

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

	Test Item							
Kind of test item:	Set Top Box							
Model name:	DIW377 ALT US							
FCC ID:	VW3DIW377							
Frequency:	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz; 5725 MHz to 5850 MHz							
Technology tested:	WLAN							
Antenna:	Two integrated antennas							
Power supply:	110 V to 127 V AC by mains							
Temperature range:	-5°C to 45°C							

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

p.o.

Michael Dorongovski
Lab Manager
Radio Communications

Test performed:

Andreas Kurzkurt **Testing Manager Radio Communications**

Table of contents 1

1	Table of	contents	2
2	General	information	4
	2.1 N	lotes and disclaimer	4
		pplication details	
		est laboratories sub-contracted	
3	Test sta	ndard/s, references and accreditations	5
4		ng statements of conformity – decision rule	
5	-	vironment	
6		m	
		eneral description	
		dditional information	
7	Descrip	tion of the test setup	8
	7.1 S	hielded semi anechoic chamber	9
		hielded fully anechoic chamber	
	7.3 R	adiated measurements > 18 GHz	11
	7.4 A	C conducted	12
	7.5 C	conducted measurements with spectrum analyzer	13
8	Sequen	ce of testing	14
	8.1 S	equence of testing radiated spurious 9 kHz to 30 MHz	14
		Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3 S	equence of testing radiated spurious 1 GHz to 18 GHz	16
	8.4 S	equence of testing radiated spurious above 18 GHz	17
9	Measur	ement uncertainty	18
10	Sur	nmary of measurement results	19
11	Ado	litional comments	20
12	Me	asurement results	27
	12.1	Identify worst case data rate	27
	12.2	Antenna gain	
	12.3	Duty cycle	
	12.4	Maximum output power	
	12.4.1	Maximum output power according to FCC requirements	
	12.5	Power spectral density	
	12.5.1	Power spectral density according to FCC requirements	
	12.6 12.7	Minimum emission bandwidth for the band 5.725-5.85 GHz Spectrum bandwidth / 26 dB bandwidth	
	12.7	Spectrum bandwidth / 26 dB bandwidth Band edge compliance radiated	
	12.8	Spurious emissions radiated below 30 MHz	
	12.9	Spurious emissions radiated 30 MHz to 1 GHz	
	12.10	Spurious emissions radiated 1 GHz to 40 GHz	
	12.12	Spurious emissions conducted < 30 MHz.	
		•	

Test report no.: 1-4095/22-01-05-A

13	Observations	.141
14	Glossary	.141
15	Document history	.142
16	Accreditation Certificate – D-PL-12076-01-05	.142

2 **General information**

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 **Application details**

2022-03-22 Date of receipt of order: Date of receipt of test item: 2022-05-10 Start of test:* 2022-07-04 End of test:* 2022-08-25 -/-

Person(s) present during the test:

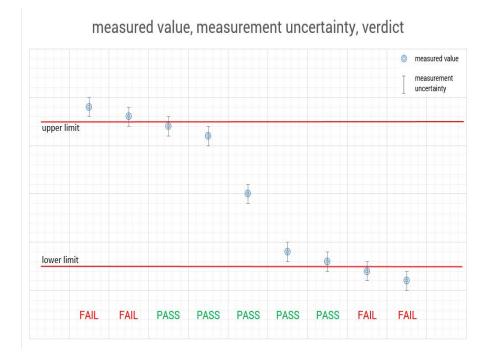
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

Test standard	Date	Description						
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						
Guidance	Version	Description						
KDB 789033 D02 ANSI C63.4-2014	v02r01 -/-	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and						
ANSI C63.10-2013	-/-	Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices						
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band						
Accreditation	Description	n						
D-PL-12076-01-05		unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf						

3 Test standard/s, references and accreditations


FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature :		T _{nom} T _{max} T _{min}	21 °C during room temperature tests No testing under extreme temperature conditions required No testing under extreme temperature conditions required
Relative humidity content :			55 %
Barometric pressure	:		Not relevant for this kind of testing
		V_{nom}	115 V AC by mains
Power supply	:	V_{max}	No testing under extreme voltage conditions required
		V_{min}	No testing under extreme voltage conditions required

6 Test item

General description 6.1

Kind of test item :	Set Top Box				
Model name :	DIW377 ALT US				
S/N serial number :	Rad. 622172052045				
S/N Senai humber	Cond. 622172052818				
Hardware status :	v1				
Software status :	3.1.8				
Firmware status :	3.1.8				
Frequency band	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to				
Frequency band :	5725 MHz; 5725 MHz to 5850 MHz				
Type of radio transmission :					
Use of frequency spectrum :	OFDM				
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM				
	24 with 20 MHz channel bandwidth				
Number of channels :	11 with 40 MHz channel bandwidth				
	5 with 80 MHz channel bandwidth				
Antenna :	Two integrated antennas				
Power supply :	110 V to 127 V AC by mains				
Temperature range :	-5°C to 45°C				

6.2 Additional information

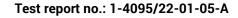
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-4095/22-01-01_AnnexA 1-4095/22-01-01_AnnexB 1-4095/22-01-01_AnnexD

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

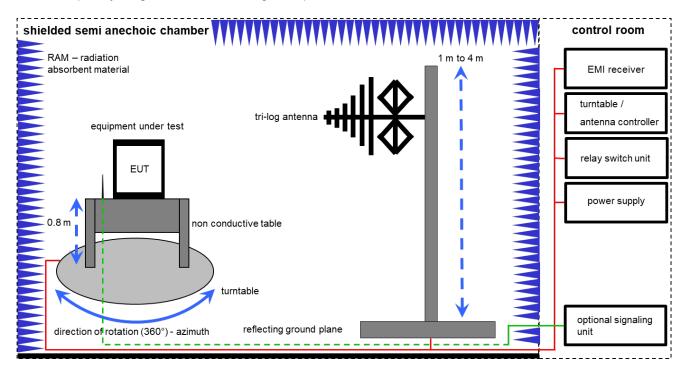
In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

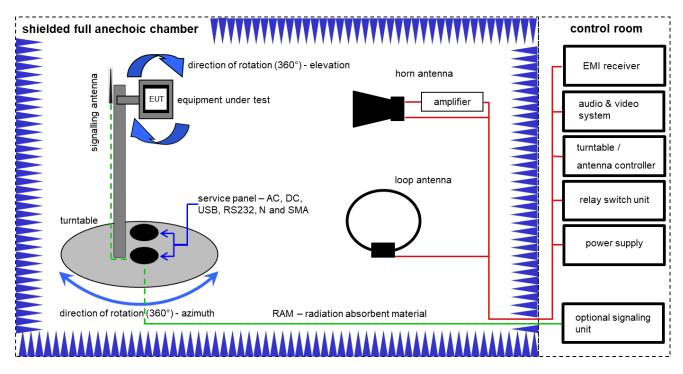
- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress


CTC | advanced

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	Batch no. 699714	300000551	ne	-/-	-/-
3	А	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	A	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vIKI!	21.04.2021	20.04.2023
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	19.05.2023

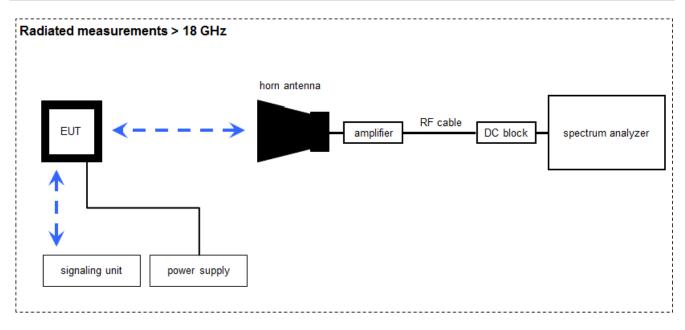
Shielded fully anechoic chamber 7.2

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

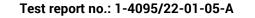

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	А	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	11.02.2022	29.02.2024
4	A	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
5	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
6	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	A	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
10	Α	PC	ExOne	F+W		300004703	ne	-/-	-/-
11	А	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
12	A	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	31.07.2023

CTC I advanced

member of RWTÜV group

7.3 Radiated measurements > 18 GHz

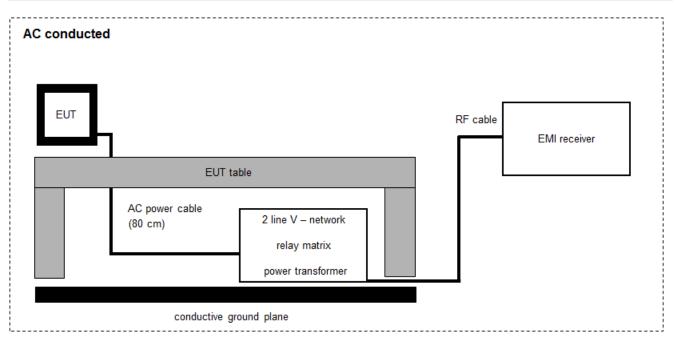
Measurement distance: horn antenna 50 cm


FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dBµV/m] (6.79 µV/m)


No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101353	300004819	k	10.12.2021	31.12.2022
2	A	Control-PC of OSP	exone Variety		060931P1302P 00109	300004869	ne	-/-	-/-
3	A	RF-Cable WLAN- Tester Vector Signal Generator	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001222	ev	-/-	-/-
4	А	DC Power Supply	HMP2020	Rohde & Schwarz	102219	300005264	k	09.12.2020	08.12.2022
5	A	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-
6	A	Rack mounted PC	Precision 3930 Rack-Workstation i5-9500 CTO	Dell	J15D873	300006115	ne	-/-	-/-
7	Α	Switch matrix	RSM 004 TS	CTC advanced	001	400001578	ev	-/-	-/-
8	A	HF-Vorverstärker 0.01 - 26 GHz	HP 83006	EMCO	3104A00499	300000211	g	-/-	-/-
9	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	8205	300002442	NK!	-/-	-/-
10	В	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
11	В	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	17.01.2022	31.01.2024

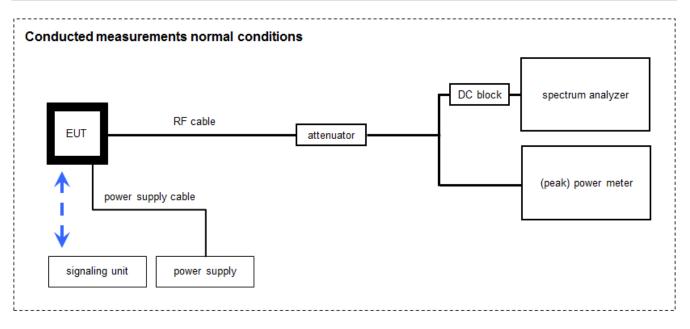
12	В	Signal- and Spectrum Analyzer 2 Hz - 50 GHz	FSW50	Rohde&Schwarz	101332	300005935	k	20.01.2022	31.01.2023

CTC I advanced

7.4 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)


Example calculation:

FS [dBµV/m] = 37.62 [dBµV/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dBµV/m] (244.06 µV/m)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKl!	14.12.2021	13.12.2023
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	08.12.2022
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	29.12.2021	28.12.2023
5	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
6	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-
7	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

7.5 Conducted measurements with spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	31.01.2023
2	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A45 23	300004589	ne	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-
5	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits		400001186	ev	-/-	-/-
6	А	Synchron Power Meter	SPM-4	CTC	1	300005580	ev	-/-	-/-
7	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty									
Test case	Uncer	rtainty							
Antenna gain	± 3 dB								
Power spectral density	± 1.56 dB								
DTS bandwidth	± 100 kHz (depends on the used RBW								
Occupied bandwidth	± 100 kHz (depends on the used RBW								
Maximum output power conducted	± 1.56 dB								
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB								
Band edge compliance radiated	± 3 dB								
	> 3.6 GHz	± 1.56 dB							
Spurious emissions conducted	> 7 GHz	± 1.56 dB							
Spurious emissions conducted	> 18 GHz	± 2.31 dB							
	≥ 40 GHz	± 2.97 dB							
Spurious emissions radiated below 30 MHz	± 3	dB							
Spurious emissions radiated 30 MHz to 1 GHz	± 3	dB							
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.	7 dB							
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.	6 dB							

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15	See table	2022-09-02	-/-

Test specification clause	Test case	С	NC	NA	NP	Remark
-/-	Output power verification (cond.)	-/-				Declared
-/-	Antenna gain		-/	/_		Declared
U-NII Part 15	Duty cycle		-/	/_		-/-
§15.407(a)	Maximum output power (conducted)	\boxtimes				-/-
§15.407(a)	Power spectral density	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 26dB bandwidth	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 99% bandwidth	-/-				-/-
§15.205	Band edge compliance radiated	\boxtimes				-/-
§15.407(b)	TX spurious emissions radiated	\boxtimes				-/-
§15.209(a)	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz	\boxtimes				-/-
§15.407	DFS	-/-				See report 1-4095_22-01-06

Notes:

C:	Compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed
----	-----------	-----	---------------	-----	----------------	-----	---------------

11 Additional comments

Reference documents:	DFS report: 1-4095_22-01-06 DIW377 UHD ALT US - WiFi test commands_V2.docx Operational Description – Antenna.pdf
Special test descriptions:	None
Configuration descriptions:	All tests were performed with both chains active. SISO modes are not supported.

Provided channels and used power settings for all modes:

a-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency										
channel	channel 36 40 44 48 52 56 60 64										
f _c / MHz	/ MHz 5180 5200 5220 5240 5260 5280 5300										
Power setting *)	54	54	54	54	55	55	55	55			

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency												
channel	100	104	108	112	116	120	124	128	132	136	140		
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700		
Power setting *)	63	63	63	63	63	63	63	63	63	63	63		

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency											
channel	149	153	157	161	165							
f _c / MHz	5745	5765	5785	5805	5825							
Power setting *)	86	86	86	86	86							

nHT20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency										
channel	channel 36 40 44 48 52 56 60 64										
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320			
Power setting *)	54	54	54	54	55	55	55	55			

	U-NII-2C (5470 MHz to 5725 MHz)											
channel number & center frequency												
channel	100	104	108	112	116	120	124	128	132	136	140	
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700	
Power setting *)	62	62	62	62	62	62	62	62	62	62	62	

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency								
channel	149	153	157	161	165			
f _c / MHz	5745	5765	5785	5805	5825			
Power setting *)	86	86	86	86	86			

© CTC advanced GmbH

acVHT20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency								
channel	36	40	44	48	52	56	60	64	
f _c / MHz	5180	5200	5220	5240	5260	5280	5300	5320	
Power setting *)									

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency										
channel	100	104	108	112	116	120	124	128	132	136	140
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700
Power setting *)	64 64 64 64 64 64 64 64 64 64 64 64 64 64										

	U-NII-3 (5725 MHz to 5850 MHz)								
channel number & center frequency									
channel	channel 149 153 157 161 165								
f _c / MHz	5745	5765	5785	5805	5825				
Power setting *)	Power 86 86 86 86 86								

axHE20-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency								
channel	channel 36 40 44 48 52 56 60 64								
f _c / MHz	f _c / MHz 5180 5200 5220 5240 5260 5280 5300 5320							5320	
Power setting *)									

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency										
channel	100	104	108	112	116	120	124	128	132	136	140
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700
Power setting *)	Power 63 63 63 63 63 63 63 63 63 63										

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency								
channel	hannel 149 153 157 161 165								
f _c / MHz	5745	5765	5785	5805	5825				
Power setting *)	86	86	86	86	86				

nHT40-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency								
channel	38 46 54 62								
f _c / MHz	5190 5230 5270 5310								
Power setting *)	Power 40 40 42 42								

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency								
channel	102 110 118 126 134							
f _c / MHz	5510 5550 5590 5630 5670							
Power setting *)	Power 51 51 51 51 51							

	U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency							
channel	el 151 159							
f _c / MHz	5755	5795						
Power setting *)	Power 86 86							

acVHT40-mode:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency								
channel									
f _c / MHz	5190 5230 5270 5310								
Power setting *)	Power 40 40 40								

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency								
channel	102 110 118 126 134								
f _c / MHz	5510 5550 5590 5630 5670								
Power setting *)	Power 51 51 51 51 51								

U-NII-3 (5725 MHz to 5850 MHz)		
channel number & center frequency		
channel 151 159		
f _c / MHz 5755 5795		
Power	86	86
setting *)	80	88

axHE40-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency							
channel	38 46 54 62						
f _c / MHz	5190	5230	5270	5310			
Power setting *)							

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency						
channel	102	102 110 118 126 134				
fc / MHz	5510 5550 5590 5630 5670					
Power setting *) 48 48 48 48 48 48						

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency				
channel 151 159				
f _c / MHz 5755 5795				
Power setting *)	86 86			

acVHT80-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency		
channel	42 58	
f _c / MHz 5210		5290
Power 41 41		

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency				
channel	channel 106 122			
f _c / MHz 5530 5610				
Power setting *)	A3 A3			

	U-NII-3 (5725 MHz to 5850 MHz)		
	channel number & center frequency		
channel	channel 155		
f _c / MHz	f _c / MHz 5775		
Power	66		
setting *)	00		

axHE80-mode:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz) channel number & center frequency				
channel	42 58			
f _c / MHz 5210		5290		
Power setting *)	3/ 40			

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency			
channel	channel 106 122		
f _c / MHz	5530	5610	
Power setting *) 46 46			

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency		
channel	channel 155	
f _c / MHz	f _c / MHz 5775	
Power	66	
setting *)	00	

*) In U-NII-1 & U-NII-2A & U-NII-2C bands the power setting have been reduced to be compliant with the radiated band edge requirement. In U-NII-3 band the power settings have been reduced to make sure all emissions are within the band for the 26dB bandwidth (Maximum frequency 5850 MHz). Test report no.: 1-4095/22-01-05-A

EUT selection:	X	Only one device available
		Devices selected by the customer
		Devices selected by the laboratory (Randomly)
Test mode:		No test mode available. Iperf is used to transmit data to a companion device
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

X

- Operating mode 1 (single antenna)
 - Equipment with 1 antenna,
 Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,
 - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
 - Operating mode 2 (multiple antennas, no beamforming)

- Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.

Operating mode 3 (multiple antennas, with beamforming)

 Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.

