

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-5761_23-01-05

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

SAGEMCOM BROADBAND SAS

250, route de l' Empereur

92848 Rueil-Malmaison Cedex / FRANCE

Phone: -/-

Contact: Benjamin Murindangabo e-mail: <u>benjamin.murindangabo-</u>

ext@sagemcom.com

Manufacturer

SAGEMCOM BROADBAND SAS

250, route de l' Empereur

92848 Rueil-Malmaison Cedex / FRANCE

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Video Soundbox
Model name: VSB3918 ALT US
FCC ID: VW3VSB3918

Frequency: 5150 MHz to 5850 MHz

Technology tested: WLAN

Antenna: two integrated antennas

Power supply: 115V AC by mains adapter

Temperature range: 0°C to +40°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

lest report authorized:	lest performed:	
	p.o.	
Mich ad Danas marchi		
Michael Dorongovski	David Lang	
Lab Manager	Lab Manager	
Radio Lahe	Radio Labe	

1 Table of contents

2.1 Notes and disclaimer 2.2 Application details 2.3 Test staboratories sub-contracted 3. Test standard/s, references and accreditations 4. Reporting statements of conformity – decision rule 5. Test environment 6. Test item 6.1 General description 6.2 Additional information 7. Description of the test setup 7.1 Shielded semi anechoic chamber 7.2 Shielded semi anechoic chamber 7.3 Radiated measurements > 18 GHz 7.4 AC conducted 7.5 Conducted measurements with peak power meter & spectrum analyzer 1.3 Sequence of testing radiated spurious 9 kHz to 30 MHz 8.1 Sequence of testing radiated spurious 30 MHz to 1 GHz 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz 8.4 Sequence of testing radiated spurious 30 MHz to 1 GHz 8.5 Measurement uncertainty 8.6 Measurement results 9 Measurement results 11 Additional comments 12 Measurement results 12 Measurement results 12.1 Identify worst case data rate. 12.2 Antenna gain 12.1 2.2 Antenna gain 12.1 1.2 Anximum output power 12.4 Maximum output power according to FCC requirements 12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz 12.7 Dewer spectral density according to FCC requirements 12.8 Occupied bandwidth / 99% emission bandwidth 12.9 Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band 12.1 Spurious emissions radiated below 30 MHz 12.1 Spurious emissions radiated below 30 MHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 1 GHz 12.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz to 4 GHz 17.1 Spurious emissions radiated 5 GHz t	1	Table of	contents	2
2.2 Application details 4 2.3 Test laboratories sub-contracted 4 3 Test standard/s, references and accreditations 5 4 Reporting statements of conformity – decision rule 6 5 Test environment 7 6 Test item 7 6.1 General description 7 6.2 Additional information 7 7 Description of the test setup. 8 7.1 Shielded semi anechoic chamber 9 7.2 Shielded fully anechoic chamber 9 7.3 Radiated measurements > 18 GHz 11 7.4 AC conducted 12 7.5 Conducted measurements with peak power meter & spectrum analyzer 12 8 Sequence of testing radiated spurious 9 kHz to 30 MHz 12 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 14 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 14 8.3 Sequence of testing radiated spurious 30 MHz to 1 GHz 15 9 Measurement uncertainty 16 10 Summary o	2	General	information	4
2.2 Application details 4 2.3 Test laboratories sub-contracted 4 3 Test standard/s, references and accreditations 5 4 Reporting statements of conformity – decision rule 6 5 Test environment 7 6 Test item 7 6.1 General description 7 6.2 Additional information 7 7 Description of the test setup. 8 7.1 Shielded semi anechoic chamber 9 7.2 Shielded fully anechoic chamber 9 7.3 Radiated measurements > 18 GHz 11 7.4 AC conducted 12 7.5 Conducted measurements with peak power meter & spectrum analyzer 12 8 Sequence of testing radiated spurious 9 kHz to 30 MHz 12 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 14 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 14 8.3 Sequence of testing radiated spurious 30 MHz to 1 GHz 15 9 Measurement uncertainty 16 10 Summary o		2.1 N	lotes and disclaimer	
2.3 Test laboratories sub-contracted 3 Test standard/s, references and accreditations 4 Reporting statements of conformity – decision rule 5 Test environment 6 Test item 6.1 General description 6.2 Additional information 7 Description of the test setup 7.1 Shielded semi anechoic chamber 7.2 Shielded fully anechoic chamber 7.3 Radiated measurements > 18 GHz 7.4 AC conducted 7.5 Conducted measurements with peak power meter & spectrum analyzer 8 Sequence of testing 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz 8.2 Sequence of testing radiated spurious 1 GHz to 18 GHz 8.3 Sequence of testing radiated spurious 10 Hz to 18 GHz 8.4 Sequence of testing radiated spurious 30 MHz to 18 GHz 9 Measurement uncertainty 10 Summary of measurements 11 Additional comments 12 Measurement results 12 Measurement results 12.1 Identify worst case data rate 12.2 Antenna gain 12.3 Duty cycle 12.4 Maximum output power 12.4 Maximum output power 12.5 Power spectral density 12.6 Band edge compliance radiated on MHz 12.9 Undesirable emission for transmitters operating in the 5725 MHz to 5850 MHz band 12.10 Band edge compliance radiated below 30 MHz 12.11 Spurious emissions radiated below 30 MHz 12.12 Spurious emissions radiated below 30 MHz 12.11 Spurious emissions radiated 50 MHz to 1 GHz 17 Spectrum bandwidth 9 Spurious emissions radiated 50 MHz to 1 GHz 17 Spectrum bandwidth 9 Spur				
3 Test standard/s, references and accreditations				
4 Reporting statements of conformity – decision rule	_			
5 Test environment				
6 Test item	4	_		
6.1 General description	5			
6.2 Additional information	6	Test ite	m	7
7. Description of the test setup		6.1	General description	7
7.1 Shielded semi anechoic chamber		6.2 A	dditional information	7
7.2 Shielded fully anechoic chamber	7	Descrip	tion of the test setup	8
7.2 Shielded fully anechoic chamber		7.1 \$	Shielded semi anechoic chamber	9
7.3 Radiated measurements > 18 GHz				
7.5 Conducted measurements with peak power meter & spectrum analyzer			•	
8 Sequence of testing		7.4 A	C conducted	. 12
8 Sequence of testing		7.5	onducted measurements with peak power meter & spectrum analyzer	. 13
8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz	Ω			
8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz	U	•		
8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz			· · · · · · · · · · · · · · · · · · ·	
8.4 Sequence of testing radiated spurious above 18 GHz			·	
9 Measurement uncertainty				
Summary of measurement results			·	
Additional comments 20 Measurement results 25 12.1 Identify worst case data rate 25 12.2 Antenna gain 25 12.3 Duty cycle 26 12.4 Maximum output power 27 12.4.1 Maximum output power according to FCC requirements 27 12.5 Power spectral density 30 12.5.1 Power spectral density according to FCC requirements 30 12.5.1 Power spectral density according to FCC requirements 30 12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz 33 12.7 Spectrum bandwidth / 26 dB bandwidth 37 12.8 Occupied bandwidth / 99% emission bandwidth 40 12.9 Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band 42 12.10 Band edge compliance radiated 51 12.11 Spurious emissions radiated below 30 MHz 571 12.12 Spurious emissions radiated 30 MHz to 1 GHz 71	9	Measur	ement uncertainty	. 18
12.1 Identify worst case data rate	10	Sur	nmary of measurement results	. 19
12.1Identify worst case data rate	11	Add	litional comments	. 20
12.2 Antenna gain	12	Me	asurement results	25
12.2 Antenna gain		12.1	Identify worst case data rate	25
12.4Maximum output power2712.4.1Maximum output power according to FCC requirements2712.5Power spectral density3012.5.1Power spectral density according to FCC requirements3012.6Minimum emission bandwidth for the band 5.725-5.85 GHz3312.7Spectrum bandwidth / 26 dB bandwidth3712.8Occupied bandwidth / 99% emission bandwidth4012.9Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band4212.10Band edge compliance radiated5112.11Spurious emissions radiated below 30 MHz5712.12Spurious emissions radiated 30 MHz to 1 GHz71				
12.4.1 Maximum output power according to FCC requirements 27 12.5 Power spectral density		12.3	Duty cycle	. 26
12.5Power spectral density3012.5.1Power spectral density according to FCC requirements3012.6Minimum emission bandwidth for the band 5.725-5.85 GHz3312.7Spectrum bandwidth / 26 dB bandwidth3712.8Occupied bandwidth / 99% emission bandwidth4012.9Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band4212.10Band edge compliance radiated5112.11Spurious emissions radiated below 30 MHz5712.12Spurious emissions radiated 30 MHz to 1 GHz71		12.4	Maximum output power	27
12.5.1 Power spectral density according to FCC requirements		12.4.1	Maximum output power according to FCC requirements	. 27
12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz		12.5	Power spectral density	30
12.7Spectrum bandwidth / 26 dB bandwidth		12.5.1	Power spectral density according to FCC requirements	. 30
12.8 Occupied bandwidth / 99% emission bandwidth		12.6	Minimum emission bandwidth for the band 5.725-5.85 GHz	. 33
12.9 Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band		12.7	Spectrum bandwidth / 26 dB bandwidth	37
12.10 Band edge compliance radiated		12.8	Occupied bandwidth / 99% emission bandwidth	4(
12.10 Band edge compliance radiated		12.9		
12.12 Spurious emissions radiated 30 MHz to 1 GHz71		12.10		
		12.11	Spurious emissions radiated below 30 MHz	57
12.13 Spurious emissions radiated 1 GHz to 40 GHz		12.12		
		12.13	Spurious emissions radiated 1 GHz to 40 GHz	. 75

	12.14	Spurious emissions conducted < 30 MHz	96
13	Ob	servations	99
14	Glo	ossary	99
15	Do	ocument history	100
16	Ac	creditation Certificate - D-PL-12076-01-04	100
17	۸۵	creditation Certificate - D-PL-12076-01-05	101

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2023-01-31

 Date of receipt of test item:
 2023-01-30

 Start of test:*
 2023-02-06

 End of test:*
 2023-03-14

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 101

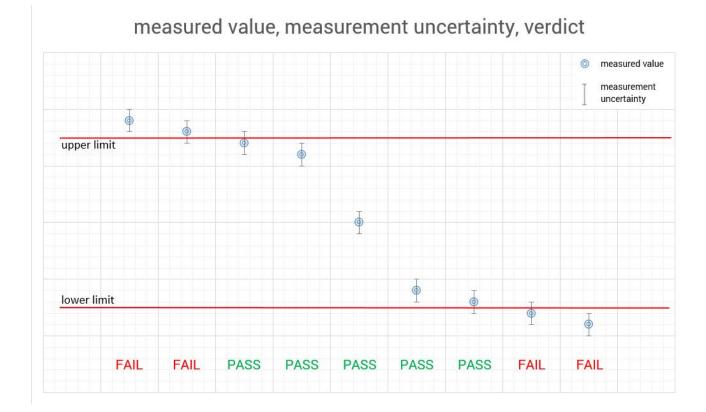
^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description						
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices						
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus						
Guidance	Version	Description						
KDB 789033 D02 ANSI C63.4-2014 ANSI C63.10-2013 KDB 662911 D01	v02r01 -/- -/- v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices Emissions Testing of Transmitters with Multiple Outputs in the Same Band						
Accreditation	Description	n						
D-PL-12076-01-04		unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Deutsche Akkreditierungsst D-PL-12076-01-04						
D-PL-12076-01-05		unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf Deutsche Akkreditierungsstelle D-PL-12076-01-05						

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002


© CTC advanced GmbH Page 5 of 101

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 6 of 101

5 Test environment

		T_nom	+22 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme conditions performed.
		T_{min}	No tests under extreme conditions performed.
Relative humidity content	:		42 %
Barometric pressure	:		1016 hpa
		V_{nom}	115 V AC by mains adapter
Power supply	:	V_{max}	No tests under extreme conditions performed.
		V_{min}	No tests under extreme conditions performed.

6 Test item

6.1 General description

Kind of test item :	Video Soundbox				
Model name :	VSB3918 ALT US				
S/N serial number :	Radiated unit: Prototype Conducted unit: Config#1				
Hardware status :	M393 AL VSB-3				
Software status :	N/A				
Firmware status :	N/A				
Frequency band :	5150 MHz to 5850 MHz				
Type of radio transmission: Use of frequency spectrum:	OFDM				
Type of modulation :	CCK, (D)BPSK, (D)QPSK, 16 - QAM, 64 - QAM, 256 - QAM				
Number of channels :	25 with 20 MHz channel bandwidth 12 with 40 MHz channel bandwidth 6 with 80 MHz channel bandwidth				
Antenna :	two integrated antennas				
Power supply :	115 V AC by mains adapter				
Temperature range :	0°C to +40°C				

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5761/23-01-01_AnnexA

1-5761/23-01-01_AnnexB 1-5761/23-01-01_AnnexD

© CTC advanced GmbH Page 7 of 101

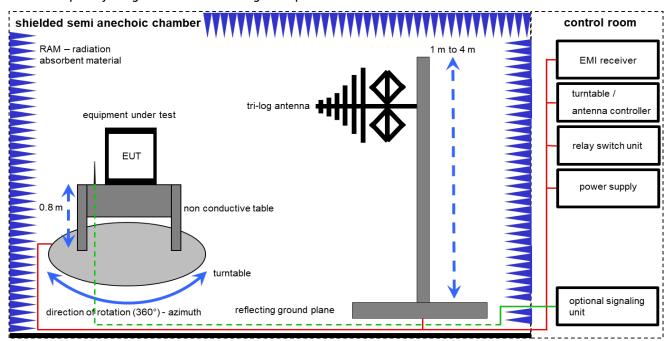
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 101

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

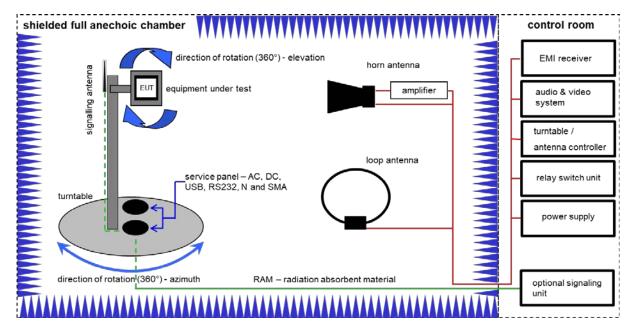
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation:</u>

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKI!	29.12.2021	31.12.2023
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
8	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

© CTC advanced GmbH Page 9 of 101

7.2 Shielded fully anechoic chamber

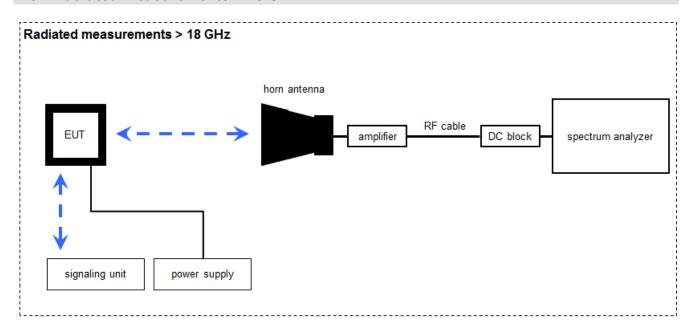
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	31.07.2023
2	A, B	Double-Ridged Waveguide Horn	3115	EMCO	9107-3696	300001604	vIKI!	12.03.2021	11.03.2023
3	А, Б	Antenna 1-18.0GHz	3113	LIVICO	8812-3088	300001032	VIIXI:	02.08.2021	31.08.2023
4	A, B	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
5	A, B	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
6	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A, B, C	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio	-/-	300004682	ne	-/-	-/-
9	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
10	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	13.12.2022	31.12.2023
11	В	Band Reject Filter	WRCJV12-5120- 5150-5350-5380- 40SS	Wainwright	5	300005168	ev	-/-	-/-
12	В	Band Reject Filter	WRCJV12-5695- 5725-5850-5880- 40SS	Wainwright	5	300005169	ev	-/-	-/-
13	В	Band Reject Filter	WRCJV16-5440- 5470-5725-5755- 40SS	Wainwright	9	300005170	ev	-/-	-/-
14	A, B	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 101

