4H0 292 

(0xA6) ICR4L ICR4L7 ICR4L6 ICR4L5 ICR4L4 ICR4L3 ICR4L2 ICR4L1 ICR4L0 292 

(0xA5) TCNT4H TCNT4H7 TCNT4H6 TCNT4H5 TCNT4H4 TCNT4H3 TCNT4H2 TCNT4H1 TCNT4H0 289 

(0xA4) TCNT4L TCNT4L7 TCNT4L6 TCNT4L5 TCNT4L4 TCNT4L3 TCNT4L2 TCNT4L1 TCNT4L0 289 

... Reserved          

(0xA2) TCCR4C FOC4A FOC4B FOC4C Res4 Res3 Res2 Res1 Res0 288 

(0xA1) TCCR4B ICNC4 ICES4 Res WGM43 WGM42 CS42 CS41 CS40 287 

(0xA0) TCCR4A COM4A1 COM4A0 COM4B1 COM4B0 COM4C1 COM4C0 WGM41 WGM40 285 

... Reserved          

(0x9D) OCR3CH OCR3CH7 OCR3CH6 OCR3CH5 OCR3CH4 OCR3CH3 OCR3CH2 OCR3CH1 OCR3CH0 282 

(0x9C) OCR3CL OCR3CL7 OCR3CL6 OCR3CL5 OCR3CL4 OCR3CL3 OCR3CL2 OCR3CL1 OCR3CL0 283 

(0x9B) OCR3BH OCR3BH7 OCR3BH6 OCR3BH5 OCR3BH4 OCR3BH3 OCR3BH2 OCR3BH1 OCR3BH0 282 

(0x9A) OCR3BL OCR3BL7 OCR3BL6 OCR3BL5 OCR3BL4 OCR3BL3 OCR3BL2 OCR3BL1 OCR3BL0 282 

(0x99) OCR3AH OCR3AH7 OCR3AH6 OCR3AH5 OCR3AH4 OCR3AH3 OCR3AH2 OCR3AH1 OCR3AH0 281 

(0x98) OCR3AL OCR3AL7 OCR3AL6 OCR3AL5 OCR3AL4 OCR3AL3 OCR3AL2 OCR3AL1 OCR3AL0 281 

(0x97) ICR3H ICR3H7 ICR3H6 ICR3H5 ICR3H4 ICR3H3 ICR3H2 ICR3H1 ICR3H0 283 

(0x96) ICR3L ICR3L7 ICR3L6 ICR3L5 ICR3L4 ICR3L3 ICR3L2 ICR3L1 ICR3L0 283 

(0x95) TCNT3H TCNT3H7 TCNT3H6 TCNT3H5 TCNT3H4 TCNT3H3 TCNT3H2 TCNT3H1 TCNT3H0 280 

(0x94) TCNT3L TCNT3L7 TCNT3L6 TCNT3L5 TCNT3L4 TCNT3L3 TCNT3L2 TCNT3L1 TCNT3L0 280 

... Reserved          
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(0x92) TCCR3C FOC3A FOC3B FOC3C Res4 Res3 Res2 Res1 Res0 279 

