Untertürkheimer Straße 6-10. **RSC-Laboratory**

D-66117 Saarbrücken

Phone: +49 (0) 681-598-0 Fax:-9075

Accredited testing-laboratory

DAR registration number: DAT-P-176/94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3463A-1 (IC) **Certification ID: DE 0001 Accreditation ID: DE 0002**

Accredited Bluetooth® Test Facility (BQTF)
The Bluetooth word mark and logos are owned by the Bluetooth SIG,

Inc. and any use of such marks by Cetecom ICT is under license

Test report no. : 4-2918-01-02/07

Model name : F3507g Applicant : Ericsson AB FCC ID : **VV7-MBMF3507G** IC Certification No: 287AG-MBMF3507G Test standards : 47 CFR Part 22

> 47 CFR Part 24 **RSS - 132 Issue 2** RSS - 133 Issue 4

2008-04-19 Page 1 of 152

Test report no.: 4-2918-01-02/07

Table of contents

1	Gener	3	
	1.1 No	otes	
		sting laboratory	
		etails of applicant	
	-	oplication details	
•	•		
2	Test s	tandard/s:	
3	Techn	ical tests	4
J			
		etails of manufacturer	
	3.1.1	Test item	
		st Setup	
4	Staten	nent of Compliance	8
	4.1 Su	mmary of Measurement Results	
	4.1.1	PCŠ 1900	
	4.1.2	GSM 850	
	4.1.3	UMTS Band II	
	4.1.4	UMTS Band V	
5	Measu	rements and results	10
	5.1 PA	ART PCS 1900	10
	5.1.1	RF Power Output	
	5.1.2	Frequency Stability	
	5.1.3	Radiated Emissions	
	5.1.4	Receiver Radiated Emissions	24
	5.1.5	Conducted Spurious Emissions	28
	5.1.6	Block Edge Compliance	
	5.1.7	Occupied Bandwidth	
		ART GSM 850	
	5.2.1	RF Power Output	
	5.2.2	Frequency Stability	
	5.2.3	Radiated Emissions	
	5.2.4 5.2.5	Receiver Radiated Emissions	
	5.2.5 5.2.6	Conducted Spurious Emissions	
	5.2.7	Occupied Bandwidth	
		ART UMTS Band II	
	5.1.1	RF Power Output	
	5.1.2	Frequency Stability	
	5.1.3	Radiated Emissions	
	5.1.4	Receiver Radiated Emissions	
	5.1.5	Conducted Spurious Emissions	92
	5.1.6	Block Edge Compliance	90
	5.1.7	Occupied Bandwidth	100
	5.2 PA	ART UMTS Band V	110
	5.2.1	RF Power Output	
	5.2.2	Frequency Stability	
	5.2.3	Radiated Emissions	
	5.2.4	Receiver Radiated Emissions	
	5.2.5 5.2.6	Conducted Spurious Emissions	
	5.2.7	Block Edge Compliance Occupied Bandwidth	
		-	
6	Test e	quipment and ancillaries used for tests	

Test report no.: 4-2918-01-02/07

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2008-04-18 Daniel Muyunga

Date Name Signature

Technical responsibility for area of testing:

2008-04-18 Michael Berg

Date Name Signature

2008-04-19 Page 3 of 152

Test report no.: 4-2918-01-02/07

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10

66117 Saarbrücken

Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

e-mail: info@ICT.cetecom.de

Internet: http://www.cetecom-ict.de

State of accreditation: The test laboratory (area of testing) is accredited according to

DIN EN ISO/IEC 17025

DAR registration number: DAT-P-176/94-D1

Accredited by: Federal Motor Transport Authority (KBA)

DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name : Street : Town : Country : Phone : Fax :

1.3 Details of applicant

Name: Ericsson AB

Street: Lindholmspiren 11 Town: 41756 Göteborg

Country: Sweden

Telephone: +46 31 7476001

Fax:

Contact: Pelle Hellberg

E-mail: Pelle.hellberg@ericcson.com

Telephone: +46 31 7476001

1.4 Application details

Date of receipt of order: 2008-02-05

Date of receipt of test item: 2008-04-10

Date of start test: 2008-04-10

Date of end test 2008-04-16

Persons(s) who have been present during the test: Bruce Karstien Sr. Staff Engineer

HW Verification & Reliability

2008-04-19 Page 4 of 152

Test report no.: 4-2918-01-02/07

2 Test standard/s:

47 CFR Part 22	2007-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 22-Public mobile services
47 CFR Part 24	2007-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 24-Personal communications services
RSS - 132 Issue 2	2005-09	Spectrum Management and Telecommunications Policy - Radio Standards Specifications Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 4	2008-02	Spectrum Management and Telecommunications Policy - Radio Standards Specifications 2 GHz Personal Communication Services

2008-04-19 Page 5 of 152

Test report no.: 4-2918-01-02/07

3 Technical tests

3.1 Details of applicant

Name:	Ericsson AB
Street:	Lindholmspiren 11
Town:	41756 Göteborg
Country:	Sweden

3.1.1 Test item

Product description as it market :	HSPA Mini Card
Model name :	F3507g
Serial Number :	Cond.: x110626, x143791, x110584; Rad.: x110741
Frequency :	GSM: 1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz
	WCDMA: 826.4 - 846.6 MHz and 1852.4 - 1907.6 MHz
Type of modulation :	GMSK / 8PSK / QPSK
Number of channels :	300 (PCS1900) / 125 (GSM850) / 103 (FDD V) / 278 (FDD II)
Antenna Information :	Two U.FL connectors for main and diversity antennas.
Power supply (normal) :	3.5 V DC
Output power GSM 850 / GMSK :	cond.: 33.0 dBm Peak // 32.8 dBm AV // ERP: 31.79 dBm
Output power GSM 1900 / GMSK :	cond: 29.4 dBm Peak // 29.3 dBm AV // EIRP: 29.11 dBm
Output power GSM 850 / 8-PSK :	cond.: 31.0 dBm Peak // 27.9 dBm AV // ERP: 29.79 dBm
Output power GSM 1900 / 8-PSK :	cond: 28.7 dBm Peak // 25.5 dBm AV // EIRP: 28.51 dBm
Output power UMTS 850 / WCDMA:	cond.: 26.38 dBm Peak // 23.62 dBm AV // ERP: 25.12 dBm
Output power UMTS 1900 / WCDMA:	cond: 25.87 dBm Peak // 22.80 dBm Max. RMS
	EIRP: 25.68 dBm (Burst)
Output power UMTS 850 / HSDPA :	cond.: 26.13 dBm Peak // 23.49 dBm Max. RMS
	ERP: 24.87 dBm (Burst)
Output power UMTS 1900 / HSDPA :	cond: 26.00 dBm Peak // 23.00 dBm Max. RMS
	EIRP: 25.81 dBm (Burst)
Output power UMTS 850 / HSUPA :	cond.: 26.98 dBm Peak // 23.08 dBm Max RMS
	ERP: 25.72 dBm (Burst)
Output power UMTS 1900 / HSUPA :	cond: 27.19 dBm Peak // 22.81 dBm Max. RMS
	EIRP: 27.00 dBm (Burst)
Emission Designator :	1900 MHz (Part 24E):
	GMSK: 264KGXW, 8PSK: 262KG7W QPSK: 4M68F9W
	850 MHz (Part 22H):
	GMSK: 304KGXW, 8PSK: 282KG7W, QPSK: 4M69F9W
Transmitter Spurious (worst case)	- 41.7 dBm
Receiver Spurious (worst case)	< 54 dBµV (noise floor)
FCC ID :	VV7-MBMF3507G
Certification No. IC :	287AG-MBMF3507G
Open Area Test Site IC No. :	3463A-1
IC Standards :	RSS132, Issue 2, RSS133, Issue 4

ATTESTATION:

DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2008-04-18	Daniel Muyunga	
Date	Name	Signature

2008-04-19 Page 6 of 152

Test report no.: 4-2918-01-02/07

3.2 Test Setup

Hardware : -/Software : -/-

Unit; (cond. measurements) : x110626, x143791

Unit; (rad. measurements) : x110741

The radiated measurements were performed with standard world wide charger.

2008-04-19 Page 7 of 152

Test report no.: 4-2918-01-02/07

4 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

4.1 Summary of Measurement Results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

4.1.1 PCS 1900

Section in	Test Name	Verdict
this Report		
3.1.1	RF Power Output	pass
3.1.2	Frequency Stability	pass
3.1.3	Radiated Emissions	pass
3.1.4	Receiver Radiated Emissions	pass
3.1.5	Conducted Spurious Emissions	pass
3.1.6	Block Edge Compliance	pass
3.1.7	Occupied Bandwidth	pass

4.1.2 GSM 850

Section in this Report	Test Name	Verdict
3.2.1	RF Power Output	pass
3.2.2	Frequency Stability	pass
3.2.3	Radiated Emissions	pass
3.2.4	Receiver Radiated Emissions	pass
3.2.5	Conducted Spurious Emissions	pass
3.2.6	Block Edge Compliance	pass
3.2.7	Occupied Bandwidth	pass

4.1.3 UMTS Band II

Section in	Test Name	Verdict
this Report		
5.3.1	RF Power Output	pass
5.3.2	Frequency Stability	pass
5.3.3	Radiated Emissions	pass
5.3.4	Receiver Radiated Emissions	pass
5.3.5	Conducted Spurious Emissions	pass
5.3.6	Block Edge Compliance	pass
5.3.7	Occupied Bandwidth	pass

2008-04-19 Page 8 of 152

Test report no.: 4-2918-01-02/07

4.1.4 UMTS Band V

Section in This Report	Test Name	Verdict
5.4.1	RF Power Output	pass
5.4.2	Frequency Stability	pass
5.4.3	Radiated Emissions	pass
5.4.4	Receiver Radiated Emissions	pass
5.4.5	Conducted Spurious Emissions	pass
5.4.6	Block Edge Compliance	pass
5.4.7	Occupied Bandwidth	pass