In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12.1 Identify worst case data rate

In further tests only the identified worst case modulation scheme or bandwidth will be measured.

Results:

OFDM – mode	Modulation scheme
a – mode	6 Mbit/s
n HT20 – mode	MCS8
ac HT20 – mode	MCS0NSS2
ax HT20 – mode	HE0NSS2
n HT40 – mode	MCS8
ac HT40 – mode	MCS0NSS2
ax HT40 – mode	HE0NSS2
ac VHT80 – mode	MCS0NSS2
ax VHT80 – mode	HE0NSS2

The worst case data rates are declared by manufacturer.

CTC I advanced

12.2 Antenna gain

Description:

The antenna gain is declared by customer. Referenced information and antenna patterns can be found in "Operational Description – Antenna.pdf".

Limits:

Antenna Gain
6 dBi / > 6 dBi output power and power density reduction required

Results:

U-NII-1 (5150 MHz to 5250 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1
Gain / dBi (declared)	1.8	1.2

U-NII-2A (5250 MHz to 5350 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1
Gain / dBi (declared)	1.8	1.2

U-NII-2C (5470 MHz to 5725 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1
Gain / dBi (declared)	2.0	0.3

U-NII-3 (5725 MHz to 5850 MHz)	Peak Antenna Gain ANT 0	Peak Antenna Gain ANT 1
Gain / dBi (declared)	2.3	0.5

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter		
According to: KDB789033 D02, B.		
	1-4095_22-01-05_Annex_MR_A_1.pdf	
	1-4095_22-01-05_Annex_MR_A_2.pdf	
	1-4095_22-01-05_Annex_MR_A_3.pdf	
	1-4095_22-01-05_Annex_MR_A_4.pdf	
External result file(a)	1-4095_22-01-05_Annex_MR_A_5.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf	
	1-4095_22-01-05_Annex_MR_A_7.pdf	
	1-4095_22-01-05_Annex_MR_A_8.pdf	
	1-4095_22-01-05_Annex_MR_A_9.pdf	
	FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	

Results:

See external result files!

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter		
According to: KDB789033 D02, E.2.e.		
	1-4095_22-01-05_Annex_MR_A_1.pdf	
	1-4095_22-01-05_Annex_MR_A_2.pdf	
	1-4095_22-01-05_Annex_MR_A_3.pdf	
	1-4095_22-01-05_Annex_MR_A_4.pdf	
External result file(a)	1-4095_22-01-05_Annex_MR_A_5.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf	
	1-4095_22-01-05_Annex_MR_A_7.pdf	
	1-4095_22-01-05_Annex_MR_A_8.pdf	
	1-4095_22-01-05_Annex_MR_A_9.pdf	
	FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	
Standard parts:	FCC: § 15.407 (a)	

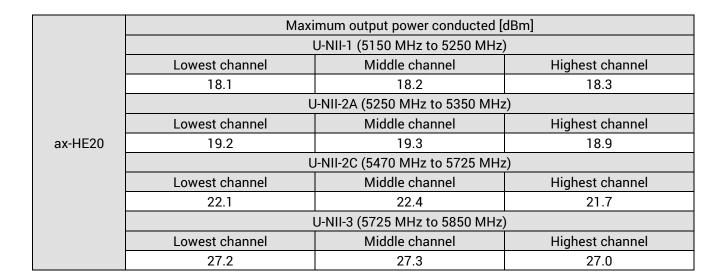
Limits:

Limits		
Radiated output power	Conducted output power	
Band 5150 M	Hz – 5250 MHz	
	For an outdoor access point: output power ≤ 1W/30dBm	
For an outdoor access point:	The maximum e.i.r.p. at any elevation angle above	
Conducted power + 6 dBi antenna gain	30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)	
For an indoor access point:		
Conducted power + 6 dBi antenna gain	For an indoor access point output power ≤ 1W/30dBm	
For fixed point-to-point access points		
Conducted power + 23 dBi antenna gain	For fixed point-to-point access points output power ≤ 1W/30dBm	
For client devices		
Conducted power + 6 dBi antenna gain	For client devices	

© CTC advanced GmbH

CTC I advanced

(If the Antenna gain is greater than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	output power ≤ 250 mW/24dBm
Band 5250MH	z – 5350 MHz
Conducted power + 6 dBi antenna gain	
(Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5470MH	z – 5725 MHz
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit)	Output power ≤ lesser of 250mW or 11dBm +10logB (B is the 26 dB emission bandwidth in megahertz)
Band 5725MH	z – 5850 MHz
Conducted power + 6 dBi antenna gain (Antenna gain higher than the Limit: 1dB reduction in the max. conducted output power for each 1 dB of antenna gain in excess of the Limit Exception: fixed point-to-point U-NII devices, no corresponding reduction in transmitter conducted power)	output power ≤ 1W/30dBm



Results: ANT1+ANT2 sum

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	19.1	18.9	19.0
	U-NII-2A (5250 MHz to 5350 MHz)		
	Lowest channel	Middle channel	Highest channel
а	20.2	20.3	20.0
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel
	21.4	21.8	21.1
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	26.6	26.7	26.4

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	19.8	19.5	19.5
	U-NII-2A (5250 MHz to 5350 MHz)		
	Lowest channel	Middle channel	Highest channel
n-HT20	20.3	20.4	19.9
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel
	21.3	21.6	21.0
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	26.8	26.9	26.6

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	19.7	19.5	19.5
	U-NII-2A (5250 MHz to 5350 MHz)		
	Lowest channel	Middle channel	Highest channel
ac-HT20	20.5	20.6	20.2
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel
	21.6	22.1	21.4
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	26.7	26.8	26.4

Results: ANT1+ANT2 sum

	Maximum output power conducted [dBm]			dBm]
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	16.3		16.3	
	U-NII-2A (5250 MHz to 5350 MHz)		2)	
	Lowest channel		Highest channel	
n HT40	17.8	17.5		17.5
	U	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle	channel	Highest channel
	19.0	19).1	18.7
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Highest of		Highest channel	
	27.6			27.6

	Maximum output power conducted [dBm]			dBm]
		U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel		Highest channel	
	16.3		16.2	
	U-NII-2A (5250 MHz to 5350 MHz)		2)	
	Lowest channel		Highest channel	
ac HT40	17.3	17.0		17.0
	U-NII-2C (5470 MHz to 5725 MHz)			2)
	Lowest channel	Middle	channel	Highest channel
	19.0	19).1	18.5
		U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel		Highest channel	
	27.6			27.6

	Maximum output power conducted [dBm]			dBm]
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	15.5			15.3
	U-NII-2A (5250 MHz to 5350 MHz)			2)
	Lowest channel		Highest channel	
ax HE40	17.2	17.0		17.0
	U-NII-2C (5470 MHz to 5725 MHz)		<u>z)</u>	
	Lowest channel	Middle	channel	Highest channel
	18.3	18	.2	17.7
	U-NII-3 (5725 MHz to 5850 MHz))
	Lowest channel	nnel Highest cha		Highest channel
	27.3	27.2		27.2

Test report no.: 1-4095/22-01-05-A

Results: ANT1+ANT2 sum

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle channel		
	16.8		
	U-NII-2A (5250 MHz to 5350 MHz)		
	Middle channel		
ac VHT80	18.1		
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	18.2	17.8	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
22.3		.3	

	Maximum output pov	ver conducted [dBm]	
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle channel		
	16.3		
	U-NII-2A (5250 MHz to 5350 MHz)		
	Middle channel		
ax HE80	18.1		
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	19.1	19.0	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
	23.3		

12.5.1 Power spectral density according to FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
According to: KDB789033 D02, F.		
	1-4095_22-01-05_Annex_MR_A_1.pdf	
	1-4095_22-01-05_Annex_MR_A_2.pdf	
	1-4095_22-01-05_Annex_MR_A_3.pdf	
	1-4095_22-01-05_Annex_MR_A_4.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_5.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf	
	1-4095_22-01-05_Annex_MR_A_7.pdf	
	1-4095_22-01-05_Annex_MR_A_8.pdf	
	1-4095_22-01-05_Annex_MR_A_9.pdf	
	FCC Part 15.407 Max Output Power and PSD	
Used test setup: See chapter 7.5 – A		
Measurement uncertainty:	See chapter 9	
Standard parts:	FCC: § 15.407 (a)	

Limits:

Power Spectral Density
Band 5150 MHz – 5250 MHz
For an outdoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band* For an indoor access point power spectral density conducted ≤ 17 dBm in any 1 MHz band* For fixed point-to-point access points power spectral density conducted ≤ 17 dBm in any 1 MHz band** For client devices point power spectral density conducted ≤ 11 dBm in any 1 MHz band*
*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi
**Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Band 5250MHz – 5350 MHz
power spectral density conducted ≤ 11 dBm in any 1 MHz band*

CTC I advanced

*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Band 5470MHz - 5725 MHz

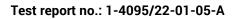
power spectral density conducted ≤ 11 dBm in any 1 MHz band*

*If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

Band 5725MHz - 5850 MHz

power spectral density conducted ≤ 30 dBm in any 500 kHz band

If transmitting antennas of directional gain greater than 6 dBi are used the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi



Results: ANT1+ANT2 sum

	Power spe	ctral density (dBm/1MHz or dBr	n/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)					
	Lowest channel Middle channel Highest c					
	8.6	7.2	7.3			
	L	J-NII-2A (5250 MHz to 5350 MHz	2)			
	Lowest channel Middle channel Highest channel					
а	a 8.5 8.6		9.5			
	U-NII-2C (5470 MHz to 5725 MHz)					
	Lowest channel	Middle channel	Highest channel			
	10.9	10.1	9.4			
		U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel Middle channel Highest channel					
	11.8	12.0	11.7			

	Power spectral density (dBm/1MHz or dBm/500kHz)				
	Lowest channel Middle channel Highest of				
	9.0 7.5				
	L	J-NII-2A (5250 MHz to 5350 MHz	2)		
	Lowest channel Middle channel Highest channel				
n-HT20	8.3	8.4 9.2			
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel	Highest channel		
	10.5	9.6	8.9		
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel Middle channel		Highest channel		
	11.7	11.9	11.6		

	Power spectral density (dBm/1MHz or dBm/500kHz)				
Lowest channel Middle channel Highest ch					
	7.5				
	U	J-NII-2A (5250 MHz to 5350 MHz	<u>;</u>)		
	Lowest channel Middle channel Highest channel				
ac-HT20	8.5	8.6	9.5		
	L	J-NII-2C (5470 MHz to 5725 MHz	:)		
	Lowest channel	Middle channel	Highest channel		
	10.9	10.0	9.4		
		U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Middle channel Highest ch				
	11.7	11.8	11.4		

	Power spectral density (dBm/1MHz or dBm/500kHz)			
		U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel	
	7.4	6.0	5.9	
	L	J-NII-2A (5250 MHz to 5350 MHz	;)	
Lowest channel Middle channel		Highest channel		
ax-HE20	6.8	6.9	6.6	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	9.8	10.1	9.4	
		U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel	
	11.8	11.9	11.6	

Results: ANT1+ANT2 sum

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	2.7			1.5
	U	I-NII-2A (5250 M	Hz to 5350 MHz	2)
	Lowest channel		Highest channel	
n HT40	3.0	3.9		3.9
	U-NII-2C (5470 M		IHz to 5725 MHz)	
	Lowest channel	Middle	channel	Highest channel
	5.3	4	.3	3.8
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	1		Highest channel
	9.6			9.8

	Power spectral density (dBm/1MHz or dBm/500kHz)				
	l	U-NII-1 (5150 Mł	Hz to 5250 MHz))	
	Lowest channel		Highest channel		
	2.7			1.4	
	U	J-NII-2A (5250 M	Hz to 5350 MHz	2)	
			Highest channel		
ac HT40			3.4		
	U-NII-2C (5470 MHz to 5725 MHz)		2)		
	Lowest channel	Middle	channel	Highest channel	
	5.3	4.	2	3.6	
	U-NII-3 (5725 MHz to 5850 MHz))	
	Lowest channel	est channel		Highest channel	
	9.6		9.7		

	Power spectral density (dBm/1MHz or dBm/500kHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	0.5		0.3		
	U	I-NII-2A (5250 M	Hz to 5350 MHz	Hz to 5350 MHz)	
	Lowest channel 2.2		Highest channel		
ax HE40			2.0		
	U	I-NII-2C (5470 M	IHz to 5725 MHz)		
	Lowest channel	Middle	channel	Highest channel	
	3.2	3.	2	2.7	
	U-NII-3 (5725 MHz to 5850 MHz) Lowest channel Highest channel				
			Highest channel		
	9.1		9.3		

Results: ANT1+ANT2 sum

	Power spectral density (dB	3m/1MHz or dBm/500kHz)		
	U-NII-1 (5150 MF	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle o	channel		
	0.	3		
	U-NII-2A (5250 M	Hz to 5350 MHz)		
	Middle channel			
ac VHT80	1.7			
	U-NII-2C (5470 M	Hz to 5725 MHz)		
	Lowest channel	Highest channel		
	1.7	0.1		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Middle channel			
	1.	6		

	Power spectral density (dB	3m/1MHz or dBm/500kHz)	
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle	channel	
	-1	.5	
	U-NII-2A (5250 M	Hz to 5350 MHz)	
	Middle channel		
ax HE80	0.3		
	U-NII-2C (5470 M	Hz to 5725 MHz)	
	Lowest channel	Highest channel	
	1.3	1.2	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
	2.	5	

12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.2.		
	1-4095_22-01-05_Annex_MR_A_1.pdf 1-4095_22-01-05_Annex_MR_A_2.pdf	
	1-4095_22-01-05_Annex_MR_A_3.pdf	
	1-4095_22-01-05_Annex_MR_A_4.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_5.pdf	
External result file(s)	1-4095_22-01-05_Annex_MR_A_6.pdf	
	1-4095_22-01-05_Annex_MR_A_7.pdf	
	1-4095_22-01-05_Annex_MR_A_8.pdf	
	1-4095_22-01-05_Annex_MR_A_9.pdf	
	FCC Part 15.407 & ISED Minimum Emission BW	
Used test setup:	See chapter 7.5 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC
The minimum 6 dB bandwidth shall be at least 500 kHz.

	6 dB emission bandwidth (MHz)				
а	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
Port 1	16.4	16.4	16.4		
Port 2	16.4				

	6 dB emission bandwidth (MHz)				
n HT20	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
Port 1	17.6	17.6	17.6		
Port 2	17.7 17.6 17.6				

	6 dB emission bandwidth (MHz)				
ac HT20	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel	Highest channel		
Port 1	17.6	17.6	17.6		
Port 2	17.6 17.6 17.6				

	6 dB emission bandwidth (MHz)				
ax HE20		U-NII-3 (5725 MHz to 5850 MHz))		
	Lowest channel	Middle channel	Highest channel		
Port 1	18.9	18.9			
Port 2	18.8 18.8 18.7				

	6 dB emission bandwidth (MHz)			
n HT40	U-NII-3 (5725 MHz to 5850 MHz)			
Lowest channel Highest		Highest channel		
Port 1	36.3	36.3		
Port 2	36.3	36.3		

	6 dB emission bandwidth (MHz) U-NII-3 (5725 MHz to 5850 MHz)			
ac HT40				
	Lowest channel	Highest channel		
Port 1	36.3	36.1		
Port 2	36.3	36.3		

6 dB emission bandwidth (MHz)				
ax HE40	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Highest channel		
Port 1	37.5	37.2		
Port 2	37.7	37.0		

	6 dB emission bandwidth (MHz)
ac VHT80	U-NII-3 (5725 MHz to 5850 MHz)
	Middle channel
Port 1	75.8
Port 2	76.4

	6 dB emission bandwidth (MHz)	
ax HE80	U-NII-3 (5725 MHz to 5850 MHz)	
	Middle channel	
Port 1	77.0	
Port 2	77.0	

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter				
According to: KDB789033 D02, C.1.				
External result file(s)	1-4095_22-01-05_Annex_MR_A_1.pdf 1-4095_22-01-05_Annex_MR_A_2.pdf 1-4095_22-01-05_Annex_MR_A_3.pdf 1-4095_22-01-05_Annex_MR_A_4.pdf 1-4095_22-01-05_Annex_MR_A_5.pdf 1-4095_22-01-05_Annex_MR_A_6.pdf 1-4095_22-01-05_Annex_MR_A_7.pdf 1-4095_22-01-05_Annex_MR_A_8.pdf 1-4095_22-01-05_Annex_MR_A_9.pdf			
Used test setup:	FCC Part 15.407 & ISED Bandwidths see chapter 7.5 – A			
Measurement uncertainty:	See chapter 9			

Limits:

Spectrum Bandwidth – 26 dB Bandwidth

IC: Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

FCC: Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

CTC I advanced

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.4	21.6		21.6	
	21.3	21	.6	21.5	
	Lowest frequency	y	H	lighest frequency	
	5169.3			5250.9	
	5169.5			5250.9	
	U	U-NII-2A (5250 MHz to 5350 MHz)			
	Lowest channel	Middle channel 21.6 21.5 U-NII-2C (5470 MHz to 5725 MHz)		Highest channel	
а	21.6			21.6	
Port 1	21.5			21.5	
Port 2	U			<u>z)</u>	
	Lowest channel	Middle channel		Highest channel	
	21.4	21.4		21.4	
	21.6	21.6		21.6	
	l	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel		Highest channel	
	45.0	45	5.0	45.0	
	44.5	44	.5	44.5	
	Lowest frequency	У	H	Highest frequency	
	5722.4			5847.5	
	5722.8		5847.3		

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	22	2.0	22.0	
	21.5	21	.9	21.8	
	Lowest frequency	y	Н	ighest frequency	
	5169.2			5251.0	
	5169.4			5251.0	
	U	-NII-2A (5250 M	Hz to 5350 MHz	:)	
	Lowest channel	Middle channel		Highest channel	
n HT20	21.9	21.9		21.9	
Port 1	21.8	21.8		21.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.8	21.8		21.8	
	22.2	22.2		22.2	
	U-NII-3 (5725 MHz to 5850 MHz)			1	
	Lowest channel	Middle channel		Highest channel	
	47.9	47.9		47.9	
	46.8	46	5.8	46.8	
	Lowest frequency	y	H	Highest frequency	
	5720.8			5720.8	
	5721.5		5721.5		

