

TEST REPORT

BNetzA-CAB-02/21-102 Test report no.: 1-3977_22-03-25

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: +49 681 5 98 - 0 Fax: +49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

SAGEMCOM BROADBAND SAS

250, route de l' Empereur

92848 Rueil-Malmaison Cedex / FRANCE

Phone: -/-

Contact: Ludovic Bomba

e-mail: <u>ludovic.bomba@sagemcom.com</u>

Manufacturer

SAGEMCOM BROADBAND SAS

250, route de l'Empereur 92848 Rueil-Malmaison Cedex / FRANCE

Test standard/s

FCC - Title 47 CFR Part 96 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 96 – Citizens Broadband Radio Service

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Gateway

Model name: F5688W

FCC ID: VW3F5688W

Frequency: 3550 MHz to 3570 MHz

Technology tested: 5G NR

Radio Communications

Antenna: 4 integrated antennas

Power supply: 120 V AC by power supply unit

Temperature range: 0°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:			
Michael Dorongovski	Andreas Luckenbill			
Lab Manager	Head of Department			

Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	standard/s, references and accreditations	4
4	Repor	ting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber	9
	7.4	Conducted measurements normal and extreme conditions	
8	Seque	ence of testing	12
	8.1 8.2 8.3 8.4	Sequence of testing radiated spurious 9 kHz to 30 MHz	13 14
9	Meas	urement uncertainty	16
10	Add	litional information and comments	17
11	Sur	nmary of measurement results	18
12	Par	t 96, 5G NR band 48	18
	12.1 12.2 12.3 12.4	Conducted output power, E.I.R.P. output power, Peak-to-Average Ratio Frequency stability Occupied bandwidth Band edge compliance	22 24 25
	12.5 12.6	Spurious emissions conducted End User Device Additional Requirements (CBSD Protocol)	
	12.7	Spurious emissions radiated	
13	Glo	ssary	32
14	Doc	cument history	33
15	Acc	reditation Certificate – D-PL-12076-01-05	33

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2022-12-07

 Date of receipt of test item:
 2022-09-27

 Start of test:*
 2022-10-04

 End of test:*
 2023-01-19

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 33

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

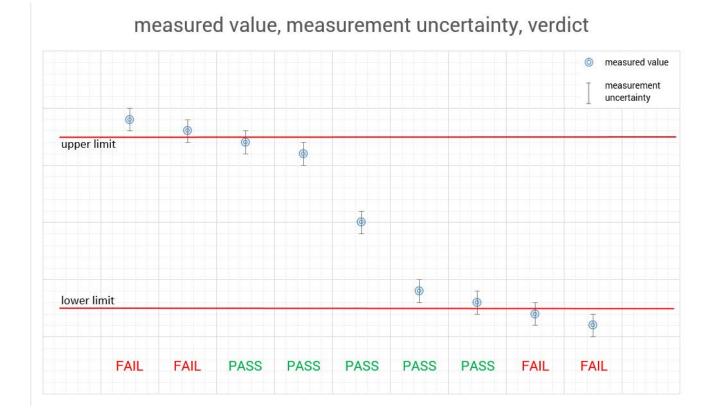
3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 96	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 96 – Citizens Broadband Radio Service
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.26-2015 KDB 662911 D01 Power Meas License Systems: KDB 971168 D01	-/- -/- v02r01 v03r01	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services Emissions Testing of Transmitters with Multiple Outputs in the Same Band Measurement Guidance for Certification of Licensed Digital Transmitters

Accreditation	Description
Accreditation	Description

D-PL-12076-01-05 Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

FCC designation number: DE0002


© CTC advanced GmbH Page 4 of 33

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 33

5 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	+50 °C during high temperature tests
		T_{min}	-30 °C during low temperature tests
Relative humidity content	:		43 %
Barometric pressure	:		1021 hpa
-		V _{nom}	120 V AC by power supply unit.
Power supply	:	V_{max}	138 V AC by external power supply.
		V_{min}	102 V AC by external power supply.