(0x91) TCCR3B ICNC3 ICES3 Res WGM33 WGM32 CS32 CS31 CS30 278 

(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 276 

... Reserved          

(0x8D) OCR1CH OCR1CH7 OCR1CH6 OCR1CH5 OCR1CH4 OCR1CH3 OCR1CH2 OCR1CH1 OCR1CH0 273 

(0x8C) OCR1CL OCR1CL7 OCR1CL6 OCR1CL5 OCR1CL4 OCR1CL3 OCR1CL2 OCR1CL1 OCR1CL0 273 

(0x8B) OCR1BH OCR1BH7 OCR1BH6 OCR1BH5 OCR1BH4 OCR1BH3 OCR1BH2 OCR1BH1 OCR1BH0 272 

(0x8A) OCR1BL OCR1BL7 OCR1BL6 OCR1BL5 OCR1BL4 OCR1BL3 OCR1BL2 OCR1BL1 OCR1BL0 272 

(0x89) OCR1AH OCR1AH7 OCR1AH6 OCR1AH5 OCR1AH4 OCR1AH3 OCR1AH2 OCR1AH1 OCR1AH0 271 

(0x88) OCR1AL OCR1AL7 OCR1AL6 OCR1AL5 OCR1AL4 OCR1AL3 OCR1AL2 OCR1AL1 OCR1AL0 271 

(0x87) ICR1H ICR1H7 ICR1H6 ICR1H5 ICR1H4 ICR1H3 ICR1H2 ICR1H1 ICR1H0 273 

(0x86) ICR1L ICR1L7 ICR1L6 ICR1L5 ICR1L4 ICR1L3 ICR1L2 ICR1L1 ICR1L0 274 

(0x85) TCNT1H TCNT1H7 TCNT1H6 TCNT1H5 TCNT1H4 TCNT1H3 TCNT1H2 TCNT1H1 TCNT1H0 270 

(0x84) TCNT1L TCNT1L7 TCNT1L6 TCNT1L5 TCNT1L4 TCNT1L3 TCNT1L2 TCNT1L1 TCNT1L0 271 

... Reserved          

(0x82) TCCR1C FOC1A FOC1B FOC1C Res4 Res3 Res2 Res1 Res0 270 

(0x81) TCCR1B ICNC1 ICES1 Res WGM13 WGM12 CS12 CS11 CS10 268 

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 266 

(0x7F) DIDR1       AIN1D AIN0D 409 

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 433 

(0x7D) DIDR2 ADC15D ADC14D ADC13D ADC12D ADC11D ADC10D ADC9D ADC8D 433 

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 427 

(0x7B) ADCSRB AVDDOK ACME REFOK ACCH MUX5 ADTS2 ADTS1 ADTS0 428 

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 430 

(0x79) ADCH ADCH7 ADCH6 ADCH5 ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 432 

(0x78) ADCL ADCL7 ADCL6 ADCL5 ADCL4 ADCL3 ADCL2 ADCL1 ADCL0 432 

(0x77) ADCSRC ADTHT1 ADTHT0 Res0 ADSUT4 ADSUT3 ADSUT2 ADSUT1 ADSUT0 431 

... Reserved          

(0x75) NEMCR Res7 ENEAM AEAM1 AEAM0 Res3 Res2 Res1 Res0 463 

(0x74) Reserved Res7 Res6 Res5 Res4 Res3 Res2 Res1 Res0  

(0x73) TIMSK5 Res1 Res0 ICIE5 Res OCIE5C OCIE5B OCIE5A TOIE5 302 

(0x72) TIMSK4 Res1 Res0 ICIE4 Res OCIE4C OCIE4B OCIE4A TOIE4 293 

(0x71) TIMSK3 Res1 Res0 ICIE3 Res OCIE3C OCIE3B OCIE3A TOIE3 284 

(0x70) TIMSK2 Res4 Res3 Res2 Res1 Res0 OCIE2B OCIE2A TOIE2 323 

(0x6F) TIMSK1 Res1 Res0 ICIE1 Res OCIE1C OCIE1B OCIE1A TOIE1 274 

(0x6E) TIMSK0 Res4 Res3 Res2 Res1 Res0 OCIE0B OCIE0A TOIE0 242 

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 224 

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 224 

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 225 

(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 220 

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 219 

(0x68) PCICR Res4 Res3 Res2 Res1 Res0 PCIE2 PCIE1 PCIE0 223 

(0x67) BGCR Res BGCAL_FINE3 BGCAL_FINE2 BGCAL_FINE1 BGCAL_FINE0 BGCAL2 BGCAL1 BGCAL0 433 

(0x66) OSCCAL CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 153 

(0x65) PRR1 Res PRTRX24 PRTIM5 PRTIM4 PRTIM3   PRUSART1 168 

(0x64) PRR0 PRTWI PRTIM2 PRTIM0 PRPGA PRTIM1 PRSPI PRUSART0 PRADC 167 

(0x63) PRR2 Res3 Res2 Res1 Res0 PRRAM3 PRRAM2 PRRAM1 PRRAM0 168 

... Reserved          

(0x61) CLKPR CLKPCE Res2 Res1 Res0 CLKPS3 CLKPS2 CLKPS1 CLKPS0 154 

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 183 

0x3F (0x5F) SREG I T H S V N Z C 11 

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 13 

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 14 

... Reserved          

0x3B (0x5B) RAMPZ Res5 Res4 Res3 Res2 Res1 Res0 RAMPZ1 RAMPZ0 14 

... Reserved          

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 462 

... Reserved          

0x35 (0x55) MCUCR JTD Res1 Res0 PUD Res1 Res0 IVSEL IVCE 204 

0x34 (0x54) MCUSR Res2 Res1 Res0 JTRF WDRF BORF EXTRF PORF 183 

0x33 (0x53) SMCR Res3 Res2 Res1 Res0 SM2 SM1 SM0 SE 166 

... Reserved          

0x31 (0x51) OCDR OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 440 

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 408 
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Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 

