

A Test Lab Techno Corp.

Changan Lab: No. 140-1, Changan Street, Bade City, Taoyuan County, Taiwan R.O.C.

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR EVALUATION REPORT

Test Report No. : 1108FS16-01

Applicant : Ericsson AB.

Product Type : Ericsson Mobile Broadband Module

Trade Name : Ericsson

Model Number : F5521gw – Host Device: P17G-P17G001

Dates of Test : Aug. 11, 2011

Date of Issued : Oct. 12, 2011

Test Environment : Ambient Temperature : $22 \pm 2 \degree C$

Relative Humidity: 40 - 70 %

Standard : ANSI/IEEE C95.1-1999

IEEE Std. 1528-2003

47 CFR Part §2.1093;

FCC/OET Bulletin 65 Supplement C [July 2001]

RSS-102 Issue 4 (March 2010)

Max. SAR : 1.320 W/kg Body SAR

Test Lab Location : Chang-an Lab

- 1. The test operations have to be performed with cautious behavior, the test results are as attached.
- The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- 3. The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only apply to the tested sample.

Approved By

n Chuang

(Sam Chuang)

Tested By

(Alex Wu)

Contents

1.	Desc	ription of	Equipment under Test (EUT)	3
2.	Introd	duction		4
	2.1	SAR De	finition	4
3.	SAR	Measure	ment Setup	5
	3.1	DASY4	E-Field Probe System	6
	3.1.1	E-Field F	Probe Specification	7
	3.1.2	E-Field F	Probe Calibration process	8
	3.2	Data Acc	quisition Electronic (DAE) System	9
	3.3	Robot		9
	3.4	Measure	ement Server	9
	3.5	Device H	Holder	10
	3.6	Phanton	n - SAM v4.0	10
	3.7	Oval Fla	t Phantom - ELI 4.0	11
	3.8	Data Sto	orage and Evaluation	11
4.	Tissu	e Simulat	ting Liquids	14
	4.1	Ingredie	nts	15
	4.2	Recipes		15
	4.3	Liquid C	onfirmation	16
5.	Test (Configura	tion Position	17
6.	SAR	Testing w	rith RF Transmitters	18
	6.1	SAR Tes	sting with HSDPA / HSPA Transmitters	18
	6.2	Conduct	ted Power	21
7.	Syste	m Perfor	mance Check	24
	7.1	Symmet	ric Dipoles for System Validation	24
	7.2	Validatio	n	25
8.	Test F	Equipmer	nt List	27
9.	Meas	urement	Uncertainty	28
10.	Meas	urement	Procedure	30
	10.1	Spatial F	Peak SAR Evaluation	30
	10.2	Area & Z	Zoom Scan Procedures	31
	10.3	Volume	Scan Procedures	31
	10.4	SAR Ave	eraged Methods	31
	10.5	Power D	Prift Monitoring	31
11.	SAR	Test Resi	ults Summary	32
			\R	
		•	5.1-1999 RF Exposure Limit	
12.				
	endix		System Performance Check	
	endix		SAR Measurement Data	
	endix		Calibration	52

1. <u>Description of Equipment under Test (EUT)</u>

Applicant	Ericsson AB	
Applicant Address	Lindholmspiren 11 417 56 Gothenburg, Sweden	
Manufacture	Ericsson.	
Manufacture Address	Lindholmspiren 11 417 56 Gothenburg, Sweden	
Product Type	Ericsson Mobile Broadband Module	
Trade Name	Ericsson	
Model Number	F5521gw	
Host Device	P17G-P17G001	
FCC ID	VV7-MBMF5521GW1	
IC ID	287AG-MBMF5521GW1	
Tx Frequency	Band	Operate Frequency (MHz)
	GSM/GPRS/EGPRS 850	824.2 - 848.8
	PCS/GPRS/EGPRS 1900	1850.2 - 1909.8
	WCDMA(RMC 12.2K) / HSDPA / HSUPA Band V	826.4 - 846.4
	WCDMA(RMC 12.2K) / HSDPA / HSUPA Band II	1852.4 - 1907.6
RF Conducted Power	Band	Power (W / dBm)
(Avg.)	GSM/GPRS/EGPRS 850	1.888 / 32.76
	PCS/GPRS/EGPRS 1900	0.912 / 29.60
	WCDMA(RMC 12.2K) / HSDPA / HSUPA Band V	0.240 / 23.81
	WCDMA(RMC 12.2K) / HSDPA / HSUPA Band II	0.208 / 23.18
Max. SAR Measurement	1.320 W/kg Body SAR	
Antenna Type	PIFA Type	
Device Category	Portable Device	
RF Exposure Environment	General Population / Uncontrolled	
Battery Option	Standard	
Application Type	Certification	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in Standard C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE Std. 1528-2003.

Report Number: 1108FS16-01 Page 3 of 84

2. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **Ericsson Mobile Broadband Module Trade name**: **Ericsson. Module**: **F5521gw**. The test procedures, as described in American National Standards, Institute C95.1-1999 [1], FCC/OET Bulletin 65 Supplement C [July 2001] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

2.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

SAR =
$$\frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

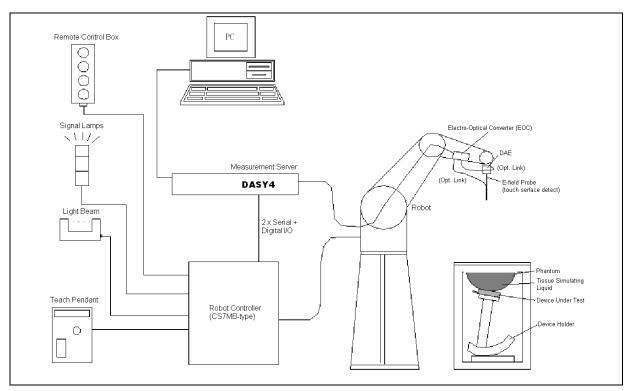
$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = RMS electric field strength (V/m)


*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane (2)

Page 4 of 84

3. SAR Measurement Setup

The DASY4 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY4 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.

Report Number: 1108FS16-01 Page 5 of 84

3.1 DASY4 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 or ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration (3) and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

Report Number: 1108FS16-01 Page 6 of 84

3.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection System

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.q., glycol)

Calibration In air from 10 MHz to 6 GHz

In brain and muscle simulating tissue at frequencies of 2450MHz (accuracy ±8%)

Calibration for other liquids and frequencies upon request

Frequency ±0.2 dB (30 MHz to 6 GHz) for EX3DV4

 ± 0.2 dB (30 MHz to 4 GHz) for ES3DV3

Directivity ± 0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

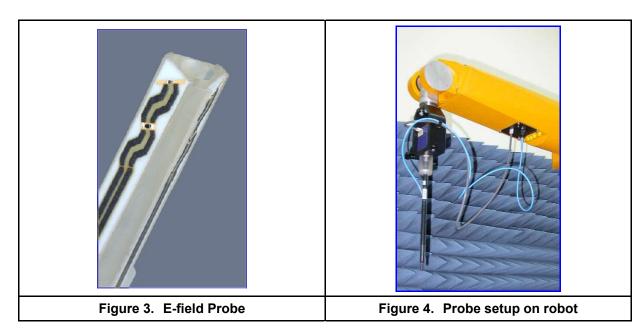
Dynamic Range 10 μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Dimensions Overall length: 337mm

Tip length: 20mm

Body diameter: 12mm

Tip diameter: 2.5mm for EX3DV4, 3.9mm for ES3DV3


Distance from probe tip to dipole centers: 1.0mm for EX3DV4, 2.0mm for

ES3DV3

Application General dosimetry up to 6GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

3.1.2 E-Field Probe Calibration process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Page 8 of 84

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

Δ T = Temperature increase due to RF exposure.