7.3 Radiated measurements > 18 GHz

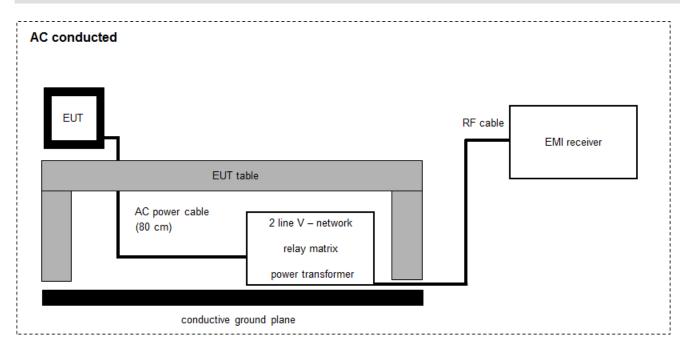
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	17.01.2022	31.01.2024
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	17.01.2022	31.01.2024
4	А	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	Α	Signal analyzer	FSV40	Rohde&Schwarz	101353	300004819	k	08.12.2022	31.12.2023
6	А	Signal- and Spectrum Analyzer 2 Hz - 50 GHz	FSW50	Rohde&Schwarz	101560	300006179	k	07.03.2022	31.03.2023
7	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 11 of 101

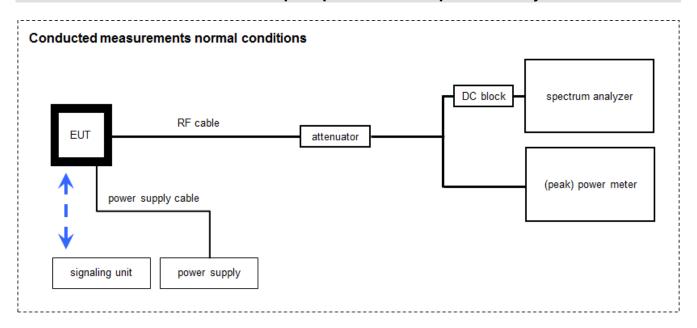
7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKl!	14.12.2021	31.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	Α	PC	TecLine	F+W	-/-	300003532	ne	-/-	-/-
5	Α	EMI Test Receiver 3.6 GHz	ESR3	Rohde & Schwarz	102981	300006318	k	09.12.2022	31.12.2023

© CTC advanced GmbH Page 12 of 101

7.5 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Isolating Transformer	RT5A	Grundig	12780	300001166	ev	-/-	-/-
2	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	12.12.2022	31.12.2023
3	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
4	А	RF-Cable	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
6	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
7	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

© CTC advanced GmbH Page 13 of 101

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 101

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 101

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 101

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 17 of 101

9 Measurement uncertainty

Measurement uncertainty								
Test case	Uncertainty							
Antenna gain	± 3	dB						
Power spectral density	± 1.5	66 dB						
DTS bandwidth	± 100 kHz (depend	s on the used RBW)						
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)						
Maximum output power conducted	± 1.56 dB							
Detailed spurious emissions @ the band edge - conducted	@ the band edge - conducted ± 1.56 dB							
Band edge compliance radiated	± 3	dB						
	> 3.6 GHz	± 1.56 dB						
Spurious emissions conducted	> 7 GHz	± 1.56 dB						
Sparious erinssions conducted	> 18 GHz	± 2.31 dB						
	≥ 40 GHz	± 2.97 dB						
Spurious emissions radiated below 30 MHz	± 3	dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB						
Spurious emissions radiated 1 GHz to 12.75 GHz ± 3.7 dB								
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB						

© CTC advanced GmbH Page 18 of 101

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2023-03-21	-/-

Test specification clause	Test case	С	NC	NA	NP	Remark
-/-	Output power verification (cond.)		-,	/-		Declared
-/-	Antenna gain		-/	/-		Declared
U-NII Part 15	Duty cycle		-/	/-		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density	\boxtimes				-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth	\boxtimes				-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-,	/-		-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	\boxtimes				-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz	\boxtimes				-/-
§15.407 RSS - 247 (6.3)	DFS		-/-			See report 1-5761/23-01-07

Notes:

_								
	C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed

© CTC advanced GmbH Page 19 of 101

11 Additional comments

Reference documents: DFS report: 1-5761/23-01-07

VSB3918 ALT-US - WiFi test commands.docx

22-12-06_Antenna Drawing VSB3918 ALT US.pptx (Gain)

Co-applicable documents: 1-5761_23-01-05_Annex_MR_1.pdf (a-mode)

1-5761_23-01-05_Annex_MR_2.pdf (nHT20-mode) 1-5761_23-01-05_Annex_MR_3.pdf (ac20-mode) 1-5761_23-01-05_Annex_MR_4.pdf (axHE20-mode) 1-5761_23-01-05_Annex_MR_5.pdf (nHT40-mode) 1-5761_23-01-05_Annex_MR_6.pdf (ac40-mode) 1-5761_23-01-05_Annex_MR_7.pdf (axHE40-mode) 1-5761_23-01-05_Annex_MR_8.pdf (ac80-mode) 1-5761_23-01-05_Annex_MR_9.pdf (axHE80-mode) 1-5761_23-01-05_Annex_MR_10.pdf (20dB BW) 1-5761_23-01-05_Annex_MR_11 (UNII-1_a-mode) 1-5761_23-01-05_Annex_MR_12 (UNII-1_n-HT20-mode) 1-5761_23-01-05_Annex_MR_13 (UNII-1_ac-VHT20-mode) 1-5761_23-01-05_Annex_MR_14 (UNII-1_ac-VHT20-mode) 1-5761_23-01-05_Annex_MR_15 (UNII-1_n-HT40-mode) 1-5761_23-01-05_Annex_MR_16 (UNII-1_ac-VHT40-mode) 1-5761_23-01-05_Annex_MR_17 (UNII-1_ax-HE40-mode) 1-5761_23-01-05_Annex_MR_18 (UNII-1_ac-VHT80-mode)

1-5761_23-01-05_Annex_MR_19 (UNII-1_ax-HE80-mode)

© CTC advanced GmbH Page 20 of 101

Special test descriptions: Power settings:

Power settings 20 MHz channel bandwidth:

a-m	ode	n-HT20)-mode	ac-VHT2	20-mode	ax-HE2	0-mode
Channel	q	Channel	q	Channel	q	Channel	q
36	66	36	66	36	66	36	66
40	72	40	72	40	72	40	72
48	75	48	79	48	79	48	79
52	78	52	80	52	80	52	80
56	79	56	81	56	81	56	81
64	72	64	70	64	70	64	66
100	71	100	73	100	73	100	76
120	75	120	76	120	76	120	77
144	75	144	76	144	76	144	77
149	92	149	92	149	96	149	92
157	96	157	96	157	96	157	96
165	96	165	96	165	96	165	96

Power settings 40 MHz channel bandwidth:

n-HT40)-mode	ac-VHT4	40-mode	ax-HE40-mode		
Channel	q	Channel	q	Channel	q	
38	62	38	62	38	62	
46	76	46	76	46	76	
54	84	54	84	54	84	
62	62	62	62	62	62	
102	74	102	74	102	70	
118	80	118	80	118	83	
142	80	142	80	142	83	
151	86	151	86	151	82	
159	88	159	88	159	88	

Power settings 80 MHz channel bandwidth:

ac-VHT8	30-mode	ax-HE8	0-mode
Channel	q	Channel	q
42	64	42	62
52	58	52	56
106	66	106	66
122	82	122	84
132	81	132	84
155	76	155	72

© CTC advanced GmbH Page 21 of 101

\cap	onfiguration	descriptions:	None
\mathbf{c}	Jilliguration	uescriptions.	NOTIC

 \square Devices selected by the customer

☐ Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)										
channel number & center frequency										
channel	channel 36 40 44 48 52 56 60 64									
f _c / MHz										

	U-NII-2C (5470 MHz to 5725 MHz)										
channel number & center frequency											
channel	channel 100 104 108 112 116 120 124 128 132 136 140 144										144
f _c / MHz	f _c / MHz 5500 5520 5540 5560 5580 5600 5620 5640 5660 5680 5700 5720										

	U-NII-3 (5725 MHz to 5850 MHz)										
	channel number & center frequency										
channel	channel 149 153 157 161 165										
f _c / MHz	f _c / MHz 5745 5765 5785 5805 5825										

© CTC advanced GmbH Page 22 of 101

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)				
channel number & center frequency				
channel	38	46	54	62
f _c / MHz	5190	5230	5270	5310

U-NII-2C (5470 MHz to 5725 MHz)						
channel number & center frequency						
channel	channel 102 110 118 126 134 142					
f _c / MHz						

U-NII-3 (5725 MHz to 5850 MHz)				
channel number & center frequency				
channel	151	159		
f _c / MHz	5755	5795		

Channels with 80 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)			
channel number & center frequency			
channel	42	58	
f _c / MHz	5210	5290	

U-NII-2C (5470 MHz to 5725 MHz)				
channel number & center frequency				
channel	106	122	138	
f _c / MHz 5530 5610 5690				

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency
channel	155
f _c / MHz	5775

© CTC advanced GmbH Page 23 of 101

Test mode:		Iperf is used to transmit data to a companion device.
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transm	it operating m	odes:
		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 24 of 101

12 Measurement results

12.1 Identify worst case data rate

Declared by the manufacturer:

Results:

	Modulation scheme / bandwidth					
OFDM – mode	U-NII-1 & U-NII-2A		U-NII-2C		U-NII-3	
	lowest channel	highest channel	lowest channel	highest channel	lowest channel	highest channel
a – mode	6Mbit/s	6Mbit/s	6Mbit/s	6Mbit/s	6Mbit/s	6Mbit/s
n HT20 – mode	MCS8	MCS8	MCS8	MCS8	MCS8	MCS8
ac VHT20 – mode	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2
ax HE40 – mode	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2
n HT40 – mode	MCS8	MCS8	MCS8	MCS8	MCS8	MCS8
ac VHT40 – mode	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2
ax HE40 – mode	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2
ac VHT80 – mode	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2	MCS0SS2
ax HE80 – mode	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2	HE0SS2

12.2 Antenna gain

Declared by the manufacturer (see referenced documents).

UNII-1/2A: 4.95dBi combine gain UNII-2C/3: 6.90dBi combine gain

© CTC advanced GmbH Page 25 of 101

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter		
According to: KDB789033 D02, B.		
External result file(s)	1-5761/23-01-05_Annex_MR_1pdf FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	

Results:

Duty cycle and correction factor:

		Calculatio	n method			
OFDM – mode	Ton (D2plot) * 100 / Tcomplete (D3plot) = duty cycle					
Of DIVI THOUGH		10 * log(duty cycle)	= correction factor			
	Ton (D2 _{plot})	T _{complete} (D3 _{plot})	Duty cycle	Correction factor		
a – mode	-/-	-/-	100%	0 dB		
n20 – mode	-/-	-/-	100%	0 dB		
ac20 – mode	-/-	-/-	100%	0 dB		
ax20 – mode	-/-	-/-	100%	0 dB		
n40 – mode	-/-	-/-	100%	0 dB		
ac40 – mode	-/-	-/-	100%	0 dB		
ax40 – mode	-/-	-/-	100%	0 dB		
ac80 – mode	-/-	-/-	100%	0 dB		
ax80 – mode	-/-	-/-	100%	0 dB		

© CTC advanced GmbH Page 26 of 101

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter		
According to: KDB789033 D02, E.2.e.		
External result file(s)	1-5761/23-01-05_Annex_MR_A_1.pdf FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	
Standard parts:	FCC: § 15.407 (a)	

Limits:

Limits			
Radiated output power	Conducted output power		
Band 5150 MF	lz – 5250 MHz		
Conducted power + 6 dBi antenna gain	For client devices output power ≤ 250 mW/24dBm		
Band 5250MHz - 5350 MHz			
Conducted power + 6 dBi antenna gain	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)		
Band 5470MH	z – 5725 MHz		
Conducted power + 6 dBi antenna gain	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)		
Band 5725MHz - 5850 MHz			
Conducted power + 6 dBi antenna gain	output power ≤ 1W/30dBm		

^{*}If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. This leads to the following limits:

Bands	UNII-1	UNII-2A	UNII-2C	UNII-3
Limits [dBm]	24	24	23.1	29.1

© CTC advanced GmbH Page 27 of 101

Results:

				Maxi		02.11a Itput pov	ver [dBm]				
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.3	19.6	18.9	18.9	18.9	17.1	17.4	18.6	21.6	22.7	23.5	22.6
Port 2	18.2	19.7	19.2	19.7	19.3	17.9	17.2	18.6	18.7	23.0	23.6	23.1
SUM	21.2	22.7	22.1	22.3	22.1	20.5	20.2	21.6	21.7	25.9	26.5	25.9

802.11nHT20 Maximum output power [dBm]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.4	19.8	19.7	19.4	19.6	16.8	17.6	19.0	19.0	22.7	23.5	22.7
Port 2	18.2	19.8	20.0	20.3	19.9	17.6	17.6	18.8	18.9	23.0	23.6	23.1
SUM	21.3	22.8	22.9	22.9	22.8	22.3	20.6	21.9	21.9	25.9	26.6	25.9

802.11ac VHT20 Maximum output power [dBm]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.4	19.6	19.8	19.3	19.6	16.5	17.5	18.9	19.1	23.7	23.5	22.6
Port 2	18.2	19.7	20.2	20.1	19.9	17.3	17.7	18.8	18.9	24.2	23.6	23.1
SUM	21.3	22.7	23.0	22.7	22.8	19.9	20.6	21.8	22.0	27.0	26.6	25.9

	802.11ax20											
				Maxi	imum ou	itput pov	ver [dBm]				
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.7	19.8	20.0	19.5	19.6	15.9	18.7	19.5	19.4	22.8	23.7	22.7
Port 2	18.5	19.9	20.5	20.4	20.1	16.7	18.9	19.2	19.3	23.3	23.6	23.2
SUM	21.6	22.9	23.3	22.9	22.9	19.3	21.8	22.3	22.4	26.1	26.6	26.0

© CTC advanced GmbH Page 28 of 101

			Max	802.11 imum outp		Bm]			
Channel	38	46	54	62	102	118	142	151	159
Port 1	17.2	20.4	20.4	14.3	18.0	20.3	20.3	21.6	21.7
Port 2	17.4	20.7	20.7	14.9	17.3	19.7	19.5	21.6	21.5
SUM	20.3	23.5	23.6	17.6	20.7	23.0	22.9	24.6	24.6

802.11 ac VHT40 Maximum output power [dBm]									
Channel	38	46	54	62	102	118	142	151	159
Port 1	17.2	20.2	20.2	14.4	18.0	20.3	20.2	21.5	21.8
Port 2	17.3	20.6	20.7	15.0	17.3	19.5	19.7	21.6	21.5
SUM	20.2	23.4	23.5	17.7	20.7	22.9	23.0	24.6	24.7

	802.11 ax HE40 Maximum output power [dBm]								
Channel	38	46	54	62	102	118	142	151	159
Port 1	16.7	19.6	19.6	13.8	16.4	20.3	20.3	19.9	20.9
Port 2	16.7	20.0	20.0	14.3	15.8	19.6	19.7	19.9	20.9
SUM	19.7	22.8	22.8	17.1	19.1	23.0	23.0	22.9	23.9

