

RF Exposure Evaluation Declaration

FCC ID:	VW3FAST5250
APPLICANT:	SAGEMCOM SAS

Application Type:	Certification
Product:	Router
Brand Name:	Sagemcom
Model No.:	FAST5250
FCC Classification:	Digital Transmission System (DTS)
	Unlicensed National Information Infrastructure (UNII)

Reviewed By	:	Surry Sur
		(Engineer: Sunny Sun)
Approved By	:	Robin Wu

(Manager: Robin Wu)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date
1312RSU00103	Rev. 01	Initial report	01-28-2014

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
(A) Limits for Occupational/ Control Exposures					
300-1500			f/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			f/1500	6	
1500-100,000			1	30	

f= Frequency in MHz

Calculation Formula: $P_d = (P_{out}^*G)/(4^*pi^*r^2)$

Where

 P_d = power density in mW/cm²

P_{out} = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm (The minimum distance is 20cm)

 P_d is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Result of RF Exposure Evaluation

Product	Router
Test Item	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 5.9dBi for 2.4GHz, 5.7dBi for 5.2GHz and 6.8dBi for 5.8GHz in logarithm scale.

For 2.4G Band:

Test Mode	Frequency Band (MHz)	Maximum Average output power (dBm)	Power Density S(mW/cm ²)
802.11b/g/n-HT20	2412 ~ 2462	28.82	1
802.11n-HT40	2422 ~ 2452	22.70	1

For 5G ISM Band:

Test Mode	Frequency Band (MHz)	Maximum Average output power (dBm)	Power Density S(mW/cm ²)
80.211a/n-HT20/ac-VHT20	5745 ~ 5825	29.12	1
802.11n-HT40/ac-VHT40	5755 ~ 5795	28.16	1
802.11ac-VHT80	5210	27.29	1

For 5G UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average output power (dBm)	Power Density S(mW/cm²)
80.211a/n-HT20/ac-VHT20	5180 ~ 5240	15.18	1
802.11n-HT40/ac-VHT40	5190 ~ 5230	15.97	1
802.11ac-VHT80	5210	13.84	1

CONCULISON:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously. Therefore, the worst-case distance = $\sqrt{(P_{out}*G)(2.4GHz + 5GHz) / (4*pi)} = 23.39$ cm. *The Safety Distance of this equipment was 23.39 cm.*

The End