2008-04-19 Page 9 of 152

Test report no.: 4-2918-01-02/07

5 Measurements and results

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

5.1 PART PCS 1900

5.1.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 4, Section 4.3

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm)	
+33	

Test Results: Output Power (conducted) GMSK Mode

Frequency	Peak	Average		
(MHz)	Output Power	Output Power		
	(dBm)	(dBm)		
1850.2	29.3	29.2		
1880.0	29.2	29.0		
1909.8	29.4 29.3			
Measurement uncertainty	±0.5 dB			

Test Results: Output Power (conducted) 8-PSK Mode

Frequency	Peak	Average	
(MHz)	Output Power	Output Power	
	(dBm)	(dBm)	
1850.2	28.7	25.5	
1880.0	28.7	25.5	
1909.8	28.3	25.1	
Measurement uncertainty	±0.5 dB		

2008-04-19 Page 10 of 152

Test report no.: 4-2918-01-02/07

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(1) Repeat for all different test signal frequencies

2008-04-19 Page 11 of 152

Test report no.: 4-2918-01-02/07

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

- (c) Select the frequency and E-field levels for ERP/EIRP measurements.
- $(d) \ Substitute \ the \ EUT \ by \ a \ signal \ generator \ and \ one \ of \ the \ following \ transmitting \ antennas \ (substitution \ antenna):$

DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

2008-04-19 Page 12 of 152

Test report no.: 4-2918-01-02/07

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) GMSK Mode

1000 1100 01100 0 0110 110 110 110 110	
Frequency (MHz)	Burst Peak EIRP (dBm)
1850.2	29.11
1880.0	28.68
1909.8	28.54
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Burst Peak EIRP (dBm)
1850.2	28.51
1880.0	28.18
1909.8	27.44
Measurement uncertainty	±0.5 dB

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dΒμV	dBm	dBi	dBd	dB	dBm		
1909.8	132.3	24.6	8.4	0.0	3.3	29.7		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

2008-04-19 Page 13 of 152

Test report no.: 4-2918-01-02/07

5.1.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 4, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER...

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:

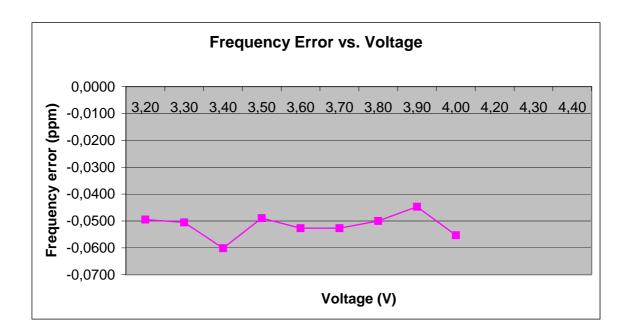
According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block..

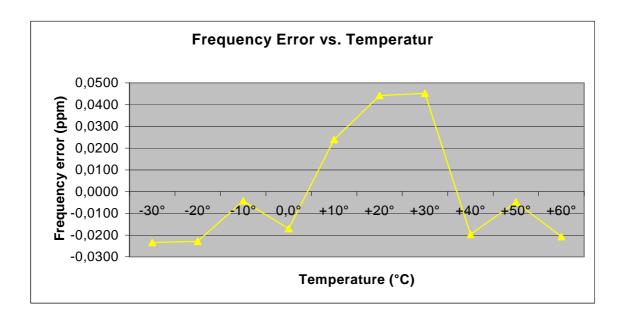
2008-04-19 Page 14 of 152

Test report no.: 4-2918-01-02/07

Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.0	-105	-0,00000559	-0,0559
3.1	-118	-0,00000628	-0,0628
3.2	-93	-0,00000495	-0,0495
3.3	-95	-0,00000505	-0,0505
3.4	-113	-0,00000601	-0,0601
3.5	-92	-0,00000489	-0,0489
3.6	-99	-0,00000527	-0,0527
3.7	-99	-0,00000527	-0,0527
3.8	-94	-0,00000500	-0,0500
3.9	-84	-0,00000447	-0,0447
4.0	-104	-0,00000553	-0,0553


Test Results: AFC FREQ ERROR vs. TEMPERATURE


TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-44	-0,00000234	-0,0234
-20	-43	-0,00000229	-0,0229
-10	-8	-0,00000043	-0,0043
±0.0	-32	-0,00000170	-0,0170
+10	45	0,00000239	0,0239
+20	83	0,00000441	0,0441
+30	85	0,00000452	0,0452
+40	-37	-0,00000197	-0,0197
+50	-9	-0,00000048	-0,0048
+60	-39	-0,00000207	-0,0207

2008-04-19 Page 15 of 152

Test report no.: 4-2918-01-02/07

2008-04-19 Page 16 of 152

Test report no.: 4-2918-01-02/07

5.1.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 4, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

2008-04-19 Page 17 of 152

Test report no.: 4-2918-01-02/07

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

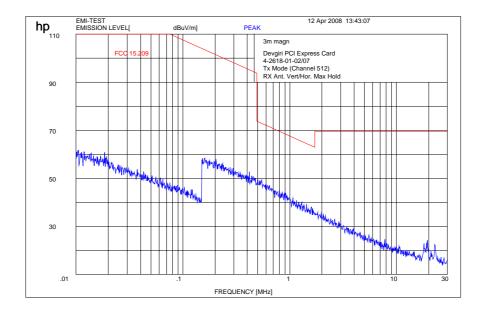
All measurements were done in horizontal and vertical polarization; the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch512	Level	Tx ch661	Level	Tx ch810	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	ı	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	ı	9549.0	-
6	11101.2	-	11280	ı	11458.8	-
7	12951.4	-	13160	ı	13368.6	-
8	14801.6	-	15040		15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

No peaks found < 20 dB below limit.

Sample calculation:

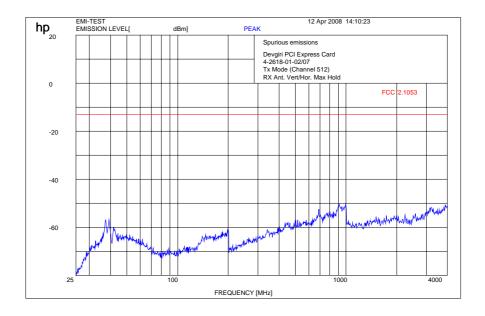
Duilipic cu.	umpie eureulusia								
Freq	SA	SG	Ant.	Dipol	Cable	EIRP			
	Reading	Setting	gain	gain	loss	Result			
MHz	dΒμV	dBm	dBi	dBd	dB	dBm			
1909.8	132.3	24.6	8.4	0.0	3.3	29.7			


EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

2008-04-19 Page 18 of 152

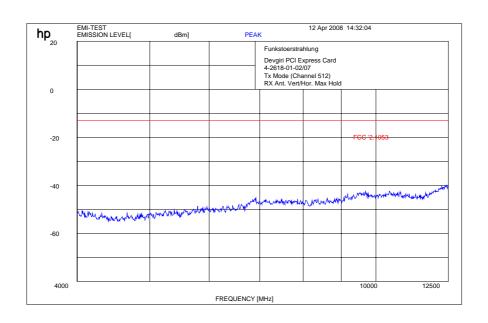
Test report no.: 4-2918-01-02/07

Traffic mode up to 30 MHz (Valid for all 3 channels)



2008-04-19 Page 19 of 152

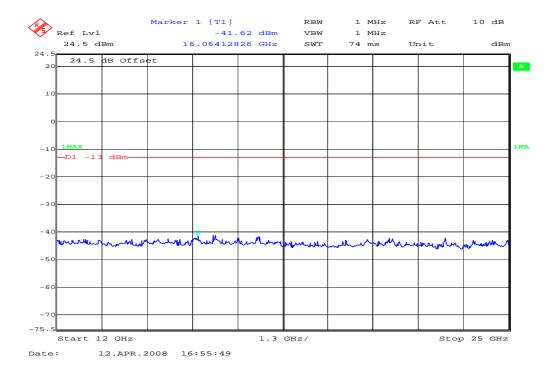
Test report no.: 4-2918-01-02/07


Channel 512 (30 MHz - 4 GHz)

 $f < 1 \; GHz : RBW/VBW : \; 100 \; kHz \qquad \qquad f \geq 1 GHz : RBW \; / \; VBW \; 1 \; MHz$

Carrier suppressed with a rejection filter

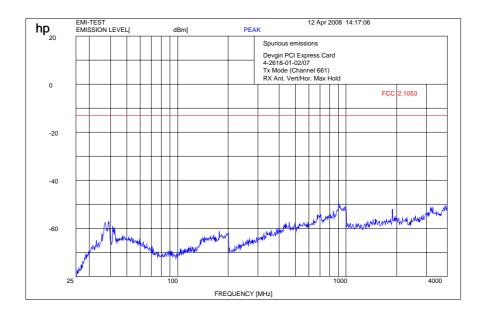
Channel 512 (4 GHz – 12.5 GHz)


 $f < 1 \; GHz : RBW/VBW : 100 \; kHz$ $f \ge 1 \; GHz : RBW / VBW \; 1 \; MHz$

2008-04-19 Page 20 of 152

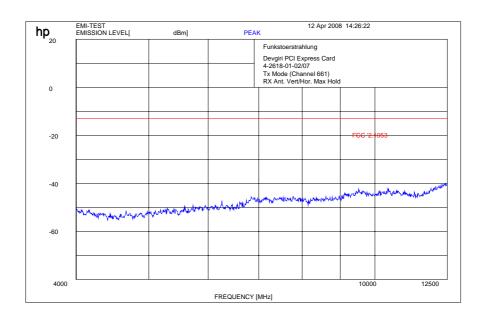
Test report no.: 4-2918-01-02/07

Channel 512 (12 GHz - 25 GHz) valid for all 3 channels



2008-04-19 Page 21 of 152

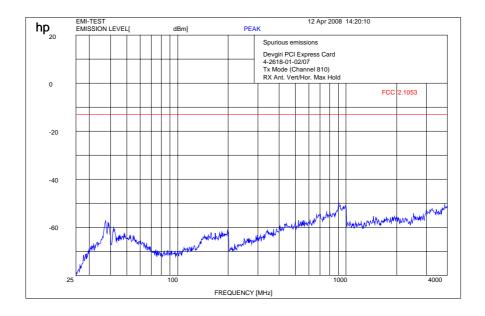
Test report no.: 4-2918-01-02/07



Channel 661 (30 MHz - 4 GHz)