6 Test item

6.1 General description

Kind of test item :	Gateway			
Model name :	F5688W			
S/N serial number :	Radiated unit: QS2212959002899 (IMEI: 359509840135591) – WALSIN QS2212959002968 (IMEI: 359509840060641) – COLFLY QS2212959002883 (IMEI: 359509840060278) – HL Conducted units: IMEI: 359509840061128			
Hardware status :	V1.2			
Software status :	SG520TMDAR02A02M4G_01.001.01.001_V01			
Firmware status :	SG520TMDAR02A02M4G_01.001.01.001_V01			
Frequency band :	3550 MHz to 3700 MHz			
Type of radio transmission: Use of frequency spectrum:	Modulated carrier			
Type of modulation :	QPSK			
Antenna :	4 integrated antennas			
Power supply :	120 V AC by power supply unit			
Temperature range :	0°C to +50°C			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-3977/22-03-01_AnnexA

1-3977/22-03-01_AnnexB 1-3977/22-03-01_AnnexC

© CTC advanced GmbH Page 6 of 33

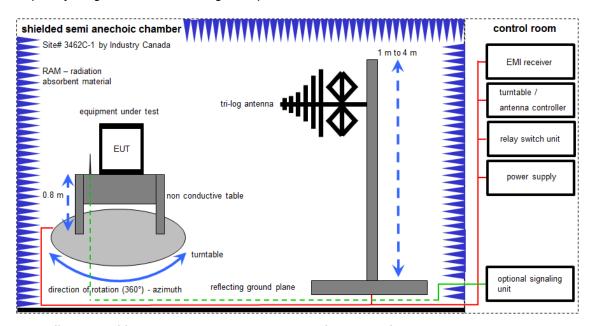
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 33

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

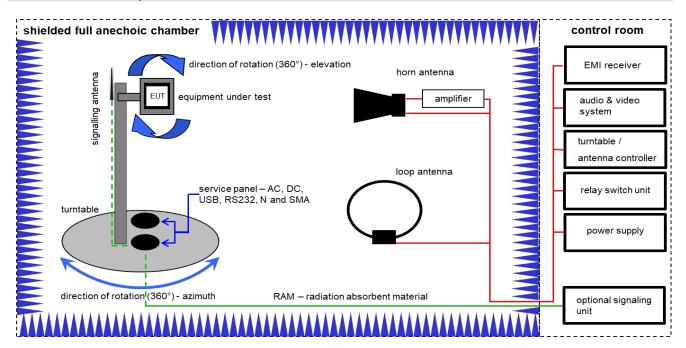
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	Batch no. 699714	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	21.04.2021	20.04.2023
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	31.05.2023

© CTC advanced GmbH Page 8 of 33

7.2 Shielded fully anechoic chamber

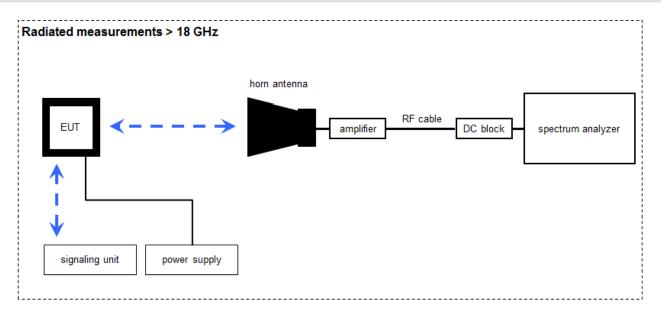
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μ W)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
4	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021 07.12.2022	31.12.2022 31.12.2023
5	A, B	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
6	A, B	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	А	Band Reject filter	WRCG1850/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B	NEXIO EMV- Software	BAT EMC V3.21.0.27	EMCO		300004682	ne	-/-	-/-
11	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 33

