TEST REPORT

Reference No. : WTX19X12087485R1W-4

FCC ID: VVXLM842

Applicant: LM Technologies Ltd.

Address: Camrose House,2A Camrose Avenue, Edgware,London

Product Name: LM842 WiFi and Bluetooth 5.0 Dual Mode Combination USB Adapter

Test Model. : LM842

Standards: FCC Part 15.247

Date of Receipt sample: Jun.29, 2020

Date of Test.....: Jun.29, 2020 to Jul.08, 2020

Date of Issue : Jul.08, 2020

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of permission and approver.

Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building (Honowei Industrial Park, Liuxian 2nd Road,

Block 70 Bao'an District, Shenzhen, Guangdong, China

Tel.: +86-755-33663308 Fax.: +86-755-33663309

Tested by:

Reviewed By:

Approved & Authorized By:

Mike Shi / Project Engineer

Lion Cai / RF Manager

Silin Chen / Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 TEST STANDARDS	
1.3 TEST METHODOLOGY	5
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE	
1.6 Measurement Uncertainty	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	10
3. RF EXPOSURE	11
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT	
4. ANTENNA REQUIREMENT	12
4.1 Standard Applicable	
4.2 Evaluation Information	
5. FIELD STRENGTH OF SPURIOUS EMISSIONS	13
5.1 STANDARD APPLICABLE	13
5.2 Test Procedure	
5.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
5.4 SUMMARY OF TEST RESULTS/PLOTS	15
6. OUT OF BAND EMISSIONS	19
6.1 Standard Applicable	19
6.2 Test Procedure	
6.2 SUMMARY OF TEST PESHI TS/DI OTS	

Reference No.: WTX19X12087485R1W-4 Page 3 of 22

Report version

Version No.	Date of issue	Description
Rev.00	Jul.08, 2020	Original
/	/	/

Reference No.: WTX19X12087485R1W-4 Page 4 of 22

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: LM Technologies Ltd.

Address of applicant: Camrose House,2A Camrose Avenue, Edgware,London

Manufacturer: LM Technologies Ltd.

Address of manufacturer: Camrose House,2A Camrose Avenue, Edgware,London

General Description of EUT	
Product Name:	LM842 WiFi and Bluetooth 5.0 Dual Mode Combination USB
Product Name.	Adapter
Trade Name	LM Technologies
Model No.:	LM842
Adding Model(s):	842-8420, 842-8421, 842-8422, 842-8423, 842-8424,
	842-8425, 842-8426, 842-8427, 842-8428, 842-8429
Rated Voltage:	DC 5V
Power Adapter:	1
Software Version:	1
Hardware Version:	/
	·

Note: The test data is gathered from a production sample, provided by the manufacturer. The appearance of others models listed in the report is different from main-test model LM842, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT			
Bluetooth Version:	V5.0 (BLE mode)		
Frequency Range:	2402-2480MHz		
RF Output Power:	7.17dBm (Conducted)		
Data Rate:	1Mbps		
Modulation:	GFSK		
Quantity of Channels:	40		
Channel Separation:	2MHz		
Type of Antenna:	External Antenna		
Antenna Gain:	2.0dBi		

1.2 Test Standards

Reference No.: WTX19X12087485R1W-4 Page 5 of 22

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>558074 D01 15.247 Meas Guidance v05r02</u>: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under section 15.247 of the Fcc rules.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Reference No.: WTX19X12087485R1W-4 Page 6 of 22

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, with a duty cycle equal to 100%, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Low	2402MHz
TM2	Middle	2440MHz
TM3	High	2480MHz

Test Conditions			
Temperature:	22~25 °C		
Relative Humidity:	50~55 %.		
ATM Pressure:	1019 mbar		

EUT Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
USB extension cable	1.2	Shielded	With Ferrite	

Special Cable List and Details				
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
/	/	/	/	

Auxiliary Equipment List and Details				
Description	Manufacturer	Model	Serial Number	
Notebook	Lenovo	E445	/	

Reference No.: WTX19X12087485R1W-4 Page 7 of 22

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
RF Output Power	Conducted	±0.42dB		
Occupied Bandwidth	Conducted	±1.5%		
Power Spectral Density	Conducted	±1.8dB		
Conducted Spurious Emission	Conducted Spurious Emission Conducted			
Conducted Emissions	Conducted	9-150kHz ±3.74dB		
Conducted Emissions	Conducted	$0.15-30 \text{MHz} \pm 3.34 \text{dB}$		
		$30-200 MHz \pm 4.52 dB$		
Transmitter Spurious Emissions	Radiated	0.2-1GHz ±5.56dB		
		1-6GHz ±3.84dB		
		6-18GHz ±3.92dB		

Reference No.: WTX19X12087485R1W-4 Page 8 of 22

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum	A =:1==4	E4407D	MX41440400	2020 04 29	2021 04 27
SEM1-10/2	Analyzer	Agilent	E4407B	MY41440400	2020-04-28	2021-04-27
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2020-04-28	2021-04-27
SEM1-1031	Analyzer	Schwarz	FSP30	830079/033	2020-04-28	2021-04-27
SEMT-1007	EMI Test	Rohde &	ESVB	825471/005	2020-04-28	2021-04-27
SEN11-1007	Receiver	Schwarz	ESVD	823471/003	2020-04-26	2021-04-27
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2020-04-28	2021-04-27
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2020-04-28	2021-04-27
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-05-05	2021-05-04
SEMT-1001	EMI Test	Rohde &	ECDI	101711	2020 04 29	2021 04 27
SEM1-1001	Receiver	Schwarz	ESPI	101611	2020-04-28	2021-04-27
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2020-04-28	2021-04-27
SEMT-1002	Pulse Limiter	Rohde &	ESH3-Z2	100911	2020-04-28	2021-04-27
SEM11-1002	Puise Limiter	Schwarz				
SEMT-1168	Pre-amplifier	Direction	PAP-0126	14141-12838	2020-04-28	2021-04-27
SEM11-1100	r re-amplifier	Systems Inc.	FAF-0120	14141-12030	2020-04-26	2021-04-27
SEMT-1169	Pre-amplifier	Direction	PAP-2640	14145-14153	2020-04-28	2021-04-27
SEN11-1109	i re-ampimer	Systems Inc.	1A1-2040	14143-14133	2020-04-20	2021-04-27
SEMT-1163	Spectrum	Rohde &	FSP40	100612	2020-04-28	2021-04-27
DEWIT 1103	Analyzer	Schwarz	15140	100012	2020 04 20	2021 04 27
SEMT-1170	DRG Horn	A.H.	SAS-574	571	2019-05-05	2021-05-04
DEMIT 1170	Antenna	SYSTEMS	5/10 3/4	371	2017 03 03	2021 03 04
SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2020-04-28	2021-04-27
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2020-04-28	2021-04-27
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2020-04-28	2021-04-27
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2020-03-17	2021-03-16
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2020-03-17	2021-03-16
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2020-03-17	2021-03-16
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2020-03-17	2021-03-16
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2020-03-17	2021-03-16

Reference No.: WTX19X12087485R1W-4 Page 9 of 22

Software List						
Description Manufacturer Model Version						
EMI Test Software	Form d	EZ-EMC	DA 02A1			
(Radiated Emission)*	Farad	EZ-ENIC	RA-03A1			
EMI Test Software	F 1	EZ EMC	DA 02A1			
(Conducted Emission)*	Farad	EZ-EMC	RA-03A1			

^{*}Remark: indicates software version used in the compliance certification testing

Reference No.: WTX19X12087485R1W-4 Page 10 of 22

2. SUMMARY OF TEST RESULTS

FCC Rules Description of Test Item		Result
§2.1093	RF Exposure	Compliant
§15.203; §15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§15.207(a)	Conducted Emission	N/A
§15.247(e)	Power Spectral Density	N/A
§15.247(a)(2)	DTS Bandwidth	N/A
§15.247(b)(3)	RF Output Power	N/A
§15.209(a)	Radiated Emission	Compliant
§15.247(d)	Band Edge (Out of Band Emissions)	Compliant

N/A: Not applicable

Note: Report is for C2PC only. The test data includes RF Exposure, Antenna Requirement, Restricted Band of Operation, Radiated Emission and Band Edge (Out of Band Emissions). Those not tested mark with N/A (not effected by the C2PC).

Reference No.: WTX19X12087485R1W-4 Page 11 of 22

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the SAR Report.

Reference No.: WTX19X12087485R1W-4 Page 12 of 22

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

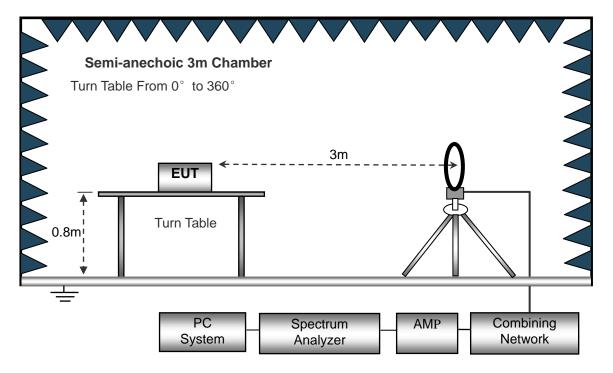
4.2 Evaluation Information

This product has an External antenna, fulfill the requirement of this section.

5. Field Strength of Spurious Emissions

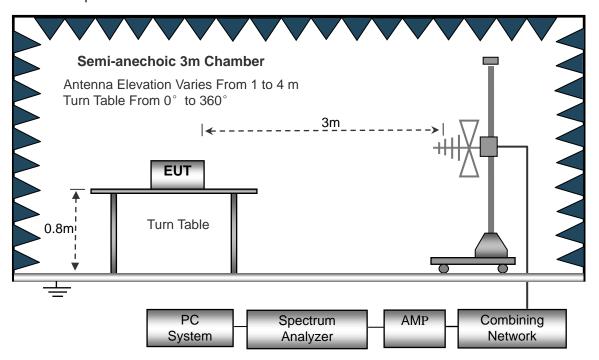
5.1 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

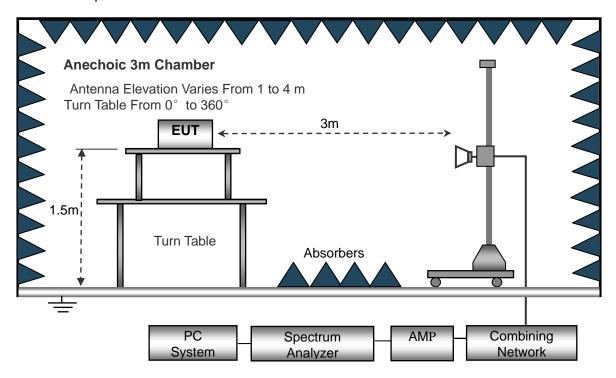

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.


The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The test setup for emission measurement below 30MHz..



Waltek Testing Group (Shenzhen) Co., Ltd. http://www.semtest.com.cn

The test setup for emission measurement from 30 MHz to 1 GHz..

The test setup for emission measurement above 1 GHz..

Frequency :9kHz-30MHz Frequency :30MHz-1GHz Frequency :Above 1GHz RBW=10KHz, RBW=120KHz, RBW=1MHz,

VBW=3MHz(Peak), 10Hz(AV)

Detector function = peak, AV

Sweep time= Auto

Trace = max hold

VBW =30KHz

Sweep time= Auto

Trace = max hold

VBW=300KHz

Sweep time= Auto

Trace = max hold

Detector function = peak Detector function = peak, QP

Detector function – peak, Qi

Waltek Testing Group (Shenzhen) Co., Ltd.

http://www.semtest.com.cn

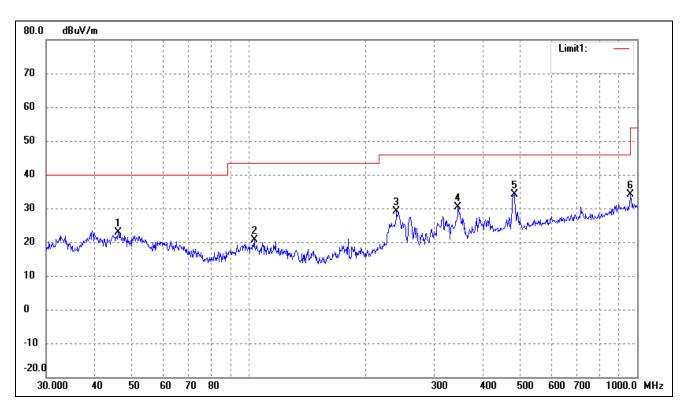
Reference No.: WTX19X12087485R1W-4 Page 15 of 22

5.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

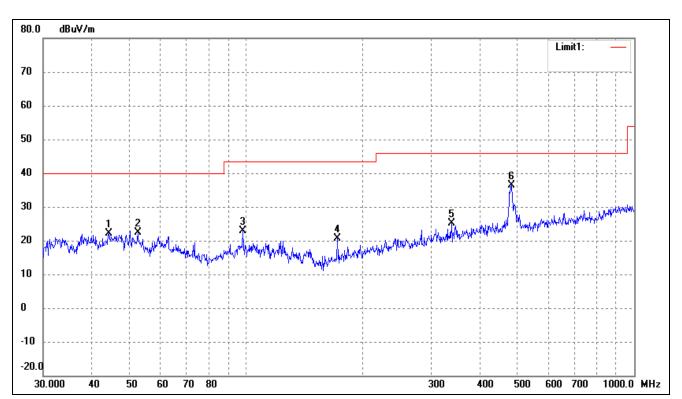
Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss - Ampl. Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:


Margin = Corr. Ampl. – FCC Part 15 Limit

5.4 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


> Spurious Emissions Below 1GHz

Test Channel Low (worst case)	Polarity:	Horizontal
-------------------------------	-----------	------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	46.0164	34.62	-11.74	22.88	40.00	-17.12	-	-	peak
2	103.0800	34.00	-13.32	20.68	43.50	-22.82	-	-	peak
3	239.9874	40.57	-11.42	29.15	46.00	-16.85	-	-	peak
4	345.5952	38.11	-7.70	30.41	46.00	-15.59	-	-	peak
5	482.2156	38.76	-4.59	34.17	46.00	-11.83	-	-	peak
6	962.1623	32.72	1.41	34.13	54.00	-19.87	-	-	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	44.2752	33.94	-11.83	22.11	40.00	-17.89	-	-	peak
2	52.5753	34.54	-12.25	22.29	40.00	-17.71	-	-	peak
3	98.1419	36.58	-13.62	22.96	43.50	-20.54	-	-	peak
4	171.9946	35.54	-14.88	20.66	43.50	-22.84	-	-	peak
5	338.4001	33.15	-8.14	25.01	46.00	-20.99	-	-	peak
6	482.2156	41.09	-4.59	36.50	46.00	-9.50	-	-	peak

Remark: '-'Means' the test Degree and Height are not recorded by the test software and only show the worst case in the test report.

Reference No.: WTX19X12087485R1W-4 Page 18 of 22

Spurious Emissions Above 1GHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
(MHz)	(dBuV/m)	dB	(dBuV/m)	(dBuV/m)	(dB)	H/V				
	Low Channel-2402MHz									
4804	60.00	-3.59	56.41	74	-17.59	Н	PK			
4804	41.37	-3.59	37.78	54	-16.22	Н	AV			
7206	56.65	-0.52	56.13	74	-17.87	Н	PK			
7206	36.76	-0.52	36.24	54	-17.76	Н	AV			
4804	62.55	-3.59	58.96	74	-15.04	V	PK			
4804	43.40	-3.59	39.81	54	-14.19	V	AV			
7206	61.01	-0.52	60.49	74	-13.51	V	PK			
7206	41.31	-0.52	40.79	54	-13.21	V	AV			
			Middle Chan	nel-2440MHz						
4880	61.27	-3.49	57.78	74	-16.22	Н	PK			
4880	40.83	-3.49	37.34	54	-16.66	Н	AV			
7320	60.52	-0.47	60.05	74	-13.95	Н	PK			
7320	37.91	-0.47	37.44	54	-16.56	Н	AV			
4880	61.08	-3.49	57.59	74	-16.41	V	PK			
4880	44.02	-3.49	40.53	54	-13.47	V	AV			
7320	59.70	-0.47	59.23	74	-14.77	V	PK			
7320	40.13	-0.47	39.66	54	-14.34	V	AV			
			High Chann	el-2480MHz						
4960	62.20	-3.41	58.79	74	-15.21	Н	PK			
4960	40.34	-3.41	36.93	54	-17.07	Н	AV			
7440	60.77	-0.42	60.35	74	-13.65	Н	PK			
7440	39.92	-0.42	39.50	54	-14.50	Н	AV			
4960	64.56	-3.41	61.15	74	-12.85	V	PK			
4960	41.43	-3.41	38.02	54	-15.98	V	AV			
7440	60.76	-0.42	60.34	74	-13.66	V	PK			
7440	40.65	-0.42	40.23	54	-13.77	V	AV			

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Reference No.: WTX19X12087485R1W-4 Page 19 of 22

6. Out of Band Emissions

6.1 Standard Applicable

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a).