Or SAR =
$$\frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

3.2 Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Pentium 4

Clock Speed: 2.4GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 v4.7 (Build 80) & SEMCAD v1.8 (Build 186)

Connecting Lines: Optical downlink for data and status info

Optical uplink for commands and clock

3.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: RX90L

Repeatability: ±0.025 mm

No. of Axis: 6

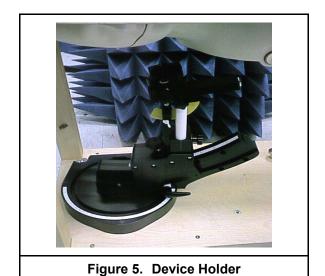
3.4 Measurement Server

Processor: PC/104 with a 166MHz low-power Pentium

I/O-board: Link to DAE4 (or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot


Direct emergency stop output for robot

Report Number: 1108FS16-01 Page 9 of 84

3.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6 Phantom - SAM v4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Table 1. Specification of SAM v4.0						
Dimensions	1000×500 mm (L×W)					
Filling Volume	Approx. 25 liters					
Shell Thickness	2 ±0.2 mm					

Figure 6. SAM Twin Phantom

3.7 Oval Flat Phantom - ELI 4.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness	2 ±0.2 mm		
Filling Volume	Approx. 30 liters		
Dimensions	190×600×400 mm (H×L×W)		
Table 2. Spec	cification of ELI 4.0		

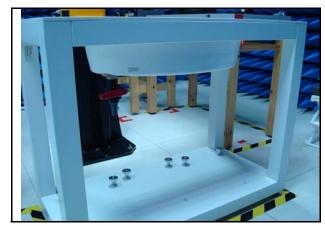


Figure 7. Oval Flat Phantom

3.8 Data Storage and Evaluation

3.8.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA4. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Report Number: 1108FS16-01 Page 11 of 84

3.8.2 Data Evaluation

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters : - Conductivity σ

- Density ho

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\textbf{E-field probes:} \qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H_{i} = \sqrt{V_{i}} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^{2}}{f}$$

H-field probes:

with V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 $\mu \, \text{V/(V/m)}^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

*Note: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

4. <u>Tissue Simulating Liquids</u>

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Во	dy					
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)					
150	52.3	0.76	61.9	0.80					
300	45.3	0.87	58.2	0.92					
450	43.5	0.87	56.7	0.94					
835	41.5	0.90	55.2	0.97					
900	41.5	0.97	55.0	1.05					
915	41.5	0.98	55.0	1.06					
1450	40.5	1.20	54.0	1.30					
1610	40.3	1.29	53.8	1.40					
1800 - 2000	40.0	1.40	53.3	1.52					
2450	39.2	1.80	52.7	1.95					
3000	38.5	2.40	52.0	2.73					
5800	35.3	5.27	48.2	6.00					
	(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m ³)								

Table 3. Tissue dielectric parameters for head and body phantoms

Report Number: 1108FS16-01 Page 14 of 84

Ingredients 4.1

The following ingredients are used:

- Water: deionized water (pure H_20), resistivity \geq 16 M Ω -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops) -to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

4.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency

Note: The goal dielectric parameters (at 22 °C) must be achieved within a tolerance of ±5% for εand $\pm 5\%$ for σ .

Ingredients	Frequency (MHz)									
(% by weight)	4	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99⁺% Pure Sodium Chloride

Sugar: 98⁺% Pure Sucrose

Water: De-ionized, 16 M Ω^{+} resistivity

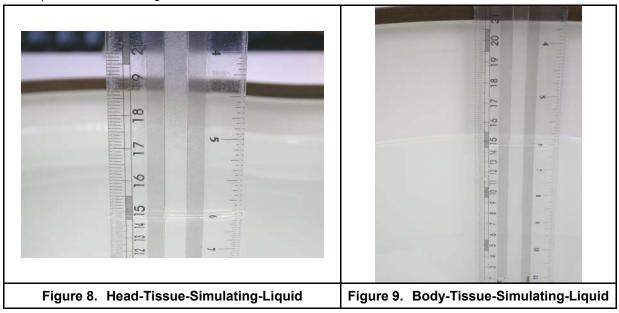
HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Report Number: 1108FS16-01 Page 15 of 84

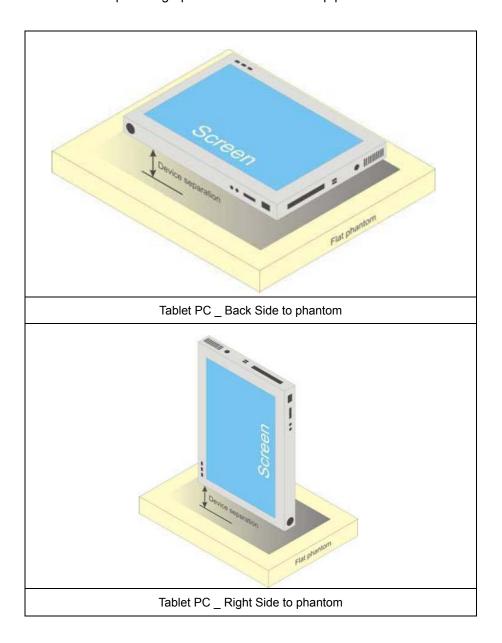
4.3 Liquid Confirmation


4.3.1 Parameters

Liquid Ver	ify									
Ambient Temperature : 22 ± 2 °C ; Relative Humidity : 40 -70%										
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date		
	820MHz	22.0	εr	55.20	54.56	-1.16 %	± 5			
	020IVII 12	22.0	σ	0.97	0.96	-1.03 %	± 5			
835MHz	835MHz 850MHz	925MU-	22.0	εr	55.20	54.39	-1.47 %	± 5	08/11/2011	
Body		22.0	σ	0.97	0.98	1.03 %	± 5	06/11/2011		
		22.0	εr	55.20	54.31	-1.61 %	± 5			
		22.0	σ	0.97	1.00	3.09 %	± 5			
	1850MHz	22.0	εr	53.30	52.17	-2.12 %	± 5			
	1000WII 12	22.0	σ	1.52	1.45	-4.61 %	± 5			
1900MHz	40000411-	22.0	εr	53.30	52.04	-2.36 %	± 5	08/11/2011		
Body	1900MHz	22.0	σ	1.52	1.50	-1.32 %	± 5	06/11/2011		
	1930MHz	22.0	εr	53.30	52.01	-2.42 %	± 5			
	IBOUNIEZ	22.0	σ	1.52	1.53	0.66 %	± 5			

Table 4. Measured Tissue dielectric parameters for head and body phantoms

4.3.2 Liquid Depth


The liquid level was during measurement 15cm ± 0.5 cm.

5. <u>Test Configuration Position</u>

This DUT was tested in one position. It is notebook bottom touching with 0 cm air gap. Please refer to "SAR Test Setup Photographs" file for the test setup photos.

6. SAR Testing with RF Transmitters

6.1 SAR Testing with HSDPA / HSPA Transmitters

HSDPA Date Devices setup for SAR Measurement.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below.³² The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.³³

Sub-test	βc	βd	βd (SF)	βc/βd	βhs ^(1,2)	CM (dB) ⁽³⁾	MRP (dB) ⁽³⁾
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	12/15 ⁽⁴⁾	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note

- 1. Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow Ahs = β hs/ β c = 30/15 \Leftrightarrow β hs= 30/15 * β c
- 2. For theHS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1A and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β hs = 30/15 * β c and Δ_{CQI} = 24/15 with β hs = 24/15* β c
- 3. CM = 1 for $\beta c/\beta d$ =12/15, $\beta hs/\beta c$ =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- 4. For subtest 2 the β c/ β d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 11/15 and β d = 15/15.

Table 5. Setup for Release 5 HSDPA

Report Number: 1108FS16-01 Page 18 of 84

HSPA Date Devices setup for SAR Measurement.

The following procedures are applicable to HSPA (HSUPA/HSDPA) data devices operating under 3GPP Release 6. Body exposure conditions generally apply to these devices, including handsets and data modems operating in various electronic devices. HSUPA operates in conjunction with WCDMA and HSDPA. SAR is initially measured in WCDMA test configurations without HSPA. The default test configuration is to establish a radio link between the DUT and a communication test set to configure a 12.2 kbps RMC (reference measurement channel) in Test Loop Mode 1. SAR for HSPA is selectively measured with HS-DPCCH, EDPCCH and E-DPDCH, all enabled, along with a 12.2 kbps RMC using the highest SAR configuration in WCDMA with 12.2 kbps RMC only. An FRC is configured according to HSDPCCH Sub-test 1 using H-set 1 and QPSK. HSPA is configured according to E-DCH Subtest 5 requirements. SAR for other HSPA sub-test configurations is also confirmed selectively according to output power, exposure conditions and E-DCH UE Category. Maximum output power is verified according to procedures in applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. The UE Categories for HSDPCCH and HSPA should be clearly identified in the SAR report. The following procedures are applicable only if Maximum Power Reduction (MPR) is implemented according to Cubic Metric (CM) requirements.