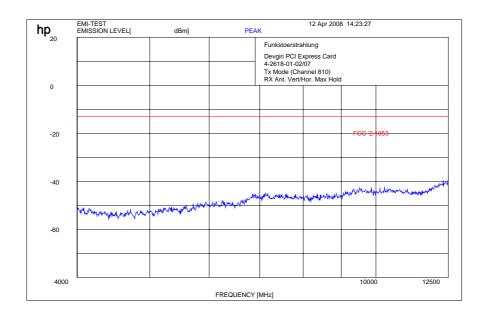
 $f < 1 \ GHz: RBW/VBW: 100 \ kHz \\ Carrier suppressed with a rejection filter \\ f \geq 1 GHz: RBW / VBW 1 \ MHz$

Channel 661 (4 GHz – 12.5 GHz)


 $f < 1 \; GHz : RBW/VBW : 100 \; kHz$ $f \ge 1 \; GHz : RBW / VBW \; 1 \; MHz$

2008-04-19 Page 22 of 152

Test report no.: 4-2918-01-02/07



Channel 810 (30 MHz - 4 GHz)

 $f < 1 \ GHz: RBW/VBW: 100 \ kHz \\ Carrier suppressed with a rejection filter \\ f \geq 1 GHz: RBW / VBW 1 \ MHz$

Channel 810 (4 GHz – 12.5 GHz)

 $f < 1 \; GHz : RBW/VBW : 100 \; kHz$ $f \ge 1 \; GHz : RBW / VBW \; 1 \; MHz$

2008-04-19 Page 23 of 152

Test report no.: 4-2918-01-02/07

5.1.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053 IC: RSS 133, Issue 4, Section 4.5

Measurement Results

SPURIOUS EMISSIONS LEVEL (μV/m)								
Idle mode								
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
No crit	ical peaks d	etected	-	-	1	-	-	-
-	1	-	1	-	ı	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	1	-	ı	-	1	-	-	-
-	1	-	ı	-	1	-	-	-
-	-	-	ı	-	-	-	-	_
Measu	Measurement uncertainty ±3 dB							

 $f < 1 \; GHz : RBW/VBW : 100 \; kHz \qquad \qquad f \geq 1GHz : RBW/VBW : 1 \; MHz$

H = Horizontal; V= Vertical

For measurement distance see table below

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

2008-04-19 Page 24 of 152

Test report no.: 4-2918-01-02/07

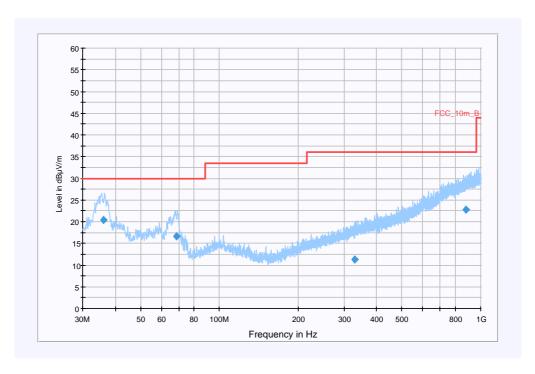
Idle Mode (30 MHz - 1 GHz)

EUT: F3507G Serial Number: C37000069F

Test Description: FCC class B @ 10 m

Operating Conditions: IDLE 1900
Operator Name: Hennemann

Comment: EUT fixed on test board


Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: EMI radiated\Electric Field (NOS)

Level Unit: $dB\mu V/m$

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30MHz - 1GHzQuasiPeak120kHz15sReceiver

FCC_1GHz

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
36.171550	20.5	1000.000	120.000	120.0	V	169.0	13.3	9.5	30.0	
68.629900	16.7	1000.000	120.000	120.0	V	120.0	9.9	13.3	30.0	
329.988400	11.3	1000.000	120.000	120.0	V	177.0	15.6	24.7	36.0	
880.850350	22.8	1000.000	120.000	120.0	V	72.0	25.8	13.2	36.0	

2008-04-19 Page 25 of 152

Test report no.: 4-2918-01-02/07

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30MHz - 2GHz

Receiver: Receiver [ESCI 3]

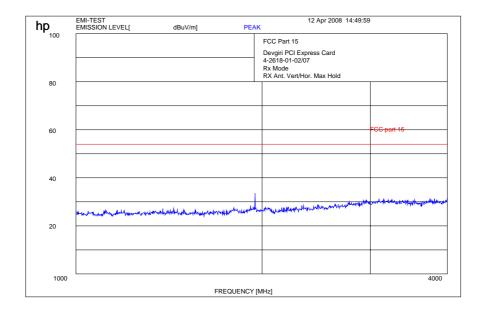
@ GPIB0 (ADR 20), SN 100083/003, FW 3.32, CAL 07.01.2009

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---, CAL 08.04.2010 Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cabel with switch (0408)

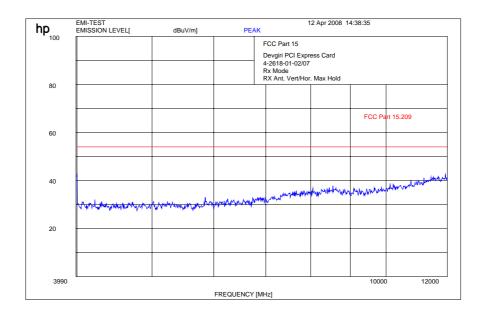

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

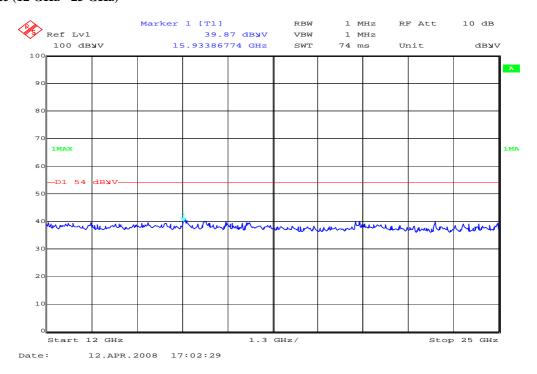
@ GPIB0 (ADR 9)

Idle Mode (1 MHz - 4 GHz)


 $f < 1 \; GHz : RBW/VBW : 100 \; kHz \qquad \qquad f \geq 1GHz : RBW \; / \; VBW \; 1 \; MHz$

2008-04-19 Page 26 of 152

Test report no.: 4-2918-01-02/07



Idle Mode (4 GHz – 12.0 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$

Idle Mode (12 GHz - 25 GHz)

2008-04-19 Page 27 of 152

Test report no.: 4-2918-01-02/07

5.1.5 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 4, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency:

512 1850.2 MHz

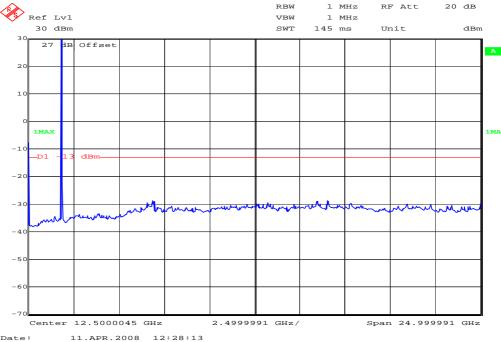
661 1880.0 MHz

810 1909.8 MHz

Measurement Limit:

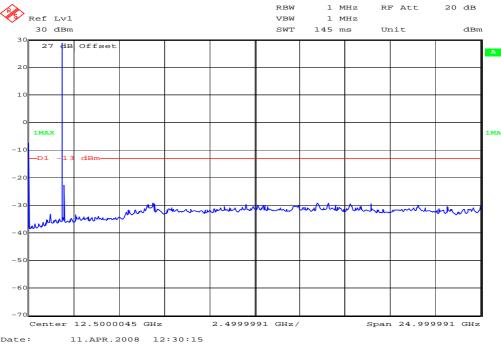
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results:


Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	=	18800	-	19098.0	-

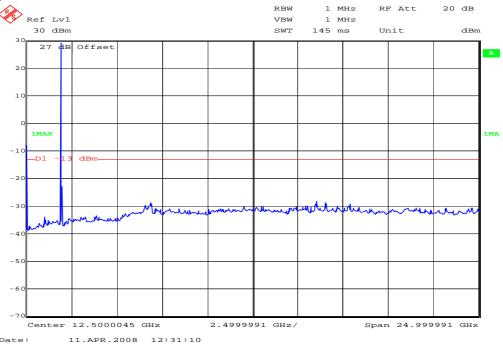
2008-04-19 Page 28 of 152

Test report no.: 4-2918-01-02/07



The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 661


The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

2008-04-19 Page 29 of 152

Test report no.: 4-2918-01-02/07

Channel 810

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

2008-04-19 Page 30 of 152

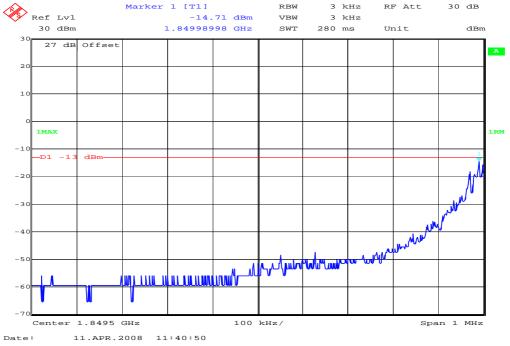
Test report no.: 4-2918-01-02/07

5.1.6 Block Edge Compliance

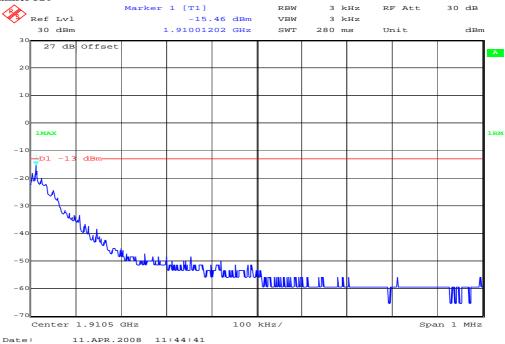
Reference

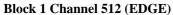
FCC:	CFR Part 24.238
IC:	RSS 133, Issue 4, Section 6.5