7.3 Radiated measurements > 18 GHz

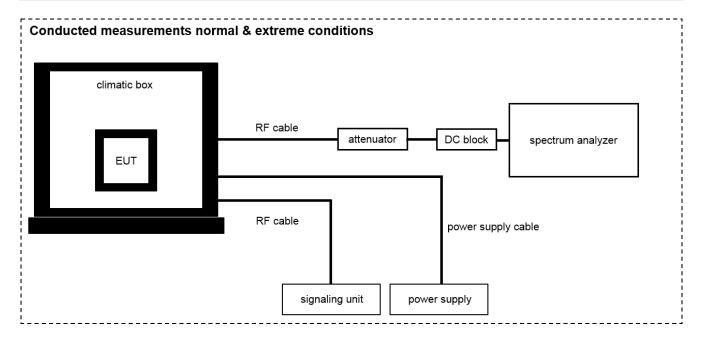
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	17.01.2022	31.01.2024
3	Α	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024
4	Α	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2022	31.01.2023

© CTC advanced GmbH Page 10 of 33

7.4 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	31.01.2023
2	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH		300004590	ne	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm /72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm /36	Huber & Suhner	Batch no. 601494	400001309	ev	-/-	-/-
6	А	Temperature Test Chamber	T-40/50	CTS GmbH	064023	300003540	ev	09.05.2022	08.05.2024

© CTC advanced GmbH Page 11 of 33

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 12 of 33

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 33

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 33

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 33

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncer	tainty				
Antenna gain	± 3	dB				
99 % bandwidth	± R	BW				
-26 dB bandwidth	± R	BW				
Frequency stability	y stability 10 ⁻⁶					
Maximum output power conducted	ım output power conducted ± 1.56 dB					
Block edge compliance	± 1.5	66 dB				
	> 3.6 GHz	± 1.56 dB				
Spurious emissions conducted	> 7 GHz	± 1.56 dB				
Spurious erriissions conducted	> 18 GHz	± 2.31 dB				
	≥ 40 GHz	± 2.97 dB				
Spurious emissions radiated below 30 MHz ± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz ± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz ± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

© CTC advanced GmbH Page 16 of 33

10 Additional information and comments

Reference documents: Customer Questionnaire_F5688W_Sagemcom_v3.docx F5866WTMO_ANTENNA MAPPING_v2.xlsx 1-3977_22-03-25_Annex_MR_A1 Special test descriptions: Although the device has 4 integrated antennas, only antenna 1 (LTE_M) is used for TX mode for 5G NR. Supported bandwidth for 5G NR 3550 MHz to 3700 MHz: 10 MHz CP-OFDM and DFT-s-OFDM were investigated and DFT-s-OFDM was found to be the worst case. Modulation types investigated: QPSK Configuration descriptions: None EUT selection: Only one device available Devices selected by the customer \boxtimes Devices selected by the laboratory (Randomly)

© CTC advanced GmbH Page 17 of 33

11 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report.
Ш	The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC: CFR Part 2 & Part 96	See table	2023-01-26	-/-

12 Part 96, 5G NR band 48

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
Conducted Output Power	Nominal	Nominal	×				-/-
E.I.R.P. output power	Nominal	Nominal	\boxtimes				-/-
Peak-to-Average ratio	Nominal	Nominal	×				-/-
Frequency Stability	Extreme	Extreme	×				-/-
Occupied Bandwidth	Nominal	Nominal	×				-/-
Conducted band edge	Nominal	Nominal	×				-/-
Conducted spurious emissions	Nominal	Nominal	\boxtimes				-/-
End User Device Additional Requirements (CBSD Protocol)	Nominal	Nominal	×				-/-
Radiated spurious emissions	Nominal	Nominal	\boxtimes				-/-

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

© CTC advanced GmbH Page 18 of 33

12.1 Conducted output power, E.I.R.P. output power, Peak-to-Average Ratio

Measurement:

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF). Measurements were performed according to KDB 971168 D01 v03r01 – Section 5.2.1 and Section 5.7.1.