... Reserved          

0x2E (0x4E) SPDR SPDR7 SPDR6 SPDR5 SPDR4 SPDR3 SPDR2 SPDR1 SPDR0 338 

0x2D (0x4D) SPSR SPIF WCOL Res4 Res3 Res2 Res1 Res0 SPI2X 337 

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 336 

0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 26 

0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 26 

... Reserved          

0x28 (0x48) OCR0B OCR0B_7 OCR0B_6 OCR0B_5 OCR0B_4 OCR0B_3 OCR0B_2 OCR0B_1 OCR0B_0 242 

0x27 (0x47) OCR0A OCR0A_7 OCR0A_6 OCR0A_5 OCR0A_4 OCR0A_3 OCR0A_2 OCR0A_1 OCR0A_0 241 

0x26 (0x46) TCNT0 TCNT0_7 TCNT0_6 TCNT0_5 TCNT0_4 TCNT0_3 TCNT0_2 TCNT0_1 TCNT0_0 241 

0x25 (0x45) TCCR0B FOC0A FOC0B Res1 Res0 WGM02 CS02 CS01 CS00 240 

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 Res1 Res0 WGM01 WGM00 238 

0x23 (0x43) GTCCR TSM Res4 Res3 Res2 Res1 Res0 PSRASY PSRSYNC 329 

0x22 (0x42) EEARH Res3 Res2 Res1 Res0 EEAR11 EEAR10 EEAR9 EEAR8 23 

0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 23 

0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 23 

0x1F (0x3F) EECR Res1 Res0 EEPM1 EEPM0 EERIE EEMPE EEPE EERE 24 

0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 26 

0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 222 

0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0 222 

0x1B (0x3B) PCIFR Res4 Res3 Res2 Res1 Res0 PCIF2 PCIF1 PCIF0 223 

0x1A (0x3A) TIFR5 Res1 Res0 ICF5 Res OCF5C OCF5B OCF5A TOV5 302 

0x19 (0x39) TIFR4 Res1 Res0 ICF4 Res OCF4C OCF4B OCF4A TOV4 293 

0x18 (0x38) TIFR3 Res1 Res0 ICF3 Res OCF3C OCF3B OCF3A TOV3 284 

0x17 (0x37) TIFR2 Res4 Res3 Res2 Res1 Res0 OCF2B OCF2A TOV2 324 

0x16 (0x36) TIFR1 Res1 Res0 ICF1 Res OCF1C OCF1B OCF1A TOV1 275 

0x15 (0x35) TIFR0 Res4 Res3 Res2 Res1 Res0 OCF0B OCF0A TOV0 243 

0x14 (0x34) PORTG Res1 Res0 PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 209 

0x13 (0x33) DDRG Res1 Res0 DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 209 

0x12 (0x32) PING Res1 Res0 PING5 PING4 PING3 PING2 PING1 PING0 210 

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 208 

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 208 

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 209 

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 207 

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 207 

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 208 

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 206 

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 207 

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 207 

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 27 

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 28 

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 28 

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 205 

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 206 

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 206 

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 27 

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 27 

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 27 

Notes: 1. Reserved registers, bits and I/O memory addresses (marked as Res*) may not be modified. 

2. I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the 

value of single bits can be checked by using the SBIS and SBIC instructions. 

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the 

I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 

0x1F only. 

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 – 0x3F must be used. When addressing I/O registers as 

data space using LD and ST instructions, 0x20 must be added to these addresses. The device is a complex microcontroller with more 

peripheral units than can be supported within the 64 location reserved in Op-code for the IN and OUT instructions. For the Extended I/O 

space from 0x60 – 0x1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 
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34 Electrical Characteristics 

34.1 Absolute Maximum Ratings 

Note that stresses beyond those listed under “Absolute Maximum Ratings” may cause 
permanent damage to the device. This is a stress rating only and functional operation of 
the device at these or any other conditions beyond those indicated in the operational 
sections of this specification are not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device reliability. 

Symbol Parameter Condition Min. Typ. Max. Units 

TSTOR Storage temperature  -50  150 °C 

TLEAD Lead temperature  T = 10s,  

(soldering profile compliant with 
IPC/JEDEC J-STD-020B) 

  260 °C 

VESD ESD robustness Compl. to [3],  

Compl. to [4] 

4 

750 

  kV 

V 

PRF Input RF level     +14 dBm 

VDIG Voltage on all pins  

(except pins 4, 5, 13, 14, 29)  

 -0.3  VDD+0.3  V 

VANA Voltage on pins 4, 5, 13, 14, 29  -0.3  2.0 V 

 

34.1.1 Recommended Operating Range 

Symbol Parameter Condition Min. Typ. Max. Units 

TOP Operating temperature range  -40  +85 °C 

VDD Supply voltage Voltage on pins 15,28
(2)

 1.8 3.0 3.6 V 

VDD1.8 Supply voltage 

(on pins 13, 14, 29) 

External voltage supply
(1)

 1.7 1.8 1.9 V 

Notes: 1. Register VREG_CTRL needs to be programmed to disable internal voltage regulators and supply blocks by an external 
1.8V supply, refer to section "Voltage Regulators (AVREG, DVREG)" on page 163. 

2. Even if an implementation uses the external 1.8V voltage supply VDD1.8 it is required to connect VDD. 

34.1.2 Digital Pin Characteristics 

Test Conditions: TOP = 25°C (unless otherwise stated) 

Symbol Parameter Condition Min Typ Max Units 

VIH High level input voltage
(1)

  VDD – 
0.4 

  V 

VIL Low level input voltage
(1)

    0.4 V 

VOH High level output voltage
(1)

 For all output driver strengths defined in 
DPDS0, DPDS1 

VDD – 
0.4 

  V 

VOL Low level output voltage
(1)

 For all output driver strengths defined in 
DPDS0, DPDS1 

  0.4 V 

Note: 5. The capacitive load should not be larger than 50 pF for all I/Os when using the default driver strength settings, refer to 
section "DPDS0 – Port Driver Strength Register 0" on page 174 and "DPDS1 – Port Driver Strength Register 1" on 
page 175. Generally, large load capacitances increase the overall current consumption. 
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34.2 Clock Characteristics 