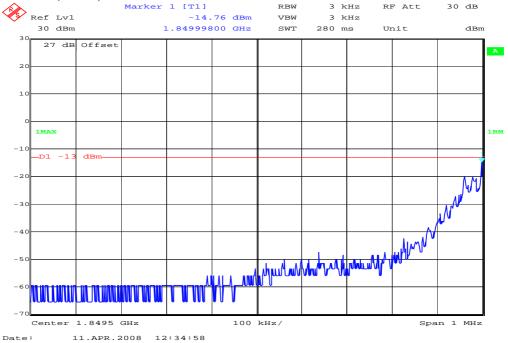
Measurement Limit:


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

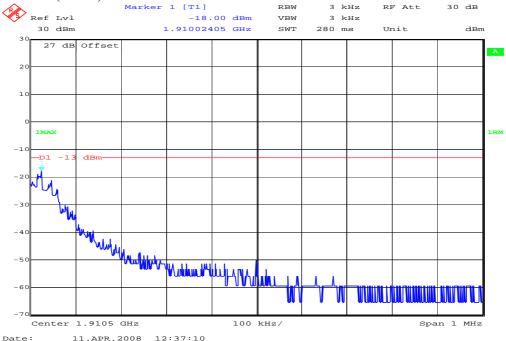
2008-04-19 Page 31 of 152


Test report no.: 4-2918-01-02/07


Block 6 Channel 810



2008-04-19 Page 32 of 152


Test report no.: 4-2918-01-02/07

Block 6 Channel 810 (EDGE)

2008-04-19 Page 33 of 152

Test report no.: 4-2918-01-02/07

5.1.7 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 4, Section 6.5

Occupied Bandwidth Results

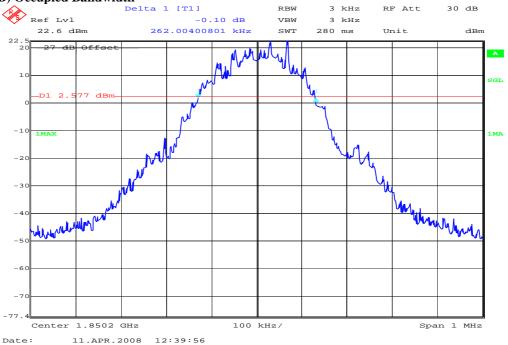
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

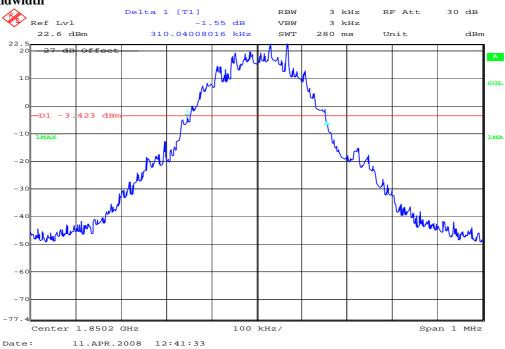
Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz		
1850.2 MHz	262	310		
1880.0 MHz	262	308		
1909.8 MHz	264	312		

EDGE mode

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	260	322
1880.0 MHz	262	334
1909.8 MHz	260	320


Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300.0 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

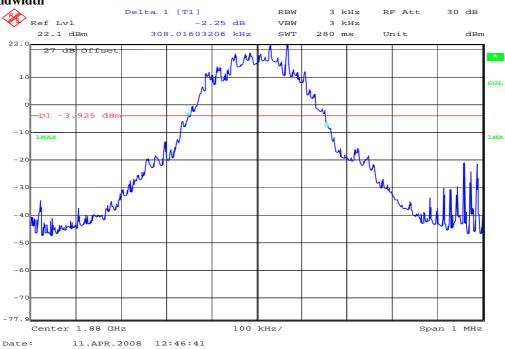
2008-04-19 Page 34 of 152


Test report no.: 4-2918-01-02/07

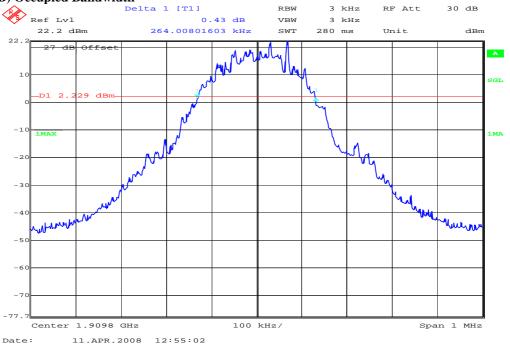
Channel 512 -26 dBc Bandwidth



2008-04-19 Page 35 of 152

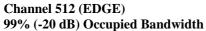

Test report no.: 4-2918-01-02/07

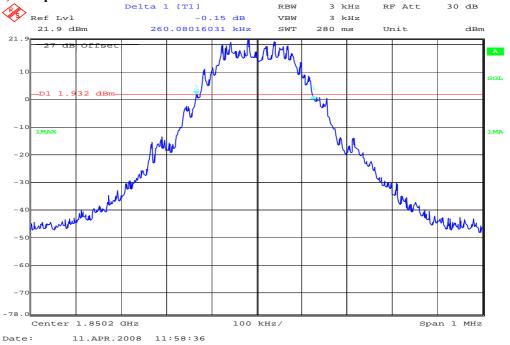
Channel 661 -26 dBc Bandwidth



2008-04-19 Page 36 of 152

Test report no.: 4-2918-01-02/07


Channel 810 -26 dBc Bandwidth



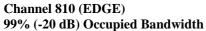
2008-04-19 Page 37 of 152

Test report no.: 4-2918-01-02/07

Channel 512 (EDGE) -26 dBc Bandwidth

2008-04-19 Page 38 of 152

Test report no.: 4-2918-01-02/07


Channel 661 (EDGE) -26 dBc Bandwidth



2008-04-19 Page 39 of 152

Test report no.: 4-2918-01-02/07

Channel 810 (EDGE) -26 dBc Bandwidth

2008-04-19 Page 40 of 152

Test report no.: 4-2918-01-02/07

5.2 PART GSM 850

5.2.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm)
+38.45

Measurements Results Output Power (conducted)

Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)
824.2	33.0	32.8
836.4	32.9	32.8
848.8	32.9	32.8
Measurement uncertainty	±0.5 dB	

Measurements Results Output Power (conducted) 8-PSK Mode

Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)	
824.2	31.0	27.9	
836.4	30.9	27.8	
848.8	30.9	27.8	
Measurement uncertainty	±0.5 dB		

2008-04-19 Page 41 of 152

Test report no.: 4-2918-01-02/07

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

 $E\left(dBuV/m\right) = Reading\left(dBuV\right) + Total\ Correction\ Factor\left(dB/m\right)$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

- (c) Select the frequency and E-field levels for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna):
- .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

2008-04-19 Page 42 of 152

Test report no.: 4-2918-01-02/07

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Zimito.
Nominal Peak Output Power (dBm)
+38.45

Measurement Results Output Power (Radiated) GMSK Mode

Frequency (MHz)	Burst Peak (dBm)		
824.2	31.55		
836.4	31.64		
848.8	31.79		
Measurement uncertainty	±0.5 dB		

Measurement Results Output Power (Radiated) 8-PSK Mode

Frequency (MHz)	Burst Peak (dBm)
824.2	29.55
836.4	29.64
848.8	29.79
Measurement uncertainty	±0.5 dB

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna	
	Reading	Setting	gain	gain	loss			
MHz	dΒμV	dBm	dBi	dBd	dB	dBm		
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460	

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

2008-04-19 Page 43 of 152

^{*}ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Test report no.: 4-2918-01-02/07

5.2.2 Frequency Stability

Reference

FCC: CFR Part 22.355, 2.1055
IC: RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:

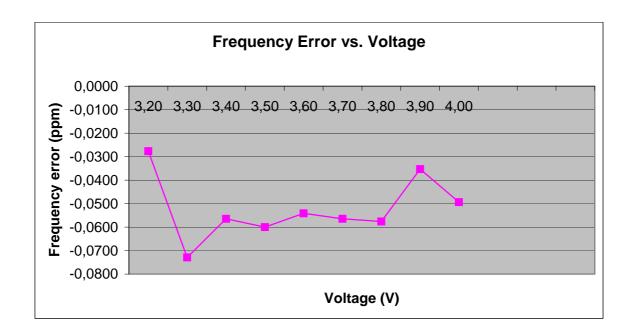
According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

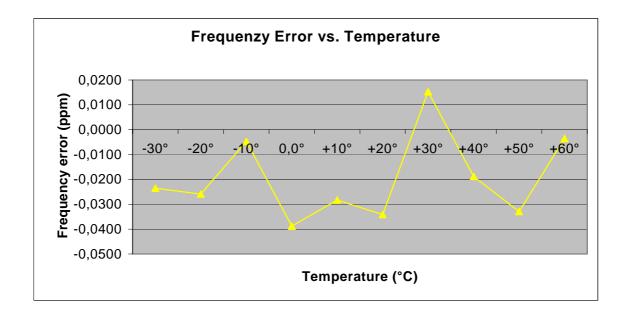
2008-04-19 Page 44 of 152

Test report no.: 4-2918-01-02/07

Measurement Results: AFC FREQ ERROR vs. VOLTAGE

Not Applicable


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.0	-55	-0,00000293	-0,0293
3.1	-49	-0,00000261	-0,0261
3.2	-52	-0,00000277	-0,0277
3.3	-62	-0,00000729	-0,0729
3.4	-48	-0,00000565	-0,0565
3.5	-51	-0,00000600	-0,0600
3.6	-46	-0,00000541	-0,0541
3.7	-48	-0,00000565	-0,0565
3.8	-49	-0,00000576	-0,0576
3.9	-30	-0,00000353	-0,0353
4.0	-42	-0,00000494	-0,0494


