RF TEST REPORT

Report No.: 17020852-FCC-R1					
Supersede Report No.: N/A					
Applicant	Beijing Jia An Ele	Beijing Jia An Electronics Technology Co., Ltd.			
Product Name	Bluetooth Module	9			
Main Model	WB822D				
Serial Model	N/A				
Test Standard	FCC Part 15.247:	2016, ANSI C63.10: 2013			
Test Date	August 21 to Aug	just 23, 2017			
Issue Date	August 23, 2017	August 23, 2017			
Test Result	🖂 Pass 🛛 🗆 Fa	ail			
Equipment complied	l with the specifica	ntion 🖂			
Equipment did not c	omply with the spe	ecification	-		
Amos. Xia Deon Dai					
Amos XiaDeon DaiTest EngineerEngineer Reviewer					
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only					

Issued by: SIEMIC (Nanjing-China) Laboratories 2-1 Longcang Avenue Yuhua Economic and

Technology Development Park, Nanjing, China

Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Page

2 of 42

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	17020852-FCC-R1
Page	3 of 42

This page has been left blank intentionally.

 Test Report No.
 17020852-FCC-R1

 Page
 4 of 42

<u>CONTENTS</u>

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS
6.1 F	F EXPOSURE9
6.2 A	NTENNA REQUIREMENT
6.3 E	TS (6 DB) CHANNEL BANDWIDTH
6.4 N	IAXIMUM OUTPUT POWER
6.5 F	OWER SPECTRAL DENSITY
6.6 E	AND-EDGE & UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS
6.7 F	OWER LINE CONDUCTED EMISSIONS
6.8 F	ADIATED EMISSIONS
ANN	EX A. TEST INSTRUMENT
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST41
ANN	EX E. DECLARATION OF SIMILARITY

1. <u>Report Revision History</u>

Report No.	Report Version	Description	Issue Date
17020852-FCC-R1	NONE	Original	August 23, 2017

2. Customer information

Applicant Name	Beijing Jia An Electronics Technology Co., Ltd.		
Applicant Add	Main building, No.19, Gucheng West Street, Shijingshan District, Beijing, 100043, China		
Manufacturer	Beijing Jia An Electronics Technology Co., Ltd.		
Manufacturer Add	Main building, No.19, Gucheng West Street, Shijingshan District, Beijing, 100043, China		

3. <u>Test site information</u>

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and
	Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC

Test Report No.	17020852-FCC-R1
Page	6 of 42

4. Equipment under Tes	st (EUT) Information
Description of EUT:	Bluetooth Module
Main Model:	WB822D
Serial Model:	N/A
Date EUT received:	August 10, 2017
Test Date(s):	August 21 to August 23, 2017
Output Max power	2.556dBm
Antenna Gain:	BLE: 0.5 dBi
Type of Modulation:	BLE: GFSK
RF Operating Frequency (ies):	BLE: 2402-2480 MHz
Number of Channels:	BLE: 40CH
Port:	N/A
Input Power:	DC3.3V
Trade Name :	N/A
FCC ID:	VVJ-WB822D

Test Report No.	17020852-FCC-R1	
Page	7 of 42	

Operating channel list

Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Test Report No.	17020852-FCC-R1	
Page	8 of 42	

5. Test Summary

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result	
§15.247 (i), §2.1091	RF Exposure	Compliance	
§15.203	Antenna Requirement	Compliance	
§15.247 (a)(2)	DTS (6 dB) CHANNEL BANDWIDTH	Compliance	
§15.247(b)(3)	Conducted Maximum Output Power	Compliance	
§15.247(e)	Power Spectral Density Compliance		
§15.247(d)	Band-Edge & Unwanted Emissions into Non-Restricted Compliance		
§15.207 (a),	Power Line Conducted Emissions	Compliance	
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance	

Measurement Uncertainty

Test Item	Description	Uncertainty
Radiated Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	3.952dB

Test Report No.	17020852-FCC-R1
Page	9 of 42

6. <u>Measurements, Examination And Derived Results</u>

6.1 RF Exposure

The EUT is a portable device, thus requires RF exposure evaluation; Please refer to SIEMIC RF Exposure Report: 17020852-FCC-H1.

 Test Report No.
 17020852-FCC-R1

 Page
 10 of 42

6.2 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 1 antennas:

A permanently attached PIFA antenna for BLE, the gain is 0.5 dBi.

Antenna must be permanently attached to the unit, it meets up with the ANTENNA REQUIREMENT.

Result: Compliant.