34.2.1 Calibrated Internal RC Oscillator Accuracy 

Table 34-2. Calibration Accuracy of Internal RC Oscillator 

 Frequency VDEVDD Temperature Calibration Accuracy 

Factory Calibration 16 MHz 3.0V 25°C ± TBD % 

User Calibration TBD 1.8V – 3.6V -TBD°C - TBD°C ± TBD % 

34.2.2 External Clock Drive 

Figure 34-1 External Clock Drive Waveforms 

VIL1

VIH1

 

Table 34-3. External Clock Drive 

Symbol Parameter Min. Max. Units 

1/tCLCL Oscillator Frequency  16 MHz 

tCLCL Clock Period 62.5  ns 

tCHCX High Time 25  ns 

tCLCX Low Time 25  ns 

tCLCH Rise Time  0.1 µs 

tCHCL Fall Time  0.1 µs 

∆tCLCL Change in period from one clock cycle to the next  1 % 

 

34.3 System and Reset Characteristics 

Table 34-4. Reset, Brown-out and Internal Voltage Characteristics 

Symbol Parameter Condition Min Typ Max Units 

Power-on Reset Threshold Voltage 
(rising) 

 
 TBD  V 

VPOT 
Power-on Reset Threshold Voltage 
(falling)

(1)
 

 
 0.3  V 

VPSR Power-on slope rate   TBD  V/ms 

VRST RSTN Pin Threshold Voltage  0.2VDEVDD  0.9VDEVDD V 

tRST Minimum pulse width on RSTN Pin   TBD  ns 

VHYS Brown-out Detector Hysteresis   50  mV 

tBOD Min Pulse Width on Brown-out Reset   100  ns 

VBG Bandgap reference voltage VDEVDD = 3.0V, TA = 25°C  1.2  V 

Note: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling). 
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Table 34-23. BODLEVEL Fuse Coding 

BODLEVEL2:0 Fuses Min VBOD Typ VBOD Max VBOD Units 

111 BOD Disabled 

110  1.8  V 

101  1.9  V 

100  2.0  V 

011  2.1  V 

010  2.2  V 

001  2.3  V 

000  2.4  V 

Note: VBOT may be below nominal minimum operating voltage. The device is operated down to VDEVDD = VBOT during the 
production test. This guarantees that a Brown-Out Reset will occur before VDEVDD drops to a voltage where correct 
operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 for 16 MHz 
operation of the ATmega128RFA1.  

 

34.4 Power Management Electrical Characteristics 

34.4.1 Power Switches 

Table 34-6. Timing Characteristics of the Power Switches 

Symbol Parameter Condition Min. Typ. Max. Units 

tPOR Power-on reset time Applies if the device is powered up  TBD  µs 

tBG Bandgap startup time    7  µs 

tDRT_ON DRT switch switch-on time   2  µs 

tPWRSW_ON Power switch switch-on time    2  µs 

 

34.4.2 Voltage Regulators 

Table 34-7. Timing Characteristics of the Voltage regulators 

Symbol Parameter Condition Min. Typ. Max. Units 

tAVREG Power up time AVREG external capacity on pin AVDD TBD  TBD  µs 

tDVREG Power up time DVREG Startup after wakeup, 

Startup after deep sleep, 

external capacity on pin DVDD TBD 

TRX24 and all SRAM modules enabled) 

 30  µs 

tBG Power up time bandgap   TBD  µs 

 

34.5 2-wire Serial Interface Characteristics 

The timing characteristics refer to Table 34-8. 

Table 34-8 2-wire Serial Bus Requirements 

Symbol Parameter Condition Min. Max. Units 

VIL Input Low-voltage  -0.5 0.3VDEVDD V 
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Symbol Parameter Condition Min. Max. Units 

VIH Input High-voltage  0.7VDEVDD VDEVDD +0.5 V 

Vhys Hysteresis of Schmitt Trigger Inputs    V 

VOL Output Low-voltage 3mA sink current 0 0.4 V 

tr Rise Time for both SDA and SCL   300  ns 

tof Output Fall Time from VIHmin to VILmax   250  ns 

tSP Spikes suppressed by the input filter   50  ns 

 

Figure 34-2  

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

 

34.6  SPI Timing Characteristics 

See Figure 34-3and Figure 34-4 for details. 

Table 34-9. SPI Timing Parameters 

Description Mode Min Typ Max Units 

SCK period Master  See "SPCR – SPI Control Register" on 
page 336. 

 

SCK high/low Master  50% duty cycle  

Rise/fall time Master  TBD  

Setup Master  TBD  

Hold Master  TBD  

Out to SCK Master  0.5 tSCK  

SCK to out Master  TBD  

SCK to out high Master  TBD  

SS
__

 low to out Slave  TBD  

SCK period Slave 4 tCK   

SCK high/low
(1)

 Slave 2 tCK   

Rise/fall time Slave   TBD 

Setup Slave TBD   

Hold Slave tCK   

SCK to out Slave  TBD  

SCK to SS
__

 high Slave TBD   

SS
__

 high to tri-state Slave  TBD  

SS
__

 low to SCK Slave TBD   

 ns 

Note: 1. In SPI Programming mode the minimum SCK high/low period is 2 tCLCL for fCK < 12 
MHz and 3 tCLCL for fCK > 12 MHz. 
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Figure 34-3. SPI timing Requirements (Master Mode) 