When voice transmission and head exposure conditions are applicable to a WCDMA/HSPA data device, head exposure is measured according to the 'Head SAR Measurements' procedures in the 'WCDMA Handsets' section of this document. SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of this document. In addition, body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than ¼ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurements should be used to test for head exposure.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document.

Report Number: 1108FS16-01 Page 19 of 84

The highest body SAR measured in Antenna Extended & Retracted configurations on a channel in 12.2 kbps RMC. The possible channels are the High, Middle & Low channel. Contact the FCC Laboratory for test and approval requirements if the maximum output power measured in E-DCH Sub-test 2 - 4 is higher than Sub-test 5.

Sub- test	βс	βd	βd (SF)	βc/βd	βhs ⁽¹⁾	βес	βed	Bed (SF)	Bed (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 8 \Leftrightarrow Ahs = β hs/ β c = 30/15 \Leftrightarrow β hs= 30/15 * β c.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\beta hs/\beta c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.
- Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.
- Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 6. Setup for Release 6 HSPA / Release 7 HSPA+

Report Number: 1108FS16-01 Page 20 of 84

6.2 Conducted Power

Band	Mode	СН	Frequency (MHz)	RF Conducted Output Power (dBm)		
			(1711 12)	Time Average	Average burst	
		Lowest	824.2	23.57	32.76	
	4Down1Up	Middle	836.6	23.27	32.46	
GPRS 850		Highest	848.8	23.19	32.38	
GFK3 650	3Down2Up	Lowest	824.2	26.41	32.64	
		Middle	836.6	26.12	32.35	
		Highest	848.8	25.99	32.22	
		Lowest	824.2	17.78	26.97	
	4Down1Up	Middle	836.6	17.34	26.53	
EGPRS 850		Highest	848.8	17.26	26.45	
EGFRS 650		Lowest	824.2	20.67	26.90	
	3Down2Up	Middle	836.6	20.49	26.72	
		Highest	848.8	20.33	26.56	

Band	Mode	СН	Frequency (MHz)	RF Conducted Output Power (dBm)		
			(IVII IZ)	Time Average	Average burst	
		Lowest	1850.2	20.07	29.26	
	4Down1Up	Middle	1880.0	20.34	29.53	
GPRS 1900		Highest	1909.8	20.41	29.60	
GFK3 1900	3Down2Up	Lowest	1850.2	22.81	29.04	
		Middle	1880.0	22.94	29.17	
		Highest	1909.8	23.12	29.35	
		Lowest	1850.2	16.63	25.82	
	4Down1Up	Middle	1880.0	16.82	26.01	
EGPRS 1900		Highest	1909.8	16.66	25.85	
EGFN3 1900		Lowest	1850.2	19.54	25.77	
	3Down2Up	Middle	1880.0	19.56	25.79	
		Highest	1909.8	19.56	25.79	

Report Number: 1108FS16-01 Page 21 of 84

Band	Sub-test	СН	Frequency (MHz)	RF Conducted Output Power (dBm) Average
		Lowest	826.4	23.74
WCDMA Band V		Middle	836.6	23.70
		Highest	846.4	23.81
		Lowest	826.4	23.00
	1	Middle	836.6	23.00
		Highest	846.4	23.14
		Lowest	826.4	23.04
	2	Middle	836.6	22.97
LICDDA Dond V		Highest	846.4	23.02
HSDPA Band V		Lowest	826.4	22.52
	3	Middle	836.6	22.42
		Highest	846.4	22.52
	4	Lowest	826.4	22.50
		Middle	836.6	22.42
		Highest	846.4	22.52
		Lowest	826.4	23.01
	1	Middle	836.6	22.98
		Highest	846.4	23.09
		Lowest	826.4	20.96
	2	Middle	836.6	20.94
		Highest	846.4	21.09
		Lowest	826.4	22.01
HSUPA Band V	3	Middle	836.6	21.97
		Highest	846.4	22.09
		Lowest	826.4	20.99
	4	Middle	836.6	20.95
		Highest	846.4	21.09
		Lowest	826.4	22.94
	5	Middle	836.6	22.94
		Highest	846.4	23.04

Band	Sub-test	СН	Frequency (MHz)	RF Conducted Output Power (dBm)
				Average
		Lowest	1852.4	23.05
WCDMA Band II		Middle	1880.0	23.18
		Highest	1907.6	23.17
		Lowest	1852.4	22.39
	1	Middle	1880.0	22.46
		Highest	1907.6	22.38
		Lowest	1852.4	22.34
	2	Middle	1880.0	22.44
HSDPA Band II		Highest	1907.6	22.38
110DI A Ballu II		Lowest	1852.4	21.90
	3	Middle	1880.0	22.05
		Highest	1907.6	21.94
	4	Lowest	1852.4	21.96
		Middle	1880.0	22.09
		Highest	1907.6	21.92
	1	Lowest	1852.4	22.47
		Middle	1880.0	22.52
		Highest	1907.6	22.47
	2	Lowest	1852.4	20.49
		Middle	1880.0	20.50
		Highest	1907.6	20.46
	3	Lowest	1852.4	21.45
HSUPA Band II		Middle	1880.0	21.51
		Highest	1907.6	21.49
	4	Lowest	1852.4	20.43
		Middle	1880.0	20.56
		Highest	1907.6	20.48
		Lowest	1852.4	22.45
	5	Middle	1880.0	22.52
		Highest	1907.6	22.51

Report Number: 1108FS16-01 Page 23 of 84

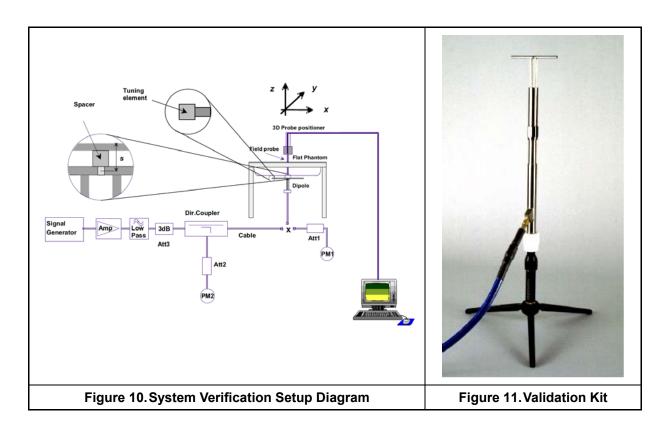
7. System Performance Check

7.1 Symmetric Dipoles for System Validation

Construction Symmetrical dipole with I/4 balun enables measurement of feed point impedance

with NWA matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input power at the flat phantom in head simulating solutions.

Frequency 835 and 1900 MHz

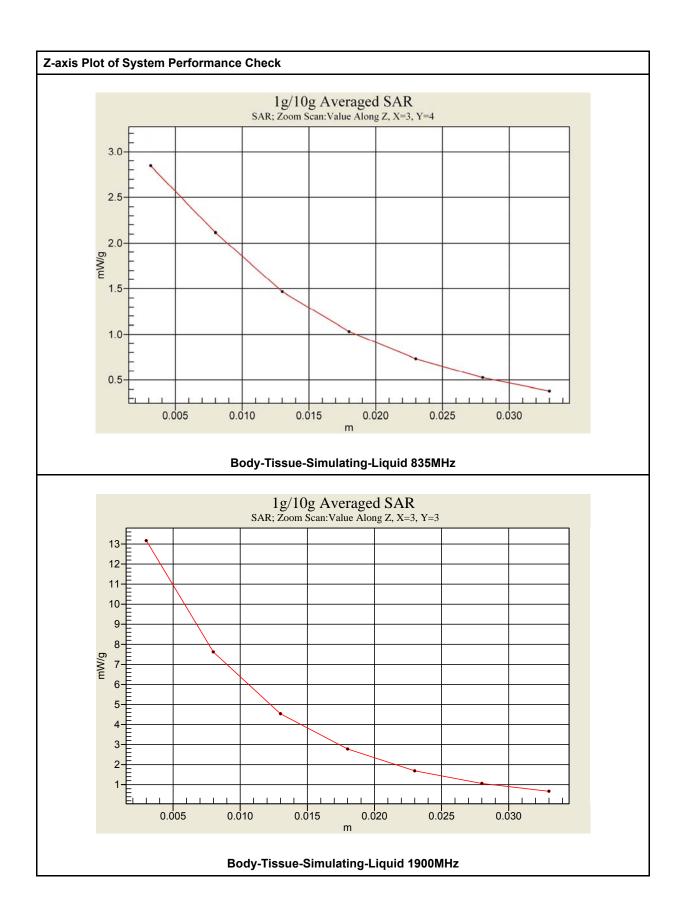

Return Loss > 20 dB at specified validation position Power Capability > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other calibration conditions are