Measurement Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-20	-0,00000235	-0,0235
-20	-22	-0,00000259	-0,0259
-10	-4	-0,00000047	-0,0047
±0.0	-33	-0,00000388	-0,0388
+10	-24	-0,00000282	-0,0282
+20	-29	-0,00000341	-0,0341
+30	13	0,00000153	0,0153
+40	-16	-0,00000188	-0,0188
+50	-28	-0,00000329	-0,0329
+60	-3	-0,00000035	-0,0035

2008-04-19 Page 45 of 152

2008-04-19 Page 46 of 152

Test report no.: 4-2918-01-02/07

5.2.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

2008-04-19 Page 47 of 152

Test report no.: 4-2918-01-02/07

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

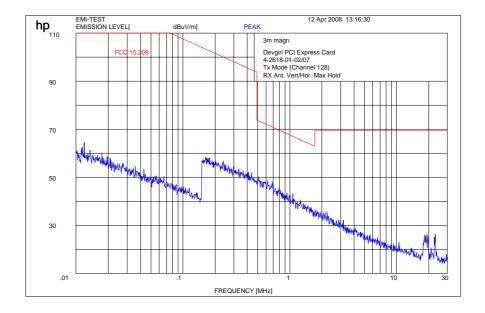
All measurements were done in horizontal and vertical polarization, the plots shows the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch189 Freq. (MHz)	Level (dBm)	Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-	1672.8	- 46.0	1697.6	-47.0
3	2472.6	-	2509.2	-	2546.4	- 41.7
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-				

Sample calculation:

Freg	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dΒμV	dBm	dBi	dBd	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

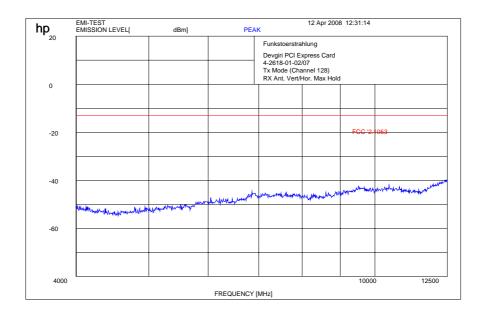

2008-04-19 Page 48 of 152

^{*}ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Test report no.: 4-2918-01-02/07


Traffic mode up to 30 MHz (Valid for all 3 channels)

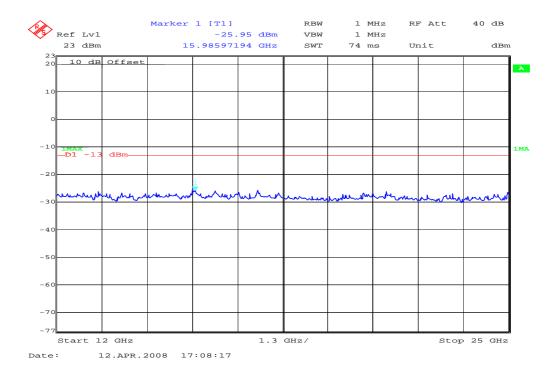
2008-04-19 Page 49 of 152



Channel 128 (30 MHz - 4 GHz)

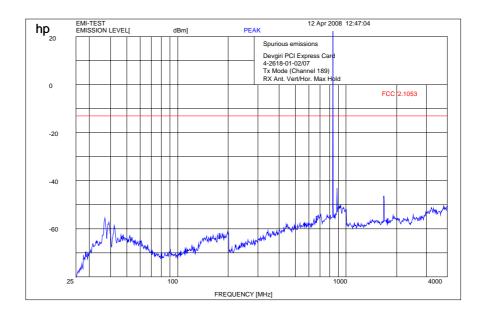
 $f < 1 \; GHz : RBW/VBW : 100 \; kHz$ $f \ge 1 \; GHz : RBW / VBW \; 1 \; MHz$

Channel 128 (4 GHz - 12.5 GHz)

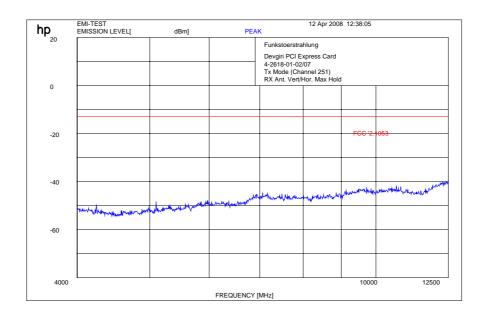


 $f < 1 \; GHz : RBW/VBW : 100 \; kHz$ $f \ge 1 \; GHz : RBW / VBW \; 1 \; MHz$

2008-04-19 Page 50 of 152


Channel 128 (12 GHz - 25 GHz) valid for all 3 channels

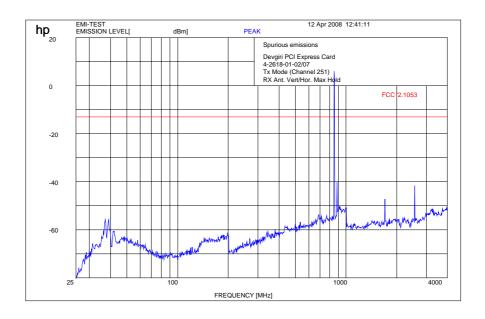
2008-04-19 Page 51 of 152



Channel 189 (30 MHz - 4 GHz)

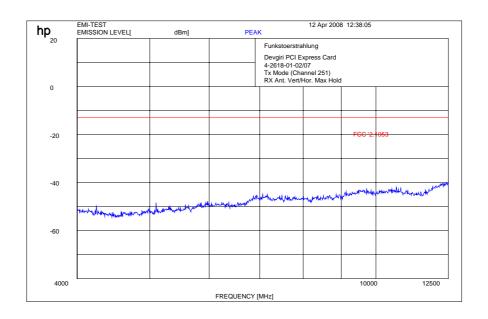
f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Channel 189 (4 GHz – 12.5 GHz)



f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$

2008-04-19 Page 52 of 152



Channel 251 (30 MHz - 4 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Channel 251 (4 GHz – 12.5 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW / VBW 1 \text{ MHz}$

2008-04-19 Page 53 of 152

Test report no.: 4-2918-01-02/07

5.2.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053

IC: RSS 132, Issue 2, Section 4.6 and 6.6

	SPURIOUS EMISSIONS LEVEL (μV/m)							
	Idle Mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
No cri	tical peaks de	etected	-	-	=	-	=	-
-	-	-	-	-	=	-	-	-
-	-	-	ı	-	-	ı	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	=	-	-	-
=	-	-	ı	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	=	-	-	-
=	-	-	-	-	=	-	-	-
-	-	-	-	-	=	-	=	-
-	-	-	ı	-	-	-	-	-
Measi	arement uncer	rtainty			±3 c	iΒ		

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 GHz: RBW/VBW: 1 \text{ MHz}$

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

2008-04-19 Page 54 of 152

Test report no.: 4-2918-01-02/07

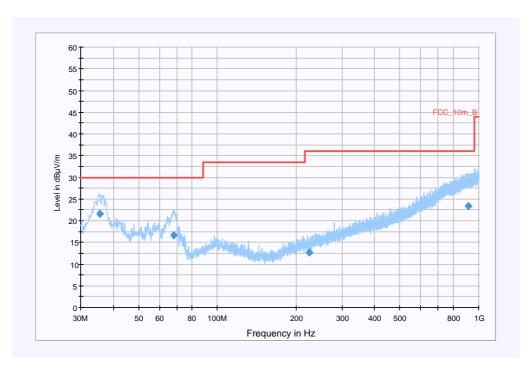
Idle-Mode (30 MHz - 1 GHz)

EUT: F3507G Serial Number: C37000069F

Test Description: FCC class B @ 10 m

Operating Conditions: IDLE 850
Operator Name: Hennemann

Comment: EUT fixed on test board


Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: EMI radiated\Electric Field (NOS)

Level Unit: $dB\mu V/m$

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30MHz - 1GHzQuasiPeak120kHz15sReceiver

FCC_1GHz

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
35.405650	21.6	1000.000	120.000	120.0	V	109.0	13.2	8.4	30.0	
67.881000	16.6	1000.000	120.000	120.0	V	-1.0	10.1	13.4	30.0	
224.995050	12.7	1000.000	120.000	120.0	V	281.0	12.7	23.3	36.0	
914.629350	23.3	1000.000	120.000	120.0	Н	114.0	26.2	12.7	36.0	

2008-04-19 Page 55 of 152

Test report no.: 4-2918-01-02/07

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30MHz - 2GHz

Receiver: Receiver [ESCI 3]

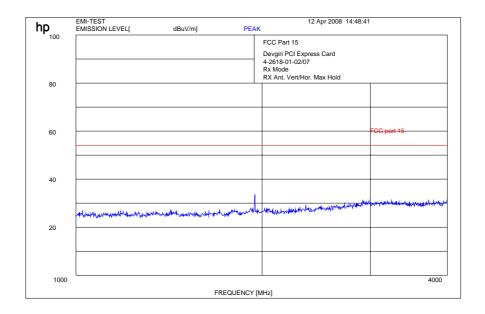
@ GPIB0 (ADR 20), SN 100083/003, FW 3.32, CAL 07.01.2009

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---, CAL 08.04.2010 Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cabel with switch (0408)

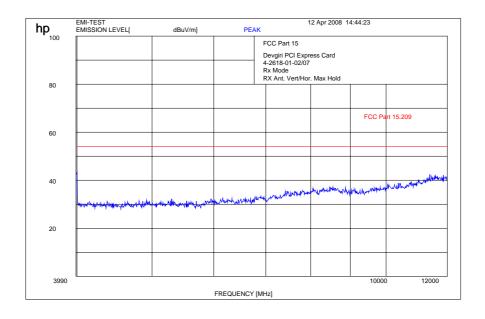

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9)

Idle-Mode (1 GHz - 4 GHz)



f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

2008-04-19 Page 56 of 152

Idle-Mode (4 GHz – 12.0 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Idle-Mode (12 GHz - 25 GHz)