 Test Report No.
 17020852-FCC-R1

 Page
 11 of 42

6.3 DTS (6 dB) Channel Bandwidth

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	August 22, 2017
Tested By :	Amos Xia

Spec	Item	Requirement			Applicable
§ 15.247(a)(2)	a)	a) 6dB BW≥500kHz;			
RSS Gen (4.6.1)	b)	20dB BW: For	FCC reference or	nly; required by IC.	
Test Setup		Spe	ectrum Analyzer	EUT	
Test Procedure	<u>6dB Er</u> - - - - - N att	nission bandwid Set RBW = 10 Set the video b Detector = Pea Trace mode = Sweep = auto Allow the trace Measure the max	th measurement p 0 kHz. bandwidth (VBW) a ak. max hold. couple. to stabilize. timum width of the ne two outermost a ad by 6 dB relative		frequencies)
Remark					
Result	⊠Pas	S	Fail		
Test Data	⊠Yes	3	□N/A		
Test Plot	⊠Yes	s (See below)	□N/A		

 Test Report No.
 17020852-FCC-R1

 Page
 12 of 42

6dB Bandwidth measurement result

Туре	Test mode	СН	Freq (MHz)	Result (MHz)	Limit (MHz)	Result
		Low	2402	0.6468	≥0.5	Pass
6dB BW	BLE	Mid	2440	0.6642	≥0.5	Pass
		High	2480	0.658	≥0.5	Pass

Test Plots

6dB Bandwidth measurement result

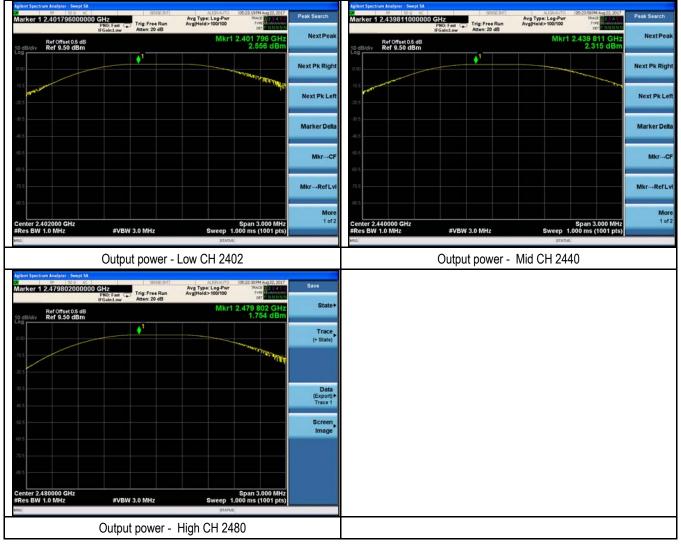
Test Report No.	17020852-FCC-R1
Page	13 of 42

6.4 Maximum Output Power

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	August 22, 2017
Tested By :	Amos Xia

Requirement(s):

Spec	Item	Requirement	Applicable	
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt		
	b)	FHSS in 5725-5850MHz: ≤1 Watt		
§15.247(b)	C)	For all other FHSS in the 2400-2483.5MHz band: ≤0.125 Watt.		
(2),RSS210	d)	FHSS in 902-928MHz with \geq 50 channels: \leq 1 Watt		
(A8.4)	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤0.25 Watt		
	f)	DSSS in 902-928MHz, 2400-2483.5MHz, 5725-5850MHz: ≤1 Watt	\square	
Test Setup		Spectrum Analyzer EUT		
Test Procedure	Maxim a) Set b) Set c) Set d) Swe e) Det f) Trac g) Allo	 558074 D01 DTS Meas Guidance V04, 9.1.2 Integrated band power method Maximum output power measurement procedure a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 		
Remark				
Result	⊠Pa:	ss 🔤 Fail		
Test Data	⊠Yes	s 🗌 N/A		
Test Plot	⊠Yes	s (See below)		


Test Report No.	17020852-FCC-R1
Page	14 of 42

Output Power measurement result

Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
Output		Low	2402	2.556	30	Pass
Output	BLE	Mid	2440	2.315	30	Pass
power		High	2480	1.754	30	Pass

Test Plots

Output Power measurement result

Test Report No.	17020852-FCC-R1
Page	15 of 42

6.5 Power Spectral Density

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	August 22, 2017
Tested By :	Amos Xia

Spec	Item	Requirement	Applicable							
§15.247(e)	a)	 The power spectral density conducted from the intentional a) radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. 								
Test Setup		Spectrum Analyzer EUT								
Test Procedure	power s a) Set a b) Set th c) Set th d) Set th e) Detec f) Swee g) Trace h) Allow i) Use th RBW.	D01 DTS MEAS Guidance V04 10.2 power spectral density method pectral density measurement procedure nalyzer center frequency to DTS channel center frequency. The span to 1.5 times the DTS bandwidth. The RBW to: 3 kHz \leq RBW \leq 100 kHz. The VBW \geq 3 × RBW. Cotor = peak. The vBW \geq 3 × RBW. The vBW \geq 3 × RBW. The trace to fully stabilize. The peak marker function to determine the maximum amplitude level were assured value exceeds limit, reduce RBW (no less than 3 kHz) and rep	vithin the							
Remark										
Result	🔀 Pas	s 🔤 Fail								
Result	Pass	s Fail								
Test Data	⊠Yes	□N/A								