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.8	22.0		22.0	
	21.4	21	.7	21.7	
	Lowest frequency	у	Н	lighest frequency	
	5169.3			5251.0	
	5169.4			5250.9	
	U	-NII-2A (5250 M	Hz to 5350 MHz	2)	
	Lowest channel	Middle channel		Highest channel	
ac HT20	21.9	21.9		21.9	
Port 1	22.8	22.8		22.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21.7		21.7	
	22.8	22.8		22.8	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	47.8	47	7.8	47.8	
	46.3	46	5.3	46.3	
	Lowest frequency	y	H	Highest frequency	
	5721.5			5849.3	
	5721.6		5848.2		

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21	.7	21.8	
	21.5	21	.8	21.7	
	Lowest frequency	у	Н	lighest frequency	
	5169.3			5250.9	
	5169.3			5250.9	
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel	Middle channel		Highest channel	
ax HE20	21.8	21.8		21.8	
Port 1	21.6	21.6		21.6	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	21.7	21.7		21.7	
	22.6	22.6		22.6	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle channel		Highest channel	
	50.0	50.0		50.0	
	49.1	49).1	49.1	
	Lowest frequency	st frequency		Highest frequency	
	5720.0		5849.8		
	5720.0		5849.2		

 Lowest channel

 39.8

 39.3

 Lowest frequency

5706.6

	5170.1		5170.1		
	5170.4		5170.4		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel		Highest channel		
n HT40	40.1		40.1		
Port 1	39.7	39.7		39.7	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)			<u>z)</u>	
	Lowest channel	Middle	channel	Highest channel	
	39.9	39).9	39.9	
	39.6	39	9.6	39.6	
	U-NII-3 (5725 MI		Hz to 5850 MHz)		
	Lowest channel		Highest channel		
	99.9		99.9		
	96.8		96.8		
	Lowest frequency		Highest frequency		
	5705.0		5844.8		

26 dB bandwidth (MHz) U-NII-1 (5150 MHz to 5250 MHz)

Results:

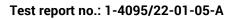
Highest channel

39.8

39.3

Highest frequency

5842.4


	26 dB bandwidth (MHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	39.8		39.8	
	39.3		39.3	
	Lowest frequency	/	Highest frequency	
	5170.1			5170.1
	5170.4		5170.4	
	U-NII-2A (5250 MHz to 5350 MHz))	
	Lowest channel		Highest channel	
ac HT40	40.4		40.4	
Port 1	39.8		39.8	
Port 2	U-NII-2C (5470 MHz to 5725 MHz)			,
	Lowest channel		channel	Highest channel
	39.8		9.8	39.8
	39.3	39.3 39.3		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel		Highest channel	
	100.0		100.0	
	97.2		97.2	
	Lowest frequency		Highest frequency	
	5705.0		5844.6	
	5706.6		5843.3	

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	40.4		40.4		
	40.1		40.1		
	Lowest frequency	y	Highest frequency		
	5169.8		5169.8		
	5170.0		5170.0		
	U-NII-2A (5250 MHz to 5350 MHz))	
	Lowest channel		Highest channel		
ax HE40	40.0		40.0		
Port 1	40.2	40.2		40.2	
Port 2	U	-NII-2C (5470 M	Hz to 5725 MHz		
	Lowest channel	Middle	channel	Highest channel	
	40.2	40	0.2	40.2	
	40.0	40.0 40.0		40.0	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel		Highest channel		
	99.9		99.9		
	97.6		97.6		
	Lowest frequency		Highest frequency		
	5705.0		5845.0		
	5705.7		5842.5		

	26 dB bandwidth (MHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle channel		
	81.4		
	81.2		
	Lowest frequency	Highest frequency	
	5169.2	5169.2	
	5169.6	5169.6	
	U-NII-2A (5250 M	Hz to 5350 MHz)	
	Middle channel		
ac VHT80	81.6		
Port 1	81.2		
Port 2	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	81.8	81.8	
	81.2	81.2	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
	104.8		
	122.0		
	Lowest frequency	Highest frequency	
	5725.4	5830.2	
	5720.2	5842.2	

	26 dB bandwidth (MHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Middle channel		
	81	.8	
	81.6		
	Lowest frequency	Highest frequency	
	5169.2	5169.2	
	5169.4	5169.4	
	U-NII-2A (5250 M	Hz to 5350 MHz)	
	Middle channel		
ax HE80	81.8		
Port 1	81.6		
Port 2	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Highest channel	
	81.8	81.8	
	81.6	81.6	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Middle channel		
	102.0		
	81.8		
	Lowest frequency	Highest frequency	
	5714.2	5816.2	
	5734.4	5816.2	

12.8 Band edge compliance radiated

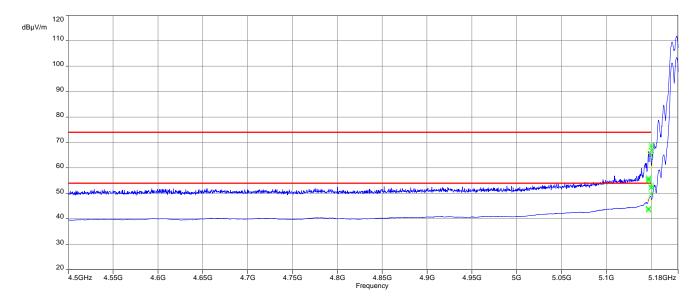
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

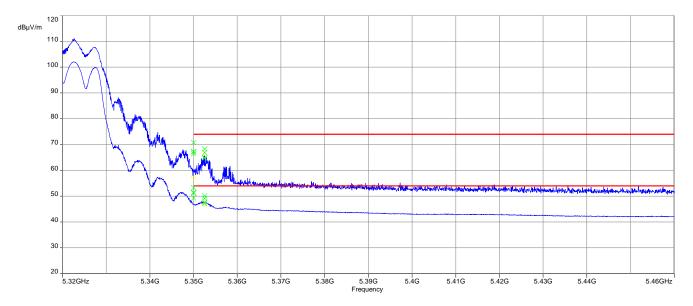
Measurement:

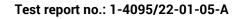
Measurement parameter			
Detector:	Peak / RMS		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 x RBW		
Span:	See plots!		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 – A		
Measurement uncertainty:	See chapter 9		

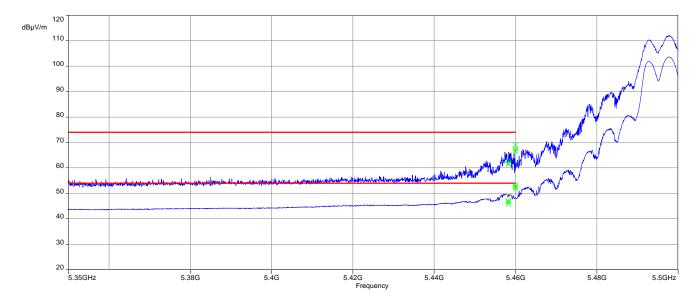
Limits:


Band Edge Compliance Radiated
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).
74 dBµV/m (peak)
54 dBµV/m (average)

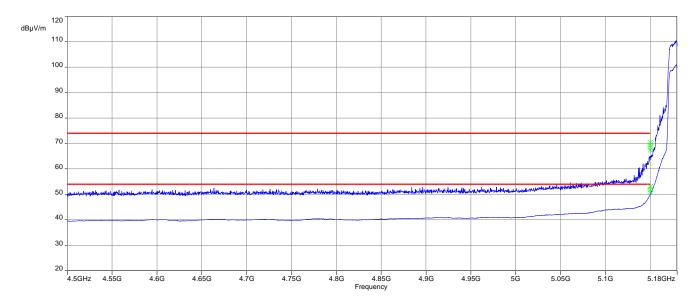
band edge compliance radiated / (dBµV / m) @ 3 m				
	lower band edge; U-NII-1;	upper band edge; U-NII-2A;	lower band edge; U-NII-2C;	
	lowest channel	highest channel	lowest channel	
a-mode	68.9 (Peak)	70.8 (Peak)	69.0 (Peak)	
	53.2 (AVG)	53.3 (AVG)	53.4 (AVG)	
n20-mode	70.4 (Peak)	69.7 (Peak)	68.5 (Peak)	
	53.0 (AVG)	53.1 (AVG)	53.1 (AVG)	
ac20-mode	69.9 (Peak)	70.2 (Peak)	69.8 (Peak)	
	53.2 (AVG)	53.5 (AVG)	53.1 (AVG)	
ax20-mode	70.4 (Peak)	70.7 (Peak)	72.6 (Peak)	
	53.8 (AVG)	53.8 (AVG)	52.5 (AVG)	
n40-mode	73.1 (Peak)	73.0 (Peak)	69.2 (Peak)	
	52.3 (AVG)	52.5 (AVG)	52.9 (AVG)	
ac40-mode	69.9 (Peak)	71.5 (Peak)	70.6 (Peak)	
	52.0 (AVG)	52.2 (AVG)	52.3 (AVG)	
ax40-mode	73.9 (Peak)	73.9 (Peak)	73.8 (Peak)	
	53.4 (AVG)	53.9 (AVG)	53.3 (AVG)	
ac80-mode	72.0 (Peak)	72.0 (Peak)	69.7 (Peak)	
	53.9 (AVG)	52.6 (AVG)	53.1 (AVG)	
ax80-mode	69.0 (Peak)	70.9 (Peak)	69.8 (Peak)	
	51.1 (AVG)	53.6 (AVG)	53.5 (AVG)	



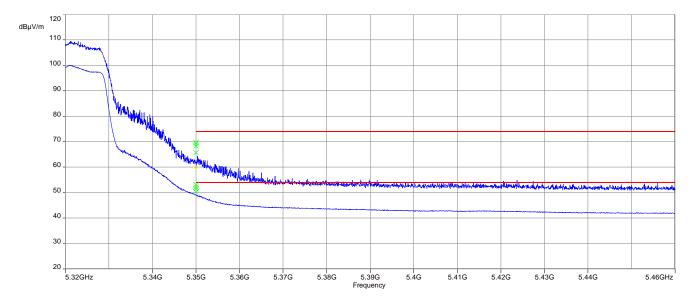

Plots: a-Mode

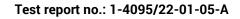

Plot 1: lower band edge; U-NII-1; lowest channel

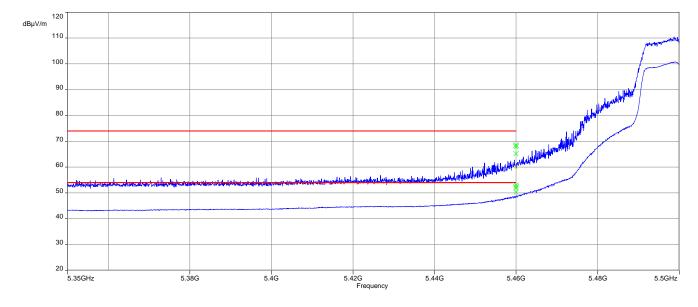
Plot 2: upper band edge; U-NII-2A; highest channel



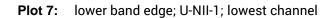
Plot 3: lower band edge; U-NII-2C; lowest channel

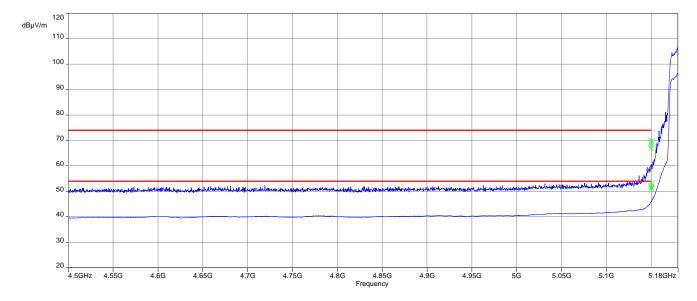



Plots: n20-Mode

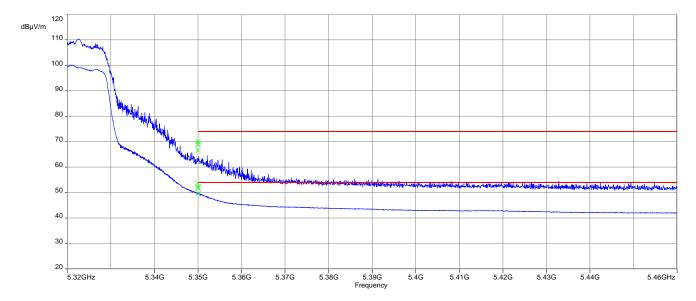

Plot 4: lower band edge; U-NII-1; lowest channel

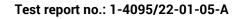
Plot 5: upper band edge; U-NII-2A; highest channel

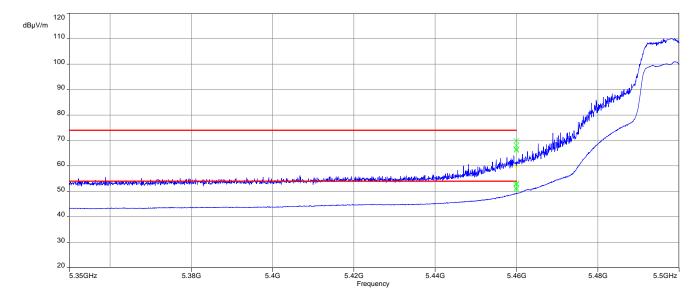




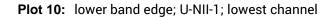
Plot 6: lower band edge; U-NII-2C; lowest channel

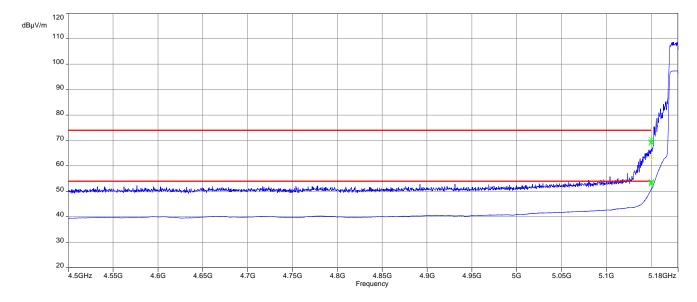



Plots: ac20-Mode

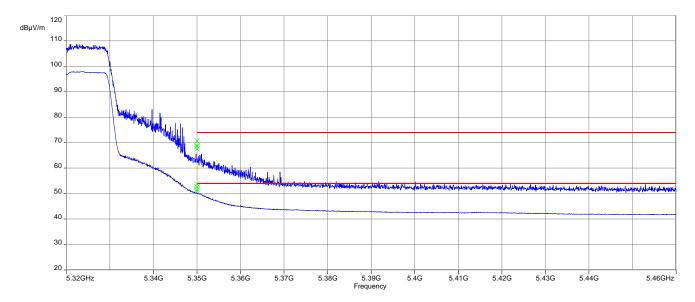


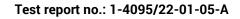
Plot 8: upper band edge; U-NII-2A; highest channel

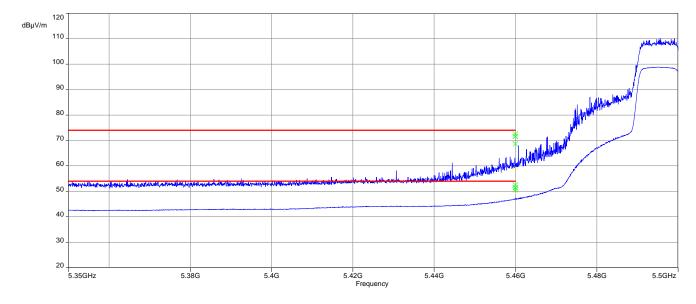




Plot 9: lower band edge; U-NII-2C; lowest channel

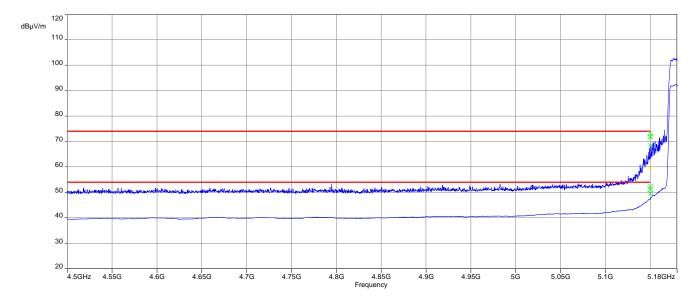



Plots: ax20-Mode

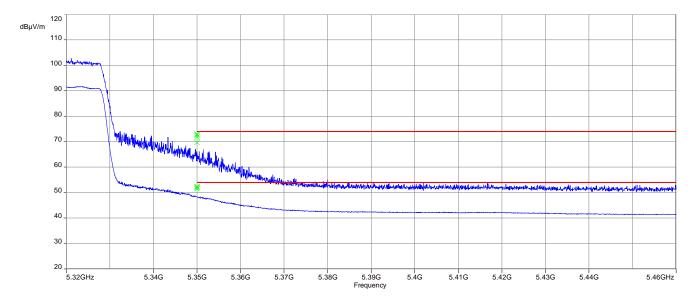


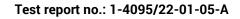
Plot 11: upper band edge; U-NII-2A; highest channel

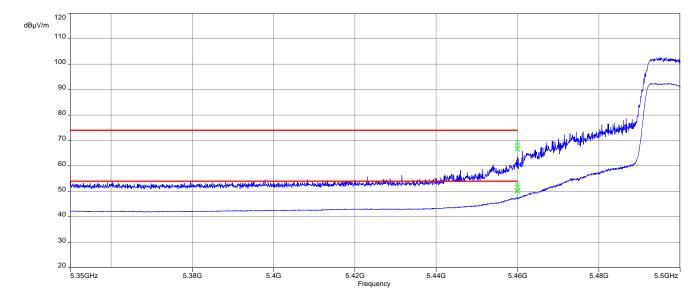




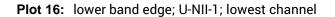
Plot 12: lower band edge; U-NII-2C; lowest channel