802.11 ac VHT80 Maximum output power [dBm]							
Channel	42	58	106	122	138	155	
Port 1	17.1	13.6	15.8	20.0	20.0	18.8	
Port 2	17.2	14.0	15.6	19.6	19.8	18.7	
SUM	20.1	16.8	16.7	22.8	22.9	21.7	

802.11 ax HE80 Maximum output power [dBm]							
Channel	42	58	106	122	138	155	
Port 1	16.2	12.8	15.1	19.9	20.0	17.2	
Port 2	16.2	12.5	15.1	19.7	19.8	17.2	
SUM	19.2	15.6	18.1	22.8	22.9	20.2	

© CTC advanced GmbH Page 29 of 101

12.5 Power spectral density

12.5.1 Power spectral density according to FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter					
According to: KDB789033 D02, F.					
External result file(s)	1-5761/22-01-05_Annex_MR_A.pdf FCC Part 15.407 Max Output Power and PSD				
Used test setup:	See chapter 7.5 – A				
Measurement uncertainty:	See chapter 9				
Standard parts:	FCC: § 15.407 (a)				

Limits:

Power Spectral Density
Band 5150 MHz - 5250 MHz
For client devices point power spectral density conducted ≤ 11 dBm in any 1 MHz band*
Band 5250MHz - 5350 MHz
power spectral density conducted ≤ 11 dBm in any 1 MHz band*
Band 5470MHz - 5725 MHz
power spectral density conducted ≤ 11 dBm in any 1 MHz band*
Band 5725MHz - 5850 MHz
power spectral density conducted ≤ 30 dBm in any 500 kHz band*

^{*}If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. This leads to the following limits:

Bands	UNII-1	UNII-2A	UNII-2C	UNII-3
Limits [dBm]	11	11	10.1	29.1

© CTC advanced GmbH Page 30 of 101

Results:

	802.11 a Power spectral density [dBm/1MHz] or [dBm/500kHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	7.7	7.9	7.4	7.2	7.2	6.6	6.6	6.9	7.1	8.0	8.8	7.8
Port 2	7.7	8.0	7.7	8.0	7.6	7.4	6.7	6.9	7.0	8.3	8.9	8.5
SUM	10.7	11.0	10.5	10.6	10.4	10.0	9.7	9.9	10.0	11.2	11.9	11.2

	802.11 n HT20 Power spectral density [dBm/1MHz] or [dBm/500kHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	7.5	7.7	7.7	7.3	7.6	6.1	6.9	7.0	6.9	7.7	8.4	7.5
Port 2	7.5	7.7	8.0	8.2	7.8	6.9	6.8	6.8	6.8	7.9	8.6	8.1
SUM	10.5	10.7	10.8	10.8	10.7	9.5	9.9	9.9	9.9	10.8	11.5	10.8

	802.11 ac VHT20											
Power spectral density [dBm/1MHz] or [dBm/500kHz]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	7.7	7.5	7.7	7.2	7.6	5.7	6.8	6.8	7.0	8.6	8.5	7.5
Port 2	7.5	7.7	8.1	8.1	7.8	6.6	6.9	6.8	6.9	9.0	8.5	8.2
SUM	10.6	10.6	11.0	10.7	10.7	9.2	9.9	9.8	10.0	11.8	11.5	10.9

	802.11ax HE20 Power spectral density [dBm/1MHz] or [dBm/500kHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	6.3	7.5	7.6	7.1	7.3	3.5	6.4	7.1	7.0	7.5	8.3	7.4
Port 2	6.1	7.6	8.2	8.0	7.8	4.4	6.6	6.8	6.9	7.9	8.3	7.9
SUM	9.2	10.5	10.9	10.6	10.5	7.0	9.5	10.0	10.0	10.7	11.3	10.7

© CTC advanced GmbH Page 31 of 101

802.11 n HT40 Power spectral density [dBm/1MHz] or [dBm/500kHz]									
Channel	38	46	54	62	102	118	142	151	159
Port 1	3.7	5.4	5.5	0.8	3.8	5.5	5.3	3.6	3.6
Port 2	3.9	5.8	5.8	1.5	4.6	4.8	4.7	3.6	4.0
SUM	6.8	8.6	8.7	4.2	7.2	8.2	8.0	6.6	6.8

	802.11 ac VHT40 Power spectral density [dBm/1MHz] or [dBm/500kHz]									
Channel	Channel 38 46 54 62 102 118 142 151 159									
Port 1	Port 1 3.7 5.3 5.5 0.9 4.6 5.6 5.3 3.4 4.0									
Port 2	3.8	5.7	5.8	1.6	3.8	4.6	4.8	3.7	3.6	
SUM	6.8	8.5	8.7	4.3	7.2	8.1	8.1	6.5	6.8	

	802.11ax HE40 Power spectral density [dBm/1MHz] or [dBm/500kHz]									
Channel	38	46	54	62	102	118	142	151	159	
Port 1	Port 1 2.0 4.9 4.9 -0.9 1.7 5.8 5.6 2.6 4.0									
Port 2	2.0	5.3	5.2	-0.3	1.2	4.9	5.0	2.6	3.6	
SUM	5.1	8.1	8.1	2.4	4.5	8.3	5.0	5.6	6.8	

802.11 ac VHT80 Power spectral density [dBm/1MHz] or [dBm/500kHz]									
Channel	Channel 42 58 106 122 138 155								
Port 1	0.6	-2.7	-0.6	2.2	2.3	-2.1			
Port 2	0.8	-2.4	-1.0	1.9	2.0	-2.0			
SUM	3.8	0.5	2.2	5.1	5.2	0.9			

	802.11ax HE80									
Power spectral density [dBm/1MHz] or [dBm/500kHz]										
Channel	42	58	106	122	138	155				
Port 1	-1.3	-4.8	-2.6	2.3	2.4	-2.9				
Port 2	-1.1	-5.0	-2.6	2.2	2.3	-2.8				
SUM	1.8	-1.9	0.4	5.2	5.4	0.2				

© CTC advanced GmbH Page 32 of 101

12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measureme	Measurement parameter					
According to: KDB789033 D02, C.2.						
External result file(s)	1-5761/23-01-05_Annex_MR_A.pdf FCC Part 15.407 & ISED Minimum Emission BW					
Used test setup:	See chapter 7.5 – A					
Measurement uncertainty:	See chapter 9					

Limits:

FCC	ISED					
The minimum 6 dB bandwidth shall be at least 500 kHz.						

© CTC advanced GmbH Page 33 of 101

Results: Antenna 1

	6 dB emission bandwidth (MHz)		
	U-NII-3 (5725 MHz to 5850 MHz)		
а	Lowest channel	Middle channel	Highest channel
	16.4	16.4	16.4
		6 dB emission bandwidth (MHz)	
n HT20	L	J-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Middle channel	Highest channel
	17.6	17.6	17.6
	6 dB emission bandwidth (MHz)		
ac HT20	U-NII-3 (5725 MHz to 5850 MHz)		
ac 1120	Lowest channel	Middle channel	Highest channel
	17.6	17.6	17.6
ax HE20	6 dB emission bandwidth (MHz)		
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	19.0	19.1	19.0

Results: Antenna 2

	6 dB emission bandwidth (MHz)			
а	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	16.4	16.4	16.3	
		6 dB emission bandwidth (MHz)		
n HT20	Į	J-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	17.6	17.6	17.6	
	6 dB emission bandwidth (MHz)			
ac VHT20	U-NII-3 (5725 MHz to 5850 MHz)			
ac vn120	Lowest channel	Middle channel	Highest channel	
	17.6	17.6	17.6	
	6 dB emission bandwidth (MHz)			
ax HE20	U-NII-3 (5725 MHz to 5850 MHz)			
ax nezu	Lowest channel	Middle channel	Highest channel	
	18.9	18.9	18.9	

© CTC advanced GmbH Page 34 of 101

36.9

Results: Antenna 1

n HT40	6 dB emission bandwidth (MHz)		
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	36.4	36.3	
	6 dB emission bandwidth (MHz)		
ac VHT40	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	36.4	36.3	
	6 dB emission b	andwidth (MHz)	
ax HE40	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	

Results: Antenna 2

	6 dB emission bandwidth (MHz)	
U-NII-3 (5725 MHz to 5850 MHz)		Hz to 5850 MHz)
n VHT40	Lowest channel	Highest channel
	36.4	36.3

37.7

	6 dB emission bandwidth (MHz)	
00 UT40	U-NII-3 (5725 MHz to 5850 MHz)	
ac HT40	Lowest channel	Highest channel
	36.4	36.3

	6 dB emission bandwidth (MHz)	
ov HE40	U-NII-3 (5725 MHz to 5850 MHz)	
ax HE40	Lowest channel	Highest channel
	37.6	37.6

© CTC advanced GmbH Page 35 of 101

Results: Antenna 1

ac VHT80	6 dB emission bandwidth (MHz)
	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
	75.8

ax VHT80	6 dB emission bandwidth (MHz)
	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
	76.8

Results: Antenna 2

ac VHT80	6 dB emission bandwidth (MHz)
	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
	76.4

ax VHT80	6 dB emission bandwidth (MHz)
	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
	76.0

© CTC advanced GmbH Page 36 of 101

12.7 Spectrum bandwidth / 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

Measurem	ent parameter				
According to: KDB789033 D02, C.1.					
External result file(s)	1-5761/23-01-05_Annex_MR_A.pdf FCC Part 15.407 & ISED Bandwidths				
Used test setup:	see chapter 7.5 – A				
Measurement uncertainty:	See chapter 9				

Limits:

Spectrum Bandwidth - 26 dB Bandwidth

FCC: Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

Results: see next page

© CTC advanced GmbH Page 37 of 101

				2		02.11a ndwidth	[MHz]					
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	21.4	21.6	21.6	21.7	21.6	21.3	21.4	21.7	21.6	26.3	40.5	40.5
Port 2	21.5	21.6	21.7	21.9	21.9	21.6	21.7	21.6	21.6	37.4	40.9	39.0

802.11n HT20 26 dB bandwidth [MHz]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	21.7	24.0	30.8	33.5	21.9	32.1	21.6	21.9	22.1	42.9*	45.6	44.0
Port 2	21.4	21.9	27.8	28.5	21.6	34.0	22.3	21.9	22.0	43.9*	47.0	46.9

	802.11ac VHT20 26 dB bandwidth [MHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	21.8	22.8	29.2	29.7	29.4	21.8	21.5	22.2	22.1	45.6*	45.8	44.4
Port 2	21.5	21.8	29.5	29.2	30.1	21.7	22.2	21.8	21.9	45.9*	46.3	44.2

	802.11ax HE20 26 dB bandwidth [MHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	21.8	21.9	25.9	28.8	26.8	21.7	22.7	21.8	21.9	46.9*	49.3	49.7
Port 2	21.8	21.7	25.1	24.9	27.6	21.7	23.3	21.6	21.9	47.5*	49.9	48.2

^{*}The 26dB emission bandwidth does extend the 5725 - 5850 MHz band. Therefore the 20dB bandwidth was measured to show compliance with §15.215 (c). The 20dB bandwidth is reported in 1-5761/23-01-05_Annex_MR_10 and compliant with the §15.215 (c) requirement.

© CTC advanced GmbH Page 38 of 101

			2	802.11ı 6 dB bandı	n HT40 width [MHz]				
Channel	38	46	54	62	102	118	142	151	159
Port 1	40.0	55.7	69.4	39.9	41.0	51.7	52.2	78.9*	76.1
Port 2	39.3	47.0	39.5	39.5	46.7	39.9	39.8	71.0*	70.1

802.11ac HT40 26 dB bandwidth [MHz]									
Channel	38	46	54	62	102	118	142	151	159
Port 1	40.1	50.1	69.4	39.9	41.0	53.1	48.2	74.7*	81.0
Port 2	39.5	49.6	64.3	39.5	39.5	41.6	40.2	62.4*	69.9

	802.11ax HE40 26 dB bandwidth [MHz]									
Channel	38	46	54	62	102	118	142	151	159	
Port 1	39.9	51.8	67.0	39.9	40.1	58.1	57.9	61.7*	69.0	
Port 2	39.8	52.0	66.3	39.7	40.0	54.3	48.6	60.2*	76.1	

^{*}The 26dB emission bandwidth does extend the 5725 - 5850 MHz band. Therefore the 20dB bandwidth was measured to show compliance with §15.215 (c). The 20dB bandwidth is reported in 1-5761/23-01-05_Annex_MR_10 and compliant with the §15.215 (c) requirement.

		2	802.11ac VHT 6 dB bandwidth			
Channel	42	58	106	122	138	155
Port 1	81.8	81.8	82.0	86.2	103.2	83.0
Port 2	81.6	80.8	81.4	98.8	82.6	81.8

	802.11ax HE80 26 dB bandwidth [MHz]								
Channel	42	58	106	122	138	155			
Port 1	81.6	81.4	81.4	94.0	88.6	81.4			
Port 2	81.2	81.0	81.2	91.2	81.0	81.2			

© CTC advanced GmbH Page 39 of 101

12.8 Occupied bandwidth / 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter						
External result file(s)	1-5761/23-01-05_Annex_MR_A.pdf FCC Part 15.407 & ISED Bandwidths					
Test setup:	See sub clause 7.5 – A					
Measurement uncertainty:	See chapter 9					

Usage:

-/-	ISED
OBW is necessary for	Emission Designator

Results:

	802.11a 99% bandwidth [MHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	16.98	17.18	17.23	17.28	17.33	16.98	16.93	17.13	17.18	20.63	25.27	24.63
Port 2	16.88	17.08	17.18	17.18	17.18	16.93	16.88	17.03	17.08	20.48	26.87	24.78

802.11n HT20 99% bandwidth [MHz]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.08	18.33	18.43	18.53	18.53	18.08	18.3	18.28	18.28	21.98	26.62	25.32
Port 2	17.88	18.03	18.23	18.33	18.33	17.88	17.88	18.08	18.08	21.28	28.92	25.72

802.11ac VHT20 99% bandwidth [MHz]												
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	18.13	18.28	18.48	18.48	18.58	18.13	18.13	18.28	18.33	27.37	26.52	26.22
Port 2	17.83	18.08	18.28	18.23	18.28	17.83	17.88	18.08	18.03	28.32	28.57	26.12

	802.11ax HE20 99% bandwidth [MHz]											
Channel	36	40	48	52	56	64	100	120	144	149	157	165
Port 1	19.23	19.23	19.23	19.28	19.33	19.13	19.28	19.23	19.28	21.33	26.92	26.27
Port 2	19.18	19.23	19.28	19.33	19.28	19.13	19.23	19.18	19.23	22.08	28.62	26.22

© CTC advanced GmbH Page 40 of 101

				802.11ı 99% bandw	n HT40 ridth [MHz]				
Channel	38	46	54	62	102	118	134	151	159
Port 1	36.26	36.66	37.16	36.26	36.36	36.56	36.66	37.46	37.66
Port 2	36.06	36.36	36.66	36.06	36.16	36.36	36.36	36.66	36.86

802.11ac VHT40 99% bandwidth [MHz]									
Channel	38	46	54	62	102	118	134	151	159
Port 1	36.26	36.66	37.26	36.36	36.46	36.56	36.63	37.26	37.56
Port 2	36.06	36.46	36.66	36.06	36.16	36.36	36.36	36.66	36.96

	802.11ax HE40 99% bandwidth [MHz]								
Channel	38	46	54	62	102	118	134	151	159
Port 1	37.66	37.66	37.96	37.56	37.66	37.76	37.76	37.86	37.96
Port 2	37.56	37.66	37.96	37.56	37.66	37.76	37.66	37.76	38.06

	802.11ac VHT80 99% bandwidth [MHz]								
Channel	42	58	106	122	138	155			
Port 1	75.52	75.52	75.72	76.12	76.12	75.92			
Port 2	75.52	75.32	75.72	75.92	75.92	76.12			

802.11ax HE80 99% bandwidth [MHz]								
Channel	42	58	106	122	138	155		
Port 1	77.12	76.92	76.92	77.32	77.32	76.92		
Port 2	77.12	77.12	77.12	77.32	77.12	76.92		

© CTC advanced GmbH Page 41 of 101

12.9 Undesirable emissions for transmitters operating in the 5725 MHz to 5850 MHz band

Description:

Measurement of the spectrum mask as per FCC Part 15.407 (b)(4) and KDB 789033 II.G.2 (c) (ii). The measurement is repeated at the lowest, middle and highest channel and performed in a conducted way as defined in KDB 789033 II.G.3 (b).