2008-04-19 Page 57 of 152

Test report no.: 4-2918-01-02/07

5.2.5 Conducted Spurious Emissions

Reference

FCC: CFR Part 22.917, 1.1051
IC: RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

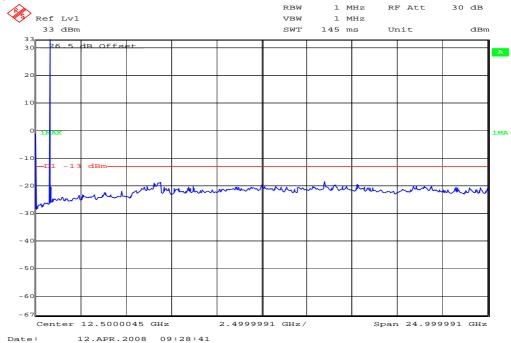
- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency 128 824.2 MHz 189 836.4 MHz 251 848.8 MHz

Measurement Limit

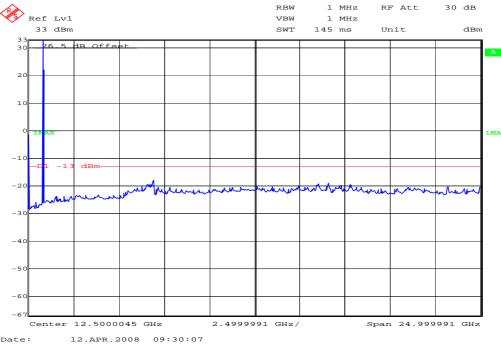
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results


Harmonic	Tx ch	Level	Tx ch	Level	Tx ch	Level
	128	(dBm)	189	(dBm)	251	(dBm)
	Freq. (MHz)		Freq. (MHz)		Freq. (MHz)	
2	1648.4	-	1672.8	-	1697.6	-
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

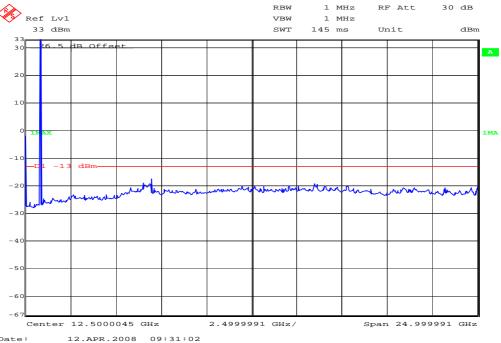
2008-04-19 Page 58 of 152

Test report no.: 4-2918-01-02/07



The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

Channel 189


 $The \ peak \ at \ the \ beginning \ of \ the \ Plot \ is \ the \ LO \ from \ the \ measuring \ spectrum \ Analyzer \ and \ not \ from \ the \ EUT.$

2008-04-19 Page 59 of 152

Test report no.: 4-2918-01-02/07

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT.

2008-04-19 Page 60 of 152

Test report no.: 4-2918-01-02/07

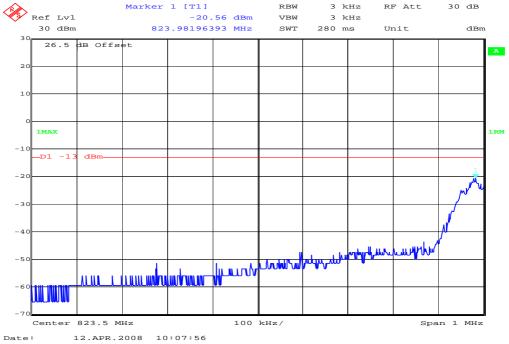
5.2.6 Block Edge Compliance

Reference

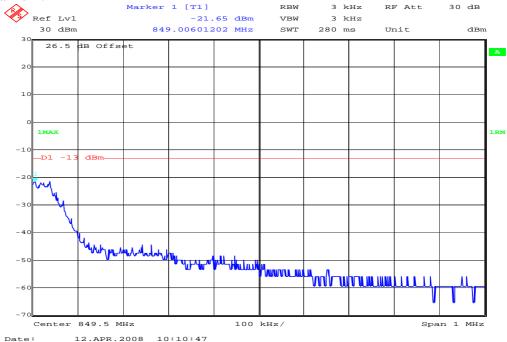
FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

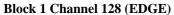
Measurement Limit:

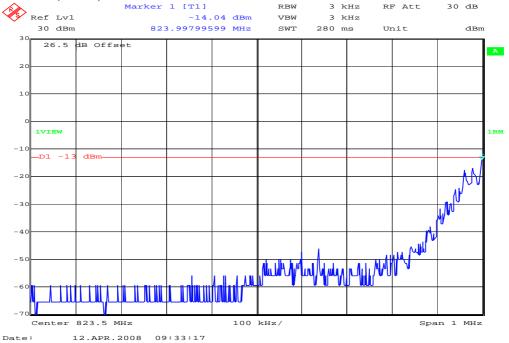
Sec. 22.917(b) Emission Limits.


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

2008-04-19 Page 61 of 152


Test report no.: 4-2918-01-02/07


Block 4 Channel 251



2008-04-19 Page 62 of 152

Test report no.: 4-2918-01-02/07

Block 4 Channel 251 (EDGE)

2008-04-19 Page 63 of 152

Test report no.: 4-2918-01-02/07

5.2.7 Occupied Bandwidth

Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

Occupied Bandwidth Results

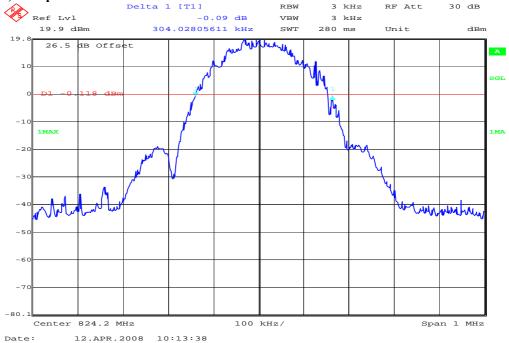
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
824.2 MHz	304	334
836.4 MHz	288	317
848.8 MHz	300	326

EDGE mode

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth	
	(kHz)	(kHz)	
824.2 MHz	282	326	
836.4 MHz	262	306	
848.8 MHz	262	304	


Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

2008-04-19 Page 64 of 152

Test report no.: 4-2918-01-02/07

Channel 128 -26 dBc Bandwidth

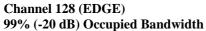
2008-04-19 Page 65 of 152

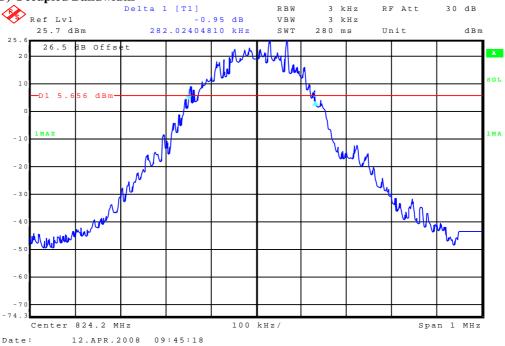
Test report no.: 4-2918-01-02/07

Channel 189 -26 dBc Bandwidth

2008-04-19 Page 66 of 152

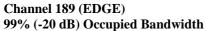
Test report no.: 4-2918-01-02/07


Channel 251 -26 dBc Bandwidth



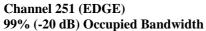
2008-04-19 Page 67 of 152

Test report no.: 4-2918-01-02/07

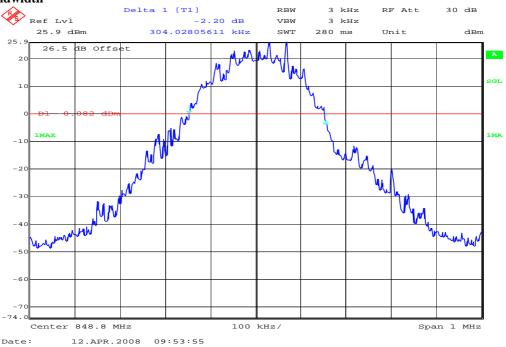

Channel 128 (EDGE) -26 dBc Bandwidth

2008-04-19 Page 68 of 152

Test report no.: 4-2918-01-02/07


Channel 189 (EDGE) -26 dBc Bandwidth

2008-04-19 Page 69 of 152


Test report no.: 4-2918-01-02/07

Channel 251 (EDGE) -26 dBc Bandwidth

2008-04-19 Page 70 of 152

Test report no.: 4-2918-01-02/07

5.1 PART UMTS Band II

5.1.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 3, Section 4.3

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S CMU 200 (peak and average)

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0 MHz and 1907.6 MHz (bottom, middle and top of operational frequency range).

WCDMA 1900 (RMC 12.2 kBit/s)					
Channel / frequency	Max. RMS	Peak			
9262 / 1852.4 MHz	22.80 dBm	25.87 dBm			
9400 / 1880.0 MHz	22.53 dBm	25.58 dBm			
9538 / 1907.6 MHz	22.56 dBm	25.34 dBm			

Table 1: Test results conducted peak power measurement WCDMA

WCDMA + HSDPA 1900							
Channel / frequency	sub-test	Max. RMS	Peak				
9262 / 1852.4 MHz	1	23.00 dBm	26.00 dBm				
9400 / 1880.0 MHz	1	22.82 dBm	25.83 dBm				
9538 / 1907.6 MHz	1	22.92 dBm	25.58 dBm				
9262 / 1852.4 MHz	2	22.67 dBm	26.21 dBm				
9400 / 1880.0 MHz	2	22.57 dBm	26.03 dBm				
9538 / 1907.6 MHz	2	22.75 dBm	26.11 dBm				
9262 / 1852.4 MHz	3	22.49 dBm	26.50 dBm				
9400 / 1880.0 MHz	3	22.30 dBm	26.20 dBm				
9538 / 1907.6 MHz	3	22.39 dBm	26.01 dBm				
9262 / 1852.4 MHz	4	22.64 dBm	26.57 dBm				
9400 / 1880.0 MHz	4	22.47 dBm	26.33 dBm				
9538 / 1907.6 MHz	4	22.61 dBm	26.20 dBm				