 Test Report No.
 17020852-FCC-R1

 Page
 16 of 42

Power Spectral Density measurement result

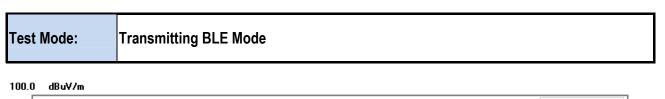
Туре	Test mode	СН	,		Limit (dBm)	Result
		Low	2402	0.897	8	Pass
PSD	BLE	Mid	2440	1.182	8	Pass
		High	2480	-0.012	8	Pass

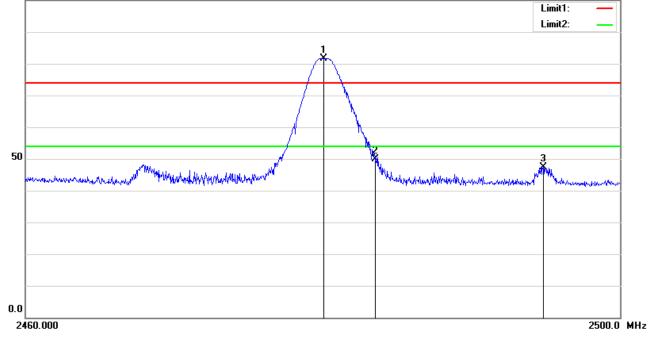
Test Plots

Power Spectral Density measurement result

Test Report No.	17020852-FCC-R1
Page	17 of 42

6.6 Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands


Temperature		20°C							
Relative Humidity		50%							
Atmospheric Pressure		1019mbar							
Test date :		August 23, 2017							
Tested By :		Amos Xia							
Requirement(s):	ltom	Deguirement	Applicable						
Spec	Item	Requirement Applicable							
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.							
Test Setup		Ant. Tower L-im Variable Support Units Turn Table 150: Ground Plane Test Receiver							
Test Procedure	-	 Method Only 1. Check the calibration of the measuring instrument using either an internal calknown signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on tand turn on the EUT and make it operate in transmitting mode. Then set it to L High Channel within its operating range, and make sure the instrument is oper range. 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a conversion including 100kHz bandwidth from band edge, check the emission of EUT Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum an for Quasi Peak detection at frequency below 1GHz. b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and vi 3MHz for Peak detection at frequency above 1GHz. c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the for Average detection (AV) as below at frequency above 1GHz. a. 1/T kHz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%) 4. Measure the highest amplitude appearing on spectral display and set it as a Plot the graph with marking the highest point and edge frequency. 5. Repeat above procedures until all measured frequencies were complete. 	he Rotated table ow Channel and ated in its linear enient frequency f, if pass then set alyzer is 120 kHz deo bandwidth is e video bandwidth						
Remark									
Result		s 🔤 Fail							
Test Data	🖂 Yes	□N/A							
Test Plot	🖂 Yes	(See below) N/A							

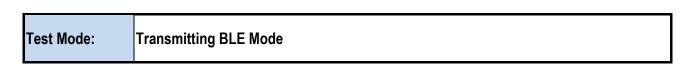


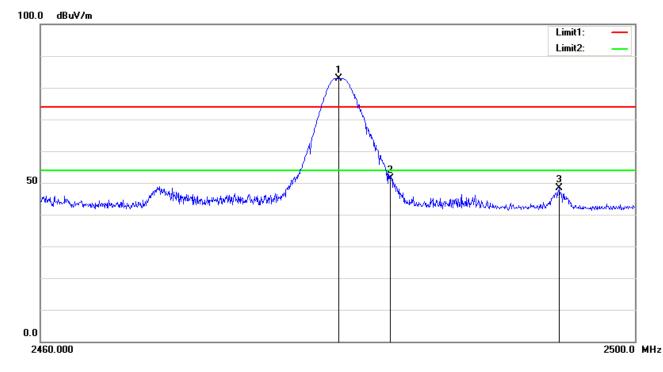
Test Report No.	17020852-FCC-R1
Page	18 of 42

Test Plots

Band Edge measurement result

Test Data


GFSK-Right Side-V


No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2480.000	98.49	peak	31.59	52.62	4.06	81.52	74.00	7.52	100	29
2	2483.500	66.74	peak	31.59	52.63	4.06	49.76	74.00	-24.24	100	330
3	2494.840	64.44	peak	31.60	52.64	4.07	47.47	74.00	-26.53	100	2224

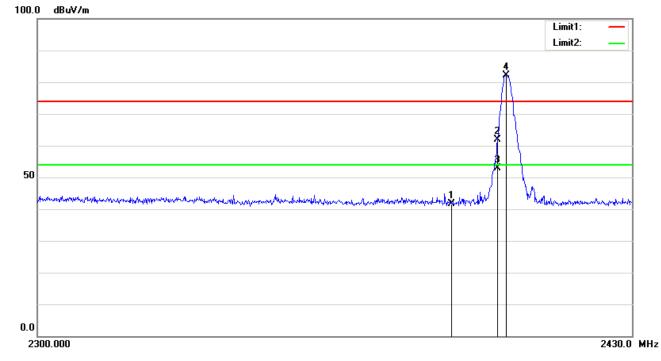
Page

19 of 42

Test Data

GFSK-Right Side-H

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2480.000	99.79	peak	31.59	52.62	4.06	82.82	74.00	8.82	100	254
2	2483.500	68.28	peak	31.59	52.63	4.06	51.30	74.00	-22.70	100	330
3	2494.920	65.33	peak	31.60	52.64	4.07	48.36	74.00	-25.64	100	133