The highest antenna gain is considered and was added to the Reference Level Offset. Emission levels are further adjusted to consider the number of antenna outputs (2).

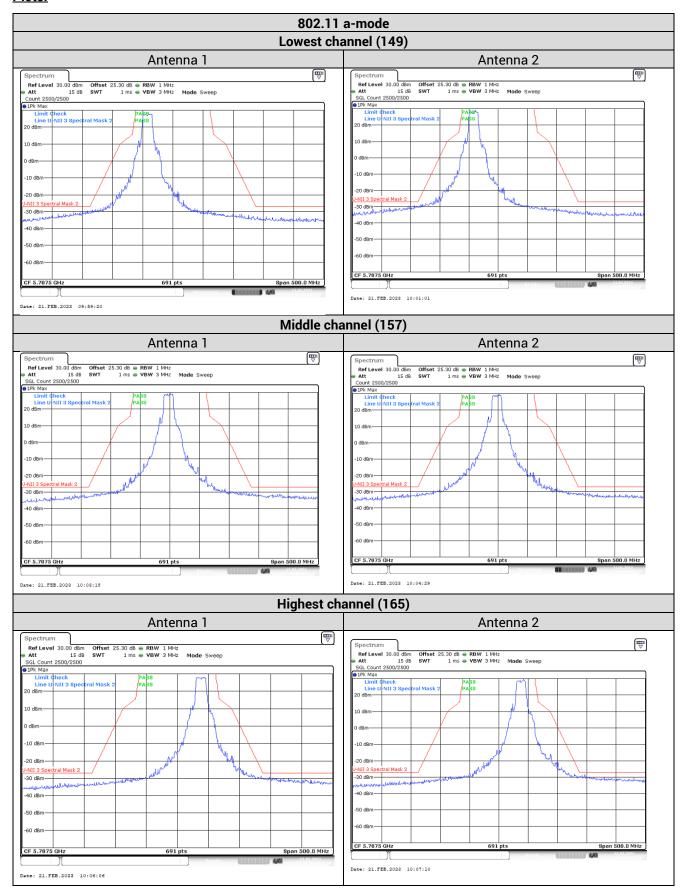
Measurement:

Measurer	Measurement parameter						
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	1 MHz						
Video bandwidth:	≥ 3 x RBW						
Span:	See plots!						
Trace mode:	Max Hold						
Test setup:	See sub clause 7.5 – A						
Measurement uncertainty:	See chapter 9						

Limits:

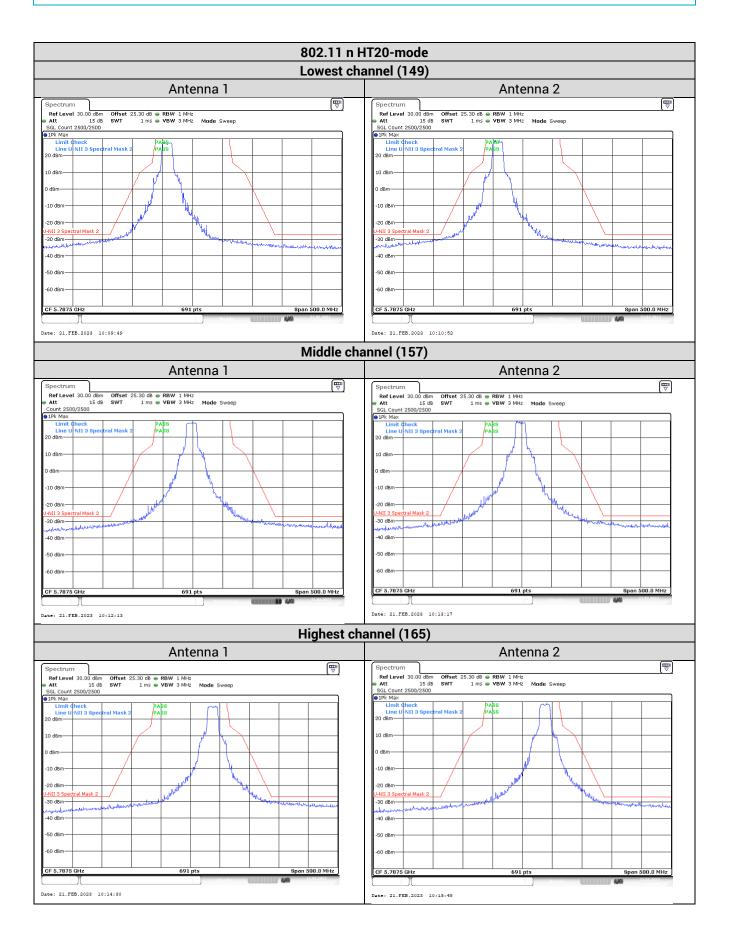
FCC Part 15.407 (b)(4)

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

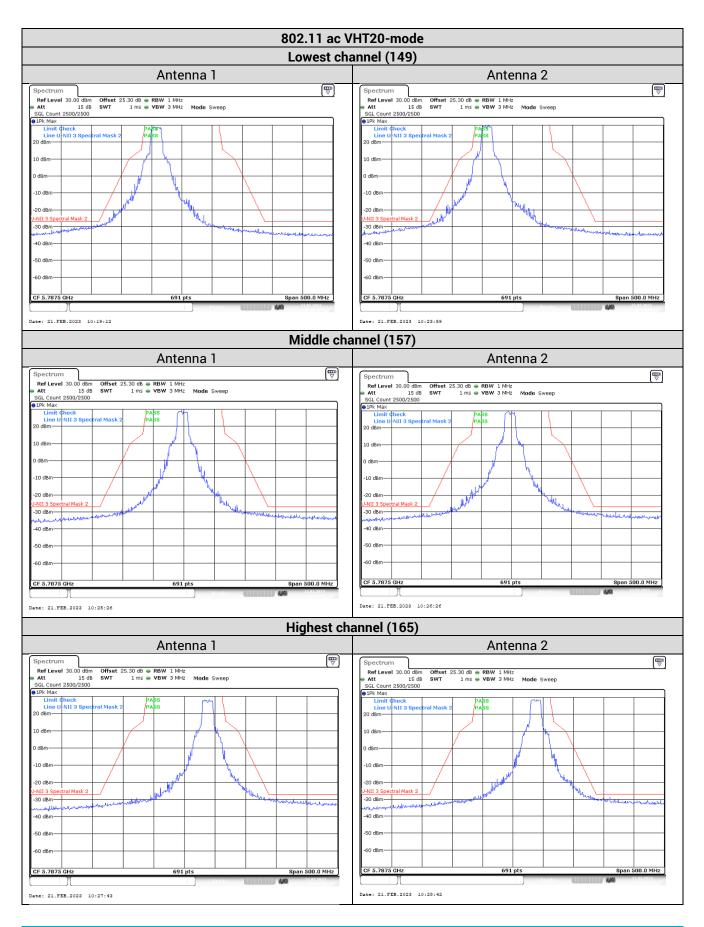

Result:

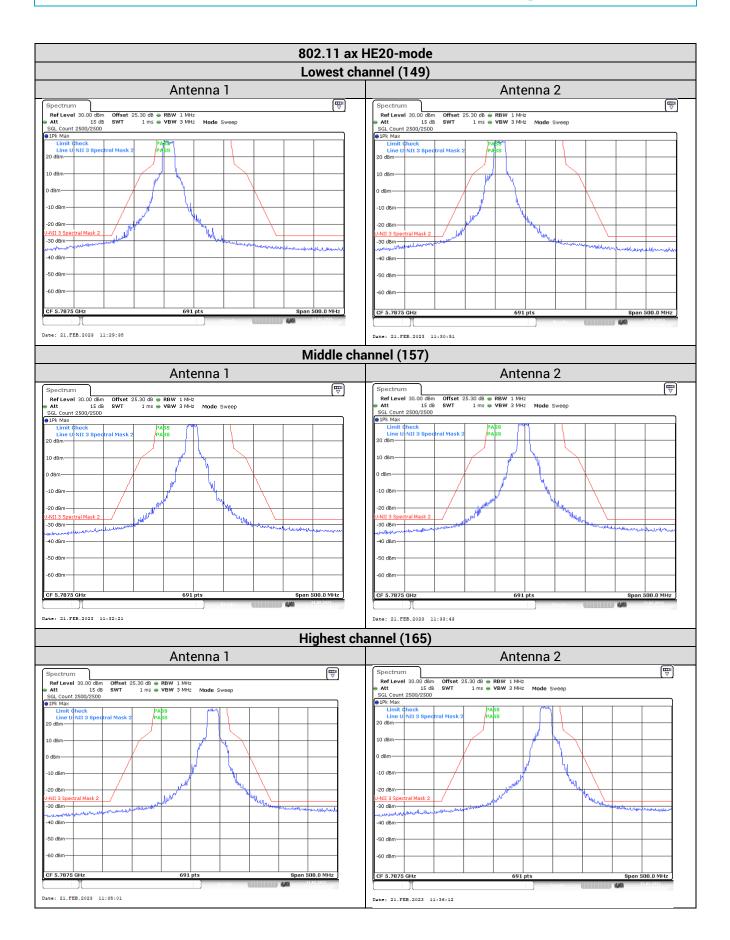
See plots below

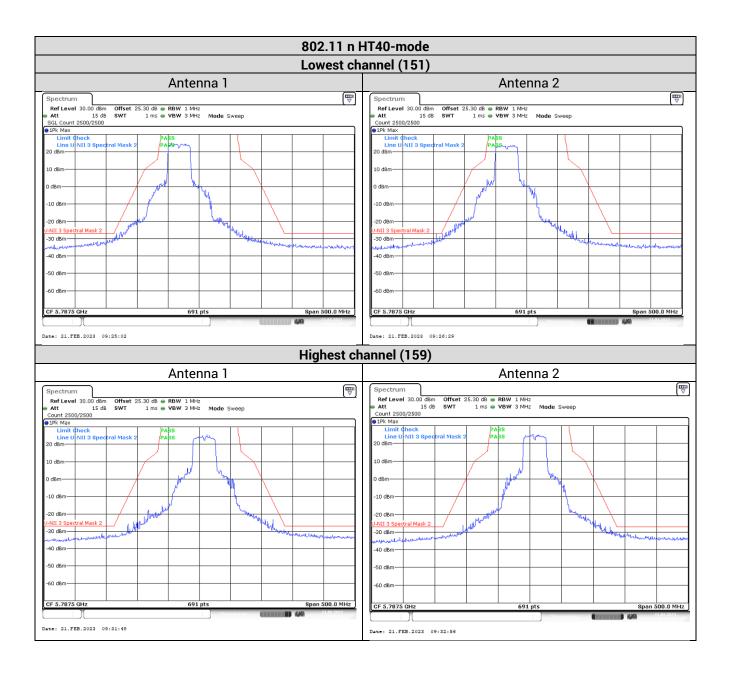
© CTC advanced GmbH Page 42 of 101

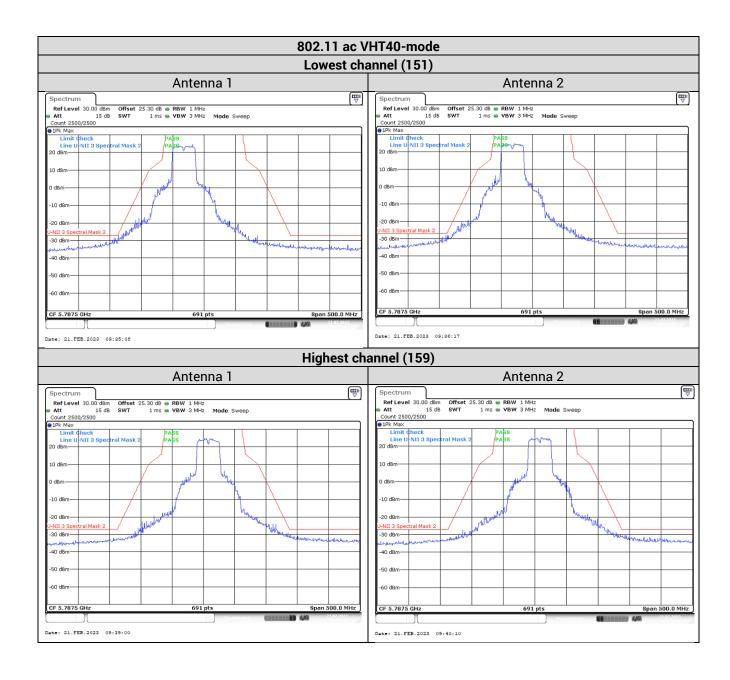


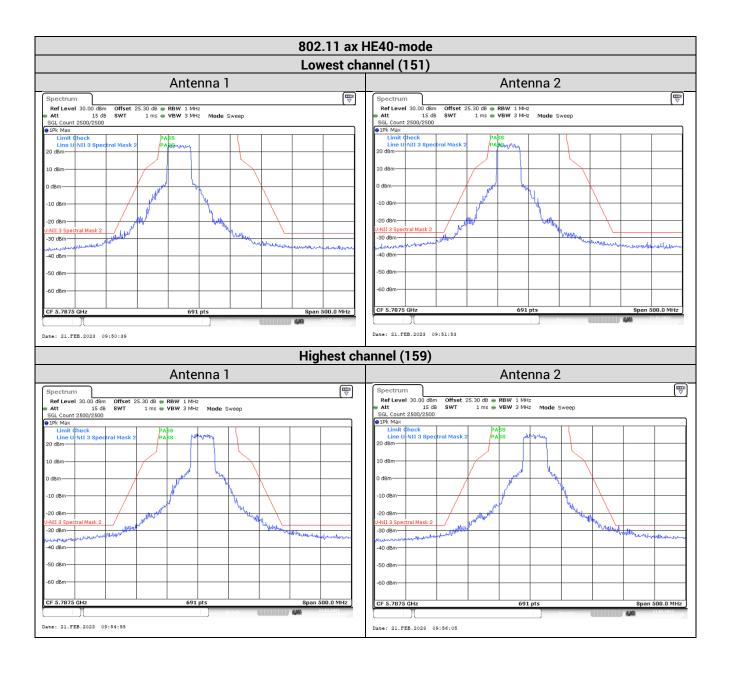
Plots:

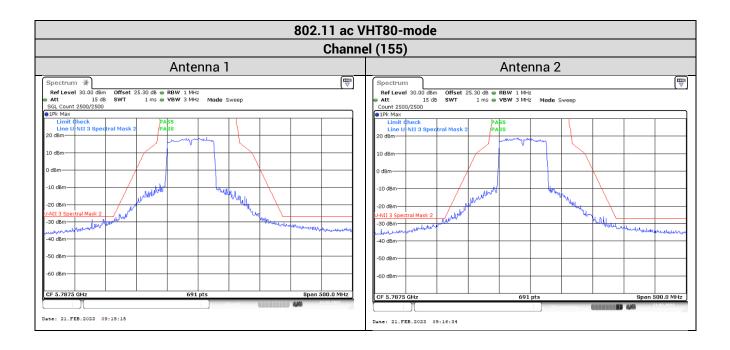

© CTC advanced GmbH Page 43 of 101

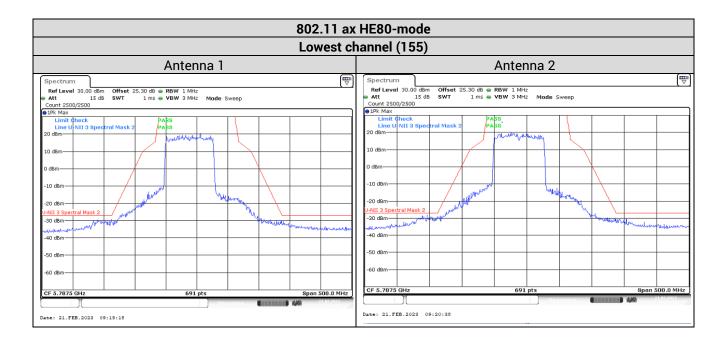

© CTC advanced GmbH Page 44 of 101


© CTC advanced GmbH Page 45 of 101


© CTC advanced GmbH Page 46 of 101


© CTC advanced GmbH Page 47 of 101


© CTC advanced GmbH Page 48 of 101



© CTC advanced GmbH Page 49 of 101

© CTC advanced GmbH Page 50 of 101

12.10 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

Measureme	ent parameter
Detector:	Peak / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	≥ 3 x RBW
Span:	See plots!
Trace mode:	Max Hold
Test setup:	See sub clause 7.2 – A
Measurement uncertainty:	See chapter 9

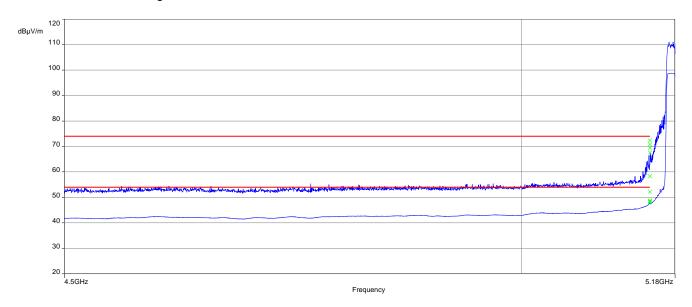
Limits:

Band Edge Compliance Radiated

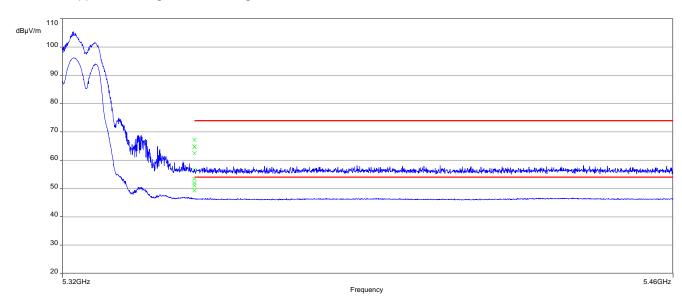
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBμV/m (peak) 54 dBμV/m (average)

Result:

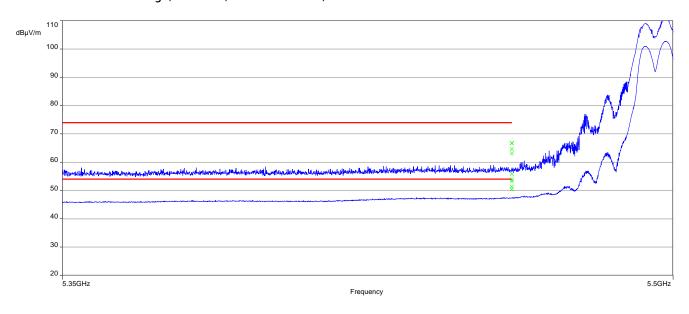

Scenario	Band Edge Compliance Radiated [dBµV/m]
band edge	< 74 dBμV/m (peak) – highest result 72.3 dBμV/m @3m < 54 dBμV/m (average) – highest result 53.9 dBμV/m @3m

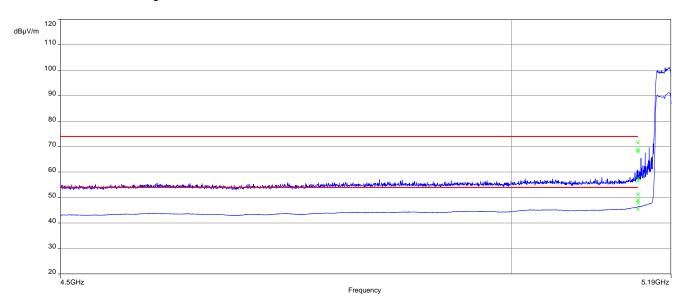
© CTC advanced GmbH Page 51 of 101



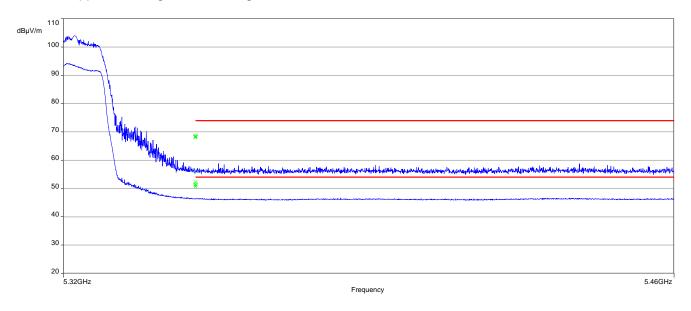
Plots:

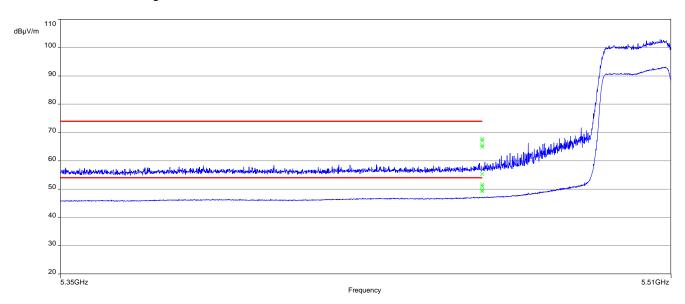
Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth


Plot 2: upper band edge; U-NII-2A; highest channel; 20 MHz channel bandwidth

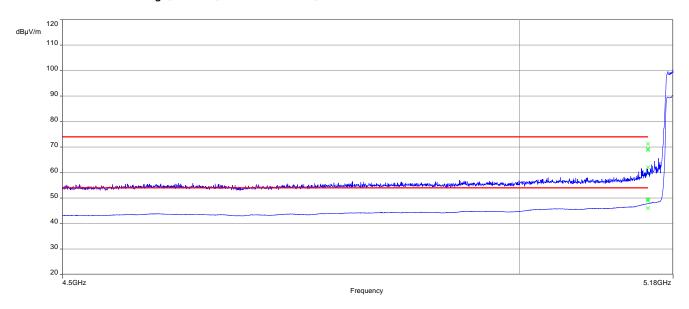

© CTC advanced GmbH Page 52 of 101

Plot 3: lower band edge; U-NII-2C; lowest channel; 20 MHz channel bandwidth


Plot 4: lower band edge; U-NII-1; lowest channel; 40 MHz channel bandwidth

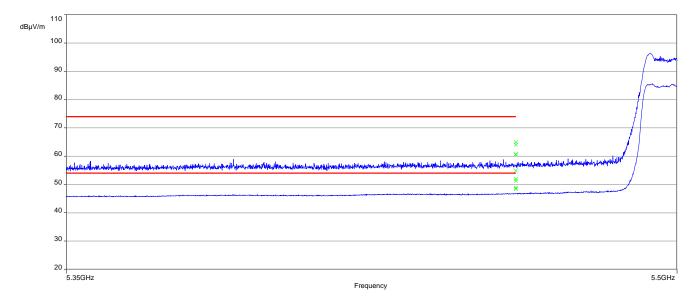

© CTC advanced GmbH Page 53 of 101

Plot 5: upper band edge; U-NII-2A; highest channel; 40 MHz channel bandwidth


Plot 6: lower band edge; U-NII-2C; lowest channel; 40 MHz channel bandwidth

© CTC advanced GmbH Page 54 of 101

Plot 7: lower band edge; U-NII-1; middle channel; 80 MHz channel bandwidth


Plot 8: upper band edge; U-NII-2A; middle channel; 80 MHz channel bandwidth

© CTC advanced GmbH Page 55 of 101

Plot 9: lower band edge; U-NII-2C; lowest channel; 80 MHz channel bandwidth

© CTC advanced GmbH Page 56 of 101

12.11 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

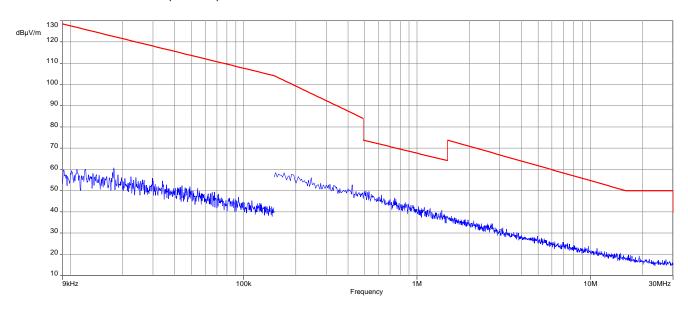
Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max Hold				
Test setup:	See sub clause 7.2 – C				
Measurement uncertainty:	See chapter 9				

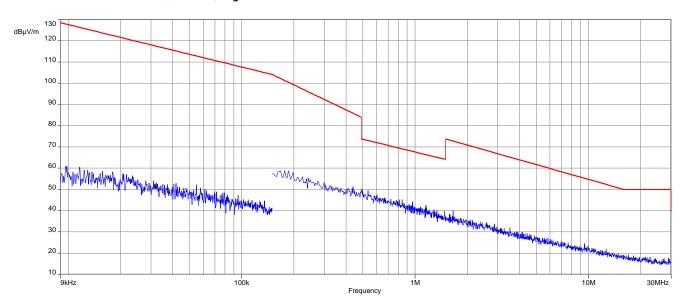
Limits:

Spurious Emissions Radiated < 30 MHz				
Frequency (MHz)	Field Strength (dBµV/m) Measurement dista			
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 - 30.0	30	30		

Results:

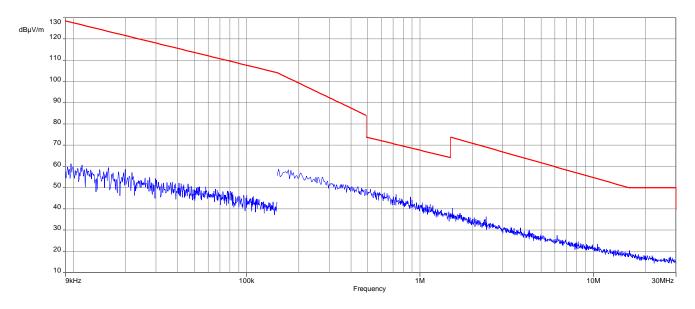

Spurious Emissions Radiated < 30 MHz [dBµV/m]					
F [MHz]	Level [dBµV/m]				
All detected emissions are more than 20 dB below the limit.					

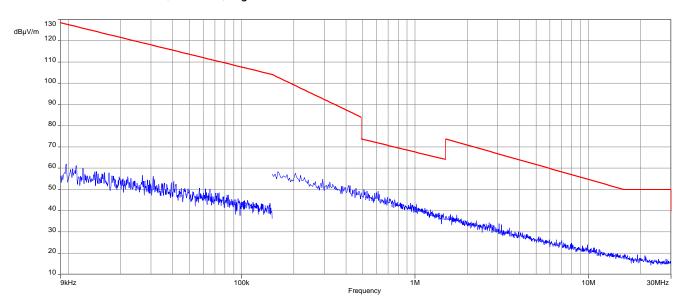
© CTC advanced GmbH Page 57 of 101



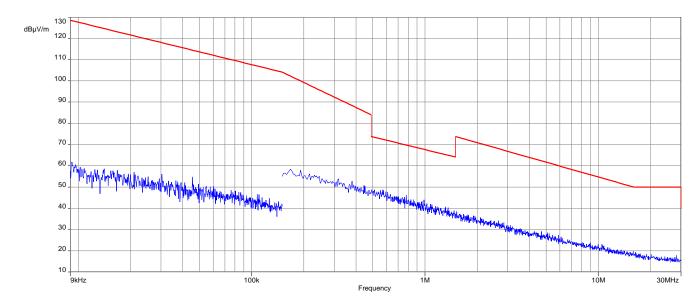
Plots: 20 MHz channel bandwidth

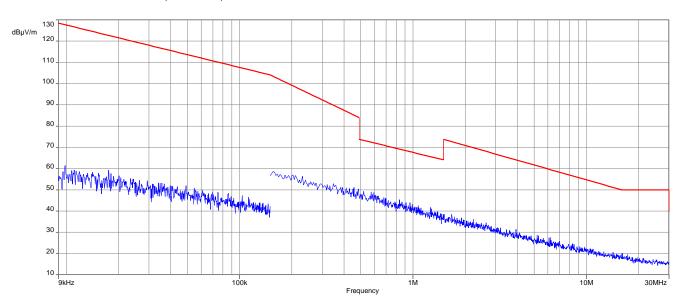
Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

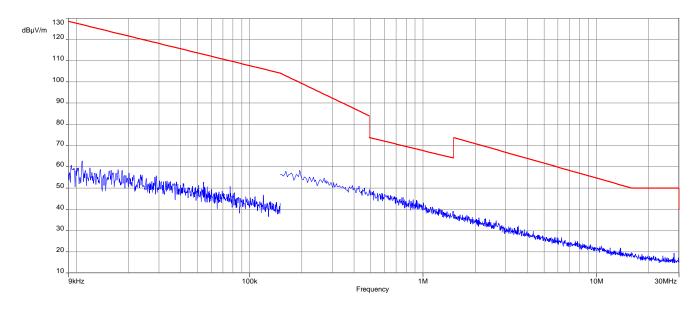

© CTC advanced GmbH Page 58 of 101

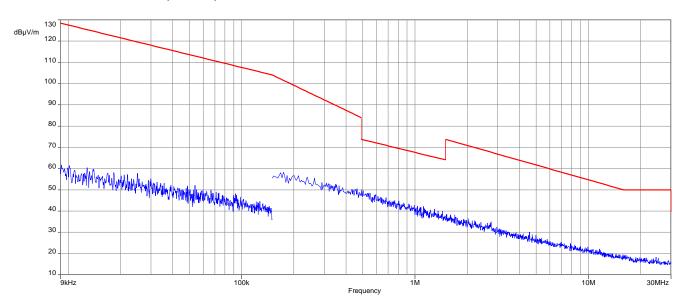
Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

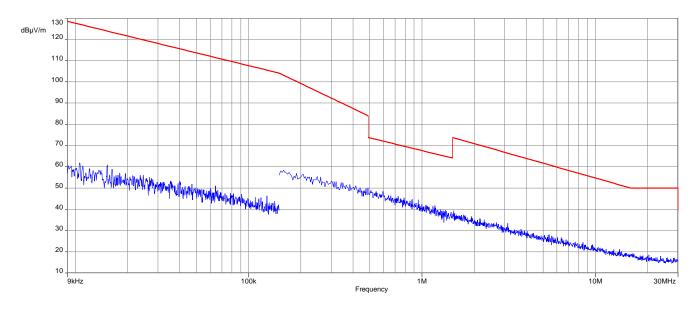

© CTC advanced GmbH Page 59 of 101

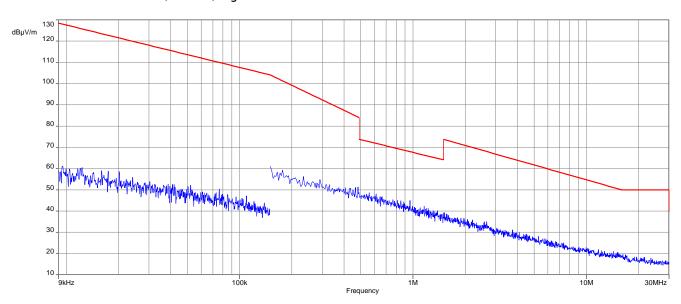
Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel


© CTC advanced GmbH Page 60 of 101

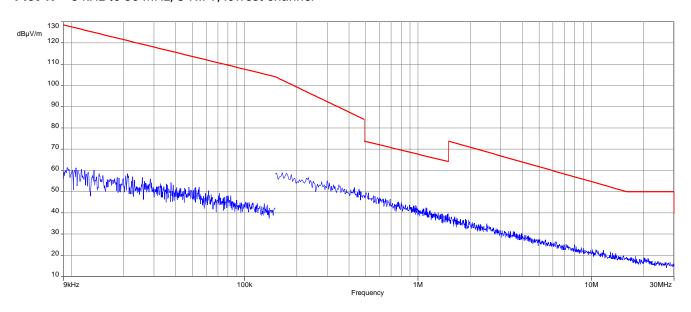
Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel


Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

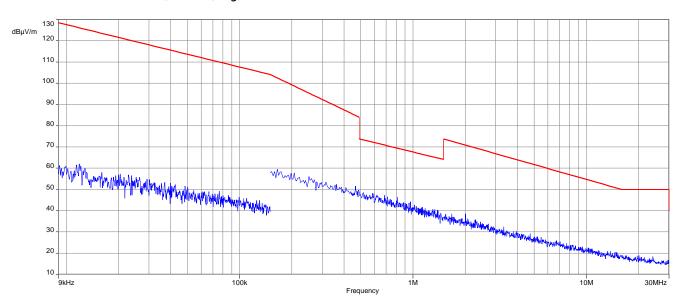

© CTC advanced GmbH Page 61 of 101

Plot 9: 9 kHz to 30 MHz, U-NII-3; middle channel

Plot 10: 9 kHz to 30 MHz, U-NII-3; highest channel

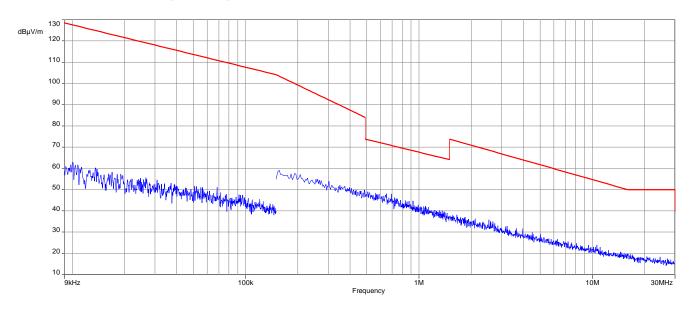


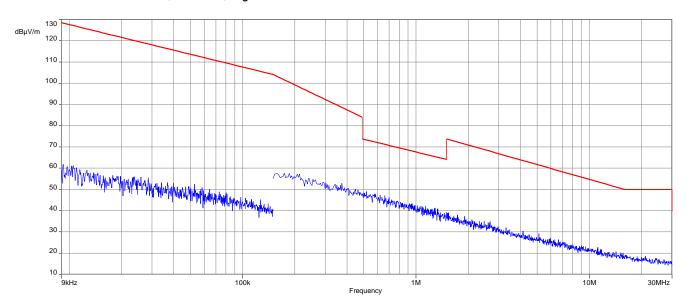
© CTC advanced GmbH Page 62 of 101



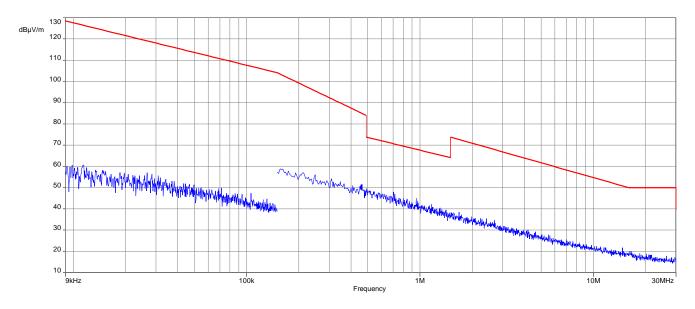
Plots: 40 MHz channel bandwidth

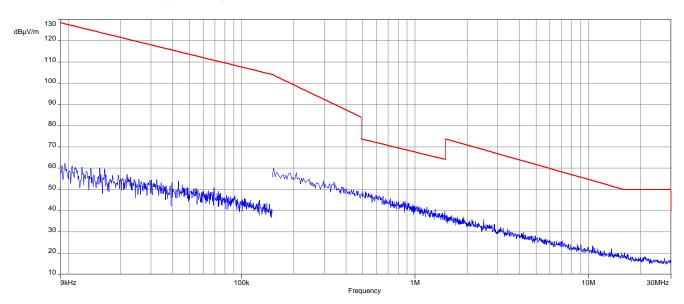
Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

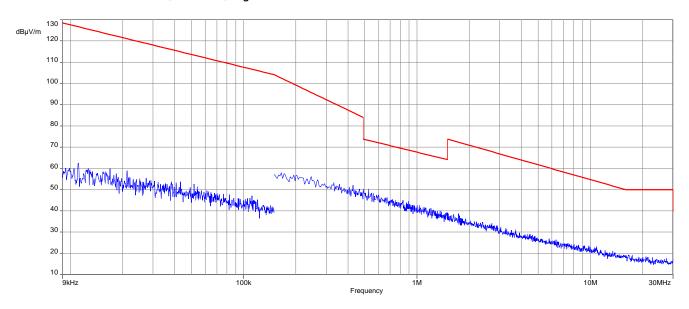

© CTC advanced GmbH Page 63 of 101

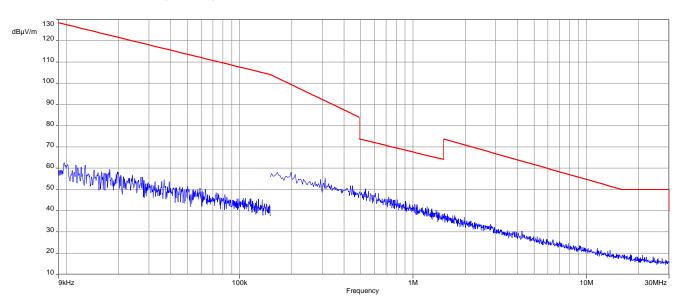
Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

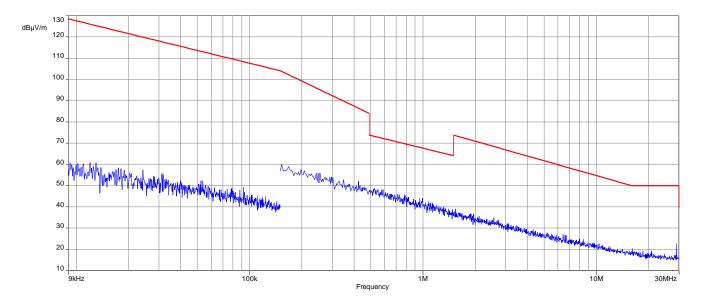

© CTC advanced GmbH Page 64 of 101

Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel

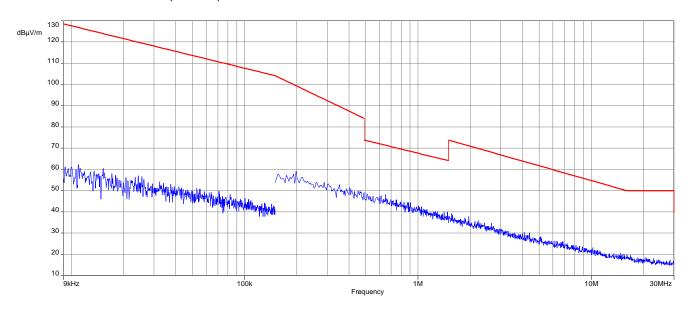

© CTC advanced GmbH Page 65 of 101

Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

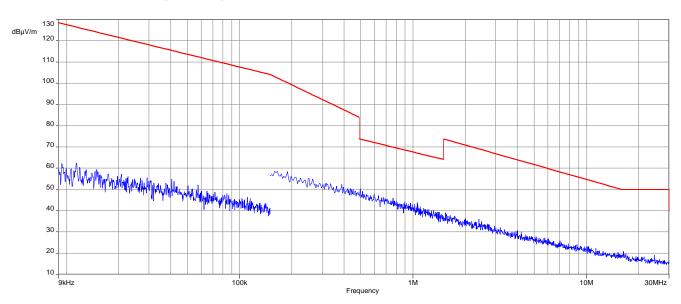

Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

© CTC advanced GmbH Page 66 of 101

Plot 9: 9 kHz to 30 MHz, U-NII-3; highest channel

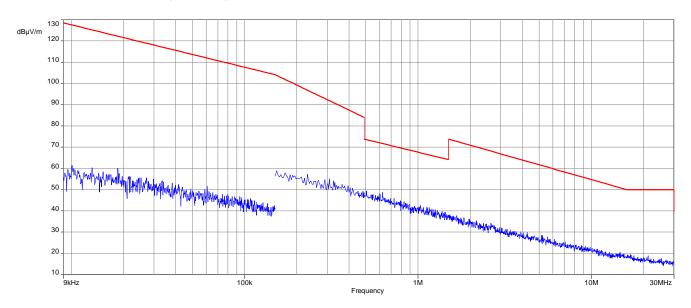


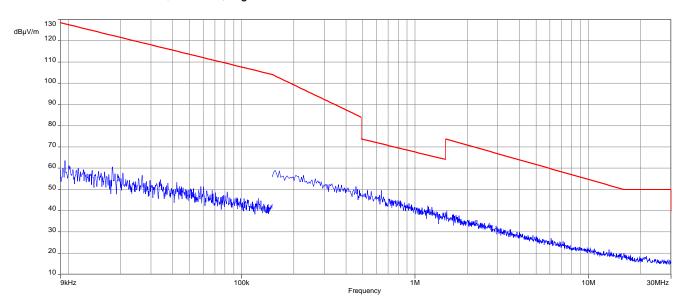
© CTC advanced GmbH Page 67 of 101



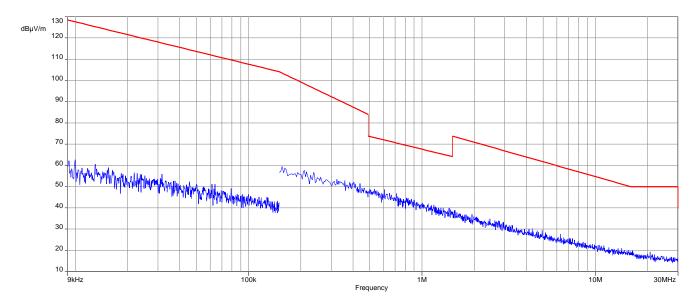
Plots: 80 MHz channel bandwidth

Plot 1: 9 kHz to 30 MHz, U-NII-1; middle channel


Plot 2: 9 kHz to 30 MHz, U-NII-2A; middle channel


© CTC advanced GmbH Page 68 of 101

Plot 3: 9 kHz to 30 MHz, U-NII-2C; lowest channel


Plot 4: 9 kHz to 30 MHz, U-NII-2C; highest channel

© CTC advanced GmbH Page 69 of 101

Plot 5: 9 kHz to 30 MHz, U-NII-3; middle channel

© CTC advanced GmbH Page 70 of 101

12.12 Spurious emissions radiated 30 MHz to 1 GHz

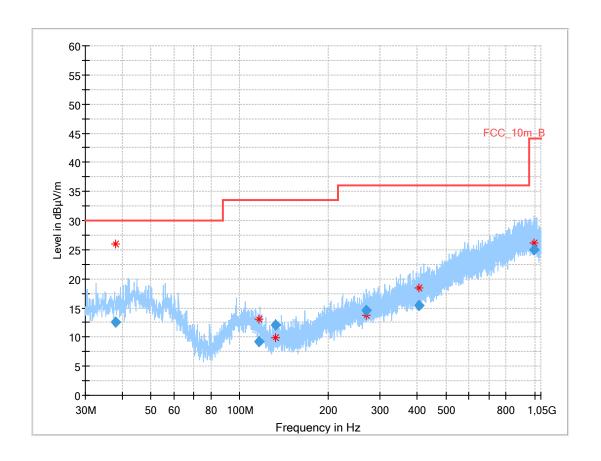
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter				
Detector: Quasi Peak				
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	500 kHz			
Span:	30 MHz to 1 GHz			
Test setup:	See sub clause 7.1 – A			
Measurement uncertainty:	Measurement uncertainty: See chapter 9			

Limits:

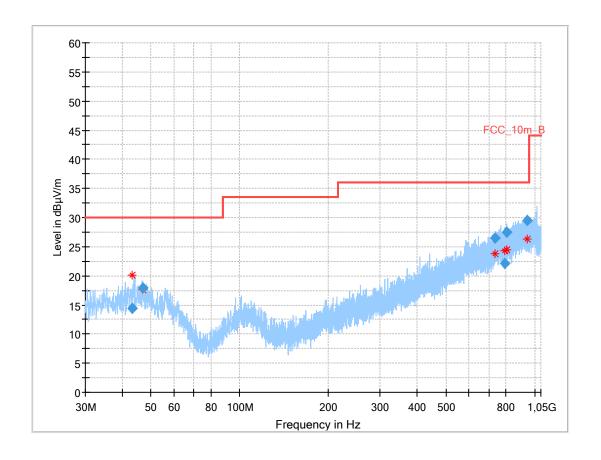

TX Spurious Emissions Radiated				
§15.209 / RSS-247				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
30 - 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		
§15.407				
Outside the restricted bands!	-27 dBm / MHz			

© CTC advanced GmbH Page 71 of 101

Plots: 20 MHz channel bandwidth

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels

Results:

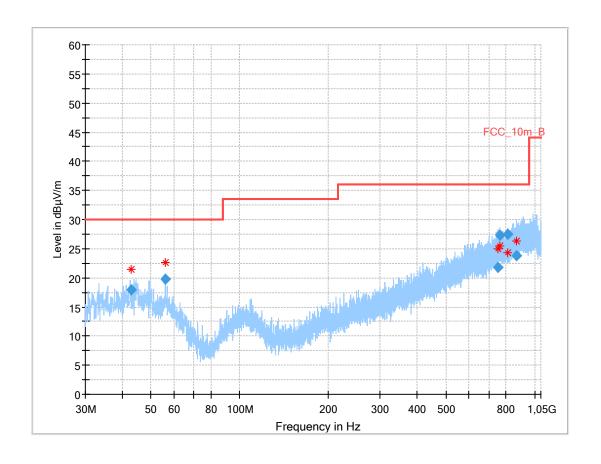

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.938	12.60	30.0	17.4	1000	120.0	117.0	V	148	15
116.651	9.22	33.5	24.3	1000	120.0	168.0	V	-28	12
132.525	12.00	33.5	21.5	1000	120.0	186.0	V	52	10
269.495	14.66	36.0	21.3	1000	120.0	195.0	Н	232	14
404.962	15.47	36.0	20.5	1000	120.0	195.0	V	142	18
994.630	24.92	44.0	19.1	1000	120.0	195.0	V	22	26

© CTC advanced GmbH Page 72 of 101

Plots: 40 MHz channel bandwidth

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels

Results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.331	14.38	30.0	15.6	1000	120.0	114.0	V	64	16
47.038	18.01	30.0	12.0	1000	120.0	118.0	V	105	16
736.022	26.40	36.0	9.6	1000	120.0	184.0	Н	232	23
790.042	22.20	36.0	13.8	1000	120.0	195.0	Н	283	24
803.087	27.41	36.0	8.6	1000	120.0	173.0	V	142	24
943.910	29.48	36.0	6.5	1000	120.0	195.0	V	142	25

© CTC advanced GmbH Page 73 of 101

Plots: 80 MHz channel bandwidth

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels

Results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.781	17.85	30.0	12.2	1000	120.0	150.0	V	62	16
55.879	19.82	30.0	10.2	1000	120.0	195.0	V	127	16
750.633	21.83	36.0	14.2	1000	120.0	195.0	V	169	24
763.838	27.33	36.0	8.7	1000	120.0	157.0	Н	232	24
808.388	27.45	36.0	8.6	1000	120.0	195.0	V	142	24
868.263	23.76	36.0	12.2	1000	120.0	195.0	V	232	25

© CTC advanced GmbH Page 74 of 101

12.13 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measure	ment parameter
	Quasi Peak below 1 GHz
Detector:	(alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X)
Trace mode.	for duty cycle lower than 100 %
Toot cotup:	See sub clause 7.2 – B
Test setup:	See sub clause 7.3 – A
Measurement uncertainty:	See chapter 9

Limits:

	TV Courieus Fraissians Dadistad						
	TX Spurious Emissions Radiated						
§15.209 / RSS-247							
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
Above 960	54.0	3					
	§15.407						
Outside the restricted bands!	Outside the restricted bands! -27 dBm / MHz						

© CTC advanced GmbH Page 75 of 101

Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm									
	U-NII-1 (5150 MHz to 5250 MHz)									
L	owest chani	nel	М	iddle chanr	iel	Hi	ghest chanr	nel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector I [dBµV/m]						
All detect	ed peaks are	e below the	All detected peaks are below the			All detecte	ed peaks are	below the		
	average limi	t.	average limit.			average limit.				
For emi	ssions abov	e 18 GHz	For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at	the plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.		