Measurement parameters				
Detector:	Sample			
Resolution bandwidth:	10 MHz			
Used equipment:	See chapter 7.1 setup A & 7.4 setup A			
Measurement uncertainty:	see chapter 9			

Limits:

FCC
§ 96.41 (b) + (g)
E.I.R.P. output power: 23 dBm / 10 MHz Peak-to-Average ratio: 13 dB

Output Power (conducted)							
		Al	NT1				ANT1
Bandwidth (MHz)	Channel No. / Frequency (MHz)	RB Allocation – RB Offset	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	Average Output Power (dBm) 64-QAM	Average Output Power (dBm) 256-QAM	Average Output Power (dBm) PI/2BPSK
		1 RB low	17.7	-/-	-/-	-/-	-/-
		1 RB low+1	17.8	-/-	-/-	-/-	-/-
10	3555 MHz	1 RB high-1	17.9	-/-	-/-	-/-	-/-
10	10 3555 MHZ	1 RB high	18.0	-/-	-/-	-/-	-/-
		50% RB mid	17.9	-/-	-/-	-/-	-/-
		100% RB	17.9	-/-	-/-	-/-	-/-

© CTC advanced GmbH Page 19 of 33

	Output Power (conducted)							
	ANT1							
Bandwidth (MHz)	Channel No. / Frequency (MHz)	RB Allocation – RB Offset	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	Average Output Power (dBm) 64-QAM	Average Output Power (dBm) 256-QAM	Average Output Power (dBm) PI/2BPSK	
		1 RB low	17.6	-/-	-/-	-/-	-/-	
	3625 MHz	1 RB low+1	17.6	-/-	-/-	-/-	-/-	
		1 RB high-1	17.5	-/-	-/-	-/-	-/-	
		1 RB high	17.5	-/-	-/-	-/-	-/-	
		50% RB mid	17.9	-/-	-/-	-/-	-/-	
		100% RB	17.7	-/-	-/-	-/-	-/-	
		1 RB low	18.0	-/-	-/-	-/-	-/-	
		1 RB low+1	17.9	-/-	-/-	-/-	-/-	
	3695 MHz	1 RB high-1	18.0	-/-	-/-	-/-	-/-	
		1 RB high	17.8	-/-	-/-	-/-	-/-	
		50% RB mid	18.0	-/-	-/-	-/-	-/-	
		100% RB	17.8	-/-	-/-	-/-	-/-	

Radiated output power (EIRP)						
Bandwidth (MHz)	Channel No. / Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	Average Output Power (dBm) 64-QAM	Average Output Power (dBm) 256-QAM	Average Output Power (dBm) PI/2BPSK
	3555 MHz	22.9	-/-	-/-	-/-	-/-
10	3625 MHz	22.8	-/-	-/-	-/-	-/-
	3695 MHz	22.9	-/-	-/-	-/-	-/-

© CTC advanced GmbH Page 20 of 33

	Peak to average ratio (conducted)							
ANT1								
Bandwidth (MHz)	Channel No. / Frequency (MHz)	RB Allocation – RB Offset	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM	Average Output Power (dBm) 64-QAM	Average Output Power (dBm) 256-QAM	Average Output Power (dBm) PI/2BPSK	
	3555 MHz	100% RB	6.13	-/-	-/-	-/-	-/-	
	3625 MHz	100% RB	5.24	-/-	-/-	-/-	-/-	
	3695 MHz	100% RB	6.50	-/-	-/-	-/-	-/-	

© CTC advanced GmbH Page 21 of 33

12.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a ANRITSU MT8000A.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom}, connected to the CMW500 on the center channel with channel bandwidth of 10 MHz, measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 15 minutes at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with V_{nom} . Vary supply voltage to V_{min} and measure the carrier frequency then setup V_{max} and repeat the measurement.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters					
Detector:					
Sweep time: Video bandwidth:					
	Manageral with MT0000A				
Resolution bandwidth:	Measured with MT8000A				
Span:					
Trace mode:					
Test setup:	See chapter 7.4 setup A				
Measurement uncertainty:	See chapter 9				

Limits:

FCC
§2.1055
Fundamental emissions must stay within authorized frequency block.