Table 2: Test results conducted peak power measurement WCDMA + HSDPA

2008-04-19 Page 71 of 152

Test report no.: 4-2918-01-02/07

WCDMA + HSDPA + HSUPA 1900								
Channel / frequency	Sub-test	Max. RMS	Peak					
9262 / 1852.4 MHz	1	22.80 dBm	27.19 dBm					
9400 / 1880.0 MHz	1	22.68 dBm	27.07 dBm					
9538 / 1907.6 MHz	1	22.81 dBm	26.65 dBm					
9262 / 1852.4 MHz	2	21.93 dBm	26.33 dBm					
9400 / 1880.0 MHz	2	21.99 dBm	26.45 dBm					
9538 / 1907.6 MHz	2	22.04 dBm	26.51 dBm					
9262 / 1852.4 MHz	3	22.05 dBm	26.28 dBm					
9400 / 1880.0 MHz	3	22.14 dBm	26.33 dBm					
9538 / 1907.6 MHz	3	22.09 dBm	26.31 dBm					
9262 / 1852.4 MHz	4	22.33 dBm	26.35 dBm					
9400 / 1880.0 MHz	4	22.38 dBm	26.41 dBm					
9538 / 1907.6 MHz	4	22.29 dBm	26.29 dBm					
9262 / 1852.4 MHz	5	22.68 dBm	26.87 dBm					
9400 / 1880.0 MHz	5	22.51 dBm	26.41 dBm					
9538 / 1907.6 MHz	5	22.56 dBm	26.03 dBm					

Table 3: Test results conducted peak power measurement WCDMA + HSDPA + HSUPA

Remark : values in bold letters represent the subtest with maximum output power, which was compared to the standard WCDMA set-up to decide which modes need to be tested

5.1.1.1 Test set-up requirements according to 3GPP 34.121

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	$eta_{ m c}$	eta_d	$\beta_{d}\left(SF\right)$	β_c/β_d	$\beta_{hs}^{\ (1)}$	$CM(dB)^{(2)}$
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \Longleftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Longleftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$

Table 3: Subtests for UMTS Release 5 HSDPA

2008-04-19 Page 72 of 152

Test report no.: 4-2918-01-02/07

They were tested using the following settings for HSDPA FRC + H-Set 1 QPSK (see table C.8.1.1 of 3GPP 34.121)

Parameter Value

Nominal average inf. bit rate 534 kbit/s

Inter-TTI Distance 3 TTI's

Number of HARQ Processes 2 Processes

Information Bit Payload 3202 Bits

MAC-d PDU size 336 Bits

Number Code Blocks 1 Block

Binary Channel Bits Per TTI 4800 Bits

Total Available SMLs in UE 19200 SMLs

Number of SMLs per HARQ Process 9600 SMLs

Coding Rate 0.67

Number of Physical Channel Codes 5

Table 4: settings of required H-Set 1 QPSK in HSDPA mode

2008-04-19 Page 73 of 152

Test report no.: 4-2918-01-02/07

The following HSUPA sub-tests are defined by 3GPP 34.121 (table C.11.1.3)

Sub-	$oldsymbol{eta_c}$	$\beta_{\mathbf{d}}$	$\beta_{\rm d}$	β_c/β_d	${\beta_{hs}}^{(1)}$	$\beta_{\rm ec}$	$\beta_{\rm ed}$	$\beta_{\rm ec}$	$\beta_{\rm ed}$	CM ⁽²⁾	MPR	$AG^{(4)}$	E -
test			(SF)					(SF)	(code)	(dB)	(dB)	Index	TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
							$\beta_{ed1}{:}47/15$						
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed2:}47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=10/15$ and $\beta_d=15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=14/15$ and $\beta_d=15/15$

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6 : $\beta_{\text{ed}} \, \text{can}$ not be set directly; it is set by Absolute Grant Value

Table 5: Subtests for UMTS Release 6 HSUPA

Some HSUPA sub test settings of parameters defined in the table above cannot be set directly. Instead $\Delta_{E\text{-DPCCH}}$, Reference E-TFCI and Reference E-TFCI Power Offset were set according to table 5.2B.2 of 3GPP 34.121, and CMU200 operating manual instructions of firmware V4x50.a11 were followed to reach a test condition with maximum output power and one E-TFCI.

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

2008-04-19 Page 74 of 152

Test report no.: 4-2918-01-02/07

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

 $Total\ Correction\ Factor\ recorded\ in\ the\ EMI\ Receiver = Cable\ Loss + Antenna\ Factor$

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(1) Repeat for all different test signal frequencies

2008-04-19 Page 75 of 152

Test report no.: 4-2918-01-02/07

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

- (c) Select the frequency and E-field levels for ERP/EIRP measurements.
- $(d) \ Substitute \ the \ EUT \ by \ a \ signal \ generator \ and \ one \ of \ the \ following \ transmitting \ antennas \ (substitution \ antenna):$

DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (1) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

2008-04-19 Page 76 of 152

Test report no.: 4-2918-01-02/07

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Burst Peak EIRP (dBm)
1852.4	25.68
1880.0	25.06
1907.6	24.48
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) HSDPA Mode

Frequency (MHz)	Burst Peak EIRP (dBm)
1852.4	25.81
1880.0	25.31
1907.6	24.72
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) HSUPA Mode

Frequency (MHz)	Burst Peak EIRP (dBm)
1852.4	27.00
1880.0	26.55
1907.6	25.79
Measurement uncertainty	±0.5 dB

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBμV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

2008-04-19 Page 77 of 152

Test report no.: 4-2918-01-02/07

5.1.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 3, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER...

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

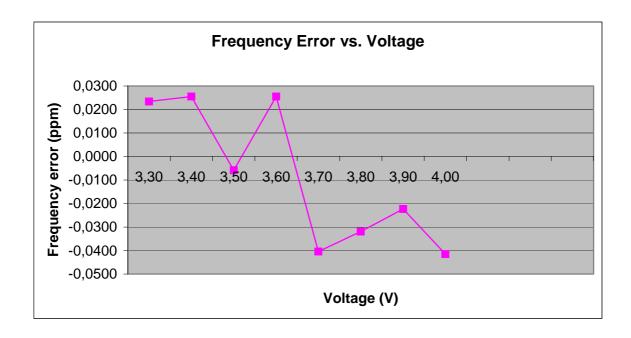
Measurement Limit:

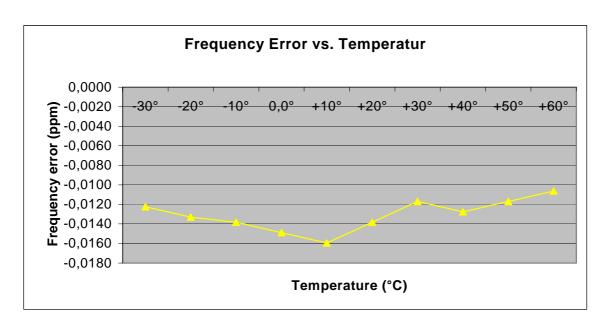
According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block..

2008-04-19 Page 78 of 152

Test report no.: 4-2918-01-02/07

Test Results: AFC FREQ ERROR vs. VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.0	-29	-0,00000154	-0,0154
3.1	54	0,00000287	0,0287
3.2	48	0,00000255	0,0255
3.3	44	0,00000234	0,0234
3.4	48	0,00000255	0,0255
3.5	-11	-0,00000059	-0,0059
3.6	48	0,00000255	0,0255
3.7	-76	-0,00000404	-0,0404
3.8	-60	-0,00000319	-0,0319
3.9	-42	-0,00000223	-0,0223
4.0	-78	-0,00000415	-0,0415


Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-23	-0,00000133	-0,0133
-20	-25	-0,00000144	-0,0144
-10	-26	-0,00000150	-0,0150
±0.0	-28	-0,00000162	-0,0162
+10	-30	-0,00000173	-0,0173
+20	-26	-0,00000150	-0,0150
+30	-22	-0,00000127	-0,0127
+40	-24	-0,00000139	-0,0139
+50	-22	-0,00000127	-0,0127
+60	-20	-0,00000115	-0,0115

2008-04-19 Page 79 of 152

2008-04-19 Page 80 of 152

Test report no.: 4-2918-01-02/07

5.1.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

2008-04-19 Page 81 of 152

Test report no.: 4-2918-01-02/07

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

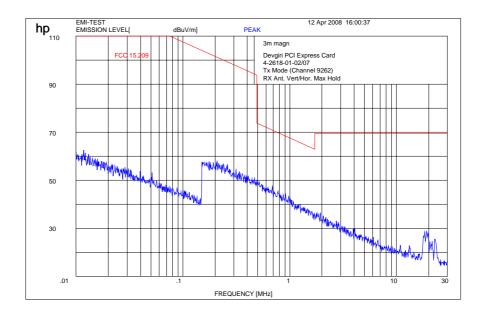
All measurements were done in horizontal and vertical polarization; the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch9262 Freq. (MHz)	Level (dBm)	Tx ch9400 Freq. (MHz)	Level (dBm)	Tx ch9538 Freq. (MHz)	Level (dBm)
2	3704.8	- (u Diii)	3760	- (u DIII)	3815.2	- (uDiii)
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-

No peaks found < 20 dB below limit.