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB
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...
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6 1

2 2

34 5

87

 

Figure 34-4. SPI timing Requirements (Slave Mode) 

MISO

(Data Output)

SCK
(CPOL = 1)

MOSI

(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

 

34.7 ADC Characteristics 

Table 34-10. ADC Electrical Characteristics 

Symbol Parameter Condition Min Typ Max Units 

VINT1 Internal Voltage Reference   1.5  V 

VINT2 Internal Voltage Reference   1.6  V 

VINT3 Internal Voltage Reference   AVDD  V 

RAREF,EXT External Voltage Impedance     Ω 

IL,AREF Load Current     A 

       

 

Table 34-11. ADC Characteristics, Single Ended Channels 

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units 

 Single Ended Conversion CLKADC <= 4 MHz  10  Bits 

 
Resolution 

Single Ended Conversion CLKADC   > 8 MHz  8  Bits 

 Absolute accuracy (Including Single Ended Conversion  TBD  LSB 



 

 

 

 

 

 

 

 
 

  
 

506 
 

 
 

 

 

8266A-MCU Wireless-12/09 

ATmega128RFA1  
 

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units 

VREF = 1.6V CLKADC = 200kHz 

 Single Ended Conversion 

VREF = 1.6V CLKADC = 1MHz 

 TBD  LSB 

 Single Ended Conversion 

VREF = 1.6V CLKADC = 2MHz 

 TBD  LSB 

 

INL, DNL, quantization error, 

gain and offset error) 

Single Ended Conversion 

VREF = 1.6V CLKADC = 4MHz 

 TBD  LSB 

 Integral Non-Linearity (INL) Single Ended Conversion 

VREF = 1.6V CLKADC = 4MHz 

 0.8  LSB 

 Differential Non-Linearity 
(DNL) 

Single Ended Conversion 

VREF = 1.6V CLKADC = 4MHz 

-0.5   LSB 

 Gain Error Single Ended Conversion 

VREF = 1.6V CLKADC = 4MHz 

 1  LSB 

 Offset Error Single Ended Conversion 

VREF = 1.6V CLKADC = 4MHz 

 1.5  LSB 

 Conversion Time Free Running Conversion 3  240 µs 

 Clock Frequency Single Ended Conversion   8000 kHz 

VREF Reference Voltage  1.5  AVDD V 

VIN Input Voltage  0  AVDD V 

 Input Bandwith  20   kHz 

RREF Reference Input Resistance   TBD  kΩ 

RAIN Analog Input Resistance   2  kΩ 

Note: 1. Values are guidelines only 

2. All values are valid for EVDD = 3.0V 

 

Table 34-12. PGA and ADC Characteristics, Differential Channels 

Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units 

 Gain = 1x  10  Bits 

 Gain = 10x  10  Bits 

 

Resolution 

Gain = 200x  10  Bits 

 Gain = 1x 

VREF = 1.6V CLKADC = 2MHz 

 TBD  LSB 

 Gain = 10x 

VREF = 1.6V CLKADC = 2MHz 

 TBD  LSB 

 

Absolute accuracy (Including 

INL, DNL, quantization error, 

gain and offset error) 
Gain = 200x 

VREF = 1.6V CLKADC = 2MHz 

 TBD  LSB 

 Gain = 1x 

VREF = 1.6V CLKADC = 2MHz 

  3 LSB 

 Gain = 10x 

VREF = 1.6V CLKADC = 2MHz 

  5 LSB 

 

Integral Non-Linearity (INL) 

Gain = 200x 

VREF = 1.6V CLKADC = 2MHz 

  10 LSB 

 Differential Non-Linearity 
(DNL) 

Gain = 1x 

VREF = 1.6V CLKADC = 2MHz 

-0.5   LSB 
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Symbol Parameter Condition Min
(1)

 Typ
(1)

 Max
(1)

 Units 

 Gain = 10x 

VREF = 1.6V CLKADC = 2MHz 

-0.75   LSB 

 Gain = 200x 

VREF = 1.6V CLKADC = 2MHz 

TBD   LSB 

 Gain = 1x  1  LSB 

 Gain = 10x  1.5   

 

Gain Error 

Gain = 200x  10   

 Gain = 1x 

VREF = 1.6V CLKADC = 2MHz 

 0.7  LSB 

 Gain = 10x 

VREF = 1.6V CLKADC = 2MHz 

 0.75  LSB 

 

Offset Error 

Gain = 200x 

VREF = 1.6V CLKADC = 2MHz 

 13  LSB 

 Conversion Time Free Running Conversion 100   µs 

 Clock Frequency Single Ended Conversion   2000 kHz 

VREF Reference Voltage  1.5  AVDD V 

VIN Input Voltage  0  AVDD V 

VDIFF Input Differential Voltage  -AVDD  AVDD V 

 ADC Conversion Output  -512  511 LSB 

 Input Bandwith  20   kHz 

RREF Reference Input Resistance   TBD  kΩ 

RAIN Analog Input Resistance   2  kΩ 

Note: 1. Values are guidelines only 

2. All values are valid for EVDD = 3.0V 

 

34.8 Transceiver Electrical Characteristics 

34.8.1 Digital Interface Timing Characteristics 

Test Conditions: TOP = 25°C, VDD = 3.0V, CL = 50 pF (unless otherwise stated) 

Symbol Parameter Condition Min. Typ. Max. Units 

t12 AES core cycle time   24  µs 

tIRQ Interrupt event latency Relative to the event to be indicated  9  µs 

34.8.2 General RF Specifications 

Test Conditions (unless otherwise stated):  

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page 
493. 