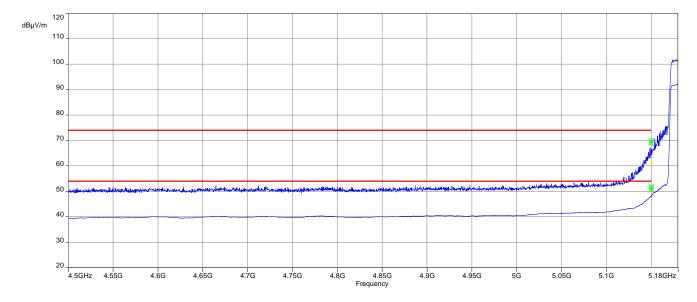



Plots: n40-Mode

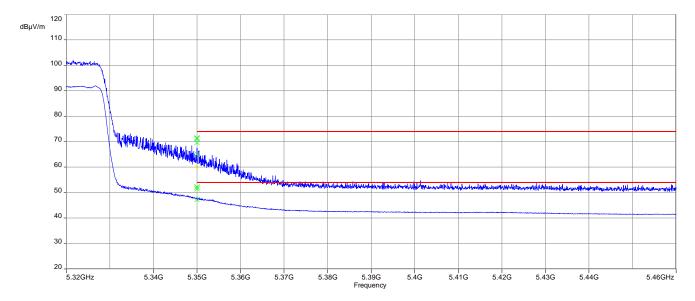


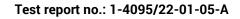
Plot 14: upper band edge; U-NII-2A; highest channel

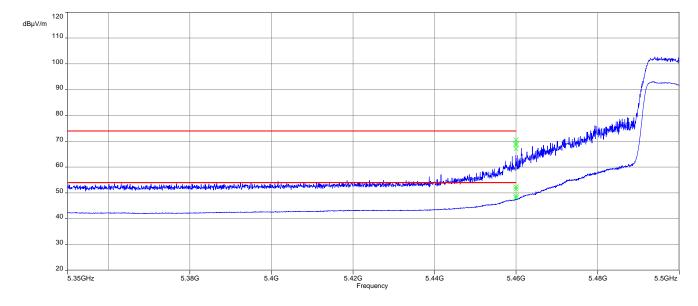




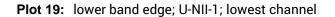
Plot 15: lower band edge; U-NII-2C; lowest channel

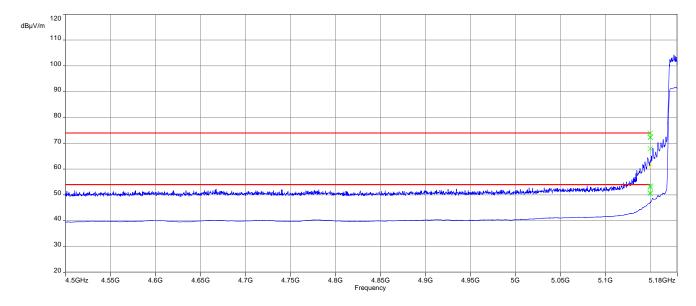



Plots: ac40-Mode

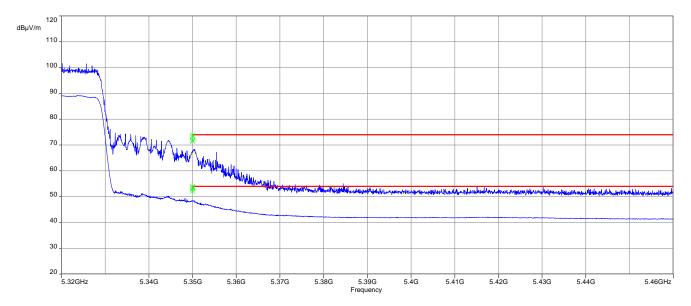


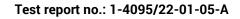
Plot 17: upper band edge; U-NII-2A; highest channel

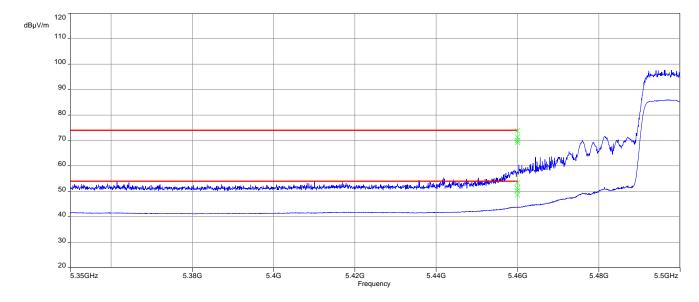




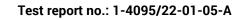
Plot 18: lower band edge; U-NII-2C; lowest channel

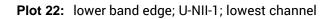


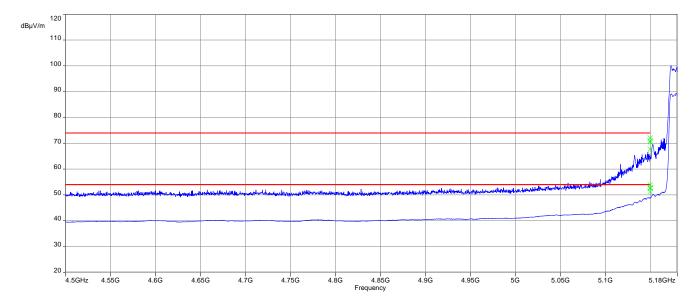

Plots: ax40-Mode

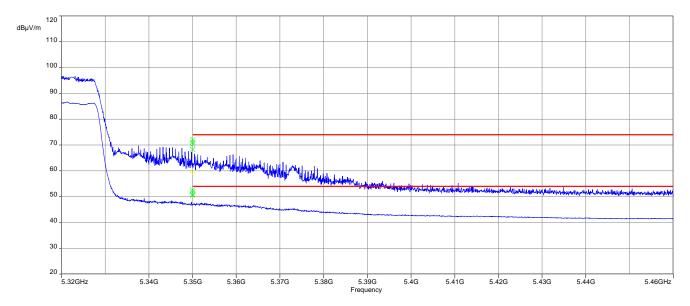


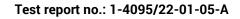
Plot 20: upper band edge; U-NII-2A; highest channel

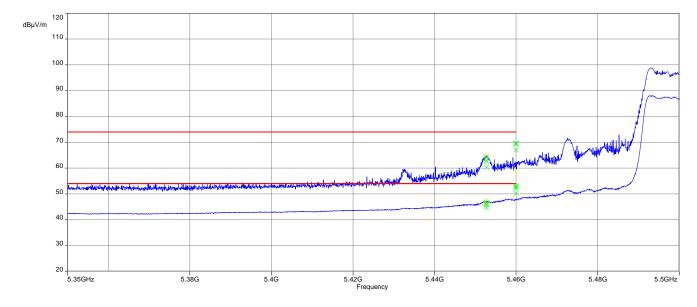




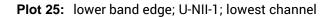

Plot 21: lower band edge; U-NII-2C; lowest channel

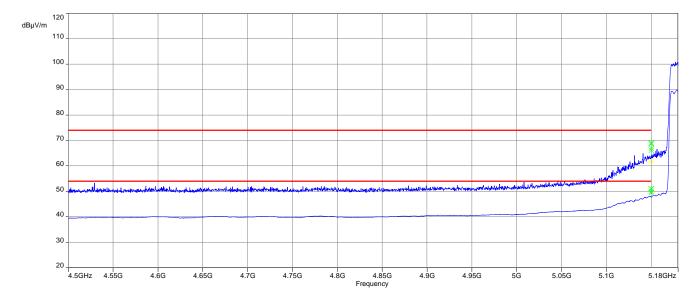



Plots: ac80-Mode

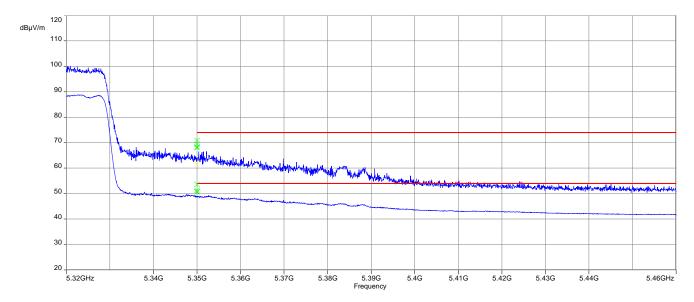


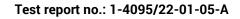
Plot 23: upper band edge; U-NII-2A; highest channel





Plot 24: lower band edge; U-NII-2C; lowest channel




Plots: ax80-Mode



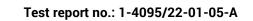
Plot 26: upper band edge; U-NII-2A; highest channel

Plot 27: lower band edge; U-NII-2C; lowest channel

12.9 Spurious emissions radiated below 30 MHz

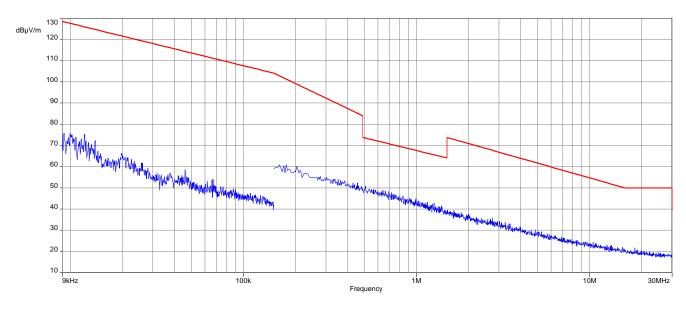
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

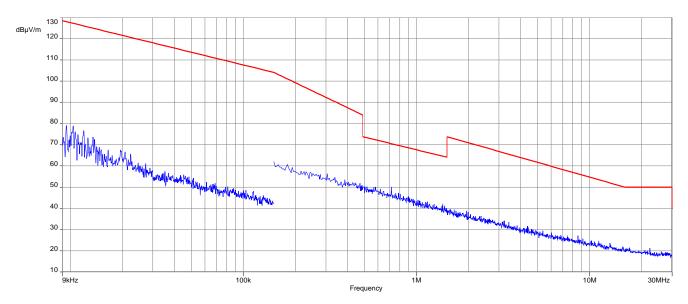

Measurement:

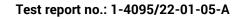
Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace mode:	Max Hold					
Test setup:	See sub clause 7.2 – A					
Measurement uncertainty:	See chapter 9					

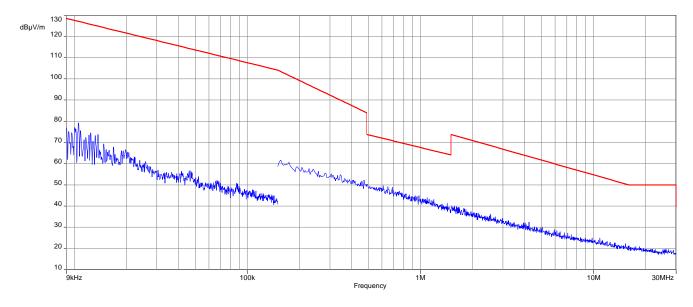
Limits:


Spurious Emissions Radiated < 30 MHz						
Frequency (MHz)Field Strength (dBµV/m)Measurement distance						
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 - 30.0	30	30				

Spurious Emissions Radiated < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							

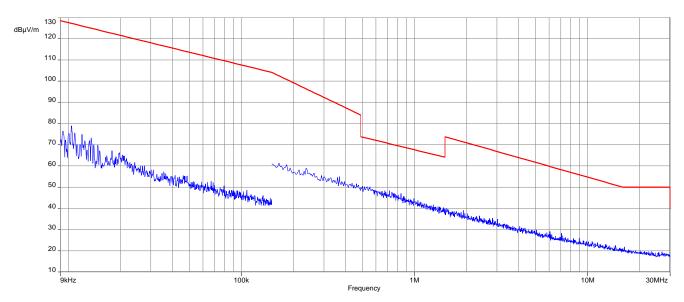


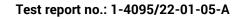

Plots: 20 MHz channel bandwidth

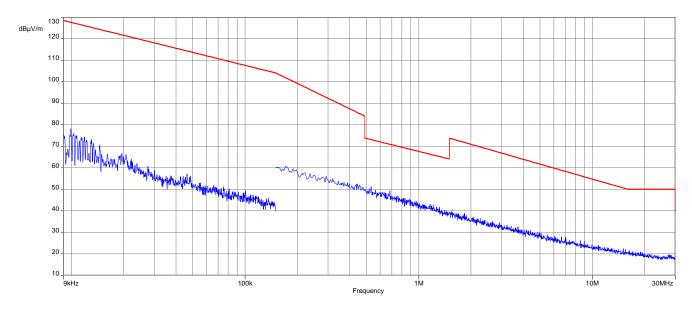


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel

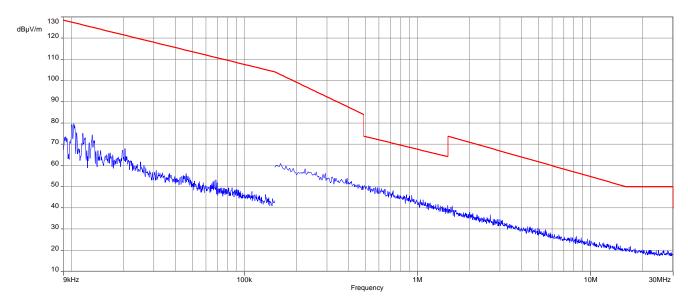


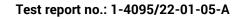


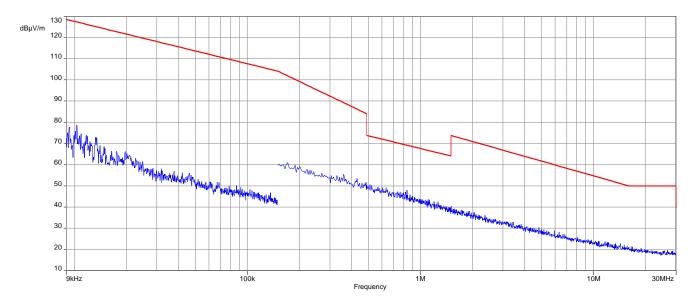


Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; lowest channel

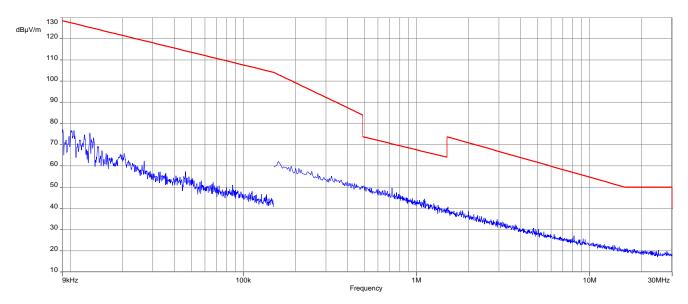


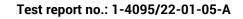


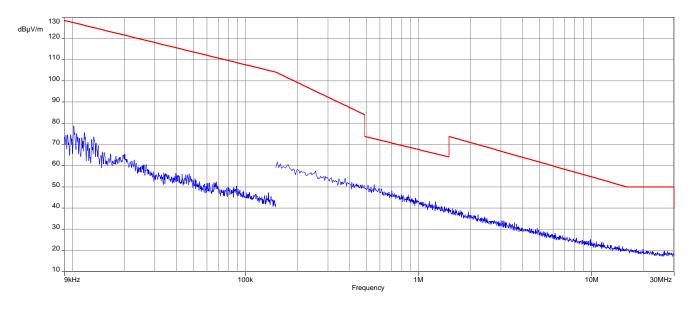


Plot 5: 9 kHz to 30 MHz, U-NII-2A; middle channel

Plot 6: 9 kHz to 30 MHz, U-NII-2A; highest channel

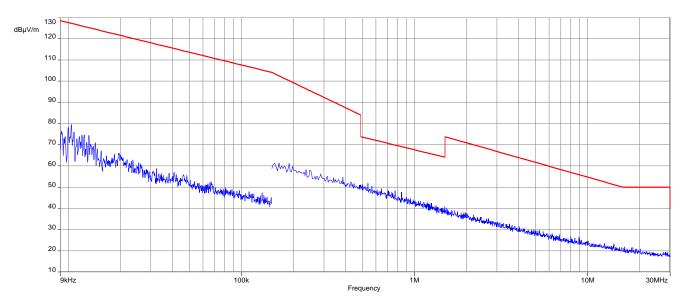


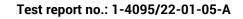


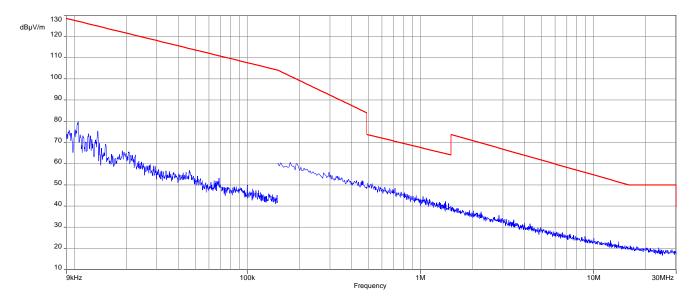


Plot 7: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 8: 9 kHz to 30 MHz, U-NII-2C; middle channel

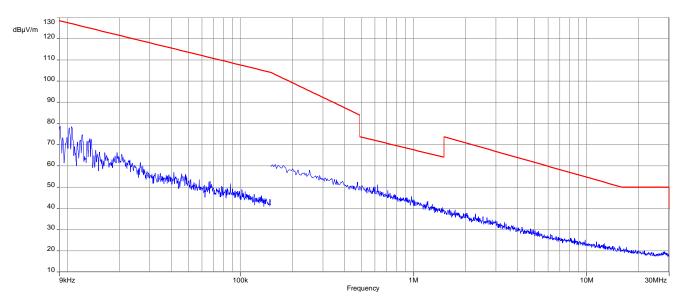


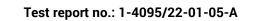




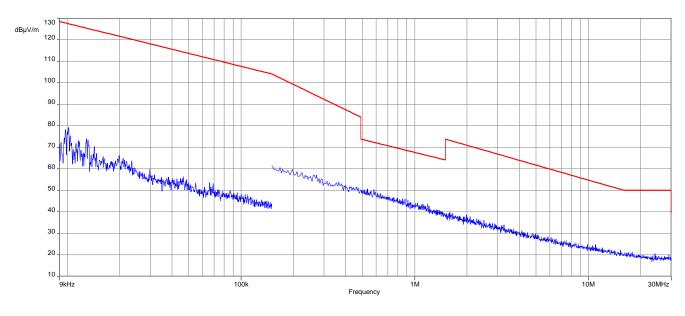
Plot 9: 9 kHz to 30 MHz, U-NII-2C; highest channel