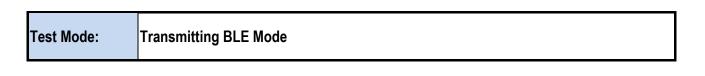
2

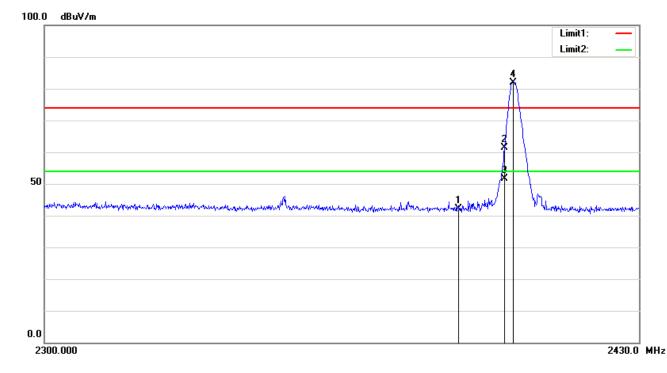
20 of 42

Test Mode: Transmitting BLE Mode

Page

Test Data


GFSK-Left Side-V


No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2390.000	58.63	peak	31.53	52.55	4.02	41.63	74.00	-32.37	100	354
2	2400.000	78.90	peak	31.54	52.56	4.01	61.89	74.00	-12.11	100	359
3	2400.000	69.87	AVG	31.54	52.56	4.01	52.86	54.00	-1.14	100	359
4	2402.000	99.06	peak	31.54	52.56	4.01	82.05	74.00	8.05	200	156

Page

21 of 42

Test Data

GFSK-Left Side-H

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2390.000	59.18	peak	31.53	52.55	4.02	42.18	74.00	-31.82	100	342
2	2400.000	78.45	peak	31.54	52.56	4.01	61.44	74.00	-12.56	100	342
3	2400.000	68.75	AVG	31.54	52.56	4.01	51.74	54.00	-2.26	100	342
4	2402.000	98.81	peak	31.54	52.56	4.01	81.80	74.00	7.80	100	148

Test Report No.	17020852-FCC-R1
Page	22 of 42

6.7 Power Line Conducted Emissions

Temperature	20°C	
Relative Humidity	50%	
Atmospheric Pressure	1019mbar	
Test date :	August 21, 2017	
Tested By :	Amos Xia	

Requirement(s):

Spec	Item Requirement Applicable						
47CFR§15.20 7, RSS210 (A8.1)	a)	For Low-power radio-frequer public utility (AC) power line, onto the AC power line on an to 30 MHz, shall not exceed 50 [mu]H/50 ohms line impe applies at the boundary betw Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 30$ Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 5$					
		5 ~ 30	60	50			
Test Setup		Vertical Ground Reference Plane UT 40 cm UT 40 cm B0 cm Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm					
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. All other supporting equipment were powered separately from another main supply. The EUT was switched on and allowed to warm up to its normal operating condition. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power). 						
Remark		1					
Result	⊠Pas	s 🔤 Fail					

Test Report No. 17020852-FCC-R1 23 of 42

Test Data	⊠Yes	□N/A
Test Plot	Yes (See below)	□N/A

Page

Data sample

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBµV)		(dB}	(dB)	(dB)	(dBµV)	(dBµV)	(dB)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V)$ = Receiver Reading Value

Detector=Quasi Peak Detector or Average Detector

Lisn/ISN= Insertion loss of LISN

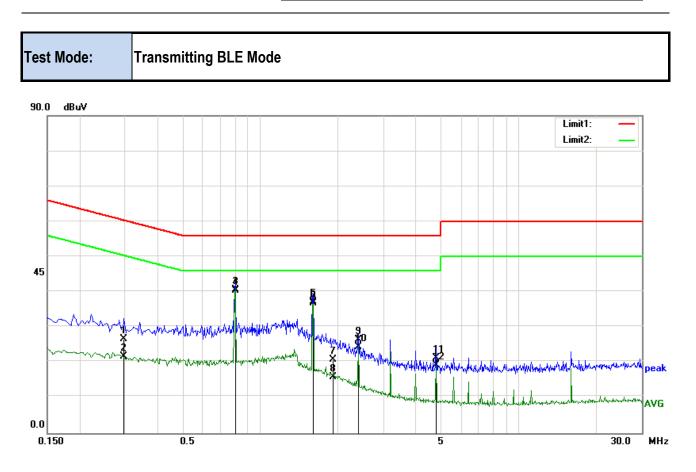
Ps_Lmt= Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Cab_L= cable loss

Result (dBµV) = Reading Value + Corrected Value

Limit (dB μ V) = Limit stated in standard

Calculation Formula:

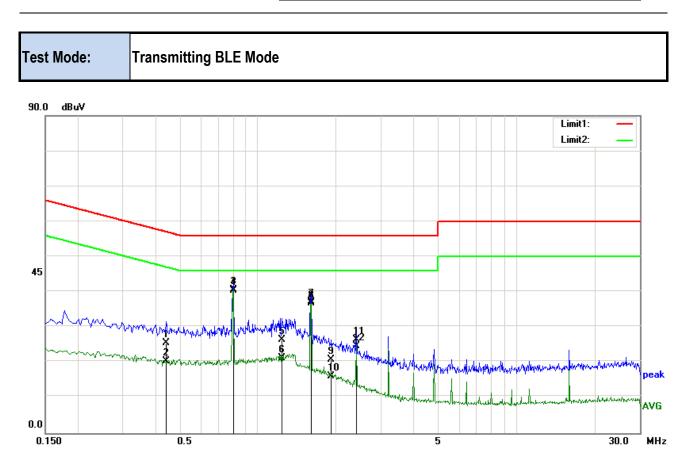

Margin (dB) = Result (dB μ V) – limit (dB μ V)

2

Page

24 of 42

Test Data


Positive Plot at DC 3.3V Reading Detector Lisn/Isn Ps_Lmt Cab_L Result Limit No. Frequency Margin (MHz) (dBuV) (dB} (dBuV) (dBuV) (dB) (dB) (dB) 1 0.2980 16.36 QP 0.11 -10.00 0.20 26.67 60.30 -33.63 0.2980 2 11.35 AVG 0.11 -10.00 0.20 21.66 50.30 -28.64 QP 3 0.8020 30.28 0.13 -10.00 0.20 40.61 56.00 -15.39 4 0.8020 29.96 AVG 0.13 -10.00 0.20 40.29 46.00 -5.71 5 1.6020 26.82 QP 0.15 -10.00 0.20 37.17 56.00 -18.83 -9.30 6 1.6020 26.35 AVG 0.15 -10.00 0.20 36.70 46.00 7 1.9220 10.43 QP 0.16 -10.00 0.19 20.78 56.00 -35.22 8 1.9220 5.59 AVG 0.16 -10.00 0.19 15.94 46.00 -30.06 QP 0.23 9 2.4020 15.98 0.17 -10.00 26.38 56.00 -29.62 10 2.4020 14.12 AVG 0.17 -10.00 0.23 24.52 46.00 -21.48 11 4.8020 10.63 QP 0.26 -10.00 0.28 21.17 56.00 -34.83 12 4.8020 8.77 AVG 0.26 -10.00 0.28 19.31 46.00 -26.69

2

Page

25 of 42

Test Datau

Negative Plot at DC 3.3V

				nogativo i i					
No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBuV)		(dB}	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.4420	15.23	QP	0.11	-10.00	0.21	25.55	57.02	-31.47
2	0.4420	10.12	AVG	0.11	-10.00	0.21	20.44	47.02	-26.58
3	0.8020	30.37	QP	0.12	-10.00	0.20	40.69	56.00	-15.31
4	0.8020	30.05	AVG	0.12	-10.00	0.20	40.37	46.00	-5.63
5	1.2420	16.07	QP	0.14	-10.00	0.21	26.42	56.00	-29.58
6	1.2420	10.99	AVG	0.14	-10.00	0.21	21.34	46.00	-24.66
7	1.6020	26.92	QP	0.15	-10.00	0.20	37.27	56.00	-18.73
8	1.6020	26.46	AVG	0.15	-10.00	0.20	36.81	46.00	-9.19
9	1.9220	10.38	QP	0.17	-10.00	0.19	20.74	56.00	-35.26
10	1.9220	5.62	AVG	0.17	-10.00	0.19	15.98	46.00	-30.02
11	2.4020	16.08	QP	0.18	-10.00	0.23	26.49	56.00	-29.51
12	2.4020	14.23	AVG	0.18	-10.00	0.23	24.64	46.00	-21.36

Test Report No.	17020852-FCC-R1
Page	26 of 42

6.8 Radiated Emissions

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	August 210, 2017
Tested By :	Amos Xia

Requirement(s):

Spec	Item	Requirement		Applicable					
		Except higher limit as specified elsewhere the low-power radio-frequency devices sh specified in the following table and the lev exceed the level of the fundamental emist band edges							
		Frequency range (MHz)							
47CFR§15.24		30 - 88	Field Strength (µV/m) 90						
7(d), RSS210	a)	88 – 216	150	\square					
(A8.5)		216 - 960	210						
		Above 960	300						
		Frequency range (MHz)	Field Strength (µV/m)						
		<u> </u>	100 150						
		216 - 960	200						
		Above 960	500						
Test Setup	1	EUT& Support Units 0.8/1.5m Ground Plane Test Receiver							
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. 								