© CTC advanced GmbH Page 22 of 33

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
102	10	0.003
120	5	0.001
138	5	0.001

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	10	0.0028
-20	9	0.0025
-10	14	0.0039
± 0	14	0.0039
10	7	0.0019
20	19	0.0052
30	7	0.0019
40	18	0.0050
50	17	0.0047

© CTC advanced GmbH Page 23 of 33

12.3 Occupied bandwidth

Measurement parameters			
External result file	1-3977_22-03-25_Annex_MR.pdf		
	Occupied bandwidth		
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC
§ 2.1049
Reporting only

Occupied Bandwidth				
QPSK modulation	Channal	OOV ORW (MILE)	-26 dBc BW (MHz)	
Bandwidth	Channel	99% OBW (MHz)		
	low	8.691	10.325	
10	mid	8.641	10.375	
	high	8.641	10.100	

© CTC advanced GmbH Page 24 of 33

12.4 Band edge compliance

Measurement:

Measurement parameters			
External result file	1-3977_22-03-25_Annex_MR_A1.pdf		
Used equipment:	See chapter 7.4 setup A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC

§ 2.1051, §96.41(e)(ii)

Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

-13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel)

-25 dBm/MHz at frequencies greater than B MHz above and below channel edge

-40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz

Results: PASS (See log files)

© CTC advanced GmbH Page 25 of 33

12.5 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From § 2.1057 the spectrum should be investigated from the

lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

2. Determine mobile station transmits frequencies: below outlines, the band edge frequencies pertinent to conducted emissions testing.

Measurement parameters		
External result file	1-3977_22-03-25_Annex_MR_A1.pdf	
External result file	TX emissions conducted	
Used equipment:	See chapter 7.4 setup A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC
§ 2.1051, §96.41(e)(ii)

Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

-13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel)

-25 dBm/MHz at frequencies greater than B MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz

Results:

QPSK modulation	Lowest channel		Middle channel		Highest channel	
Bandwidth (MHz)	Spurious emissions (MHz)	Level (dBm)	Spurious emissions (MHz)	Level (dBm)	Spurious emissions (MHz)	Level (dBm)
10 MH-	-/-	-/-	-/-	-/-	-/-	-/-
10 MHz	-/-	-/-	-/-	-/-	-/-	-/-

© CTC advanced GmbH Page 26 of 33

12.6 End User Device Additional Requirements (CBSD Protocol)

FCC

§ 96.47

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.

Results: See external lab MRT Technology test report 2301RSU010-U1

© CTC advanced GmbH Page 27 of 33

12.7 Spurious emissions radiated

Measurement:

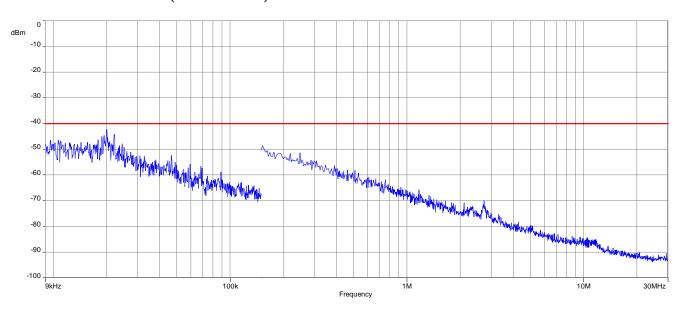
Measurement parameters			
Detector:	Peak		
Sweep time:	2 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	100 MHz Steps		
Trace mode:	Max Hold		
Used equipment:	See chapter 7.1 setup A & 7.2 setup A & 7.3 setup A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC	
§ 2.1053, §96.41(e)	
-40 dBm/MHz	