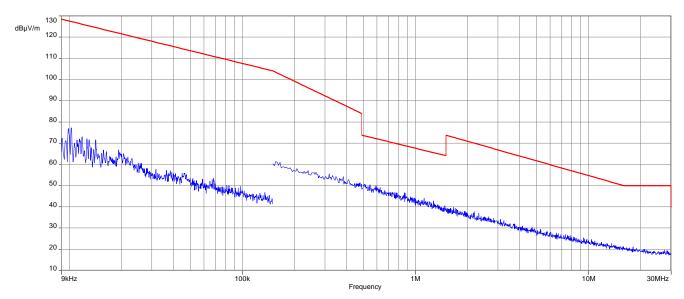
Plot 10: 9 kHz to 30 MHz, U-NII-3; lowest channel

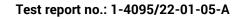


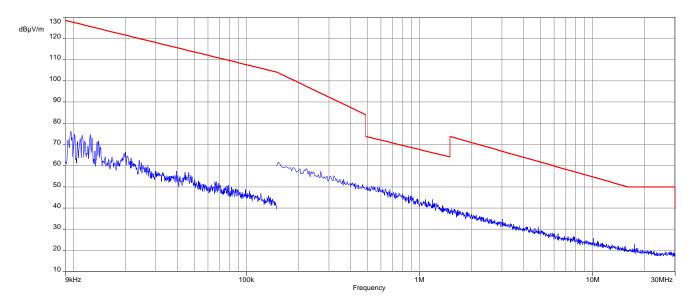


Plot 11: 9 kHz to 30 MHz, U-NII-3; middle channel


Plot 12: 9 kHz to 30 MHz, U-NII-3; highest channel

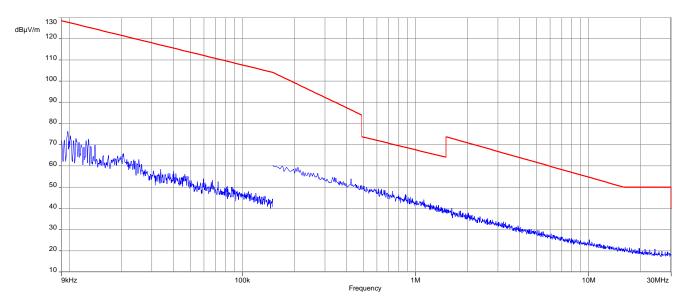


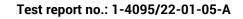

Plots: 40 MHz channel bandwidth

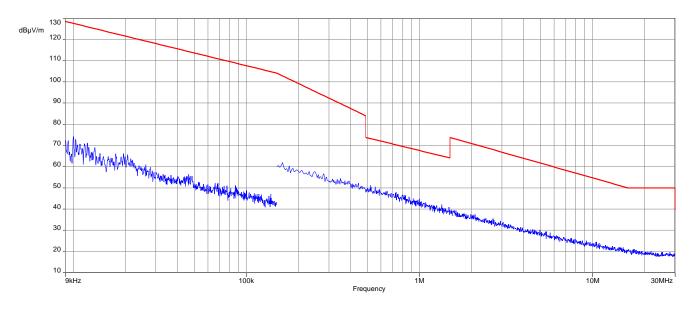


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

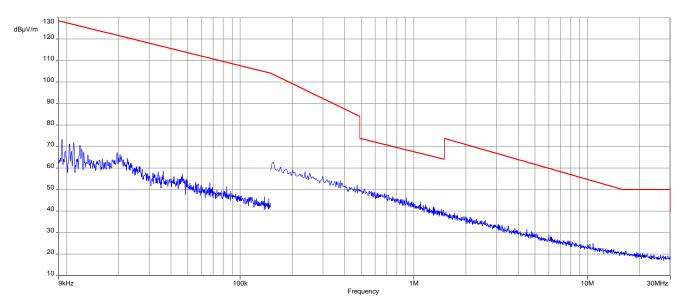


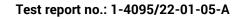


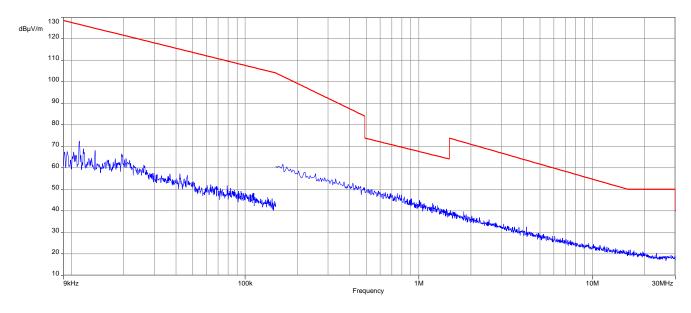


Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

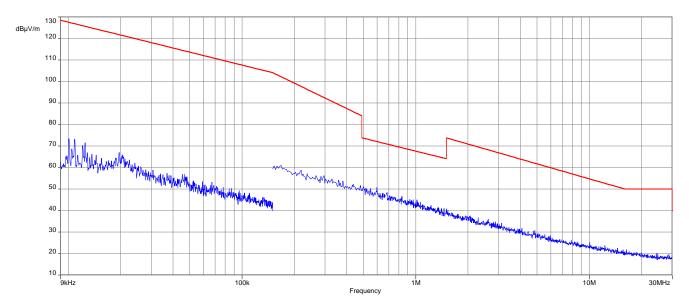


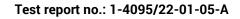


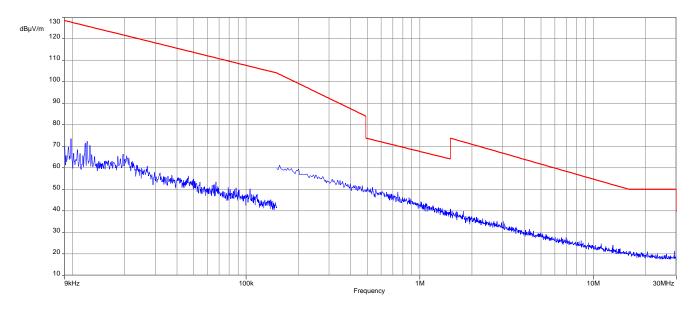


Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel

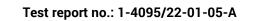
Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel

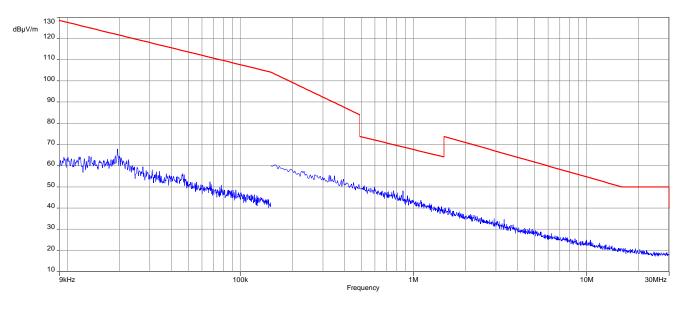




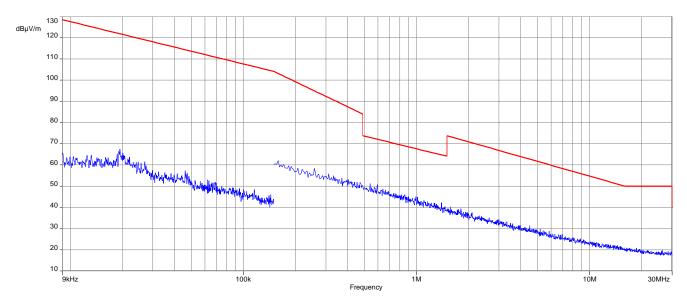

Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

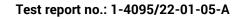
Plot 8: 9 kHz to 30 MHz, U-NII-3; lowest channel

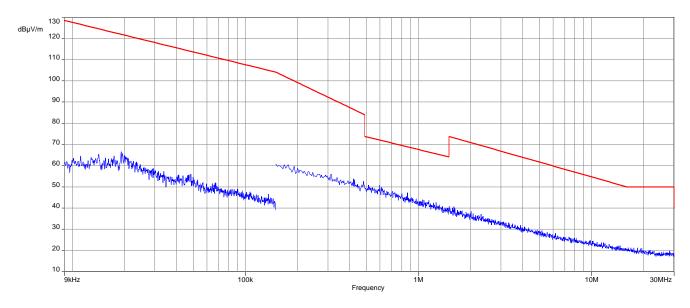




Plot 9: 9 kHz to 30 MHz, U-NII-3; highest channel

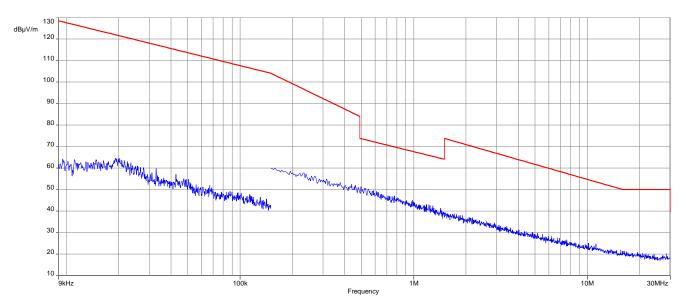


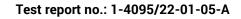

Plots: 80 MHz channel bandwidth

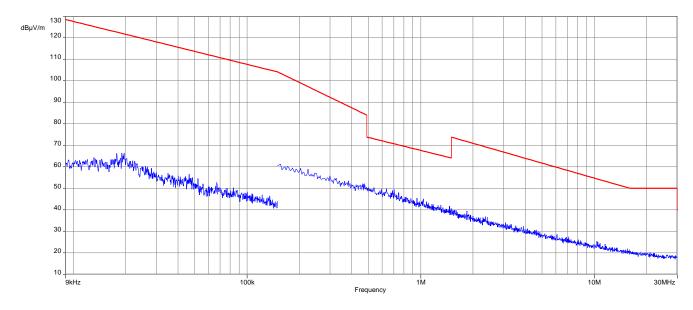


Plot 1: 9 kHz to 30 MHz, U-NII-1; middle channel

Plot 2: 9 kHz to 30 MHz, U-NII-2A; middle channel






Plot 3: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2C; highest channel

Plot 5: 9 kHz to 30 MHz, U-NII-3; middle channel

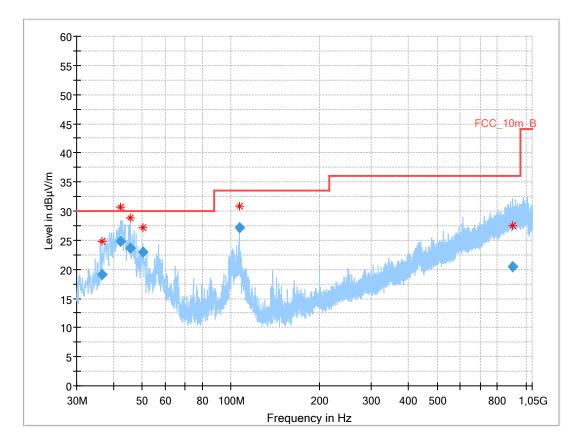
12.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

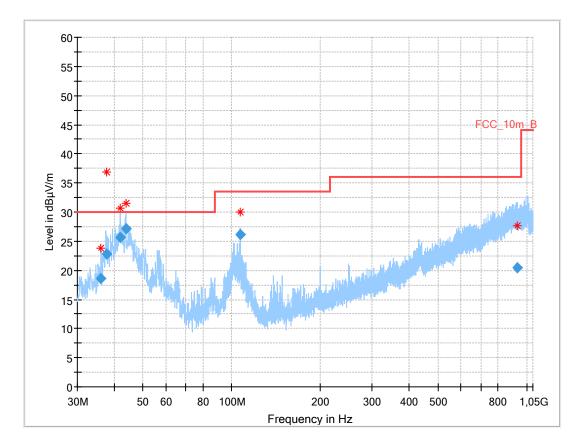
Measurement:

Measurement parameter	
Detector:	Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	120 kHz
Video bandwidth:	500 kHz
Span:	30 MHz to 1 GHz
Test setup:	See sub clause 7.1 – A
Measurement uncertainty:	See chapter 9


Limits:

TX Spurious Emissions Radiated							
§15.209							
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
30 - 88	30.0	10					
88 – 216	33.5	10					
216 - 960	36.0	10					
Above 960	54.0	3					
§15.407							
Outside the restricted bands!	-27 dBm / MHz						

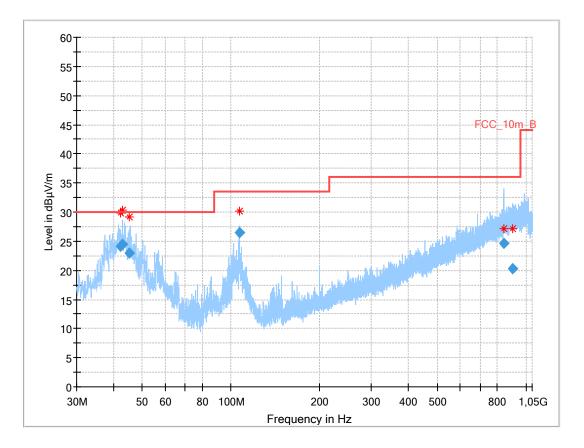
Plots: 20 MHz channel bandwidth a-mode, valid for all bands and channels of a-mode



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.650	19.10	30.0	10.9	1000	120.0	112.0	v	254	15
42.100	24.78	30.0	5.2	1000	120.0	151.0	v	90	16
45.761	23.60	30.0	6.4	1000	120.0	220.0	v	309	16
50.460	22.90	30.0	7.1	1000	120.0	100.0	V	67	16
106.682	27.09	33.5	6.4	1000	120.0	107.0	V	326	14
902.574	20.51	36.0	15.5	1000	120.0	248.0	v	0	26

Plots: 20 MHz channel bandwidth n20-mode, valid for all bands and channels of 20 MHz modes

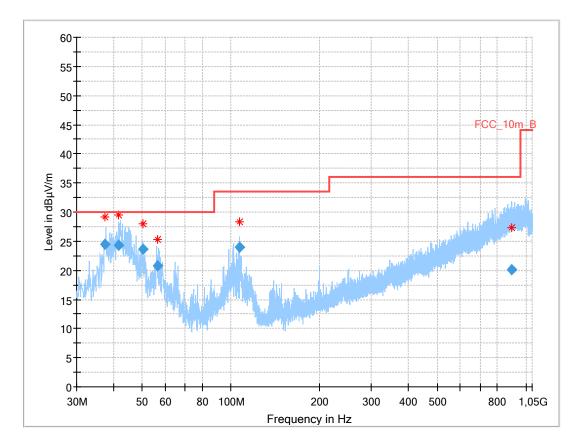
Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.125	18.57	30.0	11.4	1000	120.0	285.0	v	308	14
37.775	22.79	30.0	7.2	1000	120.0	173.0	v	307	15
42.063	25.66	30.0	4.3	1000	120.0	104.0	v	-39	16
43.798	27.08	30.0	2.9	1000	120.0	100.0	v	337	16
106.692	26.22	33.5	7.3	1000	120.0	106.0	v	309	14
931.589	20.53	36.0	15.5	1000	120.0	167.0	н	180	26

Plots: 40 MHz channel bandwidth n40-mode, valid for all bands and channels of 40 MHz modes

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.117	24.16	30.0	5.8	1000	120.0	120.0	v	258	16
42.907	24.45	30.0	5.6	1000	120.0	200.0	v	225	16
45.246	22.94	30.0	7.1	1000	120.0	200.0	v	29	16
106.688	26.56	33.5	6.9	1000	120.0	106.0	v	278	14
839.785	24.72	36.0	11.3	1000	120.0	200.0	v	225	24
902.324	20.30	36.0	15.7	1000	120.0	297.0	v	266	26

Plots: 80 MHz channel bandwidth, valid for all bands and channels of 80 MHz modes

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.526	24.44	30.0	5.6	1000	120.0	112.0	v	207	15
41.600	24.29	30.0	5.7	1000	120.0	109.0	v	250	16
50.450	23.68	30.0	6.3	1000	120.0	123.0	v	309	16
56.553	20.78	30.0	9.2	1000	120.0	159.0	v	206	16
106.701	24.05	33.5	9.5	1000	120.0	282.0	v	313	14
892.023	20.18	36.0	15.8	1000	120.0	400.0	н	87	25

12.11 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measurement parameter	
Detector:	Quasi Peak below 1 GHz (alternative Peak) Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %
Test setup:	See sub clause 7.2 – A See sub clause 7.3 – A+B
Measurement uncertainty:	See chapter 9

Limits:

TX Spurious Emissions Radiated							
§15.209							
Frequency (MHz)	Measurement distance						
Above 960	54.0	3					
	§15.407						
Outside the restricted bands!	-27 dBm / MHz						

Note: The 26GHz to 40GHz plots are valid for more than one channel and are partly identical.

Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm									
U-NII-1 (5150 MHz to 5250 MHz)										
Lowest channel			М	iddle chanr	el	Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
15540	Peak	60.0	15606	Peak	59.8	15724	Peak	60.1		
15540	AVG	50.6	15606	AVG	49.4	15/24	AVG	50.7		
For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.			For emissions above 18 GHz please take look at the plots.				

		TX Spu	urious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm		
			U-NII-2A (52	250 MHz to	5350 MHz)			
L	owest chanr	nel	М	iddle chanr	el	Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
15780	Peak	61.7	15046	Peak	59.9	15060	Peak	61.2
15780	AVG	51.7	15846	AVG	49.5	15960	AVG	51.9
	ssions abov ake look at t			sions abov ake look at t			ssions above ake look at t	

		TX Spu	irious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm		
			U-NII-2C (54	70 MHz to	5725 MHz)			
I	_owest chann	el	M	iddle chann	el	Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
11000	Peak	52.5	11200	Peak	57.1	11400	Peak	57.9
11000	AVG	43.6	11200	AVG	47.7	11400	AVG	48.9
16500	Peak	72.0	16800	Peak	67.8	17100	Peak	56.5
16500	AVG	60.6	10800	AVG	56.7	17100	AVG	68.0
For em	issions above	18 GHz	For emis	sions above	e 18 GHz	For emis	ssions above	e 18 GHz
please	take look at th	ne plots.	please ta	ke look at t	he plots.	please ta	ake look at t	he plots.