 Test Report No.
 17020852-FCC-R1

 Page
 27 of 42

	detection for Averag ■ 1/T kHz (Duty cyc	width of test receiver/spectrum analyzer is 1MHz and the video bandwidth with Peak e Measurement as below at frequency above 1GHz. de < 98%) □ 10 Hz (Duty cycle > 98%) e repeated for the next frequency point, until all selected frequency points were
Remark		
Result	Pass	Fail
Test Data	⊠Yes	□N/A
Test Plot	Yes (See below)	□N/A

Data sample

No. Frequency Reading Detector Ant_F PA_G Cab_L Result Limit Margin Height Degre (MHz) (dBuV/m) (dB/m) (dB) (dB) (dBuV/m) (dBuV/m) (dB) (cm) (°)		e a linpie										
(MHz) (dBµV/m) (dB/m) (dB) (dB) (dB) (dBµV/m) (dBµV/m) (dB) (cm) (°)	No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver Reading Value

Detector= Peak Detector or Quasi Peak Detector

Ant_F=Antenna Factor

PA_G=Pre-Amplifier Gain

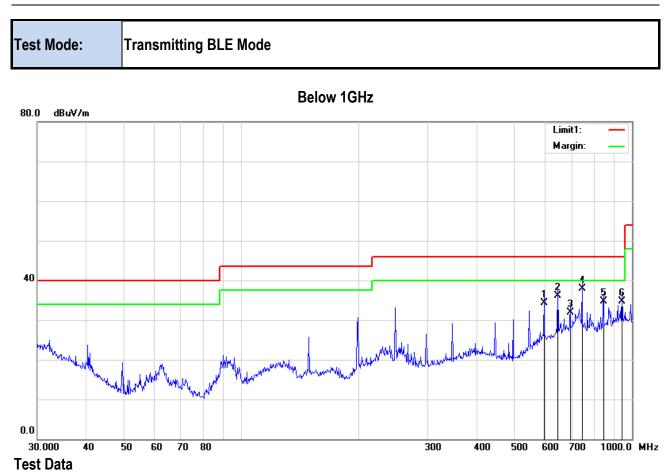
Cab_L=Cable Loss

Result (dBµV/m) = Read ing Value + Corrected Value

Limit (dB μ V/m) = Limit stated in standard

Height (cm) = Height of Receiver antenna

Degree = Turn table degree

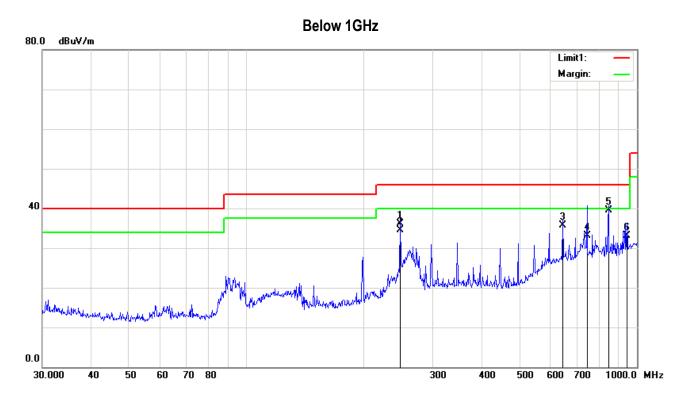

Calculation Formula:

 $\overline{\text{Margin (dB)} = \text{Result (dB}\mu\text{V/m)} - \text{limit (dB}\mu\text{V/m)}}$

Page

28 of 42

Vertical	Polarity	/ Plot	@3m
----------	----------	--------	-----


	Vertiedan Polainty Piet Genn										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	595.1329	59.08	QP	20.02	48.69	3.92	34.33	46.00	-11.67	100	76
2	645.1195	58.19	QP	21.31	47.47	4.08	36.11	46.00	-9.89	100	209
3	694.4174	50.94	QP	22.46	45.77	4.24	31.87	46.00	-14.13	100	353
4	744.8661	56.42	QP	22.12	45.07	4.38	37.85	46.00	-8.15	100	173
5	845.0878	53.70	QP	22.51	46.21	4.68	34.68	46.00	-11.32	200	149
6	942.1305	51.94	QP	23.65	45.88	4.94	34.65	46.00	-11.35	100	158

Test Mode:

Test Report No.	17020852-FCC-R1
Page	29 of 42

Transmitting BLE Mode

Horizontal Polarity Plot @3m

						·····					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	247.6819	66.26	QP	15.06	47.64	2.50	36.18	46.00	-9.82	100	119
2	247.6819	64.62	QP	15.06	47.64	2.50	34.54	46.00	-11.46	100	119
3	645.1195	57.31	QP	21.77	47.47	4.08	35.69	46.00	-10.31	200	289
4	744.8661	51.10	QP	22.67	45.07	4.38	33.08	46.00	-12.92	100	214
5	845.0878	58.20	QP	22.86	46.21	4.68	39.53	46.00	-6.47	100	40
6	942.1305	50.24	QP	23.71	45.88	4.94	33.01	46.00	-12.99	100	39

Page

30 of 42

Test Mode:

Transmitting BLE Mode-Low Channel

						e 1GHz zontal					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	1816.000	61.16	peak	30.23	51.36	4.01	44.04	74.00	-29.96	200	358
2	4804.000	66.13	peak	33.17	53.34	6.10	52.06	74.00	-21.94	200	329
3	5981.000	56.08	peak	33.40	51.36	5.87	43.99	74.00	-30.01	100	45
4	7970.000	56.87	peak	36.51	54.74	7.82	46.46	74.00	-27.54	200	235
5	9823.000	54.87	peak	38.28	53.97	9.11	48.29	74.00	-25.71	100	83
6	11659.000	55.41	peak	38.57	53.42	10.04	50.60	74.00	-23.40	100	339

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	1901.000	61.26	peak	30.73	51.77	3.98	44.20	74.00	-29.80	200	280
2	4196.000	58.26	peak	31.83	52.59	6.11	43.61	74.00	-30.39	200	39
3	4804.000	65.68	peak	33.17	53.34	6.10	51.61	74.00	-22.39	200	227
4	5981.000	56.12	peak	33.40	51.36	5.87	44.03	74.00	-29.97	200	83
5	7987.000	56.28	peak	36.56	54.74	7.84	45.94	74.00	-28.06	200	286
6	10350.000	55.09	peak	38.63	53.35	9.32	49.69	74.00	-24.31	200	34

31 of 42

Page

Test Mode:

Transmitting BLE Mode-Middle Channel

					Horiz	zontal					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	4349.000	57.61	peak	32.17	52.28	5.88	43.38	74.00	-30.62	200	131
2	4880.000	64.16	peak	33.34	53.67	6.00	49.83	74.00	-24.17	200	48
3	7936.000	55.70	peak	36.41	54.75	7.79	45.15	74.00	-28.85	200	357
4	10520.000	54.53	peak	38.59	53.04	9.36	49.44	74.00	-24.56	200	44
5	11591.000	54.94	peak	38.58	53.30	10.07	50.29	74.00	-23.71	200	349
6	13087.000	54.41	peak	40.69	51.83	9.61	52.88	74.00	-21.12	200	254

Above 1GHz

Vertical

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2003.000	60.91	peak	31.30	52.24	3.94	43.91	74.00	-30.09	100	146
2	4880.000	65.96	peak	33.34	53.67	6.00	51.63	74.00	-22.37	200	263
3	5981.000	55.61	peak	33.40	51.36	5.87	43.52	74.00	-30.48	200	297
4	8089.000	55.92	peak	36.16	54.56	7.95	45.47	74.00	-28.53	100	137
5	10384.000	55.43	peak	38.62	53.28	9.32	50.09	74.00	-23.91	179	360
6	11523.000	55.25	peak	38.60	53.18	10.09	50.76	74.00	-23.24	100	60

Page

32 of 42

Test Mode:

Transmitting BLE Mode-High Channel

						e 1GHz zontal					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2020.000	60.77	peak	31.31	52.26	3.97	43.79	74.00	-30.21	100	194
2	4960.000	66.57	peak	33.51	54.03	5.89	51.94	74.00	-22.06	200	21
3	6151.000	55.60	peak	33.64	51.75	5.85	43.34	74.00	-30.66	100	54
4	7579.000	56.09	peak	35.34	54.78	7.49	44.14	74.00	-29.86	200	104
5	9908.000	54.83	peak	38.48	54.03	9.17	48.45	74.00	-25.55	200	281
6	11557.000	55.13	peak	38.59	53.24	10.08	50.56	74.00	-23.44	100	336

Vertical

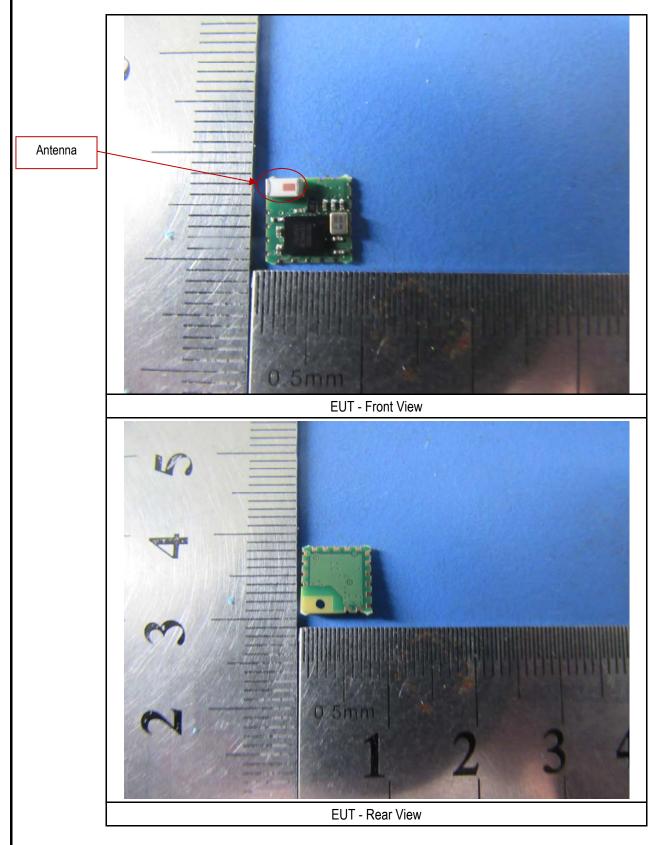
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	2020.000	60.60	peak	31.31	52.26	3.97	43.62	74.00	-30.38	200	8
2	4960.000	65.14	peak	33.51	54.03	5.89	50.51	74.00	-23.49	200	295
3	6015.000	55.28	peak	33.42	51.33	5.85	43.22	74.00	-30.78	200	21
4	8225.000	56.06	peak	35.48	54.29	8.09	45.34	74.00	-28.66	200	86
5	9874.000	54.55	peak	38.40	54.01	9.14	48.08	74.00	-25.92	200	150
6	10843.000	55.02	peak	38.46	53.17	9.45	49.76	74.00	-24.24	200	166

