1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 General Information

Client Information

Applicant:
Address of applicant:

Applicant:
Address of applicant:

General Description of EUT:

Product Name:
Brand Name:
Model No.:

Adding Model(s):
Rated Voltage:
Software Version:
Hardware Version:
FCC ID:

LM Technologies Ltd.
Camrose House, 2A Camrose Avenue, Edgware, London HA8 6EG, Penelope Victoria

LM Technologies Ltd.
Camrose House, 2A Camrose Avenue, Edgware, London HA8 6EG, Penelope Victoria

```
LM843 WiFi 802.11ac / Bluetooth® 5.0 2T2R Combi USB Module
LM Technologies
LM843
843-8430, 843-8431, 843-8432, 843-8433, 843-8434, 843-8435,
843-8436, 843-8437, 843-8438, 843-8439, 843-8440, 843-8441
DC5V
/
PCB_843-84XX
VVX-LM843
```

Technical Characteristics of EUT:	
Wi-Fi (2.4G)	$802.11 \mathrm{~b}, 802.11 \mathrm{~g}, 802.11 \mathrm{n}$
Support Standards:	$2412-2462 \mathrm{MHz}$ for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}(\mathrm{HT} 20)$ $2422-2452 \mathrm{MHz}$ for $802.11 \mathrm{n}(\mathrm{HT} 40)$
Frequency Range:	Antenna A:13.70dBm (Conducted) Antenna B:13.40dBm (Conducted)
RF Output Power:	DBPSK,BPSK,DQPSK,QPSK,16QAM,64QAM
Type of Modulation:	11 for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}(\mathrm{HT} 20) ; 7$ for $802.11 \mathrm{n}(\mathrm{HT40})$
Quantity of Channels:	5 MHz
Channel Separation:	External antenna
Type of Antenna:	3 dBi
Antenna Gain:	
Wi-Fi (5G)	$802.11 \mathrm{a}, 802.11 \mathrm{n}(\mathrm{HT20}), 802.11 \mathrm{n}-\mathrm{HT} 40,802.11 \mathrm{ac}-\mathrm{VHT} 80$
Support Standards:	$5150-5250 \mathrm{MHz}, 5725-5850 \mathrm{MHz}$
Frequency Range:	Antenna A: $10.34 \mathrm{dBm}($ Conducted $)$ Antenna B: $9.49 \mathrm{dBm}($ Conducted $)$
RF Output Power:	BPSK, QPSK,16QAM,64QAM
Type of Modulation:	External antenna
Type of Antenna:	

Antenna Gain:	3 dBi
Bluetooth	
Bluetooth Version:	V 5.0
Frequency Range:	$2402-2480 \mathrm{MHz}$
RF Output Power:	7.98 dBm (Conducted)
Data Rate:	$1 \mathrm{Mbps}, 2 \mathrm{Mbps}, 3 \mathrm{Mbps}$
Modulation:	$\mathrm{GFSK}, \pi / 4 \mathrm{DQPSK}, 8 \mathrm{DPSK}$
Quantity of Channels:	$79 / 40$
Channel Separation:	$1 \mathrm{MHz} / 2 \mathrm{MHz}$
Type of Antenna:	External antenna
Antenna Gain:	3 dBi

1.2 Standard Applicable

According to $\S 1.1307(\mathrm{~b})(1)$ and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.
(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	$/$	$/$	$\mathrm{F} / 300$	6
$1500-100000$	$/$	$/$	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{F} / 1500$	30
$1500-100000$	$/$	$/$	1	30

Note: $\mathrm{f}=$ frequency in $\mathrm{MHz}: *=$ Plane-wave equivalents power density

1.3 MPE Calculation Method

$\mathrm{S}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{R}^{2}\right)$
$\mathrm{S}=$ power density (in appropriate units, e.g., mw/ $/ \mathrm{cm}^{2}$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mw)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor is normally numeric gain.
$\mathrm{R}=$ distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

Wi-Fi (2.4G)
Maximum Tune-Up output power: 14 (dBm)
Maximum peak output power at antenna input terminal: $\underline{\mathbf{2 5 . 1 2}(\mathrm{mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: $2412(\mathrm{MHz})$
Antenna gain:3.0(dBi)
Directional gain (numeric gain): 2.00
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0100\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$ MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Wi-Fi (5G)

Maximum Tune-Up output power: $11(\mathrm{dBm})$
Maximum peak output power at antenna input terminal: $\underline{12.59(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: 5785 (MHz)
Antenna gain:3.0(dBi)
Directional gain (numeric gain): 2.00
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0050\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Bluetooth
Maximum Tune-Up output power: $\underline{8(\mathrm{dBm})}$
Maximum peak output power at antenna input terminal: $\underline{6.31(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: $2480(\mathrm{MHz})$
Antenna gain: 3.0(dBi)
Directional gain (numeric gain): 2.00
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: 0.0025\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Mode for Simultaneous Multi-band Transmission
Wi-Fi+ Bluetooth
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: 0.0100+0.0050+0.0025=0.0175(\mathrm{mw} / \mathrm{cm} 2)$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Result: Pass