Symbol Parameter Condition Min. Typ. Max. Units 

fRF Frequency range As specified in [1],[2] 2405  2480 MHz 

fCH Channel spacing As specified in [1],[2]  5  MHz 

fHDR Header bit rate (SHR, PHR) As specified in [1],[2]  250  kb/s 
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Symbol Parameter Condition Min. Typ. Max. Units 

fPSDU PSDU bit rate As specified in [1],[2] 

OQPSK_DATA_RATE = 1 

OQPSK_DATA_RATE = 2 

OQPSK_DATA_RATE = 3 

 250 

500 

1000 

2000 

 kb/s 

kb/s 

kb/s 

kb/s 

fCHIP Chip rate As specified in [1],[2]  2000  kchip/s 

fCLK Crystal oscillator frequency Reference oscillator  16  MHz 

tXTAL Reference oscillator settling time Leaving SLEEP state to clock available at 
pin 17 (CLKM) 

 215 1000 µs 

 Symbol rate deviation  

Reference frequency accuracy for 
correct functionality 

 

PSDU bit rate 250 kb/s  

  500 kb/s 

  1000 kb/s 

  2000 kb/s 

-60
(1)

 

-40 

-40 

-30 

 +60 

+40 

+40 

+30 

ppm 

ppm 

ppm 

ppm 

B20dB 20 dB bandwidth   2.8  MHz 

Note: 6. A reference frequency accuracy of ±40 ppm is required by [1], [2]. 

34.8.3 Transmitter Characteristics 

 Test Conditions (unless otherwise stated):  

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page 
493. 

Symbol Parameter Condition Min. Typ. Max. Units 

PTX TX Output power Maximum configurable TX output power 
value  

Register bit TX_PWR = 0 

0 +3.5 +6 dBm 

PRANGE Output power range 16 steps, configurable in  

register 0x05 (PHY_TX_PWR) 

 20  dB 

PACC Output power tolerance    ±3 dB 

 TX Return loss 100Ω differential impedance, 
PTX = +3.5 dBm 

 10  dB 

 EVM   8  %rms 

PHARM Harmonics 

    2
nd

 harmonic 

    3
rd

 harmonic 

   

-38 

-45 

  

dBm 

dBm 

PSPUR Spurious Emissions 

    30 – ≤ 1000 MHz 

    >1 – 12.75 GHz 

    1.8 – 1.9 GHz 

    5.15 – 5.3 GHz 

Complies with 

EN 300 328/440, 

FCC-CFR-47 part 15, 

ARIB STD-66, RSS-210 

  

-36 

-30 

-47 

-47 

  

dBm 

dBm 

dBm 

dBm 

34.8.4 Receiver Characteristics 

Test Conditions (unless otherwise stated):  

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, PSDU bit rate = 250 kb/s, Measurement setup 
see Figure 32-1 on page 493. 
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Symbol Parameter Condition Min. Typ. Max. Units 

Receiver sensitivity 

    250 kb/s 

    500 kb/s 

    1000 kb/s 

    2000 kb/s 

AWGN channel, PER ≤ 1%,   

    PSDU length   20 octets 

High Data Rate Modes:  

    PSDU length 20 octets 

  

-100 

-96 

-94 

-86 

  

dBm 

dBm 

dBm 

dBm 

PSENS 

Antenna Diversity 250 kb/s, PSDU 20 octets  -99  dBm 

RL Return loss 100Ω differential impedance  10  dB 

NF Noise figure   6  dB 

PRXMAX Maximum RX input level PER ≤ 1%, PSDU length of 20 octets  10  dBm 

PACRN Adjacent channel rejection:  

    -5 MHz 

PER ≤ 1%, PSDU length of 20 octets, 
PRF = -82 dBm 

 34  dB 

PACRP Adjacent channel rejection:  

    +5 MHz 

PER ≤ 1%, PSDU length of 20 octets, 
PRF = -82 dBm 

 38  dB 

PAACRN Alternate channel rejection:  

    -10 MHz 

PER ≤ 1%, PSDU length of 20 octets, 
PRF = -82 dBm 

 54  dB 

PAACRP Alternate channel rejection:  

    +10 MHz 

PER ≤ 1%, PSDU length of 20 octets, 
PRF = -82 dBm 

 54  dB 

PSPUR Spurious emissions: 

    LO leakage 

    30 – ≤ 1000 MHz 

    >1 – 12.75 GHz 

   

-71 

 

 

-57 

-47 

 

dBm 

dBm 

dBm 

fRXTXOFFS TX/RX carrier frequency offset Sensitivity loss < 2 dB -300
(1)