TX Spurious Emissions Radiated [dBμV/m] / dBm										
	U-NII-2A (5250 MHz to 5350 MHz)									
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel		
F [MHz]	Detector	Level [dBµV/m]	FIMHz Detector							
	All detected peaks are below the average limit.			All detected peaks are below the average limit.			ed peaks are average limit			
For emissions above 18 GHz			For emis	sions above	e 18 GHz	For emissions above 18 GH				
please t	ake look at t	the plots.	please ta	ake look at t	he plots.	please ta	ake look at t	he plots.		

	TX Spurious Emissions Radiated [dBμV/m] / dBm									
U-NII-2C (5470 MHz to 5725 MHz)										
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector [
	All detected peaks are below the average limit.			All detected peaks are below the average limit.			ed peaks are average limi			
For emi	ssions abov	e 18 GHz	For emissions above 18 GHz			For emissions above 18 GH				
please t	take look at t	the plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.		

	TX Spurious Emissions Radiated [dBµV/m] / dBm										
	1λ Spurious Emissions Radiated [ασμν/m] / ασm										
	U-NII-3 (5725 MHz to 5850 MHz)										
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector [dBµV/m]							
All detect	ed peaks are	below the	All detected peaks are below the			All detected peaks are below the					
	average limit.			average limit.			average limit.				
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz					
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.			

© CTC advanced GmbH Page 76 of 101

Results: 40 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBμV/m] / dBm									
U-NII-1 (5150 MHz to 5250 MHz)										
Lowest channel Middle channel Highest chan							nel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector [dBµV/m]						
All detect	ed peaks are	e below the	All detected peaks are below the			All detected peaks are below the				
	average limit.			average limit.			average limit.			
For emi	ssions abov	e 18 GHz	For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	the plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.		

TX Spurious Emissions Radiated [dBµV/m] / dBm										
	U-NII-2A (5250 MHz to 5350 MHz)									
L	owest chanr	nel	М	iddle chanr	el	Hi	ghest chanr	nel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector [dl						
	ed peaks are		All detected peaks are below the				ed peaks are			
	average limi	ι.	average limit.			average limit.				
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please t	take look at t	the plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.		

	TX Spurious Emissions Radiated [dBµV/m] / dBm									
	U-NII-2C (5470 MHz to 5725 MHz)									
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector I [dB \(\text{IdB} \(\text{V/m} \)]						
	ed peaks are average limi		All detected peaks are below the average limit.				ed peaks are average limit			
For emi	ssions abov	e 18 GHz	For emissions above 18 GHz			For emissions above 18 GHz				
please t	take look at t	the plots.	please ta	ake look at t	he plots.	please t	ake look at t	he plots.		

	TX Spurious Emissions Radiated [dBμV/m] / dBm									
	U-NII-3 (5725 MHz to 5850 MHz)									
L	owest chanr	nel	Middle channel			Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [MHz] Detector						
All detect	ed peaks are	below the	All detecte	ed peaks are	below the	All detected peaks are below the				
	average limi	t.	a	ıverage limi	t.	average limit.				
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz				
please t	ake look at t	the plots.	please ta	ake look at t	he plots.	please ta	ake look at t	he plots.		

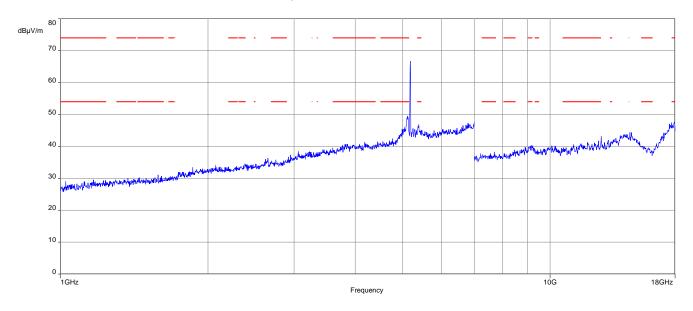
© CTC advanced GmbH Page 77 of 101

Results: 80 MHz channel bandwidth

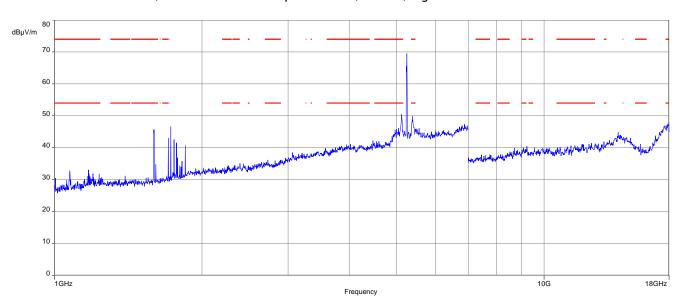
TX Spurious Emissions Radiated [dBμV/m] / dBm			
	U-NII-1 (5150 MHz to 5250 MHz)		
Middle channel			
F [MHz]	Detector	Level [dBµV/m]	
All detected peaks are below the average limit.			
For emissions above 18 GHz please take look at the plots.			

TX Spurious Emissions Radiated [dBμV/m] / dBm			
	U-NII-2A (5250 MHz to 5350 MHz)		
Middle channel			
F [MHz]	Detector	Level [dBµV/m]	
All detected peaks are below the average limit.			
For emissions above 18 GHz please take look at the plots.			

TX Spurious Emissions Radiated [dBμV/m] / dBm		
U-NII-2C (5470 MHz to 5725 MHz)		
Lowest channel Highest channel		
All detected peaks are below the average limit.	All detected peaks are below the average limit.	
For emissions above 18 GHz please take look at the	For emissions above 18 GHz please take look at the	
plots.	plots.	

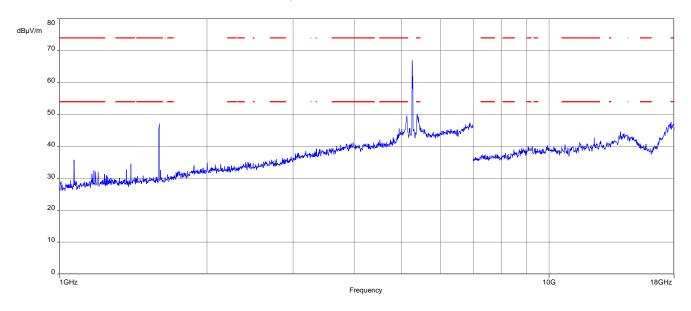

TX Spurious Emissions Radiated [dBμV/m] / dBm			
U-NII-3 (5725 MHz to 5850 MHz)			
Middle channel			
F [MHz]	Detector	Level [dBµV/m]	
All detected peaks are below the average limit.			
For emissions above 18 GHz please take look at the plots.			

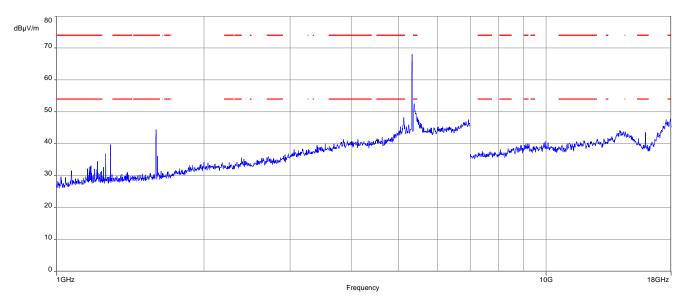
© CTC advanced GmbH Page 78 of 101



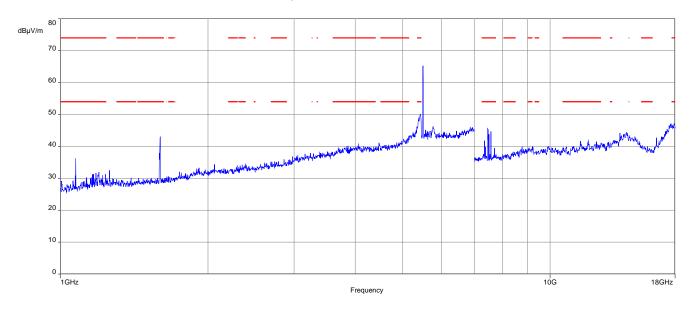
Plots: 20 MHz channel bandwidth

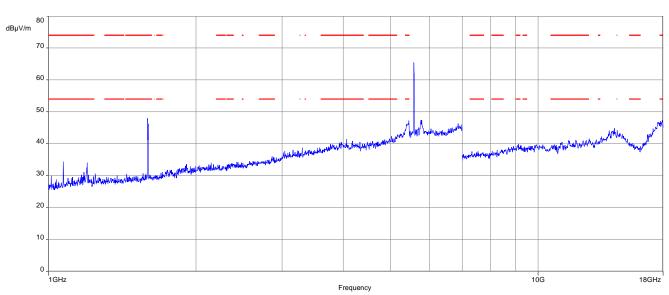
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel


© CTC advanced GmbH Page 79 of 101

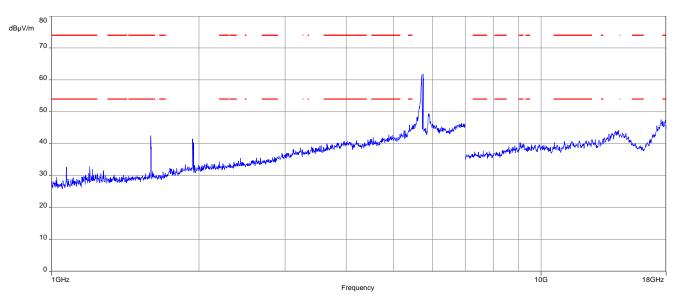
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

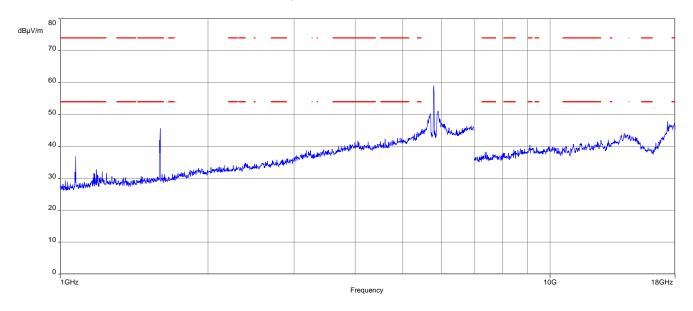

© CTC advanced GmbH Page 80 of 101

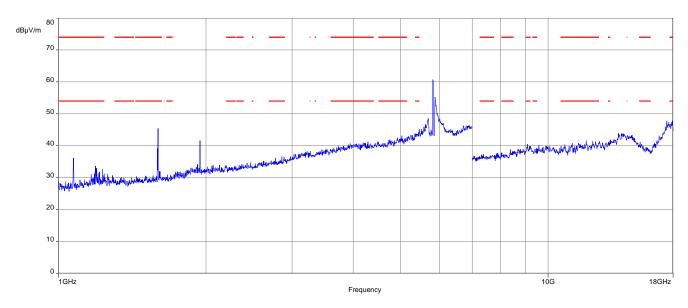
Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

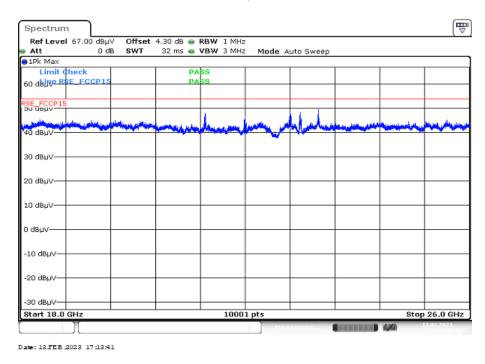

© CTC advanced GmbH Page 81 of 101

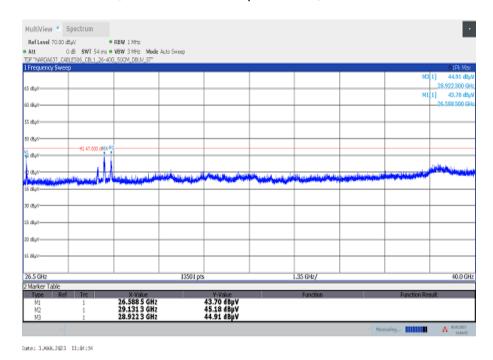
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

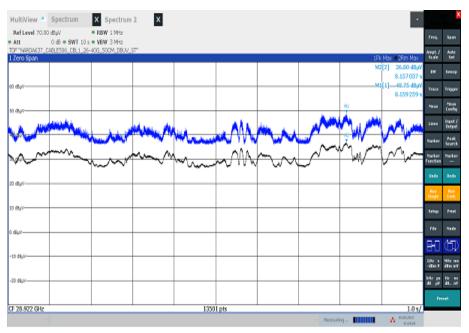

© CTC advanced GmbH Page 82 of 101

Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

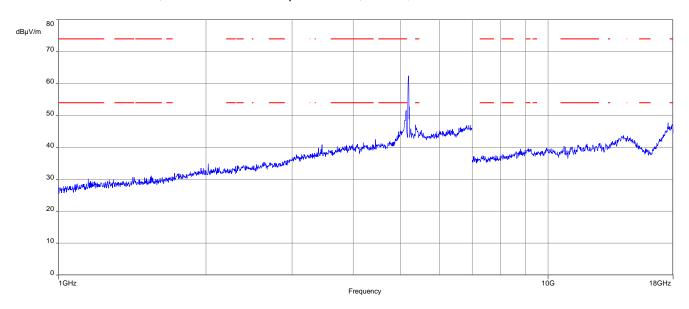

© CTC advanced GmbH Page 83 of 101

Plot 11: 18 GHz to 26 GHz, vertical & horizontal polarization, valid for all channels

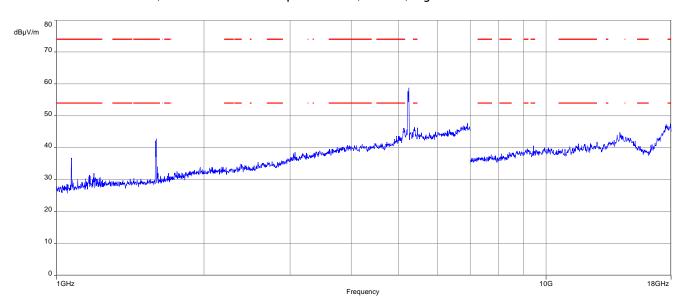

Plot 12: 26 GHz to 40 GHz, vertical & horizontal polarization, valid for all channels