Results:

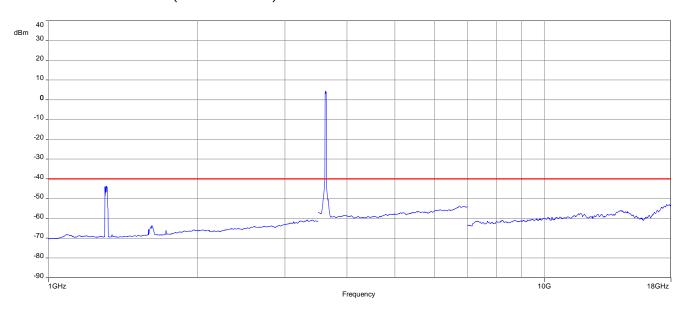
QPSK:

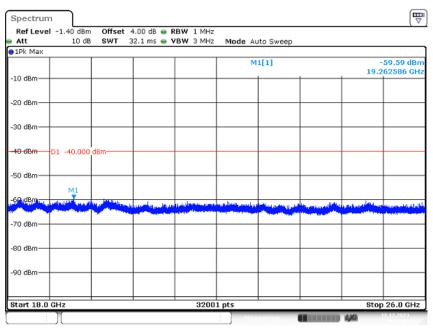

SPURIOUS EMISSION LEVEL						
LOWEST C	HANNEL	MIDDLE CHANNEL		HIGHEST CHANNEL		
Spurious emissions	Level [dBm]	Spurious emissions	Level [dBm]	Spurious emissions Level [dBm]		
-/-	-	-/-		-/-		

© CTC advanced GmbH Page 28 of 33

Plots: QPSK

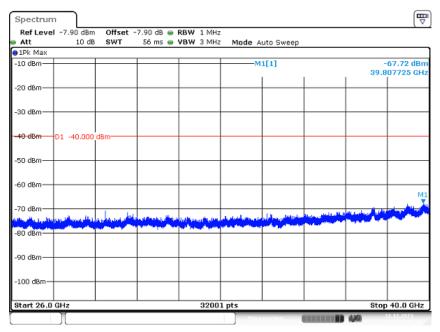
Plot 1: Middle channel (9 kHz - 30 MHz)


Plot 2: Middle channel (30 MHz - 1 GHz)


© CTC advanced GmbH Page 29 of 33

Plot 3: Middle channel (1 GHz – 18 GHz)

Plot 4: Middle channel (18 GHz – 26 GHz)



Date: 12.DEC.2023 15:42:07

© CTC advanced GmbH Page 30 of 33

Plot 5: Middle channel (26 GHz – 40 GHz)

Date: 12.DEC.2023 15:43:39

© CTC advanced GmbH Page 31 of 33

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 32 of 33

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-01-26

15 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allie 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main Sal16 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-L-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy Ospl-Ing, (PH) or Egner Head of Division The certificate together with its amer reflects the status at the time of the date of issue. The current status of the scope of accorditation can be found in the disturbant of accorditation with the purpose of accorditation can be found in the disturbant of accorditation with the purpose of accorditation can be found in the disturbant of accorditation doubles of Divisioha Altereditarunguistic Grabit.	disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the 4ct on the Accreditation Body (AMS-celled) of 31.July 2009 (Federal Law Gazetts in 2625) and the Regulation (ECI No 765/2008 of the Suropean Porliment and of Federal Law Gazetts in 2625) and the Regulation (ECI No 765/2008 of the Suropean Porliment and of the Suropean Continuent and of the Suropean Continuent (18 of 9 July 2008, 8.0) DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (AF) and International Laboratory Accreditation Coperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.usc.org ILAC: www.ilac.org ILAC: www.ilac.org IAF: www.ilac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf