

Bluetooth Module - Part Code LM-400

Top view

Bottom view

Contents:

- 1. Device Overall Description
- 2. Bluetooth
 - -Features
 - -Specification Compliance
 - -Bluetooth Block Diagram
 - -Modulation Methods
 - Power Consumption
 - RF Characteristics
- 3. Pinout and Definition
- 4. Mechanical Dimension

Side view

Device Overall Description

The BTM400 is designed to provide Bluetooth2.0 + EDR function on a small form factor. The Bluetooth function is based on CSR BlueCore4-Ext Bluetooth System, which implements the full speed class 1 Bluetooth operations with full 7 slave piconet support. The interface of BTM400 to host system is UART.

Bluetooth

Features

- -CSR BlueCore4
- -Bluetooth 2.0 + EDR support
- -Full Speed Class 1 Bluetooth operation with full 7 slave piconet support
- -Single onboard Antenna connector support (Optional)
- -Chip antenna on board

Bluetooth Block Diagram

Modulation Methods

FHSS (Frequency Hopping Spread Spectrum) defined in Bluetooth Specification.

	Data Rate	Modulation scheme
Basic Data Rate	1 Mbps	GFSK
Enhanced Data Data	2Mbps	π⁄4 – DQPSK
Ennanceo Dala Rale	3Mbps	8DPSK

Bluetooth Power Consumption

Absolute Maximum Ratings						
Parameter	Min.	Max.		U	Unit	
Storage Temperature	-40	+85		ິ	°	
Supply Voltage(VDD)	2.7	3.6		DC	DCV	
Supply Voltage(PVCC)	3.0	3.3		DC	CV	
Other Pin Voltage	Vss-0.4	VDD+0.4	4	DC	V	
Recommended Operating Con	ditions					
Parameter	Min.	Max.		U	Unit	
Temperature	-10	+70		Ĉ		
Supply Voltage for UART	3.0	3.6		DCV		
Supply Voltage for USB	3.0	3.6		DC	DCV	
General Electrical Specification	1					
Parameter	Description	Min.	Тур.	Max.	Unit	
Carrier Frequency		2.402		2.480	GHz	
RF Output Power	Measured in 50ohm	15	16.5	18	dBm	
RX sensitivity		-	-88	-86	dBm	
Load Impedance	No abnormal Oscillation			5:1		
Input Low Voltage	RESET,UART,GPIO,PCM	-0.30	-	0.80	DCV	
Input High Voltage	RESET, UART, GPIO, PCM	0.7VDD	-	VDD+0.3	DCV	
Output Low Voltage	UART,GPIO,PCM	-	-	0.40	DCV	
Output High Voltage	UART.GPIO.PCM	VDD-0.4	-	-	DCV	

Radio Characteristics - Basic Data Rate

Average Current Consumption Receive DM1

Transmitter , VDD = 3.3V Temperature =+20°C						
	Frequency (GHz)	Min.	Тур.	Max.	Bluetooth Specification	Unit
	2.402	-	6	-		dBm
Maximum RF transmit power ^(note)	2.441	-	6	-	-6 to +20	dBm
	2.480	-	7	-		dBm
Relative transmit power		-	-1.6	-	-4 to +1	dB
π /4 DQPSK			2	-	$\leq \pm 10$ for all blocks	kHz
Maximum carrier frequency stability w ₀						
π /4 DQPSK			6	-	<u><</u> ±75 for all	kHz
Maximum carrier frequency stability	ty w _i				packets	
π /4 DQPSK			8	-	$\leq \pm 75$ for all blocks	kHz
Maximum carrier frequency stabilit	ty w ₀ + w _i					
8 DPSK		-	2	-	$\leq \pm 10$ for all blocks	kHz
Maximum carrier frequency stability w ₀						
8 DPSK			6	-	<u><</u> ±75 for all	kHz
Maximum carrier frequency stability w _i					packets	
8 DPSK		-	8	-	$\leq \pm 75$ for all blocks	kHz

114

mA

LM

TECHNOLOGIES

INNOVATIVE TECHNOLOGY PRODUCTS

Maximum carrier frequency stabili	$itv w_0 + w_i $					
π /4 DQPSK RMS DVEM		-	7	_	< 20	%
Modulation Accuracy	99% DEVM	-	1 3	_	< 30	%
	Peak DEVM	-	1 9	_	<u><</u> 35	%
8 DPSK	RMS DVEM	-	7	_	<u><</u> 13	%
Modulation Accuracy	99% DEVM	-	1 3	_	< 20	%
	Peak DEVM	-	1 7	_	< 25	%
	$F>F_0+3$ MHz	-	<-50	-	< -40	dBm
	F <f<sub>0-3 MHz</f<sub>	-	<-50	-	<u><</u> -40	dBm
	F=F ₀ -3 MHz	-	-46	-	<u><</u> -40	dBm
	F=F ₀ -2 MHz	-	-34	-	<u><</u> -20	dBm
In-band spurious emissions	F=F ₀ -1 MHz	-	-35	-	<u><</u> -26	dBm
	$F=F_0+1$ MHz	-	-35	-	<u><</u> -26	dBm
	$F=F_0+2$ MHz	-	-31	-	<u><</u> -20	dBm
	F=F ₀ +3 MHz	-	-33	-	<u><</u> -40	dBm
EDR Differential Phase Encoding			No		<u>></u> 99	%
			Errors			
Receiver , VDD = 3.3V Temper	ature =+20°C		-			
	Modulation	Min.	Тур.	Max.	Bluetooth	Unit
			07		Specification	alDree
Sensitivity at 0.1% BER	π /4 DQPSK	-	-87	-	<u><</u> -70	dBm
	8 DPSK	-	-78	-	<u><u> </u></u>	dBm
at 0.1% REP	π /4 DQPSK	-	-8	-	<u>> -20</u>	dBm
	8 DPSK	-	-10	-	<u>></u> -20	aBW
C/I co-channel at 0.1% BER	π /4 DQPSK	-	10	-	<u><</u> +13	0B
	8 DPSK	-	19	-	<u>≤ +21</u>	QB
	π /4 DQPSK	-	-10	-	<u><</u> 0	QB
	8 DPSK	-	-5	-	<u>≤+5</u>	QB
	π /4 DQPSK	-	-11	-	<u>≤</u> 0	QB
	8 DPSK	-	-5	-	<u> </u>	QB
	π /4 DQPSK	-	-40	-	<u><</u> -30	QB
	8 DPSK	-	-40	-	<u>< -25</u>	QB
	π /4 DQPSK	-	-23	-	<u><</u> -20	QB
	8 DPSK	-	-20	-	<u><</u> -13	QB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-45	-	<u>< -40</u>	dB
	8 DPSK	-	-45	-	<u><</u> -33	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-45	-	<u>< -40</u>	dB
	8 DPSK	-	-45	-	<u><</u> -33	dВ
$\Gamma_0 = 2405, 2441, 2477 \text{ MHZ}$			20		~ 7	d D
			-20		<u> </u>	

 Note
 Measurement made using a POWER_TABLE entery of TX_PRE
 80, INT PA63, EXT PA255. This ensures that the

 Bluetooth requirements for ACP and those defined by the FCC and ETSI are satisfied over
 the operating

 temp erature rang of
 -5Đ to + 4Đ. Although the design is capable of generating in excess of + 18dBm,

 regulatory compliance over the full temperature range of
 -5Đ to + 4Đ will not be satisfied if the transmit power

 approaches this value.
 -5Đ

INNOVATIVE TECHNOLOGY PRODUCTS

Radio Characteristics – Enhanced Data Rate

Transmitter , VDD = 3.3V Temperature =+20°C						
	Frequency (GHz)	Min.	Тур.	Max.	Bluetooth Specification	Unit
	2.402	-	6	-		dBm
Maximum RF transmit power ^(note)	2.441	-	6	-	-6 to +20	dBm
	2.480	-	7	-		dBm
Relative transmit power		-	-1.6	-	-4 to +1	dB
π /4 DQPSK		-	2	-	$\leq \pm 10$ for all blocks	kHz
Maximum carrier frequency stabili	ty w _o					
π /4 DQPSK		-	6	-	<u><</u> ±75 for all	kHz
Maximum carrier frequency stabili	ty w _i				packets	
π /4 DQPSK		-	8	-	$\leq \pm 75$ for all blocks	kHz
Maximum carrier frequency stabili	ty w ₀ + w _i					
8 DPSK		-	2	-	$\leq \pm 10$ for all blocks	kHz
Maximum carrier frequency stabili	ty w _o					
8 DPSK	L	-	6	-	$\leq \pm 75$ for all	kHz
Maximum carrier frequency stabili	ty W _i				packets	
8 DPSK Maximum carrier frequency stabili	ty w ₀ + w _i	-	8	-	$\leq \pm 75$ for all blocks	kHz
π /4 DQPSK	RMS DVEM	-	7	-	<u><</u> 20	%
Modulation Accuracy	99% DEVM	-	13	-	< 30	%
	Peak DEVM	-	19	-	< 35	%
8 DPSK	RMS DVEM	_	7	_	< 13	%
Modulation Accuracy	99% DFVM	_	13	_	< 20	%
	Peak DEVM	_	17	_	< 25	%
	$F>F_0+3$ MHz	-	<-50	-	< -40	dBm
	F <f<sub>0-3 MHz</f<sub>	-	<-50	-	< -40	dBm
	F=F ₀ -3 MHz	-	-46	-	< -40	dBm
	F=F ₀ -2 MHz	-	-34	-	<u><</u> -20	dBm
In-band spurious emissions	F=F ₀ -1 MHz	-	-35	-	<u><</u> -26	dBm
	$F=F_0+1$ MHz	-	-35	-	<u><</u> -26	dBm
	$F=F_0+2$ MHz	-	-31	-	<u><</u> -20	dBm
	$F=F_0+3$ MHz	-	-33	-	<u><</u> -40	dBm
EDR Differential Phase Encoding	•		No		> 99	%
			Errors		_	
Receiver , VDD = 3.3V Temper	ature =+20°C					
· · · · · · · · · · · · · · · · · · ·	Modulation	Min.	Тур.	Max.	Bluetooth	Unit
					Specification	
Sensitivity at 0.1% BER	π /4 DQPSK	-	-87	-	<u><</u> -70	dBm
	8 DPSK	-	-78	-	<u><</u> -70	dBm
Maximum received signal level	π /4 DQPSK	-	-8	-	<u>></u> -20	dBm
at 0.1% BER	8 DPSK	-	-10	-	<u>></u> -20	dBm
C/I co-channel at 0.1% BER	π /4 DQPSK	-	10	-	<u><</u> +13	dB
	8 DPSK	-	19	-	<u>≤</u> +21	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-10	-	<u>≤</u> 0	dB
F=F ₀ +1 MHz	8 DPSK	-	-5	-	<u><</u> +5	dB

Part Number LM-400

Page Number : 5 of 6

LM

TECHNOLOGIES

INNOVATIVE TECHNOLOGY PRODUCTS

Adjacent channel selectivity C/I	π /4 DQPSK	-	-11	-	<u><</u> 0	dB
F=F ₀ -1 MHz	8 DPSK	-	-5	-	<u><</u> +5	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-40	-	<u><</u> -30	dB
$F=F_0+2 MHz$	8 DPSK	-	-40	-	<u><</u> -25	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-23	-	<u><</u> -20	dB
F=F ₀ -2 MHz	8 DPSK	-	-20	-	<u><</u> -13	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-45	-	<u><</u> -40	dB
$F=F_0+3$ MHz	8 DPSK	-	-45	-	<u><</u> -33	dB
Adjacent channel selectivity C/I	π /4 DQPSK	-	-45	-	<u><</u> -40	dB
F=F ₀ -5 MHz	8 DPSK	-	-45	-	<u><</u> -33	dB
F ₀ = 2405, 2441, 2477 MHz						
Adjacent channel selectivity C/I	π /4 DQPSK		-20		<u><</u> -7	dB
F=F _{image}	8 DPSK		-15		<u><</u> 0	dB

Pinout and Definition

Pin no.	Pin name	Direction	rection Description	
1	1 GND Power Grou		Power Ground	Ground
2	TXD	Output	UART data out	TTL
3	RXD	Input	Input UART data input	
4	RTS	Output	UART Ready to Send	TTL
5	CTS	Input	UART Clear to Send	TTL
6	VDD	Input	DC input (3,0 ~ 3,3V)	Power
7	Pairing	Input	Pairing input (Active Low)	TTL
8	Status	Output Bluetooth Connect Detec (Active Low)		TTL
9	DSR	Input	Data Set Ready	TTL
10	DTR	Output	Dutput Data Terminal Ready	
11	RST	Input	Reset (Active Low)	TTL
12	GND		Power Ground	Ground

Part Number LM-400 Page Number : 5 of 6

Mechanical Dimension

-30mm x 27.5mm (L x W) +- 0.15mm

-Component height (unit: mm)

Notes :

- 1. PIN9,10 DSR/DTR don't use, they are no function currently.
- 2. PIN5 Pairing, the function have been changed to Data led indication
- 3. PIN6 Status, the function have not been specified.