© CTC advanced GmbH Page 84 of 101

Plot 13: Worst case Peak to Average (Zero Span)

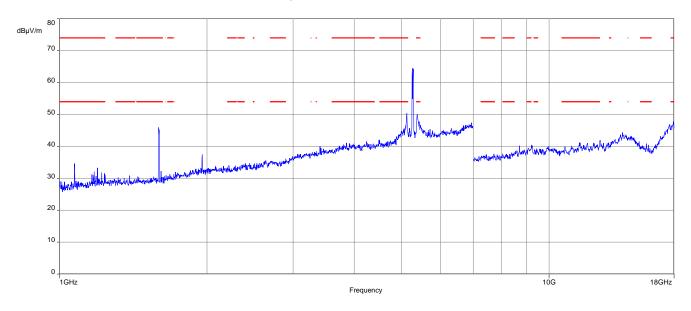

Date: 3.MAR.2023 13:14:28

© CTC advanced GmbH Page 85 of 101



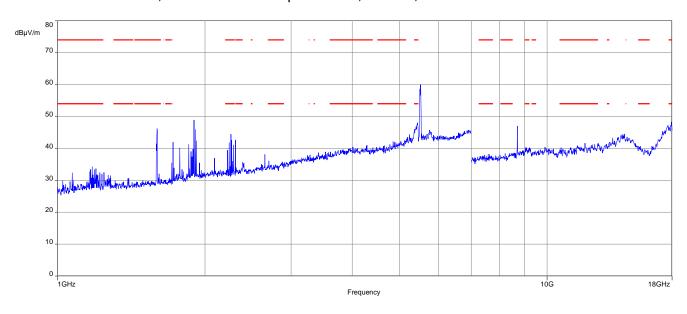
Plots: 40 MHz channel bandwidth

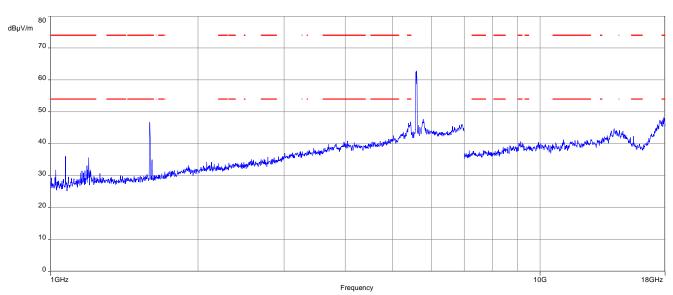
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

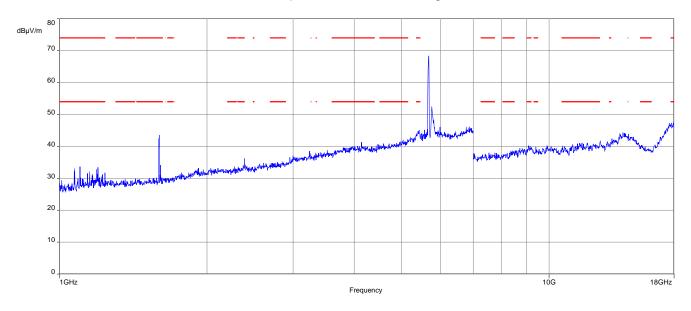
© CTC advanced GmbH Page 86 of 101

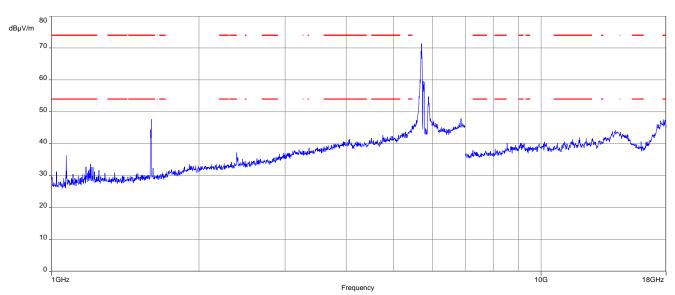
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

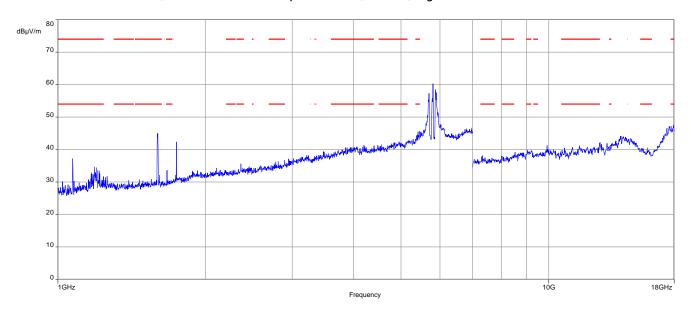

© CTC advanced GmbH Page 87 of 101

Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


© CTC advanced GmbH Page 88 of 101

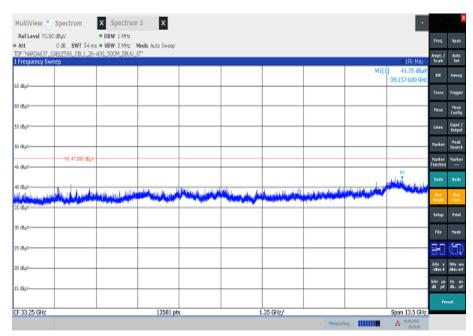
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

© CTC advanced GmbH Page 89 of 101

Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

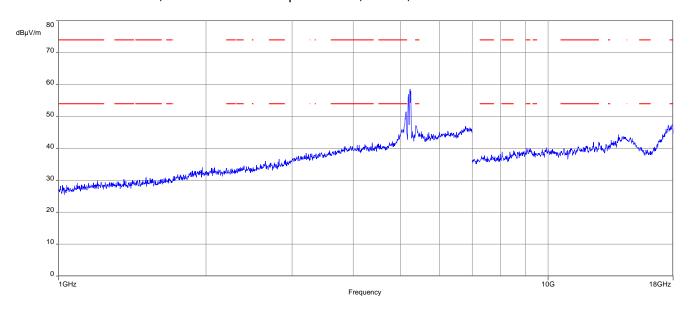
Plot 14: 18 GHz to 26 GHz, vertical & horizontal polarization, valid for all channels



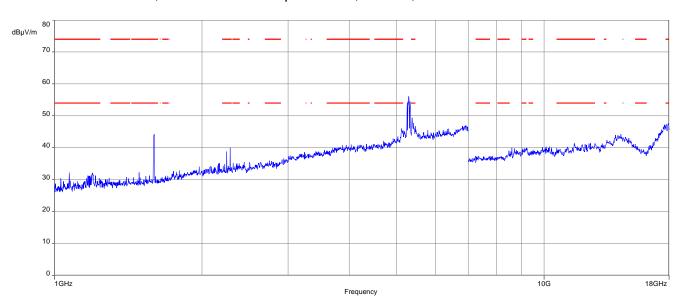
Date: 14FEB 2023 11:14:58

© CTC advanced GmbH Page 90 of 101

Plot 15: 26 GHz to 40 GHz, vertical & horizontal polarization, valid for all channels

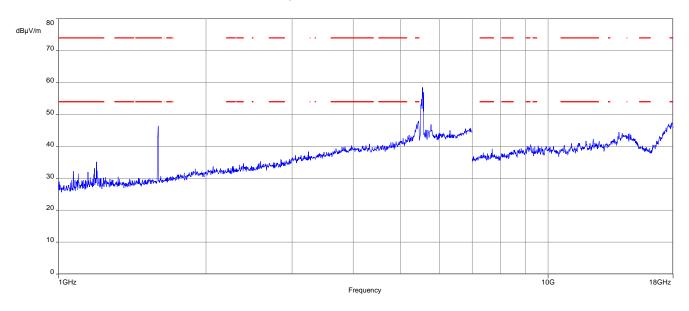

Date: 3.MAR.2023 13:25:2

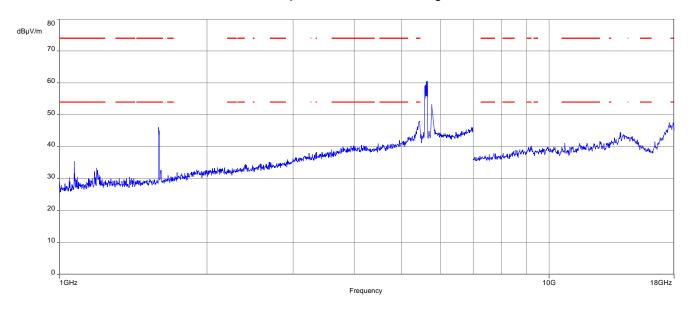
© CTC advanced GmbH Page 91 of 101



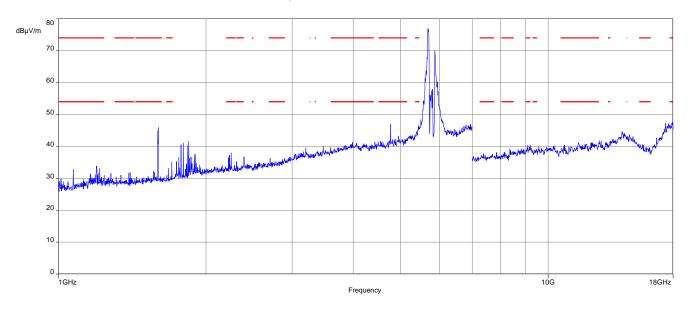
Plots: 80 MHz channel bandwidth

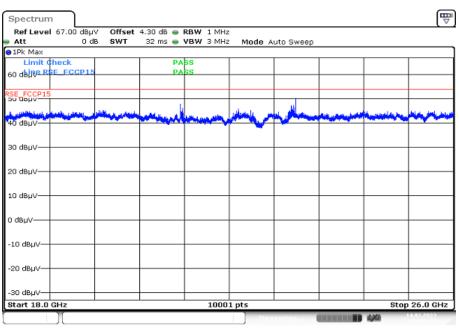
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel


© CTC advanced GmbH Page 92 of 101

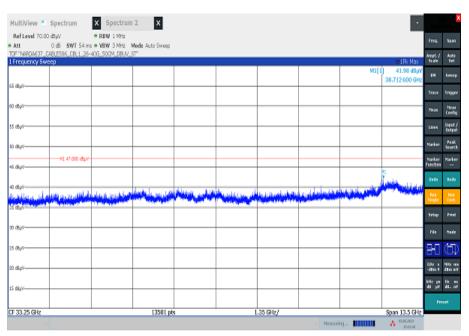
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


© CTC advanced GmbH Page 93 of 101

Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

Plot 6: 18 GHz to 26 GHz, vertical & horizontal polarization, valid for all channels



Date: 14 FEB 2023 11 2421

© CTC advanced GmbH Page 94 of 101

Plot 7: 26 GHz to 40 GHz, vertical & horizontal polarization, valid for all channels

Date: 3.MAR.2023 13:32:4

© CTC advanced GmbH Page 95 of 101

12.14 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

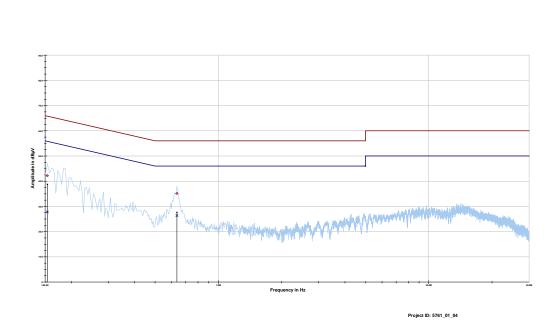
Measurement parameter		
Detector:	Peak - Quasi Peak / Average	
Sweep time:	Auto	
Video bandwidth:	9 kHz	
Resolution bandwidth:	100 kHz	
Span:	150 kHz to 30 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

Spurious Emissions Conducted < 30 MHz			
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30.0	60	50	

^{*}Decreases with the logarithm of the frequency

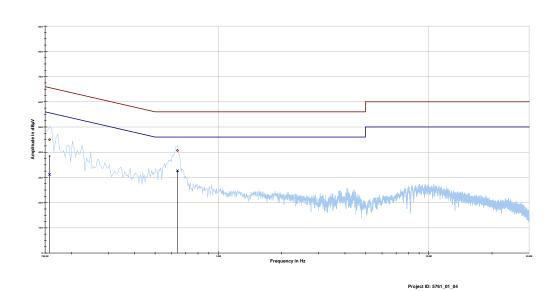
Results:


Spurious Emissions Conducted < 30 MHz [dBµV/m]				
F [MHz] Detector Level [dBµV/m]				
All detected emissions are more than 20 dB below the limit.				

© CTC advanced GmbH Page 96 of 101

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.153731	42.17	23.63	65.796	27.81	28.08	55.893
0.635062	35.15	20.85	56.000	26.37	19.63	46.000

© CTC advanced GmbH Page 97 of 101

Plot 2: 150 kHz to 30 MHz, neutral line

Quasi peak Margin quasi Average Margin Frequency **Limit QP Limit AV** level peak level **Average** MHz $dB\mu V$ dΒ $dB\mu V$ dΒμV dB dΒμV 0.157463 44.99 20.61 65.597 31.18 24.61 55.787 15.30 0.638794 40.70 56.000 32.66 13.34 46.000

© CTC advanced GmbH Page 98 of 101

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT Equipm	sant under teet
	nent under test
	under test
	der test
·	an Standard
	Communications Commission
	ny Identifier at FCC
	y Canada
	t marketing name
	arketing name
	are version identification number
	are version identification number
	magnetic Compatibility
HW Hardwa	
SW Softwar	
	ory number
S/N or SN Serial n	number
C Complia	ant
NC Not cor	mpliant
NA Not app	plicable
NP Not per	formed
PP Positive	e peak
QP Quasi p	peak
AVG Average	e
OC Operati	ing channel
OCW Operati	ing channel bandwidth
OBW Occupie	ed bandwidth
OOB Out of b	band
DFS Dynami	ic frequency selection
CAC Channe	el availability check
OP Occupa	ancy period
NOP Non oc	cupancy period
DC Duty cy	rcle
CW Clean w	vave
MC Modula	nted carrier
WLAN Wireles	s local area network
RLAN Radio lo	ocal area network
DSSS Dynami	ic sequence spread spectrum
	onal frequency division multiplexing
	ncy hopping spread spectrum

© CTC advanced GmbH Page 99 of 101

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-03-21

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGW Signatory to the Multilaterial Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.2020 by order [pd. long, (right fill specificate)] The certificate together with its annex reflects the status at the stime of the dute of issue. The current status of the scope of excellations can be found in the distuibate of excentive bodies of Descarbe Askinstitionungstetic Grait. Natural/News dobts, de for function of accredited bodies and Descarbe Askinstitionungstetic Grait.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAMS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMStelleG) of 31 July 2009 (Federal Lua Gazette) to 2.523 and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Incl. 1218 of 9 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formu (AF) and international Laboratory Accreditation Coperation (IJLAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IRAC: www.ilac.org IAF: www.ilac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-04_canada_tcemc.pdf

© CTC advanced GmbH Page 100 of 101

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig Bundesaltee 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of O9.66.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of O5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy (Dipl-Ing, (First and Egyper Head of Division) The certificate together with its anexe reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the database of accredited bodies of Deutsche Alkreditinoungstrale Gmbki https://www.ddks.alk/on/contemplacerodited-bodies-disks To entire control.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkKsieles) of 31 July 2009 (federal Law Gazette) to 2529 and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and markets surveillance relating to the marketing of products (Official Journal of the European Into 12.18 of 9 July 2008, 5.01) DAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (RA) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.european-accreditation.org ILAC: www.european-accreditation.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-05_tcb_usa.pdf

© CTC advanced GmbH Page 101 of 101