  +300 kHz 

IIP3 3
rd

 – order intercept point At maximum gain 

Offset freq. interf. 1 = 5 MHz 

Offset freq. interf. 2 = 10 MHz 

 -14  dBm 

IIP2 2
nd

 – order intercept point At maximum gain 

Offset freq. interf. 1 = 60 MHz 

Offset freq. interf. 2 = 62 MHz 

 17  dBm 

 RSSI tolerance Tolerance within gain step   ±5 dB 

 RSSI dynamic range   81  dB 

 RSSI resolution   3  dB 

 RSSI sensitivity Defined as RSSI_BASE_VAL  -90  dBm 

 Minimum RSSI value PRF ≤ RSSI_BASE_VAL  0   

 Maximum RSSI value PRF > RSSI_BASE_VAL + 81 dB  28   

Note: 1. Offset equals ±120 ppm  

34.8.5 Current Consumption Specifications 

Test Conditions (unless otherwise stated):  

VDD = 3.0V, fRF = 2.45 GHz, TOP = 25°C, Measurement setup see Figure 32-1 on page 
493. 
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Symbol Parameter Condition Min. Typ. Max. Units 

IBUSY_TX Supply current transmit state PTX = 3 dBm 

PTX = 1 dBm 

PTX = -3 dBm 

PTX = -17 dBm 

(current consumption is reduced at 
VDD = 1.8V for each output power level) 

 14.5 

10 

9 

8 

 mA 

mA 

mA 

mA 

IRX_ON Supply current RX_ON state RX_ON state  12.5  mA 

IRX_ON_P Supply current RX_ON state RX_ON state, with register setting 

RX_PDT_LEVEL > 0
(1)

 

 12.0  mA 

IPLL_ON Supply current PLL_ON state PLL_ON state  5.7  mA 

ITRX_OFF Supply current TRX_OFF state TRX_OFF state  0.4  mA 

ISLEEP Supply current SLEEP state SLEEP state  0.02  µA 

Note: 1. Refer to section "Figure 32-1" on page 493 

34.8.6 Crystal Parameter Requirements 

Symbol Parameter Condition Min. Typ. Max. Units 

f0 Crystal frequency   16  MHz 

CL Load capacitance  8  14 pF 

C0 Static capacitance    7 pF 

R1 Series resistance    100 Ω 

 

35  Typical Characteristics 

35.1 Internal Oscillator Speed 

t.b.d. 

 



 

 

 

 

 

 

 

 
 

   
 511

 

 

 

8266A-MCU Wireless-12/09 

 ATmega128RFA1 

36 Ordering Information 

ATmega128RFA1 

Speed (MHz) Power Supply Ordering Code Package Packing Operation Range 

16 1.8 – 3.6V ATmega128RFA1-ZU PI Tray Industrial (-40ºC to 85ºC) 

16 1.8 – 3.6V ATmega128RFA1-ZUR PI Tape & Reel Industrial (-40ºC to 85ºC) 

Notes: 1. Pb-free packaging, complies to European Directive for Restriction of Hazardous Substances (RoHS directive). 
Also Halide free and fully Green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Type 

PI 64-lead, 9 x 9 x 0.9 mm Body, Quad Flat No-lead Package (QFN) 
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37 Packaging Information 

PI 

  

ALL DIMENSIONS ARE IN MILLIMETERS.

PACKAGE WARPAGE MAX 0.08 mm.

---

ccc 0.05 0.002

---

TOLERANCES OF FORM AND POSITION 

aaa

bbb

R 0.09

0.10

0.10

0.004

0.004

0.004--- ---

0.028

0.001

0.012

0.50 bsce

E2

D2

0.020 bsc

0.65

0.25

D

A2

A1

b

---

0.18 0.0100.007

---0.70

0.05

0.30

0.026

0.035

MAX.

MILLIMETER

---

NOM.

SYMBOL

A ---

MIN.

---

MIN.

0.90

MAX.

INCH

---

NOM.

A3 0.20 REF.

9.00 bsc

5.755.655.55

E

0.354 bsc

0.008 REF.

0.219 0.222 0.226

D2

A3

A

A2

A1

E2

L

D

E

A
d aaa C A

d bbb C B

B

C

eb

j 0.10 m C A B

PIN1 ID
0.20 R

d ccc C

SEATING
PLANE

R

TOP VIEW

SIDE VIEW

BOTTOM VIEW

L

0.45

L 0.35 0.40 0.45 0.014 0.016 0.018

1.72

--- --- ---

0.10

9.00 bsc 0.354 bsc

LASER MARK FOR PIN 1
IDENTIFICATION IN THIS AREA

---

1.27

4.854.754.65 0.183 0.187 0.191

TITLE

44306 Nantes Cedex 3 - France

Atmel Nantes S.A.
La Chantrerie - BP 70602

DRAWING No.
 

REV.
 