6.2 Test Procedure

According to the KDB 558074 D01 v05r02 Subclause 8.4 and ANSI C63.10-2013 Subclause 11.11, the Emissions in nonrestricted frequency bands test method as follows:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

According to the KDB 558074 D01 v05r02 Subclause 8.5 and ANSI C63.10-2013 Subclause 11.12, the Emissions in restricted frequency bands test method as follows:

A. Radiated emission measurements:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2420MHz for low bandedge, 2460MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

 $Sweep = auto; \quad Detector\ function = peak/average; \quad Trace = max\ hold$

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15,209 limit for fall in the restricted bands listed in section 15,205. Note that the method of measurement

Reference No.: WTX19X12087485R1W-4 Page 20 of 22

KDB publication number: 913591 may be used for the radiated bandedge measurements.

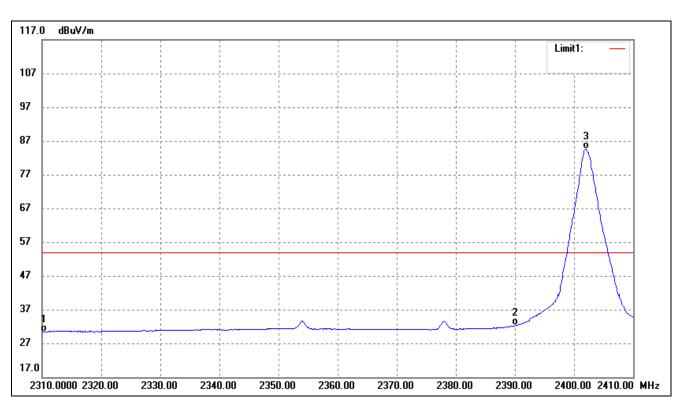
B. Antenna-port conducted measurements

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 9.
- b) VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.
- f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.)

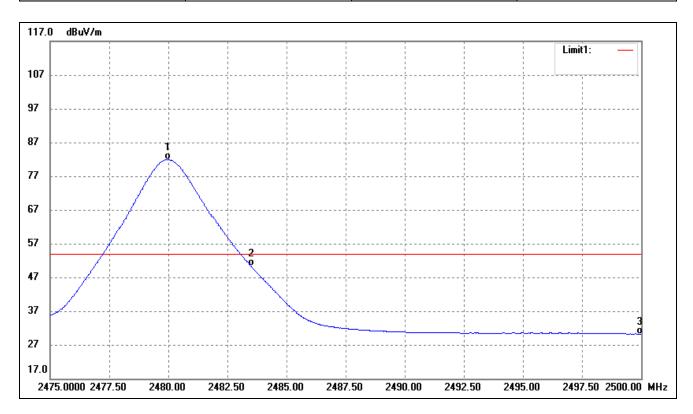
RBW as a function of frequency

Frequency	RBW
9kHz to 150kHz	200Hz to 300Hz
0.15MHz to 30MHz	9kHz to 10kHz
30MHz to 1000MHz	100kHz to 120kHz
>1000MHz	1MHz


If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in section 8.1. Report the three highest emissions relative to the limit.

6.3 Summary of Test Results/Plots


Radiated test

Test Channel	Low	Polarity:	Vertical(worst case)	ì
--------------	-----	-----------	----------------------	---

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	40.13	-9.66	30.47	54.00	-23.53	Average Detector
	2310.000	52.49	-9.66	42.83	74.00	-31.17	Peak Detector
2	2390.000	41.76	-9.50	32.26	54.00	-21.74	Average Detector
	2390.000	56.11	-9.50	46.61	74.00	-27.39	Peak Detector
3	2402.000	94.17	-9.47	84.70	/	/	Average Detector
	2402.200	111.15	-9.47	101.68	/	/	Peak Detector

Test Channel High	Polarity:	Vertical(worst case)
-------------------	-----------	----------------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.975	91.26	-9.32	81.94	/	/	Average Detector
	2479.975	107.02	-9.32	97.70	/	/	Peak Detector
2	2483.500	59.65	-9.31	50.34	54.00	-3.66	Average Detector
	2483.500	68.31	-9.31	59.00	74.00	-15.00	Peak Detector
3	2500.000	39.48	-9.28	30.20	54.00	-23.80	Average Detector
	2500.000	52.20	-9.28	42.92	74.00	-31.08	Peak Detector

***** END OF REPORT *****