4. RESET KEY

- By pressing the Reset button, you can:
- Disconnect and reconnect a wireless connection (a short press).
- Restore the factory COM port 19200bps settings (over three seconds' press).
- 5. LED

Bluetooth link status

INNOVATIVE TECHNOLOGY PRODUCTS

LM

Pin No.	Pin Name	Pin Type	Description
1	GND	GND	Common ground
2	PVCC	Power	Power Amp. Power Supply(3.3V)
3	AIO (0)	Bi -directional	Programmable I/O terminal , 32KHz sleep clock input
4	AIO (1)	Bi -directional	Programmable I/O terminal
5	P IO (0)	Bi -directional	Programmable I/O terminal, RX Enable
6	PIO (1)	Bi -directional	Programmable I/O terminal, TX Enable
7	PIO (2)	Bi -directional	Programmable I/O terminal , USB_PULL_UP , CLK_REQ_OUT
8	PIO (3)	Bi -directional	Programmable I/O terminal, USB_WAK E_UP, CLK_REQ_IN
9	PIO (4)	Bi -directional	Programmable I/O terminal , USB_ON , BT_Priority/Ch_Clk output for
			co-existence signalling
10	GND	GND	Common ground
11	PIO (5)	Bi -directional	Programmable I/O terminal, USB_DETACH, BT_Active output for co -
			existence signalling
12	PIO (6)	Bi -directional	Programmable I/O terminal , CLK_REQ , WLAN_Active/Ch_Data input
			for for co-existence signalling
13	PIO (7)	Bi -directional	Programmable I/O terminal
14	PIO (8)	Bi -directional	Programmable I/O terminal
15	PIO (9)	Bi-directi onal	Programmable I/O terminal
16	RESET	CMOS input	Reset input of module, Active low reset
17	VCC	Power	Module power supply input
18	GND	GND	Common ground
19	GND	GND	Common ground
20	USB_DP	Bi -directional	USB data plus
21	USB_DN	Bi -directional	USB da ta minus
22	PCM_SYNC	Bi -directional	Synchronous data sync
23	PC M_IN	CMOS input	Synchronous data input
24	PCM_OUT	C MO S output	Synchronous data output
25	PC M_C LK	Bi -directional	Synchronous data clock
26	UART_RX	CMOS input	UART data input
27	UART_TX	C MO S output	UART data output
28	UART_RTS	C MO S output	UART request to send(active low)
29	GND	GND	Common ground
30	UART_CTS	CMOS input	UART clear to send(active low)
31	SPI_MO SI	CMOS input	Serial Peripheral Interface data input
32	SPI_CSB	C MO S input	Chip select for Synchronous Serial Interface(active low)
33	SPI_CLK	CMOS input	Serial Peripheral Interface clock
34	SPI_MISO	C MO S output	Serial Peripheral Interface data output
35	PIO (11)	Bi -directional	Programmable I/O terminal
36	PIO (10)	Bi -directional	Programmable I/O terminal
37	RF_IO	Analogue	Antenna interface
38	GND	GND	Common ground

Part Number LM-400

Page Number : 5 of 6

This device complies with the following radio frequency and safety standards.

Important to OEM Manufacturer:

This following FCC Warning must be included in the HOST User Manual.

FCC Warning

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE 1: Any changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance.

Note 1: This module certified that complies with RF exposure requirment under mobile or fixed condition, this module is to be installed only in portable or mobile or fixed applications.

A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

A fixed device is defined as a device is physically secured at one location and is not able to be easily moved to another location.

Note 2: Any modifications made to the module will void the Grant of Certification, this module is limited to OEM installation only and must not be sold to end-users, end-user has no manual instructions to remove or install the device, only software or operating procedure shall be placed in the end-user operating manual of final products.

Note 3: The device must not transmit simultaneously with any other antenna or transmitter.

Note 4: To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For

example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. Since this may depend on the details of how the module is integrated with the host, LM Technologies Ltd. shall provide guidance to the host manufacturer for compliance with the Part 15B requirements.

Note 5: FCC ID label on the final system must be labeled with "Contains FCC ID: VVXLM400-1" or "Contains transmitter module FCC ID: VVXLM400-1".

The transmitter module must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the host product. LM Technologies Ltd. is responsible for the compliance of the module in all final hosts.