		TX Spi	urious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm			
			U-NII-3 (57	25 MHz to 5	5850 MHz)				
L	Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
11488	Peak	60.1	11572	Peak	60.8	11650	Peak	60.9	
11466	AVG	52.2	11572	AVG	52.3	11652	AVG	52.4	
17230	Peak	68.3	17355	Peak	68.6	17475	Peak	68.6	
17230	AVG	57.6	17355	AVG	57.2	17475	AVG	57.6	
For emi	ssions abov	e 18 GHz	For emis	sions abov	e 18 GHz	For emis	ssions above	e 18 GHz	
please t	ake look at t	he plots.	please ta	ake look at t	he plots.	please ta	ake look at t	he plots.	

Results: 40 MHz channel bandwidth

	TX S	purious Emissions F	Radiated [dBµV/m] /	dBm		
		U-NII-1 (5150 MI	Hz to 5250 MHz)			
	Lowest channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
15580	Peak	59.3	15680	Peak	56.9	
15560	AVG	50.7	10000	AVG	48.6	
For emissions a	•	se take look at the	For emissions above 18 GHz please take look at the			
	plots.			plots.		

		TX Spu	urious Emissions Radiated [dBµV/m] ,	/ dBm		
			U-NII-2A (5250 MHz to 5350 MHz)			
L	owest chanr	nel		Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]
15900	Peak	57.4		15026	Peak	56.0
15800	AVG	49.5		15936	AVG	47.6
For emi	ssions abov	e 18 GHz		For emis	ssions above	e 18 GHz
please t	ake look at t	he plots.		please ta	ake look at t	he plots.

		TX Spu	urious Emissi	ons Radiate	ed [dBµV/m] ,	/ dBm		
			U-NII-2C (54	170 MHz to	5725 MHz)			
L	owest chanr	nel	М	iddle chanr	el	Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
-/-	Peak	-/-	11172	Peak	51.9	11338	Peak	55.7
-/-	AVG	-/-	11172	AVG	42.3	11330	AVG	46.5
	ssions abov ake look at t			sions abov ake look at t			ssions above ake look at t	

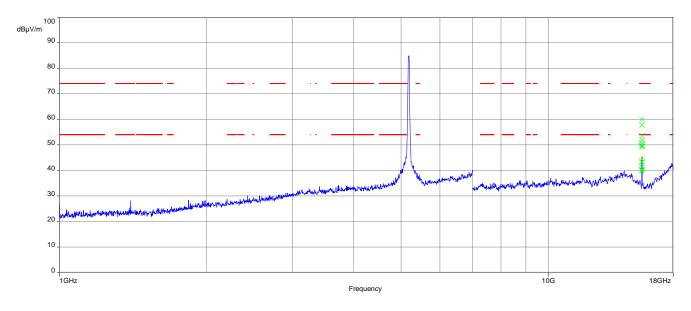
		TX Spι	urious Emissions Radiated [dBµV/m] ,	/ dBm		
			U-NII-3 (5725 MHz to 5850 MHz)			
L	owest chanr	nel		Hi	ighest chanr	nel
F [MHz]	Detector	Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]
11400	Peak	54.8		11500	Peak	52.5
11498	AVG	45.6		11590	AVG	61.2
	ssions abov ake look at t				ssions above ake look at t	

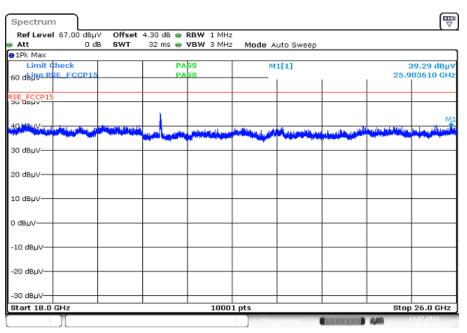
Results: 80 MHz channel bandwidth

TX Sp	TX Spurious Emissions Radiated [dBµV/m] / dBm						
	U-NII-1 (5150 MHz to 5250 MHz)						
	Middle channel						
F [MHz]	Detector	Level [dBµV/m]					
15618	Peak	54.8					
15018	AVG	45.1					
For emiss	ions above 18 GHz please take look a	t the plots.					

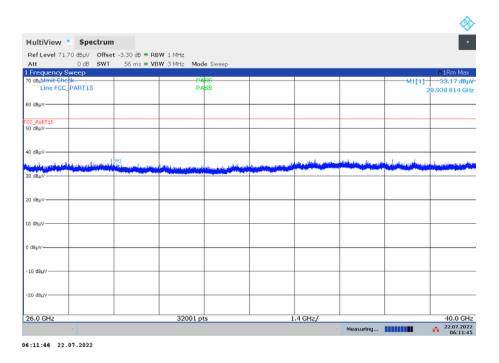
TX Sp	urious Emissions Radiated [dBµV/m]	/ dBm
	U-NII-2A (5250 MHz to 5350 MHz)	
	Middle channel	
F [MHz]	Detector	Level [dBµV/m]
,	Peak	-/-
-/	AVG	-/-
For emissi	ons above 18 GHz please take look a	t the plots.

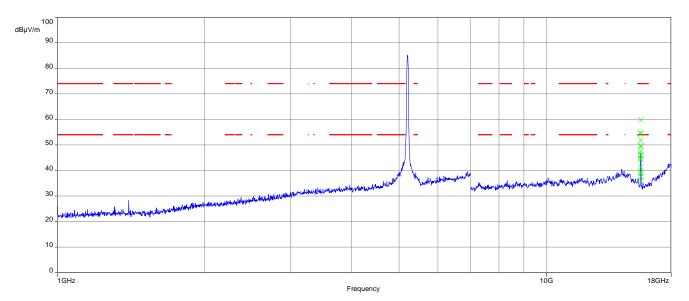
	TX Sp	urious Emissions F	Radiated [dBµV/m]	/ dBm			
	U-NII-2C (5470 MHz to 5725 MHz)						
	Lowest channel			Highest channel			
,	Peak	-/-	11000	Peak	50.4		
-/-	AVG	-/-	11238	AVG	39.1		
For emissions at	oove 18 GHz please	e take look at the	For emissions ab	oove 18 GHz please	e take look at the		
	plots.			plots.			

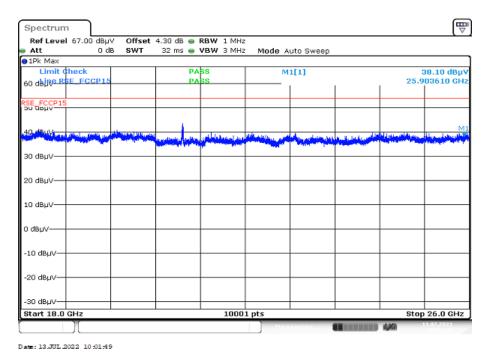

TX Sp	urious Emissions Radiated [dBµV/m]	/ dBm			
	U-NII-3 (5725 MHz to 5850 MHz)				
	Middle channel				
F [MHz]	Detector	Level [dBµV/m]			
11570	Peak	53.1			
11570	AVG	43.0			
For emissi	ons above 18 GHz please take look a	t the plots.			



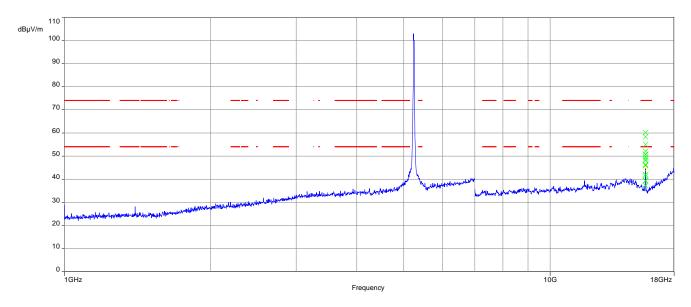
Plots: 20 MHz channel bandwidth


Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

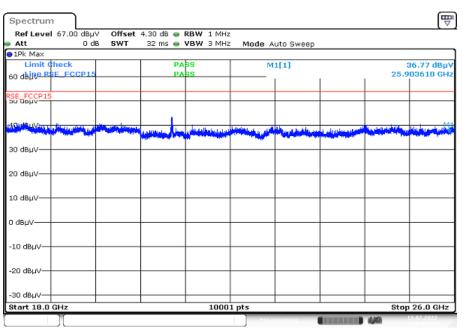

Date: 13.JUL 2022 10:00:22


Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

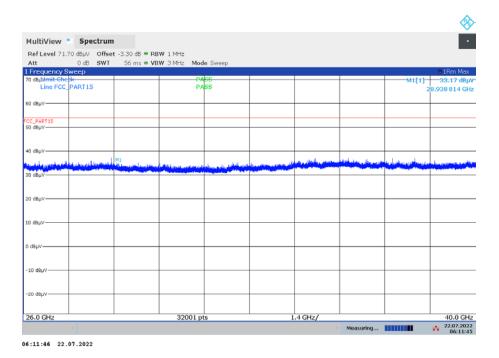


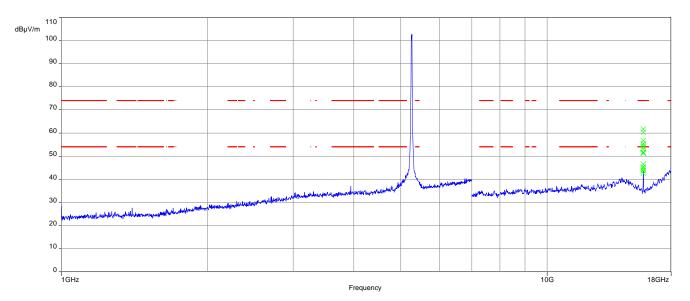
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; middle channel


Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; middle channel

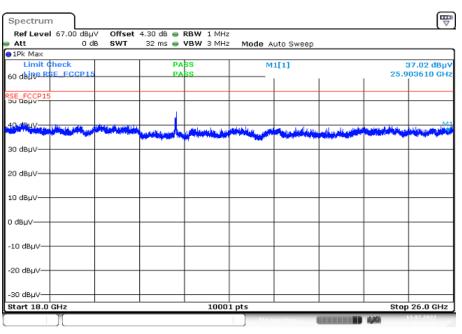
Ref level 71.70	Spectrum	dB DBW 1 MH-					
		ms = VBW 3 MHz	Mode Sweep				
Frequency Swe	ep:						01Rm Ma
0 dB ₄ Mmit Gheek			PASS			M1[1]	33.17 dB
Line FCC_PA	RT15		PASS				28.938 814 G
0 dBuV							
C_PART15							
0 dBµV							
0 dBµV				 			
بعاقب ليتر الدار	M1 M1	ali in tarri i		 سجينين بالعاني وتبا	مربيه والروي والملاطع	بايروطعين ويعققوان	-
0 dBuV					and the second s		1
o depr							
0 dBµV							
0 d8µV				 			-
0 d8µV							
0 d8µv							
d8µV							
d8µV							
d8µv							
d8µv			D1 pts	4 GHz/			40.0 G

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

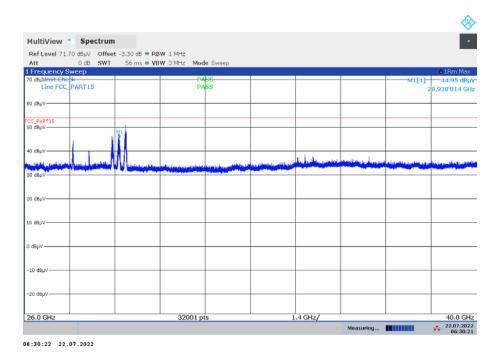

Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel

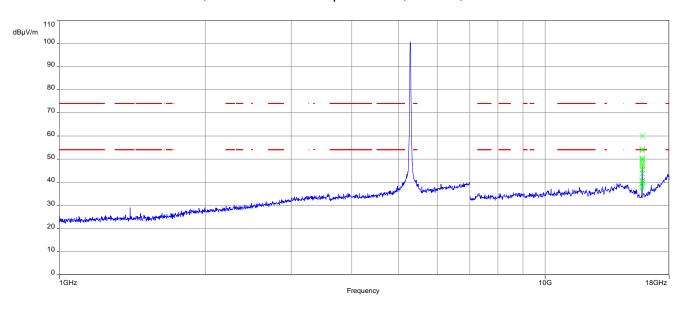

Date: 13.JUL 2022 10:03:04

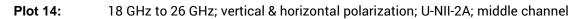
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel

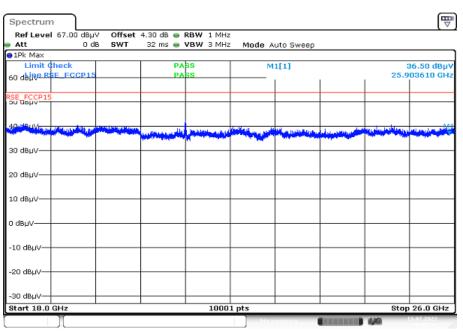


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

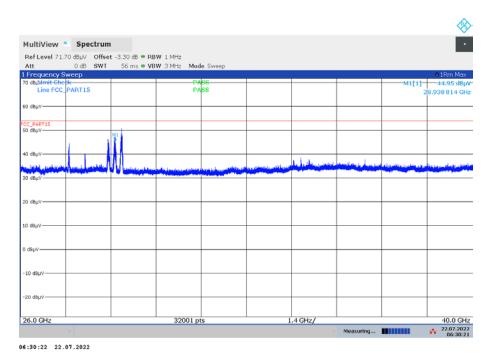


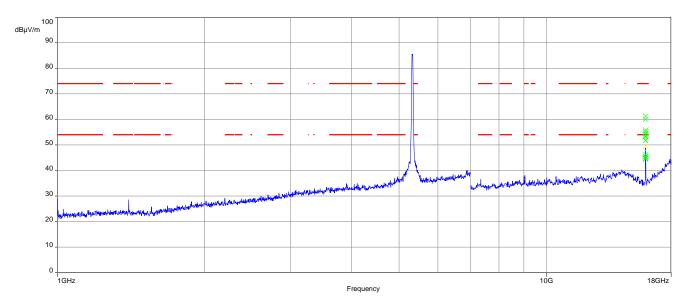

Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel


Date: 13.JUL 2022 10:04:49

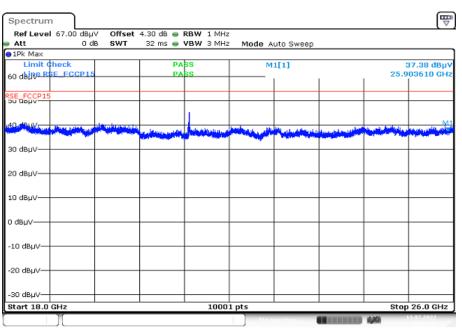

Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

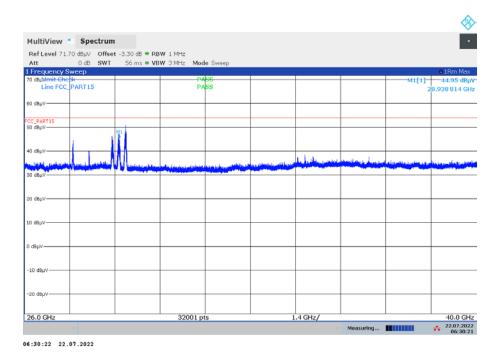



Date: 13.JUL 2022 10:06:33

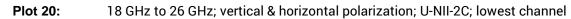
Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

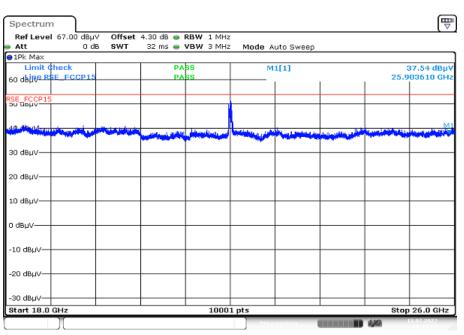


Plot 16: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

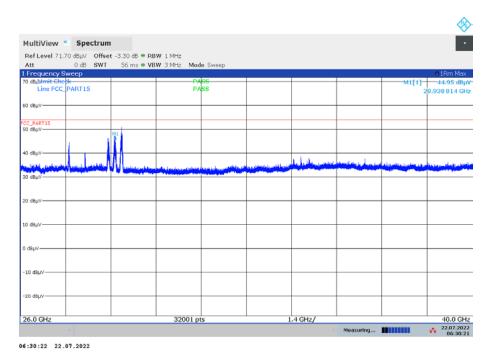


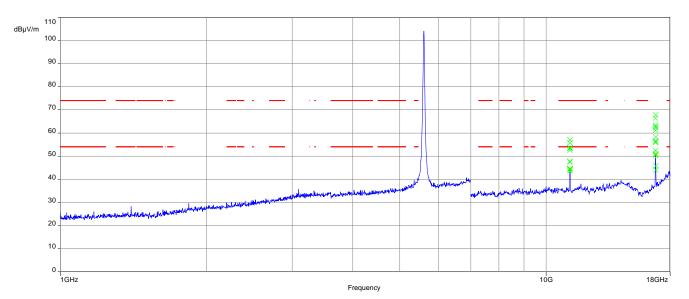
Plot 17: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


Date: 13.JUL 2022 10:07:50


Plot 18: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

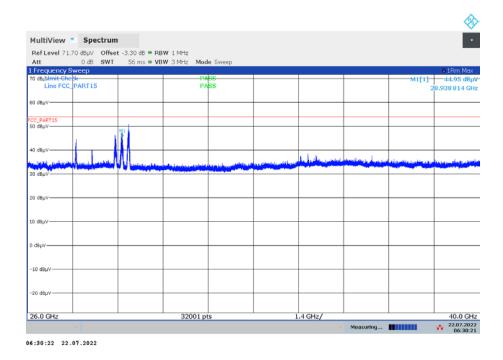
Plot 19: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

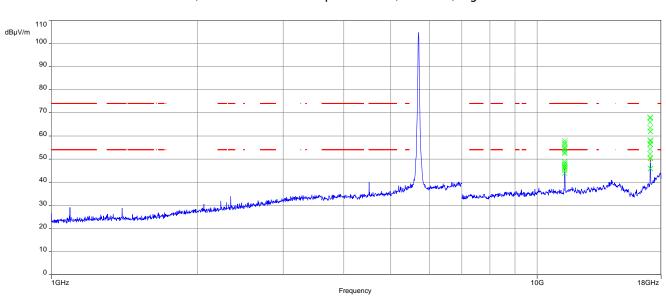



Date: 13.JUL 2022 10:11:28

Plot 21: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

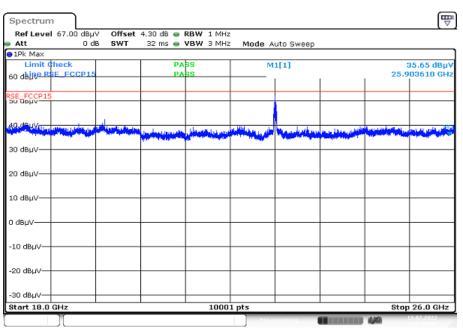
Plot 22: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel





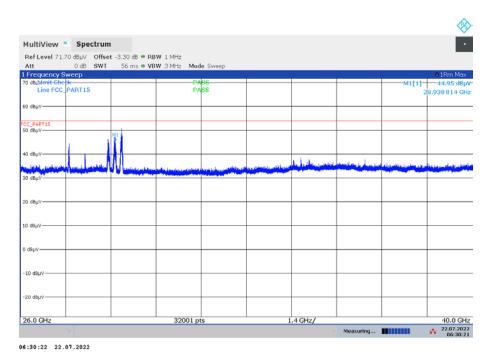
₽ Spectrum Ref Level 67.00 dBµ∨ Offset 4.30 dB 👄 RBW 1 MHz Att SWT 32 ms 👄 VBW 3 MHz Mode Auto Sweep 0 dB 1Pk Max Limit Check PASS M1[1] 37.77 dBµV 25.903610 GH PASS SU UBUV UV 30 dBuV-20 dBµV-10 dBµV-0 dBµV--10 dBµV--20 dBµV--30 dBuV-Stop 26.0 GHz 10001 pts Start 18.0 GHz Date: 13.JUL.2022 10:24:40

Plot 23: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

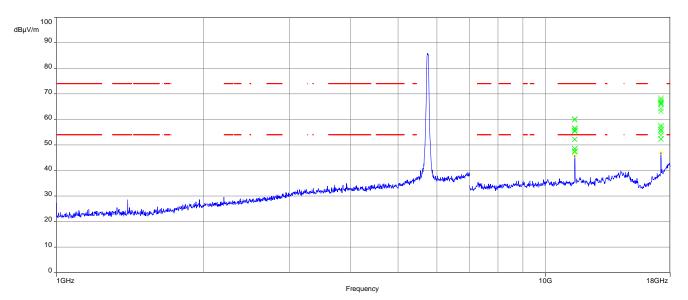

Plot 24: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

Plot 25: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

Plot 26: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; highest channel



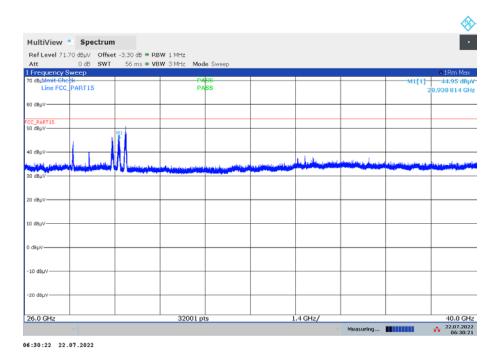
Date: 13.JUL 2022 10:26:01

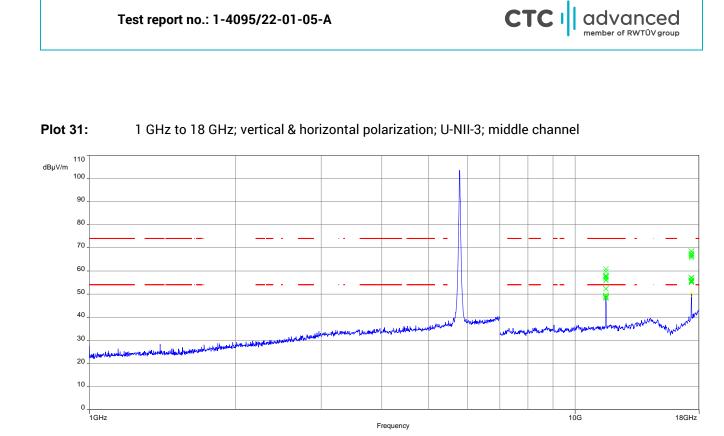

CTC I advanced

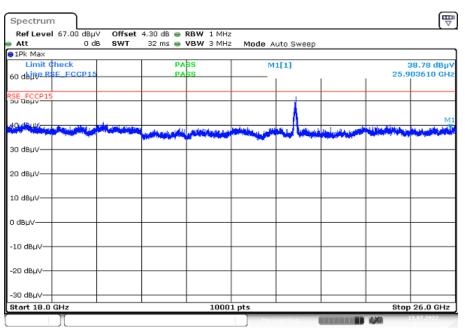
Plot 27: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel



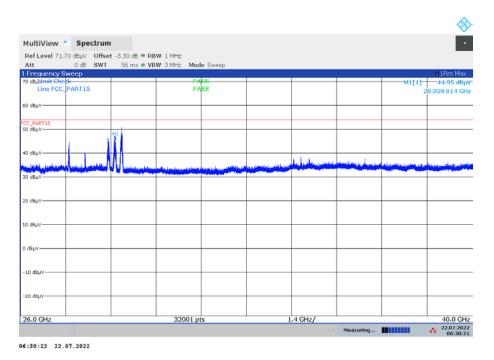
Plot 28: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

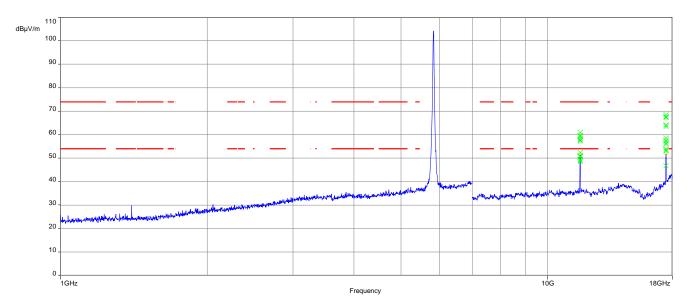



Plot 29: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

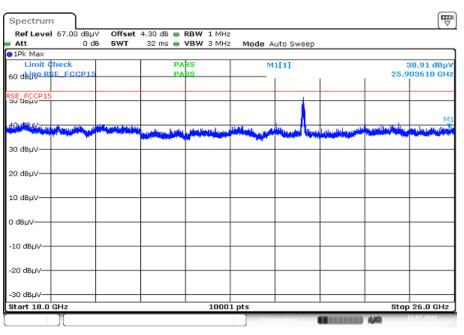

Date: 13.JUL 2022 10:28:37

Plot 30: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

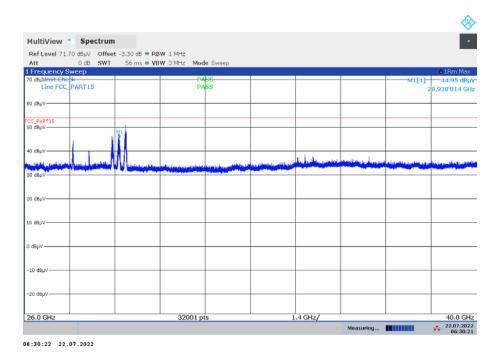

Plot 32: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; middle channel


Date: 13.JUL 2022 10:24:39

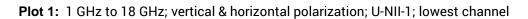
Plot 33: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel

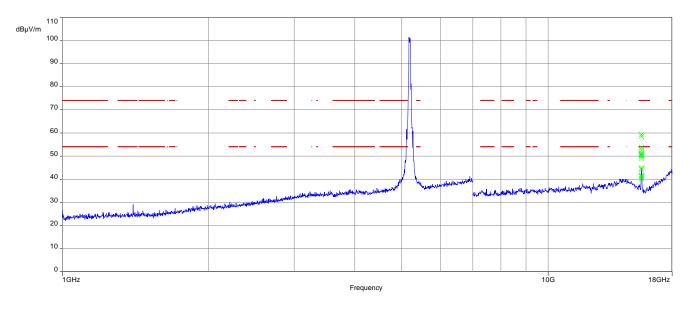


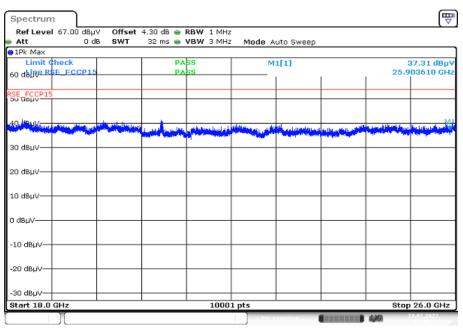
Plot 34: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel



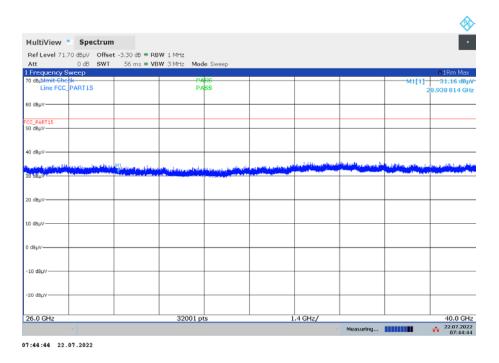
Plot 35: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel

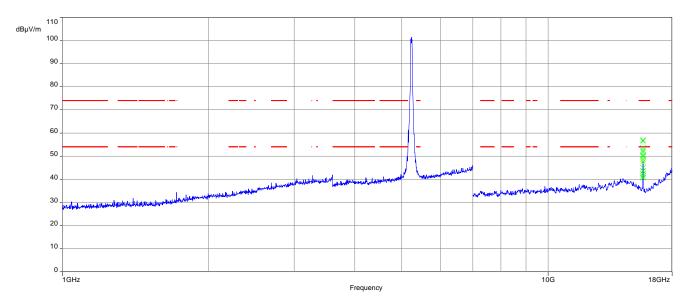

Date: 13.JUL 2022 10:38:47

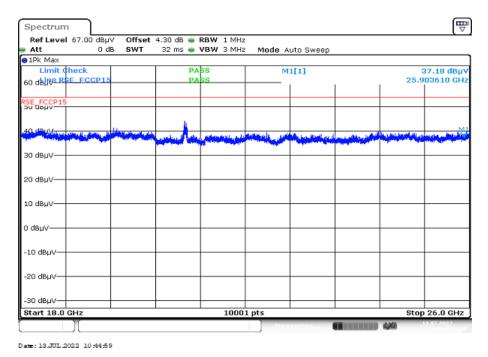

Plot 36: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel


Test report no.: 1-4095/22-01-05-A

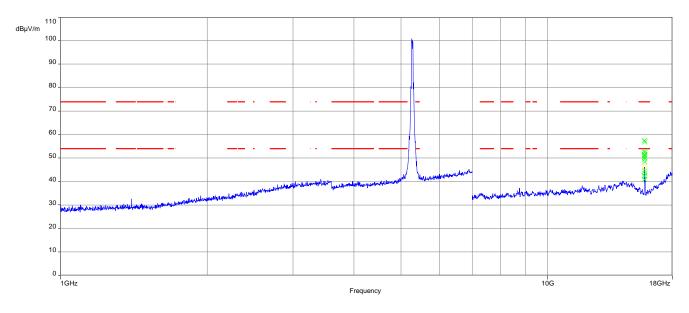
Plots: 40 MHz channel bandwidth


Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Date: 13.JUL 2022 10:43:35

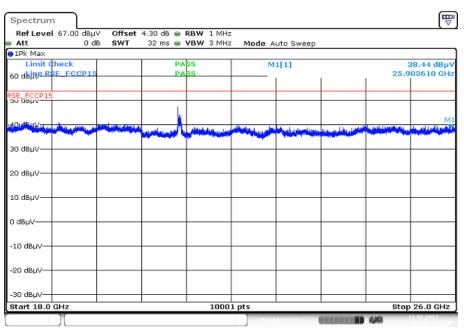

Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel



Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel

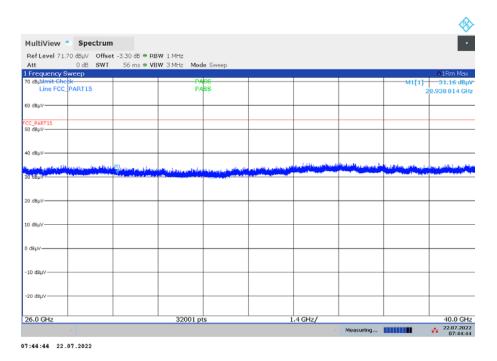
Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel


⊗ MultiView Spectrum
 Ref Level 71.70
 dBµV
 Offset -3.30
 dB ● RBW 1 MHz

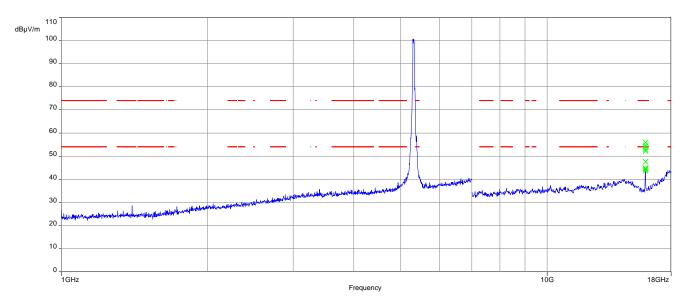
 Att
 0 dB
 SWT
 56 ms ● VBW 3 MHz
 Mode Sweep 1 Frequency St weep 41[1] Line FCC PART15 938 814 GHz 60 dBµV SO dBuV 40 dBµV SO UBU 20 dBu 10 d8µ 0 dBµN -10 dBµV -20 dBµV 26.0 GHz 32001 pts 1.4 GHz/ 40.0 GHz + 22.07.2022 07:44:44 07:44:44 22.07.2022

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

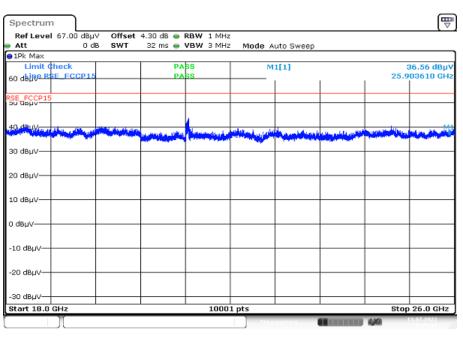
Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel



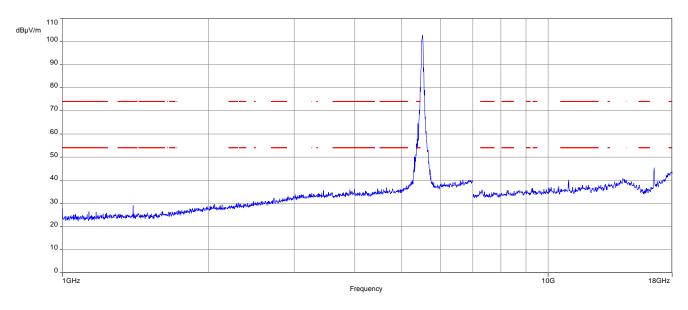
Date: 13.JUL 2022 10:47:36


CTC I advanced

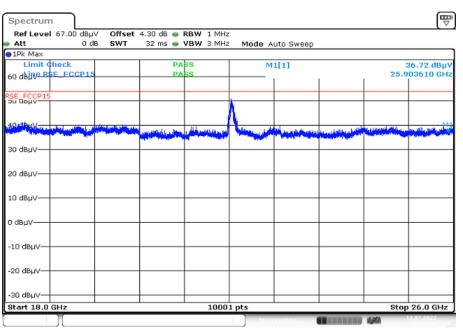
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel



Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel


Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

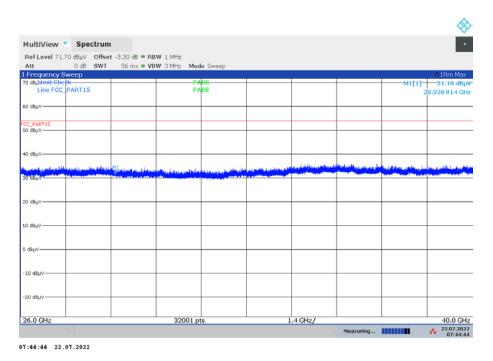
Date: 13.JUL 2022 10:49:13


Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

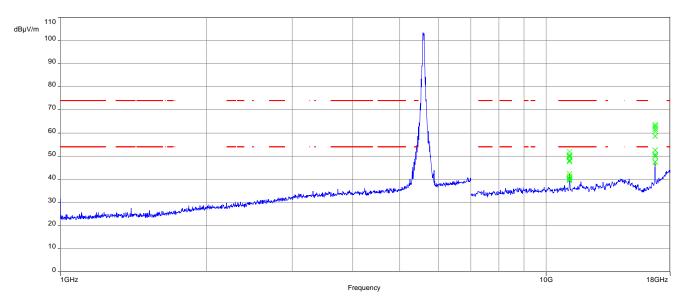
	Spectrum	RRW 1 MHz				
		VBW 3 MHz Mode Sweep				
Frequency Swee	p					01Rm M
0 dBµMimit Gheck		PASS			M1[1]	-31.16 d
Line FCC_PAR	.715	PASS			24	3.938 814 (
) dBµV						
C_PART15						
) dBµV						
) dBµV						
	والقريم ومراده والمحافظ فالعامين		استطعيتها الأمان والعربي والروان والتروان	ومرتبع وبالاعاديات	والمراجع والقار والطالقان والم	والمتعادية والمتعادية والمتعاد
depv			And a particular production of the second division of the second division of the second division of the second	Contraction of Contra	Part of the second second	
) dBµV						
d8µV						
d8µV						
d8µV						
d8µV						
0 dBµV						

Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

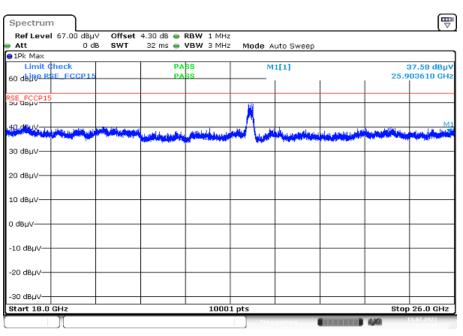
Plot 14: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel



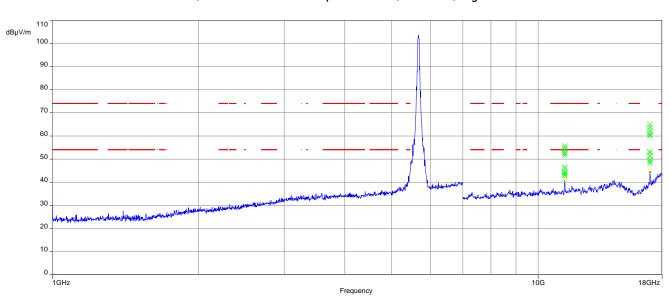
Date: 13.JUL 2022 10:50:26

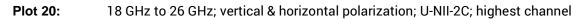

CTC I advanced

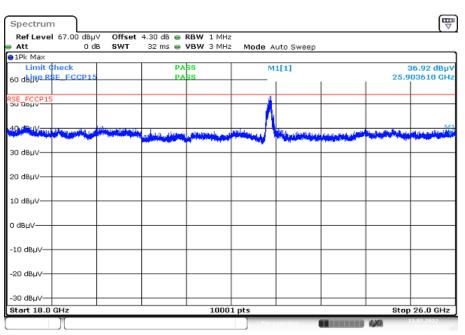
Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel



Plot 16: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

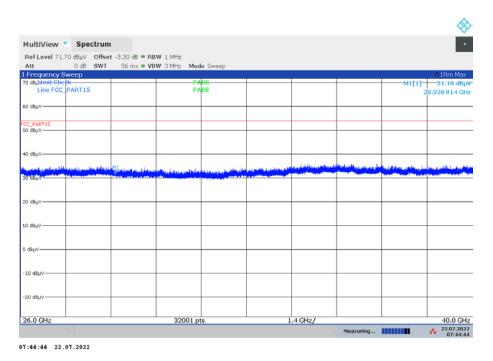

Plot 17: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; middle channel


Date: 13.JUL 2022 10:51:28

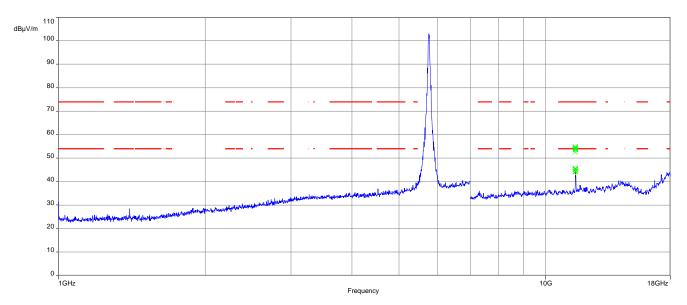

Plot 18: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

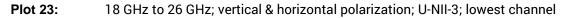
	Spectrum						
Ref Level 71.70		BWIMHz BWIMHz Mod	e Sween				
Frequency Sw	еер		e encop				01Rm Ma
) dByMimit Cheel	t	 PA			 	M1[1]	31.16 df
Line FCC_P	ART15	PA	ss			2	8.938 814 (
dBµV-							
_PART15							
dBµV-							
dBµV							
بملقل وبالاس المرد	national and design		and the state state	and the second second	 والمعادية والمعادية	ويتعاددون والالترار والمحاليا المرارعا	
dBuv	A			a problem providents and	Contraction of Contraction of Contraction	The second s	Concerning and
dBµV		 					
d8µV							
звµv							
0 dBµV							
o deµv						1	
0 dBµV							

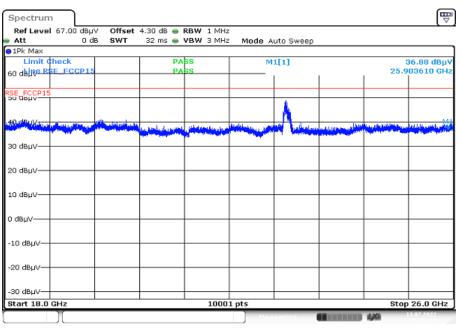
Plot 19: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel



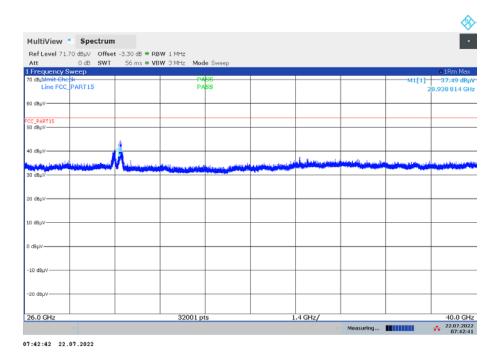
Date: 13.JUL 2022 10:52:34

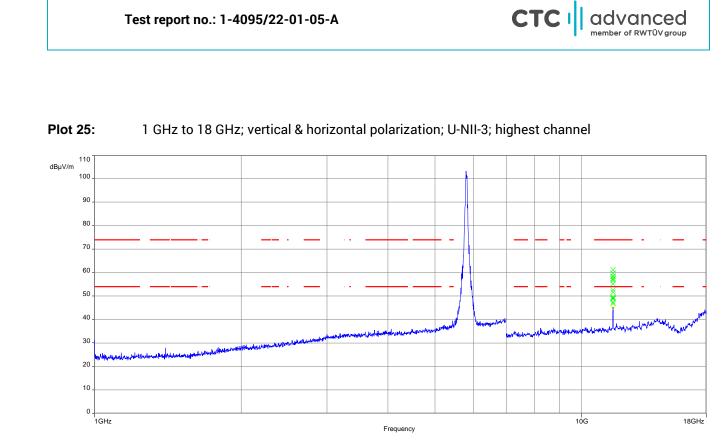

CTC I advanced

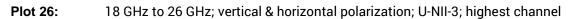

Plot 21: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

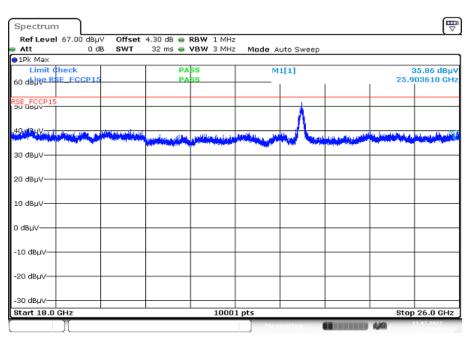


Plot 22: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

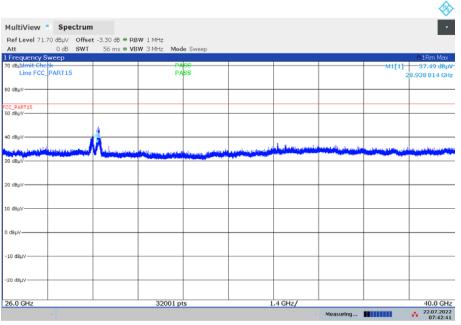






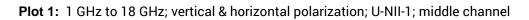

Date: 13.JUL 2022 10:53:44

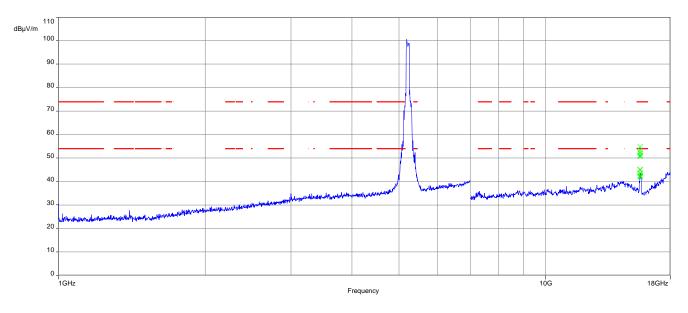
Plot 24: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



Date: 13.JUL 2022 10:54:47

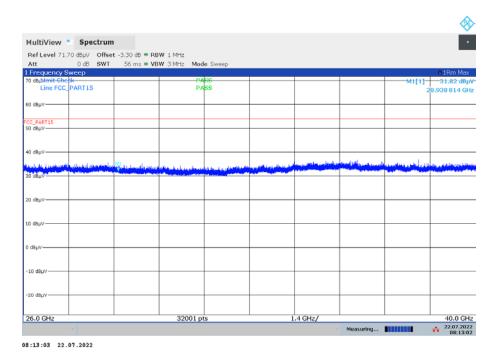
Plot 27: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel




07:42:42 22.07.2022

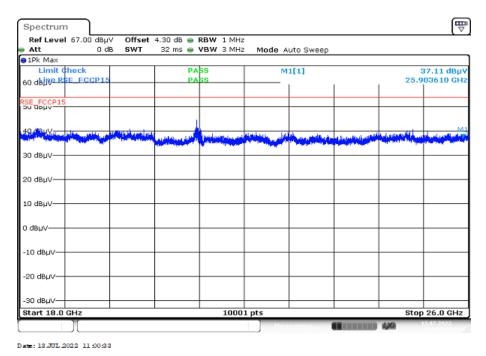
Test report no.: 1-4095/22-01-05-A

Plots: 80 MHz channel bandwidth

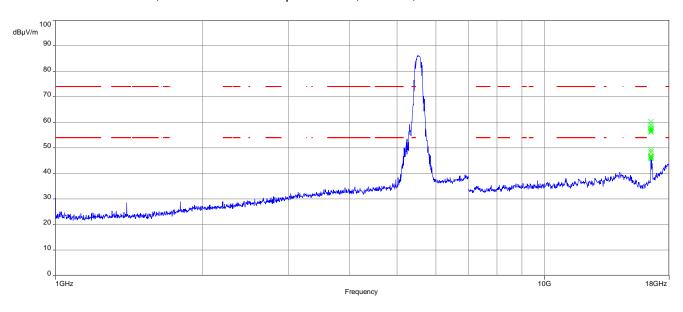

Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; middle channel

Spectrum								Ē
Ref Level 6		Offset	4.30 dB 😑	RBW 1 MH:	z			
Att	0 dB	SWT	32 ms 😑	VBW 3 MH	z Mode A	uto Sweep		
●1Pk Max								
Limit Che			PA PA		M	1[1]		37.03 dBµV
60 db <mark>jte RSE_</mark>	FGGP15		PA	55		1	25.9	03610 GHz
SE_FCCP15								
47. May		and some starting		1100 - 4 - 4	and the second states			841 day 444 (1997)
		in a state of the second s				a constant		
30 dвµV——								
20 dBµV								<u> </u>
10 dBµV								
O dBµV								
-10 dBuV								
-20 dBuV								
-30 dBµV								
Start 18.0 GH	z			1000	1 pts		Stop	26.0 GHz
					Mea	suring	4/4	13.07.2022


Date: 13.JUL 2022 10:59:01


Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; middle channel

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel



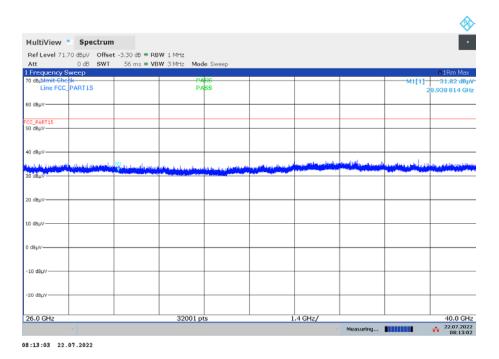
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

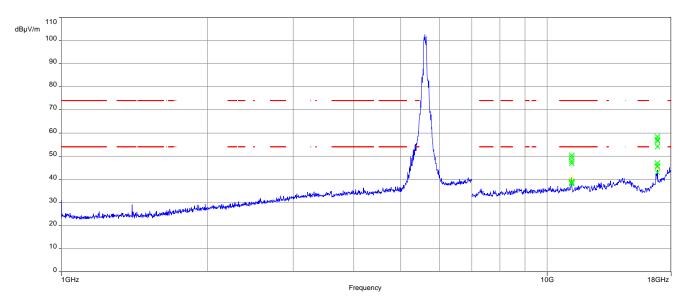
	ectrum					
	Offset -3.30 dB 🖷 🖡					
	SWT 56 ms = 1	/BW 3 MHz Mode Sweep				01Rm Ma:
Frequency Sweep		PASS			M1[1]	
Line FCC_PART1	5	PASS				28.938 814 G
T						1
0 dBµV						
C_PART15						
0 dBµV						
0 dBuV						
	and all Marco and	and the second	and the second sec	المراجع والغزام ومعارية	والغر بمعيما	n a tana tu
1 dBµV		en efter an eine eine eine eine eine eine eine e				
1 depty						
0 dBµV						
0 d8µV						
o aspr						
d8µV						
10 dBµV						
20 dBµV						
6.0 GHz		32001 pts	1.4 GHz/			40.0 Gł
010 0H2						22.07.202 08:13:0

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

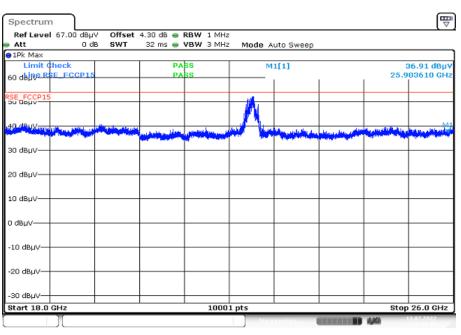
Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel



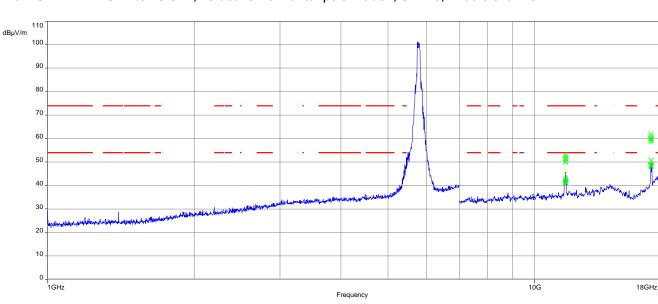
Date: 13.JUL 2022 11:03:01

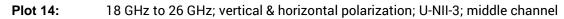

CTC I advanced

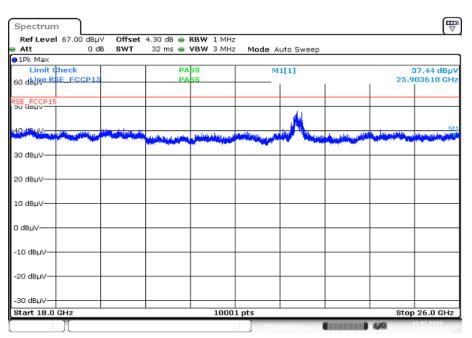
Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel



Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

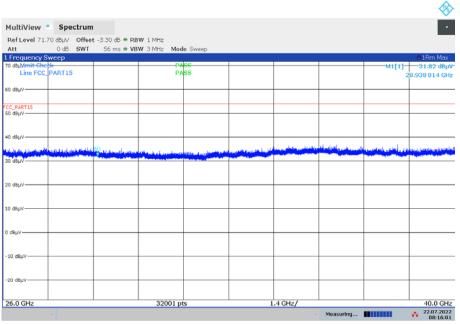

Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-2C; highest channel


Date: 13.JUL 2022 11:04:10


Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

	pectrum						
	/√ Offset -3.30 dB ■ P						
Att 0 d Frequency Sweep		BW 3 MHz Mode Sweep					01Rm Ma
0 dB_Mmit-Gheck		PASS				M1[1]	31.82 dE
Line FCC_PART	15	PASS					8.938 814 0
0 dBµV							
C_PART15							
0 dBµV							
0 dBµV							
فيكار الإصغابين البادان	يتون والمستعدان المنافظ المراجع هوائم ال	and the second sec	والمردية المعرور المراجعين	and the second second	الدروي والتقامين	القرو الأخرى والأصباب	and the second
dBµY		A CARLES A CONTRACTOR OF A CARLES AND					
0 dBµV							
d8µV							
dBµV							
10 dBµV							
zo dBµV							
o deµv							

Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel



Date: 13.JUL 2022 11:05:33

CTC I advanced

Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel

08:16:01 22.07.2022

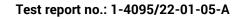
12.12 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

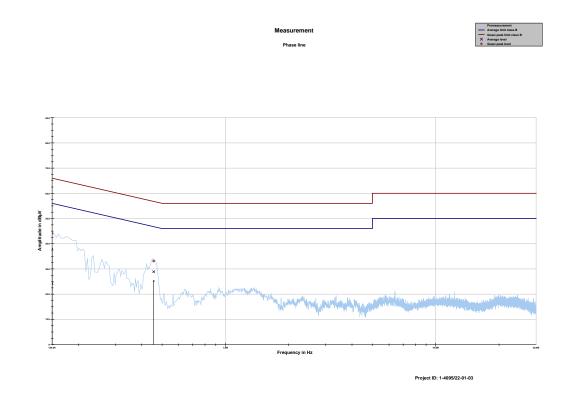
Measurement parameter	
Detector:	Peak - Quasi Peak / Average
Sweep time:	Auto
Video bandwidth:	9 kHz
Resolution bandwidth:	100 kHz
Span:	150 kHz to 30 MHz
Trace mode:	Max Hold
Test setup:	See sub clause 7.4 – A
Measurement uncertainty:	See chapter 9


Limits:

Spurious Emissions Conducted < 30 MHz				
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 – 5	56	46		
5 - 30.0	60	50		

*Decreases with the logarithm of the frequency

Results:


Spurious Emissions Conducted < 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
All detected emissions are more than 20 dB below the limit.					

Plots:

Plot 1: 150 kHz to 30 MHz, phase line

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-08-31
А	Added antenna gain reference	2022-09-02

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header>	Office Berlin spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europs-Alles 52 60327 Frankfurt am Main Office Braunschweig Bundesalles 100 38116 Braunschweig Silter Braunschweig Office Braunschweig Braunschweig Jundesalles L00 38116 Braunschweig Silter Braunschweig Jundesa
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06 2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01.05 Frankfurt am Main, 09.06.2020 The certificate together with Na anse reflects the status at the time of the date of taxet. The current status of the scope of accredition can be found in the database of accredition on any found in the database of accredition on any found in the database of accredition and the data defondance/basice datase.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31.109 2009 (Federal Law Gazette J. a.252.3) and the Regulation (EQ No 755/2008 of the furopean Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Licot) and L32 and 9 July 2008, p.30). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EQ). International Accreditation for norm (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iaccorg LAE: www.iac.org LAE: www.iat.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf

####