Page

33 of 42

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted Emissions			1		1
R&S EMI Test Receiver	ESPI3	101216	05/03/2017	05/02/2018	\square
Transient Limiter	LIT-153	531021	10/30/2016	10/29/2017	\square
V-LISN	ESH3-Z5	838979/005	03/30/2017	03/29/2018	\boxtimes
SIEMIC EZ_EMC Conducted Emissions software	Ver.ICP- 03A1	N/A	N/A	N/A	\boxtimes
RF conducted test					
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
Power Splitter	1#	1#	02/02/2017	02/01/2018	\boxtimes
Spectrum Analyzer	N9010A	MY47191130	03/30/2017	03/29/2018	\boxtimes
Radiated Emissions					
Spectrum Analyzer	N9010A	MY47191130	05/03/2017	05/02/2018	\boxtimes
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\boxtimes
Antenna (30MHz~6GHz)	JB6	A121411	10/31/2016	10/31/2017	\boxtimes
EMCO Horn Antenna (1 ~18GHz)	3115	N/A	11/15/2016	11/14/2017	\boxtimes
Hp Pre-Amplifier	8447F	1937A01160	10/31/2016	10/30/2017	\boxtimes
Agilent Pre-Amplifier	8449B	N/A	10/31/2016	10/30/2017	\boxtimes
SIEMIC EZ_EMC Radiated Emissions software	Ver.ICP- 03A1	N/A	N/A	N/A	\boxtimes

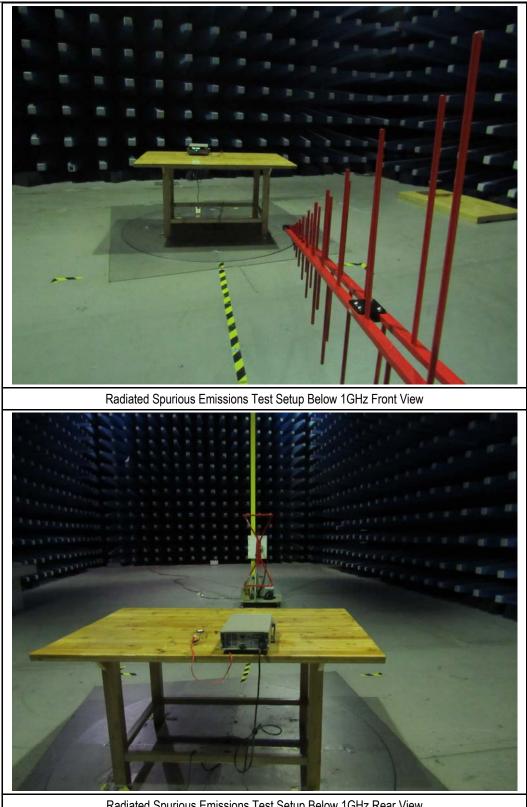

Test Report No.	17020852-FCC-R1
-----------------	-----------------

34 of 42

Page

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External and Internal Photos

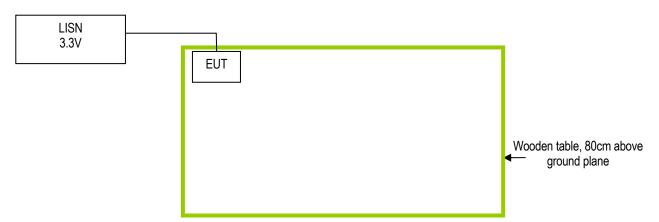

Test Report No.	17020852-FCC-R1
Page	35 of 42

Annex B.iii. Photograph: Test Setup Photo

Test Report No. 17020852-FCC-R1 36 of 42 Page

Radiated Spurious Emissions Test Setup Below 1GHz Rear View

Test Report No.	17020852-FCC-R1
Page	37 of 42


Test Report No.	17020852-FCC-R1
Page	38 of 42

38 of 42

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.i. TEST SET UP BLOCK


Block Configuration Diagram for DC Line Conducted Emissions

Test Report No.	17020852-FCC-R1
Page	39 of 42

Block Configuration Diagram for Radiated Emissions

Test Report No.	17020852-FCC-R1	
Page	40 of 42	

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model
ITECH	DC Power Supply	IT6861B

Test Report No.	17020852-FCC-R1	
Page	41 of 42	

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Page

42 of 42

Annex E. DECLARATION OF SIMILARITY

N/A