DRAWINGS NOT SCALED

A
PI - 64 leads - 9.0  x 9.0 mm - pitch 0.5mm

Quad Flat  No Lead Package QFN

02/12/2008

PI
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38 Errata 

38.1 ATmega128RFA1 revision D (1.2) 

• Power-Chain turns off when power supply drops below 1.6V 

• JTAG interface reads wrong data 

• CSMA back-off calculation has reduced degree of randomness 

• Update of internal temporary registers for CSMA_SEED register may fail 

• Interrupt TRX24_CCA_ED_DONE may occur twice 

38.2 ATmega128RFA1 revision C (1.1) 

• Power-Chain turns off when power supply drops below 1.6V 

• JTAG interface reads wrong data 

• CSMA back-off calculation has reduced degree of randomness 

• Update of internal temporary registers for CSMA_SEED register may fail 

• Interrupt TRX24_CCA_ED_DONE may occur twice 

• DVREG_EXT bit is not write-protected 

• ENDRT bits have wrong reset value 

38.3 ATmega128RFA1 revision AB (1.0) 

Not sampled. 

38.4 Compiler package WinAVR-20090313 

In the compiler package WinAVR-20090313 the SRAM start address has a wrong value 
of 0x100. In this case the variables are randomly allocated across the extended I/O 
space 0x100 to 0x1FF. It causes an unpredictable behavior by random overwrite of 
registers (see also "JTAG interface reads wrong data" on page 514 and "DVREG_EXT 
bit is not write-protected" on page 514). 

Problem Fix/Workaround 

Use the linker option    -Wl,--section-start=.data=0x800200 

38.5 Detailed errata description 

38.5.1 Power-Chain turns off when power supply drops below 1.6V 

If the voltage of the pins DEVDD drops below 1.6V, the internal power chain turns off. 
Some hardware settings (e.g. clock source) can alter their state unintentionally. Raising 
the supply voltage above 1.8V again does not bring the circuit back to normal operation. 
This condition can happen either by lowering the power supply voltage below 1.6V or 
turn-off the supply source while other external devices are feeding DEVDD by the 
internal ESD diodes of the IO stages (e.g. hardware debugger attached to the JTAG 
interface) (2606). 

If the power supply drops below 1.6V while being in Deep Sleep mode, the internal 
power chain is not affected. 

Problem Fix/Workaround 

Turn on the Brown-Out Detector at any voltage level. The supply current in Deep Sleep 
does not increase. 
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38.5.2 JTAG interface reads wrong data 

If the Power Reduction Register bits associated with the SRAM’s (PRRAM3…0 in 
PRR2) and the 2.4GHz Transceiver (PRTRX24 in PRR1) are set, the JTAG interface 
reads wrong data. (2613). 

Problem Fix/Workaround 

Do not use PRRAM3…0 in PRR2 and PRTRX24 in PRR1. Force pin RSTN=0 and the 
JTAG interface can erase the program memory. 

38.5.3 CSMA back-off calculation has reduced degree of randomness 

The CSMA back-off calculation in the transceiver extended operating modes has a 
reduced degree of randomness (e.g. transceiver is in the state TX_ARET_ON) (2665). 

Problem Fix/Workaround 

Initialize CSMA_SEED registers with a random value. 

38.5.4 Update of internal temporary registers for CSMA_SEED register may fail 

The update of the internal temporary registers of the CSMA_SEED registers may fail. 
Read/write operation to the CSMA_SEED registers itself works as expected (2646). 

Problem Fix/Workaround 

A sleep cycle of the transceiver updates the internal temporary registers. 

38.5.5 Interrupt TRX24_CCA_ED_DONE may occur twice 

When requesting a manually initiated CCA measurement in BUSY_RX state and during 
an internal ED measurement, a TRX24_CCA_ED_DONE interrupt could be issued 
immediately after the request. In this case the register bit CCA_DONE is equal to 0 and 
an additional TRX24_CCA_ED_DONE interrupt is issued after finishing the CCA 
measurement and register bit CCA_DONE is set to 1 (2000). 

Problem Fix/Workaround 

Prevent a frame reception during manually initiated CCA measurement 

• make sure that TRX_STATUS is not in RX_BUSY (i.e. start from state PLL_ON) 

• set bit RX_PDT_DIS=1 

• switch TRX_STATE to RX_ON 

• perform CCA measurement 

• set bit RX_PDT_DIS=0 

38.5.6 DVREG_EXT bit is not write-protected 

The external mode of the DVDD voltage regulator is not write-protected. If it is enabled 
(DVREG_EXT=1 in the register VREG_CTRL) with no external power supply for DVDD, 
the device leaves normal operation and can’t be recovered by the Watchdog (2658). 

Problem Fix/Workaround 

Do not write the bit DVREG_EXT in the register VREG_CTRL. 

38.5.7 ENDRT bits have wrong reset value 

The ENDRT bits in the registers DRTRAM3…0 have the wrong reset value. The data 
retention of the associated SRAM in DEEP_SLEEP is disabled (2495). 
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Problem Fix/Workaround 

Set ENDRT=1 in DRTRAM3…0 at the beginning of the firmware program. 
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39  Revision history 

Please note that the referring page numbers in this section are referring to this 
document. The referring revision in this section are referring to the document revision 

Rev. 8266A-MCU Wireless-12/09 

1. Initial release 
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