available upon request

Dimensions D835V2: dipole length 161 mm; overall height 340 mm

D1900V2: dipole length 67.7 mm; overall height 300 mm


7.2 Validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The validation was performed at 835 and 1900 MHz.

Validation kit		Mixture Type	SAR _{1g} [mW/g]		SAI [mV	R _{10g} V/g]	Date of Calibration	
D835V2-SN4d082		Body	9.43		6.22		07/19/2011	
D1900V2	-SN5d111	Body	40.90		21.50		07/22/2011	
Frequency Power		SAR _{1g}	SAR _{10g} Drift (mW/a) (dB)		Difference percentage		Date	
(1411 12)	(MHz) (dBm) (mW/g)		(mW/g)	(ub)	1g	10g		
835	250mW	2.47	1.61					
(Body)	Normalize to 1 Watt	9.88	6.44	0.023	4.8 %	3.5 %	08/11/2011	
1900	250mW	10.20	5.31					
(Body)	Normalize to 1 Watt	40.80	21.24	-0.099	-0.2 %	-1.2 %	08/11/2011	

Report Number: 1108FS16-01 Page 25 of 84

8. <u>Test Equipment List</u>

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration			
Manufacturei	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	Dosimetric E-Field Probe	EX3DV4	3632	01/19/2011	01/19/2012		
SPEAG	835MHz System Validation Kit	D835V2	4d082	07/19/2011	07/19/2012		
SPEAG	1900MHz System Validation Kit	D1900V2	5d111	07/22/2011	07/22/2012		
SPEAG	Data Acquisition Electronics	DAE4	541	07/21/2011	07/21/2012		
SPEAG	Measurement Server	SE UMS 001 BA	1021	NO	CR		
SPEAG	Device Holder	N/A	N/A	NCR			
SPEAG	Phantom	SAM V4.0	1009	NCR			
SPEAG	Robot	Staubli RX90L	F00/589B1/A/01	NCR			
SPEAG	Software	DASY4 V4.7 Build 80	N/A	NCR			
SPEAG	Software	SEMCAD V1.8 Build 186	N/A	NCR			
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR			
Agilent	ENA Series Network Analyzer	E5071B	MY42404655	04/14/2010	04/14/2012		
R&S	Power Sensor	NRP-Z22	100179	05/27/2011	05/27/2012		
Agilent	MXG Vector Signal Generator	N5182A	MY47420962	05/16/2011	05/16/2013		
Agilent	Dual Directional Coupler	778D	50334	NO	CR		
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR			
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR			

Table 7. Test Equipment List

Report Number: 1108FS16-01 Page 27 of 84

9. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR to be less than $\pm 20.10 \%$ [8].

According to Std. C95.3[9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of ± 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least ± 2 dB can be expected.

According to CENELEC (10), typical worst-case uncertainty of field measurements is ± 5 dB. For well-defined modulation characteristics the uncertainty can be reduced to ± 3 dB.

Report Number: 1108FS16-01 Page 28 of 84

Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	с _і (1g)	c _i (10g)	Std. Unc. (1-g)	Std. Unc. (10-g)	v _i or V _{eff}	
Meas	Measurement System									
u1	Probe Calibration (k=1)	±5.5%	Normal	1	1	1	±5.5%	±5.5%	8	
u2	Probe Isotropy	±7.6%	Rectangular	$\sqrt{3}$	0.7	0.7	±3.1%	±3.1%	8	
u3	Boundary Effect	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8	
u4	Linearity	±4.7%	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞	
u5	System Detection Limit	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.58%	±0.58%	∞	
u6	Readout Electronics	±0.3%	Normal	1	1	1	±0.3%	±0.3%	∞	
u7	Response Time	±0.8%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞	
u8	Integration Time	±2.6%	Rectangular	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞	
u9	RF Ambient Conditions	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	∞	
u10	RF Ambient Reflections	±0%	Rectangular	$\sqrt{3}$	1	1	±0%	±0%	∞	
u11	Probe Positioner Mechanical Tolerance	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%	8	
u12	Probe Positioning with respect to Phantom Shell	±2.9%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8	
u13	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	80	
Test	sample Related									
u14	Test sample Positioning	±3.6%	Normal	1	1	1	±3.6%	±3.6%	89	
u15	Device Holder Uncertainty	±3.5%	Normal	1	1	1	±3.5%	±3.5%	5	
u16	Output Power Variation - SAR drift measurement	±5.0%	Rectangular	$\sqrt{3}$	1	1	±2.9%	±2.9%	80	
Phan	tom and Tissue Parameters					•				
u17	Phantom Uncertainty (shape and thickness tolerances)	±4.0%	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞	
u18	Liquid Conductivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞	
u19	Liquid Conductivity - measurement uncertainty	±1.93%	Normal	1	0.64	0.43	±1.24%	±0.83%	69	
u20	Liquid Permittivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	8	
u21	Liquid Permittivity - measurement uncertainty	±1.4%	Normal	1	0.6	0.49	±0.84%	±1.69%	69	
	Combined standard uncertain	RSS				±10.05%	±9.98%	313		
	Expanded uncertainty (95% CONFIDENCE LEVEL)	k=2				±20.10%	±19.96%			

Table 8. Uncertainty Budget of DASY

Report Number: 1108FS16-01 Page 29 of 84

10. Measurement Procedure

The measurement procedures are as follows:

- For WLAN function, engineering testing software installed on Notebook can provide continuous transmitting signal.
- Measure output power through RF cable and power meter
- 3. Set scan area, grid size and other setting on the DASY software
- 4. Find out the largest SAR result on these testing positions of each band
- Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- 1. Power reference measurement
- 2. Area scan
- 3. Zoom scan

©2011 A Test Lab Techno Corp.

4. Power drift measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

- 1. Extraction of the measured data (grid and values) from the Zoom Scan
- 2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values form the measurement grid to the high-resolution grid
- 5. Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. Calculation of the averaged SAR within masses of 1g and 10g

10.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 7x7x9 points with step size 5, 5 and 3 mm for 300 MHz to 3 GHz, and 7x7x9 points with step size 5, 5 and 3 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

10.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

10.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

10.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report Number: 1108FS16-01 Page 31 of 84

11. SAR Test Results Summary

11.1 Body SAR

Measurement Results									
Band	•	uency	Power (dBm)	Test Position	Antenna	Spacing (mm)	SAR _{1g} [mW/g]	Power Drift	Remark
	CH	MHz			N4 - 1 -	, ,		(dB)	Deal Oile
	128	824.2	32.64	Tablet	Main	0	0.511	-0.112	Back Side
GPRS 850	128	824.2	32.64	Tablet	Main	0	0.829	-0.166	Right Side
(3Down2Up)	190	836.6	32.35	Tablet	Main	0	1.090	0.038	Right Side
	251	848.8	32.22	Tablet	Main	0	1.320	0.044	Right Side
	512	1850.2	29.04	Tablet	Main	0	0.697	-0.186	Right Side
GPRS 1900	661	1880.0	29.17	Tablet	Main	0	0.802	-0.123	Right Side
(3Down2Up)	810	1909.8	29.35	Tablet	Main	0	0.336	-0.142	Back Side
	810	1909.8	29.35	Tablet	Main	0	0.866	-0.168	Right Side
WCDMA	4233	846.4	23.81	Tablet	Main	0	0.300	-0.125	Back Side
Band V	4233	846.4	23.81	Tablet	Main	0	0.730	-0.158	Right Side
	9263	1852.4	23.05	Tablet	Main	0	0.735	-0.193	Right Side
WCDMA	9400	1880.0	23.18	Tablet	Main	0	0.403	-0.117	Back Side
Band II	9400	1880.0	23.18	Tablet	Main	0	0.878	-0.162	Right Side
	9538	1907.6	23.17	Tablet	Main	0	0.946	-0.066	Right Side
	Std. C95.1-1999 - Safety Limit Spatial Peak Uncontrolled Exposure/General Population							6 W/kg (m\ aged over	

Notes:

- The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001], IEEE1528-2003 and RSS-102.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Batteries are fully charged for all readings.
- 5. WWAN transmission was verified using a base station.
- If the WCDMA Channel's SAR 1g of maximum conducted power > 1.2 mW/g and the conducted power of HSDPA or HSUPA is higher than WCDMA RMC12.2K mode 0.25dB, HSDPA or HSUPA is supposed to be tested.
- 7. If the Channel's SAR 1g of maximum conducted power is > 0.8 mW/g, low, middle and high channel are supposed to be tested.
- 8. The separate distance of antenna to user > 20cm. Therefore the laptop is not required.

Report Number: 1108FS16-01 Page 32 of 84

9. All the test positions of device relative to body were measured placing the device in direct contact with the phantom surface, so the requirements mentioned at RSS-102 Supplementary Procedures (SPR)-001 – SAR TESTING REQUIREMENTS WITH REGARD TO BYSTANDERS FOR LAPTOP TYPE COMPUTERS WITH ANTENNAS BUILT-IN ON DISPLAY SCREEN(LAPTOP MODE/TABLET MODE) are covered.

11.2 Std. C95.1-1999 RF Exposure Limit

Human Exposure	Population Uncontrolled Exposure	Occupational Controlled Exposure		
	(W/kg) or (mW/g)	(W/kg) or (mW/g)		
Spatial Peak SAR*	1.60	8.00		
(head)				
Spatial Peak SAR**	0.08	0.40		
(Whole Body)	0.00	3.10		
Spatial Peak SAR***	1.60	8.00		
(Partial-Body)	1.00	0.00		
Spatial Peak SAR****	4.00	20.00		
(Hands / Feet / Ankle / Wrist)		20.00		

Table 9. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / **Uncontrolled Environments**: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / Controlled Environments: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Report Number: 1108FS16-01 Page 34 of 84

12. Conclusion

The SAR test results for the Ericsson Mobile Broadband Module, **Trade Name**: **Ericsson**, **Model(s)**: **F5521gw** is below the maximum recommended level of 1.6 W/kg (mW/g).

13. References

- [1] Std. C95.1-1999, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokoviċ, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Poković, T. Schmid, and N. Kuster, "*E-field probe with improved isotropy in brain simulating liquids*", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, *Dosimetric evaluation of mobile communications equipment with known precision*, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), *Human Exposure to Electromagnetic Fields High-frequency*: 10KHz-300GHz, Jan. 1995.
- [11] KDB 450824 D01 v01r01
- [12] KDB 447498 D01 v04
- [13] KDB 616217 D01 v01r01
- [14] KDB 616217 D03 v01
- [15] KDB 450824 D02 v01
- [16] KDB 941225 D01 v02
- [17] KDB 941225 D03 v01
- IC-RSS-102 Supplementary Procedures (SPR)-001 (2011-01)

Report Number: 1108FS16-01 Page 35 of 84

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 2011/8/11 AM 03:36:03

System Performance Check at 835MHz_20110811_Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d082

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

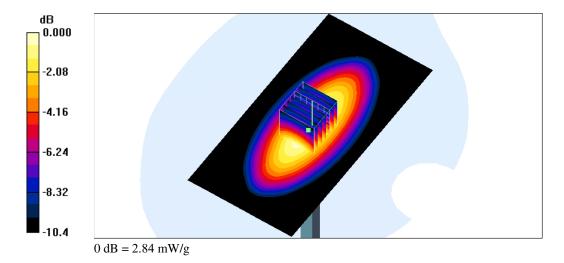
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

System Performance Check at 835MHz/Area Scan (61x121x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.08 mW/g


System Performance Check at 835MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.5 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.61 mW/gMaximum value of SAR (measured) = 2.84 mW/g

Report Number: 1108FS16-01 Page 36 of 84

Date/Time: 2011/8/11 AM 11:28:58

System Performance Check at 1900MHz_20110811_Body

DUT: Dipole D1900V2_SN5d111; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

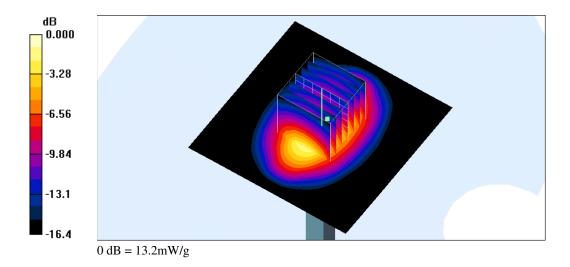
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

System Performance Check at 1900MHz/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 13.4 mW/g


System Performance Check at 1900MHz/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.6 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.31 mW/g Maximum value of SAR (measured) = 13.2 mW/g

Report Number: 1108FS16-01 Page 37 of 84

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp.

Date/Time: 2011/8/11 AM 08:23:55

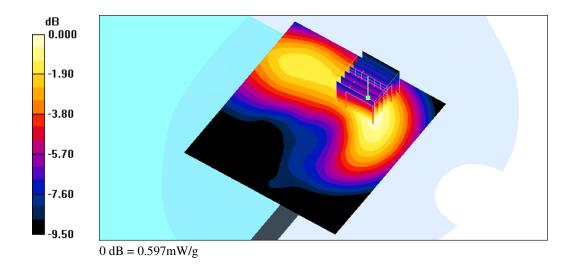
Flat_GPRS 850 CH128_Tablet mode_Back Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS 850 (3Down, 2Up); Frequency: 824.2 MHz; Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (121x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.602 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 16.8 V/m; Power Drift = -0.112 dB Peak SAR (extrapolated) = 0.788 W/kg SAR(1 g) = 0.511 mW/g; SAR(10 g) = 0.335 mW/g

Maximum value of SAR (measured) = 0.597 mW/g

Report Number: 1108FS16-01 Page 38 of 84

Date/Time: 2011/8/11 AM 09:02:36

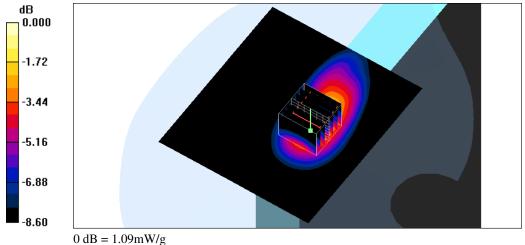
Flat_GPRS 850 CH128_Tablet mode_Right Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS 850 (3Down, 2Up); Frequency: 824.2 MHz; Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.979 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 30.3 V/m; Power Drift = -0.166 dB Peak SAR (extrapolated) = 1.96 W/kg SAR(1 g) = 0.829 mW/g; SAR(10 g) = 0.443 mW/g

Maximum value of SAR (measured) = 1.09 mW/g

Date/Time: 2011/8/11 AM 09:36:18

Flat_GPRS 850 CH190_Tablet mode_Right Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS 850 (3Down, 2Up); Frequency: 836.6 MHz; Duty Cycle: 1:4.2

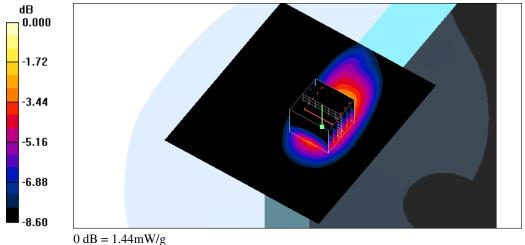
Medium parameters used: f = 837 MHz; $\sigma = 0.982$ mho/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186


Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.31 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 34.9 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.581 mW/gMaximum value of SAR (measured) = 1.44 mW/g

Page 40 of 84

Date/Time: 2011/8/11 AM 10:02:09

Flat_GPRS 850 CH251_Tablet mode_Right Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS 850 (3Down, 2Up); Frequency: 848.8 MHz; Duty Cycle: 1:4.2

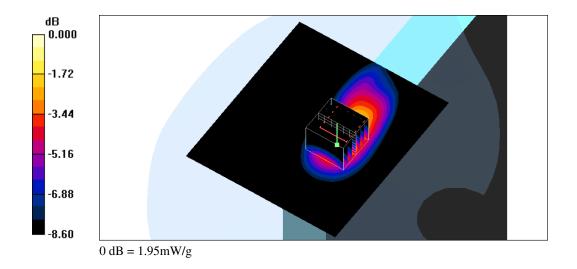
Medium parameters used: f = 849 MHz; $\sigma = 0.997 \text{ mho/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.78 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 43.3 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 1.32 mW/g; SAR(10 g) = 0.654 mW/gMaximum value of SAR (measured) = 1.78 mW/g

Report Number: 1108FS16-01

Page 41 of 84

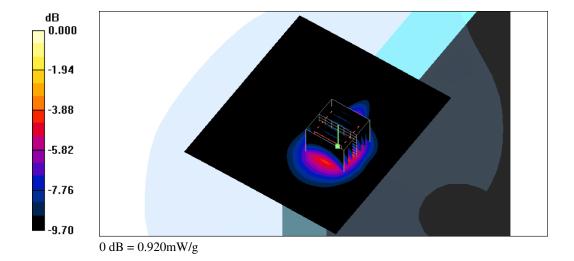
Date/Time: 2011/8/11 PM 12:56:32

Flat_GPRS PCS CH512_Tablet mode_Right Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS PCS (3Down,2Up); Frequency: 1850.2 MHz;Duty Cycle: 1:4.2 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.671 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 19.7 V/m; Power Drift = -0.186 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.697 mW/g; SAR(10 g) = 0.329 mW/g Maximum value of SAR (measured) = 0.920 mW/g

Report Number: 1108FS16-01 Page 42 of 84

Date/Time: 2011/8/11 PM 01:02:46

Flat_GPRS PCS CH661_Tablet mode_Right Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

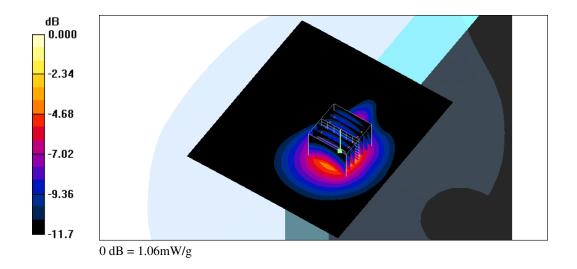
Communication System: GPRS PCS (3Down,2Up); Frequency: 1880 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.771 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 21.2 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 0.802 mW/g; SAR(10 g) = 0.382 mW/gMaximum value of SAR (measured) = 1.06 mW/g

Date/Time: 2011/8/11 PM 12:04:21

Flat_GPRS PCS CH810_Tablet mode_Back Side_3D2U_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

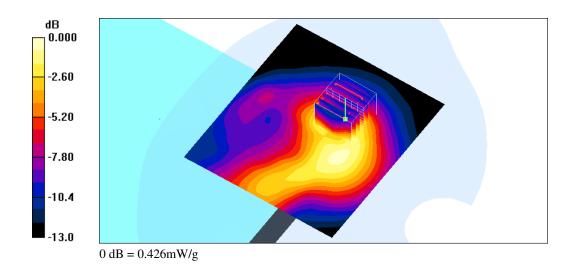
Communication System: GPRS PCS (3Down,2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.425 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 13.5 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.637 W/kg

SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.186 mW/gMaximum value of SAR (measured) = 0.426 mW/g

Date/Time: 2011/8/11 PM 12:31:08

Flat_GPRS PCS CH810_Tablet mode_Right Side_3D2U_0mm

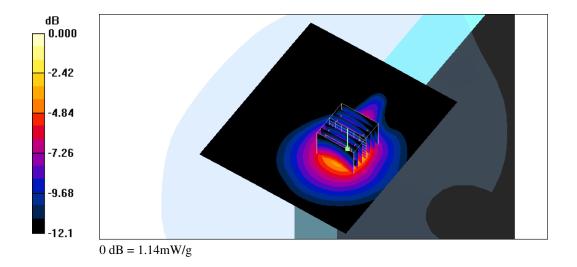
DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: GPRS PCS (3Down,2Up); Frequency: 1909.8 MHz;Duty Cycle: 1:4.2

Medium parameters used: f = 1910 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.881 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 22.8 V/m; Power Drift = -0.168dB Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.866 mW/g; SAR(10 g) = 0.434 mW/gMaximum value of SAR (measured) = 1.14 mW/g

Date/Time: 2011/8/11 AM 10:28:13

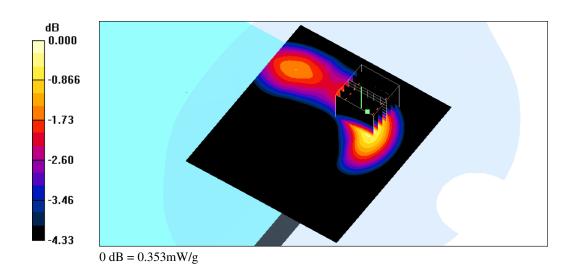
Flat_WCDMA Band V CH4233_Tablet mode_Back Side_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; $\sigma = 0.994$ mho/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.362 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 14.6 V/m; Power Drift = -0.125 dB Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.300 mW/g; SAR(10 g) = 0.198 mW/gMaximum value of SAR (measured) = 0.353 mW/g

Date/Time: 2011/8/11 AM 11:01:29

Flat_WCDMA Band V CH4233_Tablet mode_Right Side_0mm

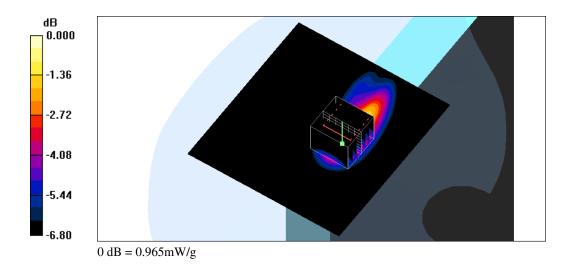
DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; $\sigma = 0.994$ mho/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(9.28, 9.28, 9.28); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (121x131x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.966 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 28.4 V/m; Power Drift = -0.158 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.730 mW/g; SAR(10 g) = 0.383 mW/gMaximum value of SAR (measured) = 0.965 mW/g

Report Number: 1108FS16-01 Page 47 of 84

Date/Time: 2011/8/11 PM 02:24:36

Flat_WCDMA Band II CH9262_Tablet mode_Right Side_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.707 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 20.4 V/m; Power Drift = -0.193 dB Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.735 mW/g; SAR(10 g) = 0.349 mW/gMaximum value of SAR (measured) = 0.968 mW/g

Date/Time: 2011/8/11 PM 01:27:35

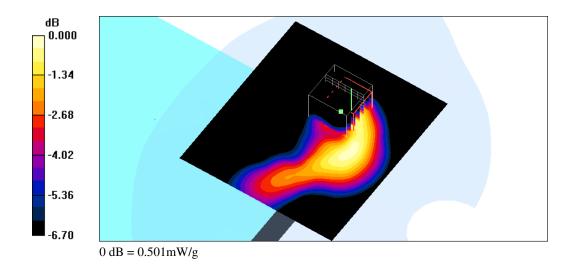
Flat_WCDMA Band II CH9400_Tablet mode_Back Side_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.506 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 14.7 V/m; Power Drift = -0.117 dB Peak SAR (extrapolated) = 0.779 W/kg SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.222 mW/g

Maximum value of SAR (measured) = 0.222 mW/g

Report Number: 1108FS16-01

Date/Time: 2011/8/11 PM 01:57:18

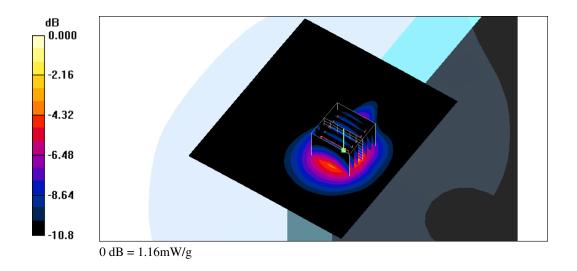
Flat_WCDMA Band II CH9400_Tablet mode_Right Side_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.841 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 22.1 V/m; Power Drift = -0.162 dB Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.878 mW/g; SAR(10 g) = 0.419 mW/gMaximum value of SAR (measured) = 1.16 mW/g

Report Number: 1108FS16-01 Page 50 of 84

Date/Time: 2011/8/11 PM 03:01:28

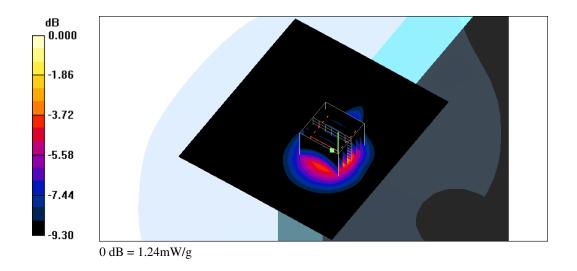
Flat_WCDMA Band II CH9538_Tablet mode_Right Side_0mm

DUT: F5521g; Type: Ericsson Mobile Broadband Module; FCC ID: VV7-MBMF5521GW1

Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; $\sigma = 1.51$ mho/m; $\epsilon_r = 52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3632; ConvF(7.39, 7.39, 7.39); Calibrated: 2011/1/19
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn541; Calibrated: 2011/7/21
- Phantom: SAM 12; Type: SAM v4.0; Serial: TP:1009
- Measurement SW: DASY4, V4.7 Build 80;Postprocessing SW: SEMCAD, V1.8 Build 186

Flate/Area Scan (81x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.959 mW/g

Flate/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm Reference Value = 24.0 V/m; Power Drift = -0.066 dB Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 0.946 mW/g; SAR(10 g) = 0.469 mW/gMaximum value of SAR (measured) = 1.24 mW/g

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D835V2 SN:4d082 Calibration No.D835V2-4d082_Jul11
- Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul11
- Probe _ EX3DV4 SN:3632 Calibration No.EX3-3632_Jan11
- DAE _ DAE4 SN:541 Calibration No.DAE4-541_Jul11

Report Number: 1108FS16-01 Page 52 of 84

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

Client

Certificate No: D835V2-4d082_Jul11

ATL (Auden) CALIBRATION CERTIFICATE Object D835V2 - SN: 4d082 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz July 19, 2011 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAF4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signal Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 19, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d082_Jul11

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d082_Jul11

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.25 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.07 mW /g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.43 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.22 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d082_Jul11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 7.0 jΩ	
Return Loss	- 23.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 8.8 jΩ	
Return Loss	- 20.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.389 ns
Last transmission of the Control of	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 17, 2008	

DASY5 Validation Report for Head TSL

Date: 18.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

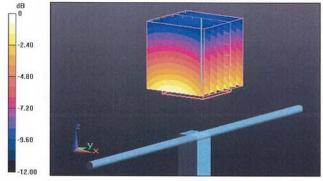
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

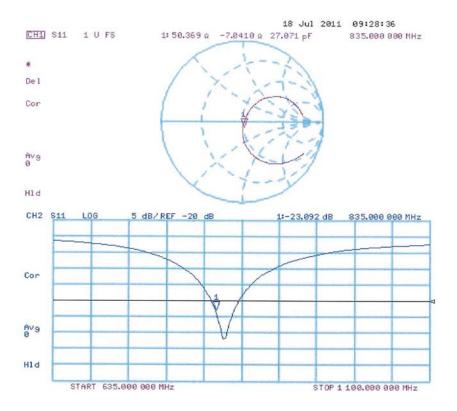

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.745 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.357 W/kg

SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.5 mW/gMaximum value of SAR (measured) = 2.657 mW/g



0 dB = 2.660 mW/g

Certificate No: D835V2-4d082_Jul11

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.98 \text{ mho/m}$; $\varepsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

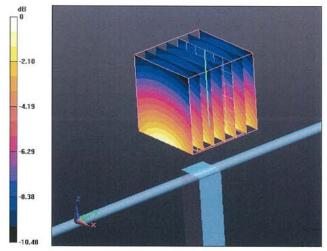
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

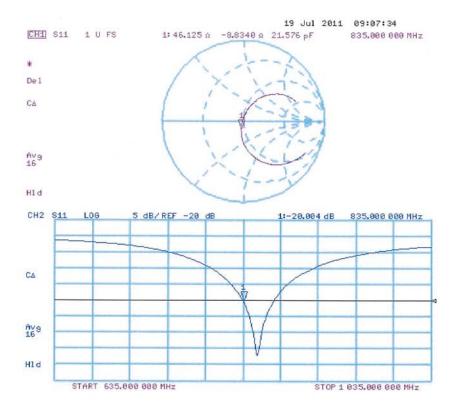

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.883 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 3.464 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.57 mW/gMaximum value of SAR (measured) = 2.762 mW/g



0 dB = 2.760 mW/g

Certificate No: D835V2-4d082_Jul11

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ATL (Auden) Client Certificate No: D1900V2-5d111_Jul11 CALIBRATION CERTIFICATE D1900V2 - SN: 5d111 Object Calibration procedure(s) **QA CAL-05.v8** Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 22, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 22, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d111_Jul11

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d111_Jul11

©2011 A Test Lab Techno Corp.

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.39 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.3 \Omega + 6.7 j\Omega$	
Return Loss	- 23.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.9 Ω + 6.6 jΩ	
Return Loss	- 21.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL

Date: 20.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

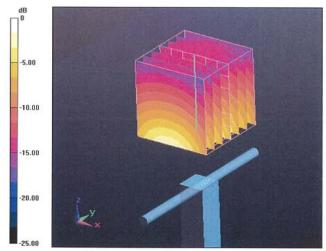
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

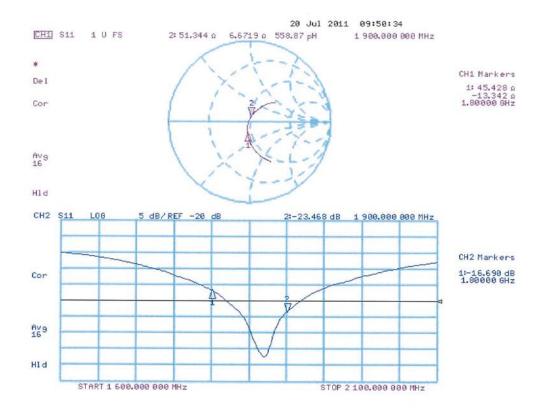
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001


DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.068 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.391 W/kg


SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/gMaximum value of SAR (measured) = 12.667 mW/g

0 dB = 12.670 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.07.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

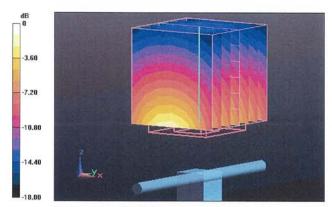
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011

Sensor-Surface: 3mm (Mechanical Surface Detection)

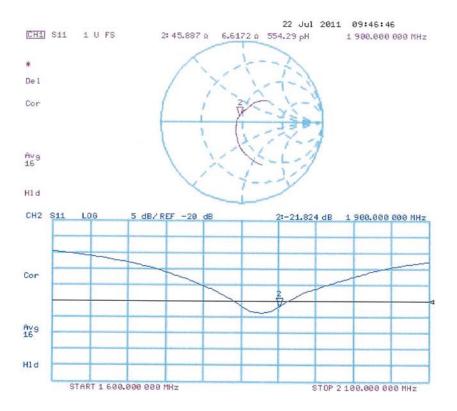
Electronics: DAE4 Sn601; Calibrated: 04.07.2011


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.720 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.122 W/kg


SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.39 mW/gMaximum value of SAR (measured) = 12.882 mW/g

0 dB = 12.880 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Issued: January 20, 2011

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Acceptant for the recognition of calibration confidence.

Multilateral Agreement for the recognition of calibration certificates

Client ATL (Auden)

Certificate No: EX3-3632_Jan11

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3632

Calibration procedure(s)

QA CAL-01.v7, QA CAL-12.v6, QA CAL-23.v4 and QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date:

January 19, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7-20
Approved by:	Katja Pokovic	Technical Manager	2000

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3632_Jan11

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3632_Jan11

Page 2 of 11

EX3DV4 SN:3632

January 19, 2011

Probe EX3DV4

SN:3632

Manufactured:

Last calibrated: Recalibrated: November 1, 2007

January 26, 2010 January 19, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3632_Jan11

Page 3 of 11

EX3DV4 SN:3632 January 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.46	0.44	0.39	± 10.1%
DCP (mV) ^B	97.4	94.9	97.4	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	133.3	± 3.4 %
			Υ	0.00	0.00	1.00	110.0	
			Z	0.00	0.00	1.00	125.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3632_Jan11

Page 4 of 11

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

EX3DV4 SN:3632 January 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	43.5 ± 5%	$0.87 \pm 5\%$	9.40	9.40	9.40	0.12	2.85 ± 13.3%
750	± 50 / ± 100	41.9 ± 5%	$0.89 \pm 5\%$	9.51	9.51	9.51	0.67	0.64 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	$0.90 \pm 5\%$	9.09	9.09	9.09	0.66	0.64 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	8.16	8.16	8.16	0.51	0.74 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	$1.40 \pm 5\%$	8.02	8.02	8.02	0.58	0.68 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	$1.80 \pm 5\%$	7.28	7.28	7.28	0.33	0.91 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

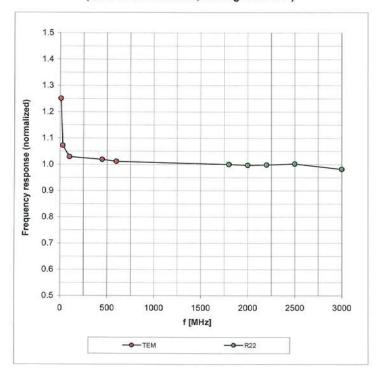
EX3DV4 SN:3632 January 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3632

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	$0.94 \pm 5\%$	10.05	10.05	10.05	0.05	1.80 ± 13.3%
750	± 50 / ± 100	55.5 ± 5%	$0.96 \pm 5\%$	9.33	9.33	9.33	0.78	0.63 ± 11.0%
835	\pm 50 / \pm 100	$55.2 \pm 5\%$	0.97 ± 5%	9.28	9.28	9.28	0.73	0.66 ± 11.0%
1810	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	7.57	7.57	7.57	0.83	0.60 ± 11.0%
1900	± 50 / ± 100	$53.3 \pm 5\%$	1.52 ± 5%	7.39	7.39	7.39	0.67	0.65 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.23	7.23	7.23	0.28	1.07 ± 11.0%

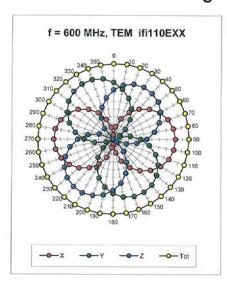
^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

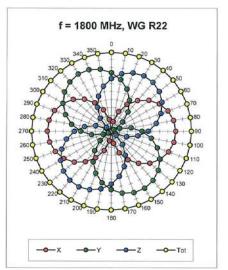

Certificate No: EX3-3632_Jan11

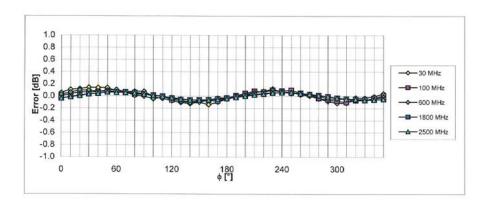
January 19, 2011

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3632_Jan11

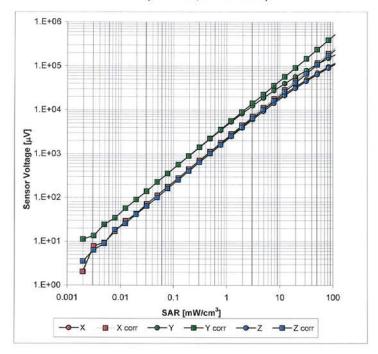

Page 7 of 11

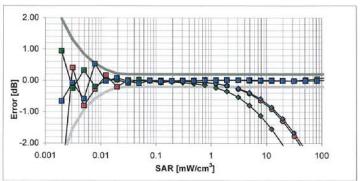
January 19, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3632_Jan11


Page 8 of 11

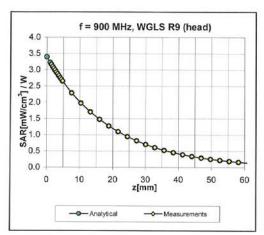


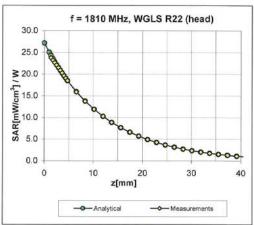
January 19, 2011

Dynamic Range f(SAR_{head})

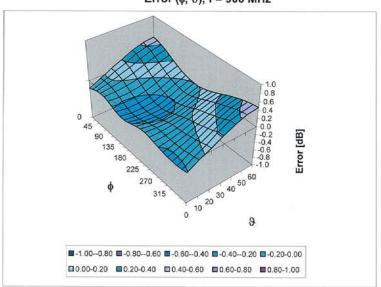
(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3632_Jan11


Page 9 of 11

January 19, 2011


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3632_Jan11

Page 10 of 11

January 19, 2011

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3632_Jan11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client ATL (Auden)			Certificate No: DAE4-541_Jul11
CALIBRATION C	CERTIFICATE		拉利斯斯斯 克斯斯斯
Object	DAE4 - SD 000 D	04 BJ - SN: 541	
Calibration procedure(s)	QA CAL-06.v23 Calibration proceed	dure for the data acqui	sition electronics (DAE)
Calibration date:	July 21, 2011		
The measurements and the unce	rtainties with confidence pro	obability are given on the follow	ne physical units of measurements (SI). ving pages and are part of the certificate. ture (22 ± 3)°C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	08-Jun-11 (in house check)	In house check: Jun-12
	Name	Function	Signature
Calibrated by:	Andrea Guntli	Technician	A faith
Approved by:	Fin Bomholt	R&D Director	; v. B. Clumr
This calibration certificate shall no	* ha		Issued: July 21, 2011

Certificate No: DAE4-541_Jul11

Page 1 of 5

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-541_Jul11

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

full range = -100...+300 mV full range = -1......+3mV High Range: 1LSB = $6.1 \mu V$, Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	404.582 ± 0.1% (k=2)	404.459 ± 0.1% (k=2)	404.224 ± 0.1% (k=2)
Low Range	3.96870 ± 0.7% (k=2)	3.93611 ± 0.7% (k=2)	3.97524 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	289.5 ° ± 1 °
---	---------------

Certificate No: DAE4-541_Jul11

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	200008.1	-0.88	-0.00
Channel X + Input	20002.50	3.10	0.02
Channel X - Input	-19996.27	4.53	-0.02
Channel Y + Input	199996.8	-1.55	-0.00
Channel Y + Input	19997.00	-2.30	-0.01
Channel Y - Input	-19998.95	1.65	-0.01
Channel Z + Input	199999.3	1.60	0.00
Channel Z + Input	20001.15	1.75	0.01
Channel Z - Input	-19996.29	3.21	-0.02

Reading (μV)	Difference (μV)	Error (%)
2000.5	0.58	0.03
200.06	-0.04	-0.02
-200.23	-0.23	0.11
2000.2	0.25	0.01
199.49	-0.51	-0.25
-200.76	-0.76	0.38
2000.0	-0.07	-0.00
198.95	-0.95	-0.47
-200.96	-0.76	0.38
	2000.5 200.06 -200.23 2000.2 199.49 -200.76 2000.0 198.95	2000.5 0.58 200.06 -0.04 -200.23 -0.23 2000.2 0.25 199.49 -0.51 -200.76 -0.76 2000.0 -0.07 198.95 -0.95

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	12.21	10.17
	- 200	-8.92	-10.93
Channel Y	200	1.33	1.31
	- 200	-3.20	-2.56
Channel Z	200	1.32	0.71
	- 200	-1.57	-2.26

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.77	-0.01
Channel Y	200	1.35	-	4.90
Channel Z	200	0.02	0.12	21

Certificate No: DAE4-541_Jul11

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16012	16048
Channel Y	15790	15279
Channel Z	15978	16594

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.14	-1.06	0.50	0.27
Channel Y	-0.69	-2.35	0.18	0.36
Channel Z	-0.84	-1.32	-0.29	0.23

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9