Sample calculation:

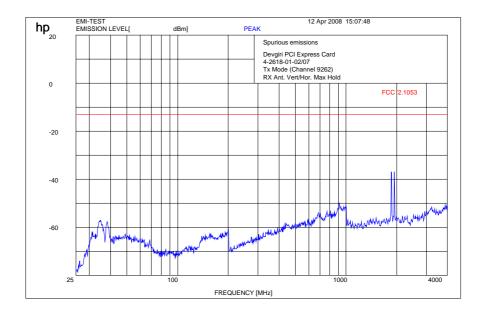
Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
_	Reading	Setting	gain	gain	loss	Result		
MHz	dBμV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		


EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

2008-04-19 Page 82 of 152

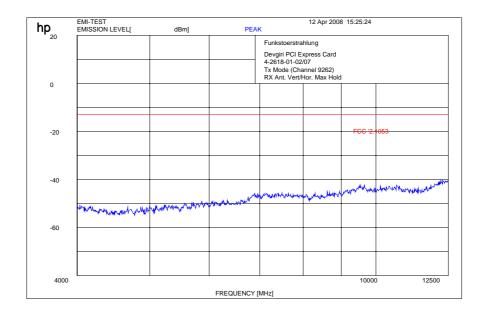
Test report no.: 4-2918-01-02/07

Traffic mode up to 30 MHz (Valid for all 3 channels)



2008-04-19 Page 83 of 152

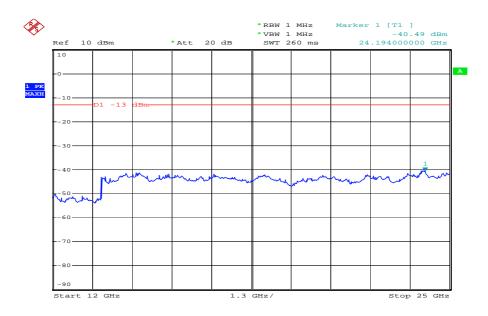
Test report no.: 4-2918-01-02/07



Channel 9262 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter f > 1 GHz: RBW / VBW 1 MHz

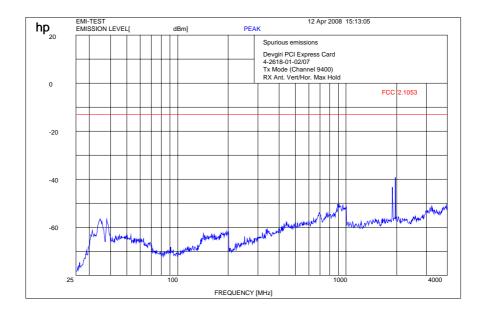
Channel 9262 (4 GHz – 12.5 GHz)



RBW / VBW 1 MHz

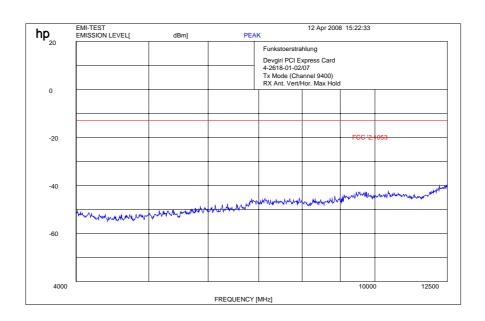
2008-04-19 Page 84 of 152

Channel 9262 (12 GHz - 25 GHz) valid for all 3 channels


Date: 16.APR.2008 13:53:29

2008-04-19 Page 85 of 152

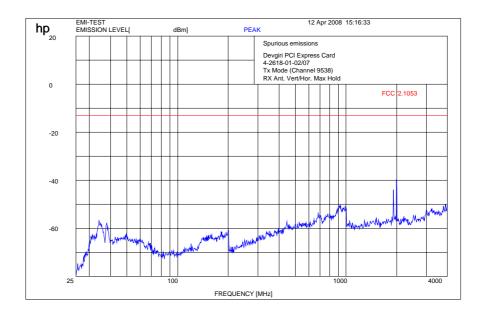
Test report no.: 4-2918-01-02/07


Channel 9400 (30 MHz - 4 GHz)

f < 1~GHz: RBW/VBW: 100~kHz Carrier suppressed with a rejection filter

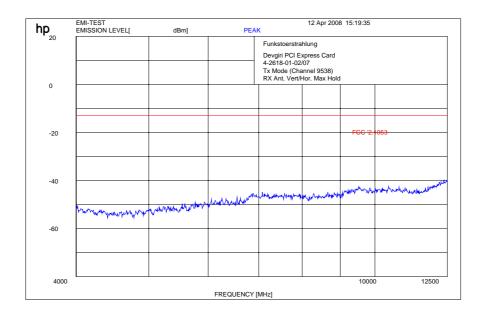
f > 1 GHz: RBW / VBW 1 MHz

Channel 9400 (4 GHz – 12.5 GHz)


RBW / VBW 1 MHz

2008-04-19 Page 86 of 152

Test report no.: 4-2918-01-02/07



Channel 9538 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter f > 1 GHz: RBW / VBW 1 MHz

Channel 9538 (4 GHz – 12.5 GHz)

RBW / VBW 1 MHz

2008-04-19 Page 87 of 152

Test report no.: 4-2918-01-02/07

5.1.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053
IC: RSS 133, Issue 3, Section 4.5

Measurement Results

	SPURIOUS EMISSIONS LEVEL (μV/m)							
	Idle mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
No c	ritical peaks f	ound	-	-	i	-	-	-
-	ı	-	-	-	i	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	ı	-	-	-	ı	-	-	-
-	ı	-	-	-	i	-	-	-
Measi	irement unce	rtainty	±3 dB					

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}: RBW/VBW: 1 \text{ MHz}$

H = Horizontal; V= Vertical

For measurement distance see table below

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

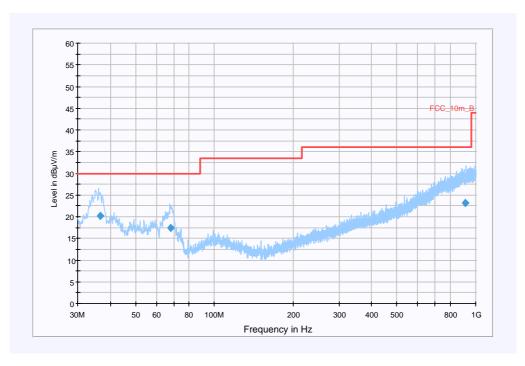
2008-04-19 Page 88 of 152

Test report no.: 4-2918-01-02/07

Idle Mode (30 MHz - 1 GHz)

EUT: F3507G
Serial Number: C37000069F
Test Description: FCC class B @ 10 m
Operating Conditions: IDLE WCDMA II
Operator Name: Hennemann

Comment: EUT fixed on test board


Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: EMI radiated\Electric Field (NOS)

Level Unit: $dB\mu V/m$

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30MHz - 1GHzQuasiPeak120kHz15sReceiver

FCC_1GHz

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
36.557100	20.2	1000.000	120.000	120.0	V	157.0	13.3	9.8	30.0	
67.845850	17.4	1000.000	120.000	120.0	V	40.0	10.1	12.6	30.0	
914.735000	23.1	1000.000	120.000	120.0	Н	177.0	26.2	12.9	36.0	

2008-04-19 Page 89 of 152

Test report no.: 4-2918-01-02/07

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30MHz - 2GHz

Receiver: Receiver [ESCI 3]

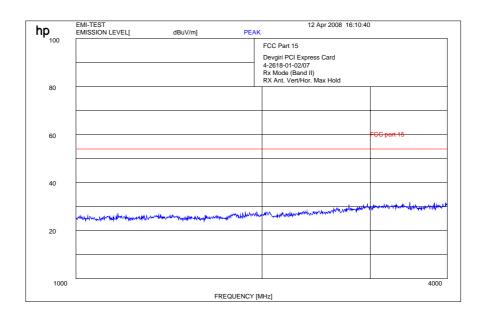
@ GPIB0 (ADR 20), SN 100083/003, FW 3.32, CAL 07.01.2009

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---, CAL 08.04.2010 Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cabel with switch (0408)

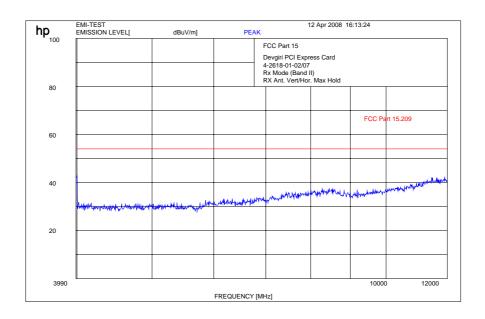

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

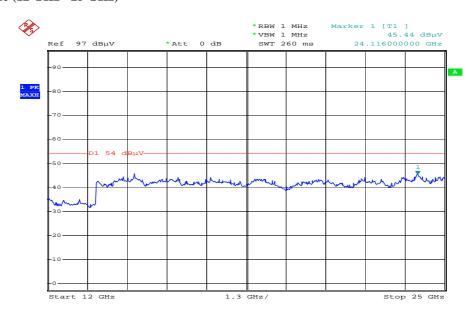
@ GPIB0 (ADR 9)

Idle Mode (1 GHz - 4 GHz)



RBW / VBW 1 MHz

2008-04-19 Page 90 of 152



Idle Mode (4 GHz – 12.0 GHz)

RBW / VBW 1 MHz

Idle Mode (12 GHz - 25 GHz)

Date: 16.APR.2008 14:04:43

2008-04-19 Page 91 of 152

Test report no.: 4-2918-01-02/07

5.1.5 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

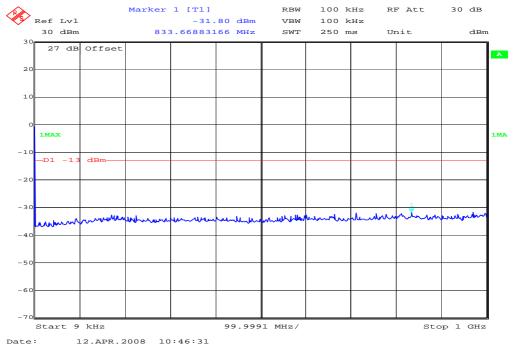
The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS Transmitter Channel Frequency: 9262 1852.4 MHz 9400 1880.0 MHz 9538 1907.6 MHz

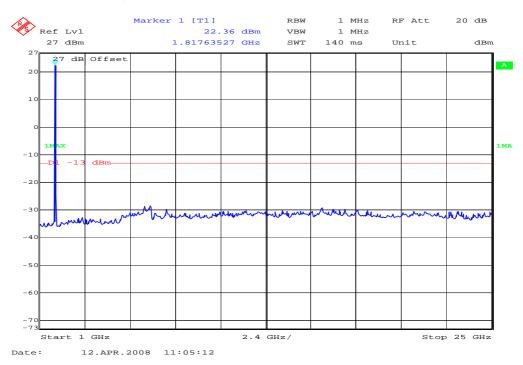
Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


Measurement Results:

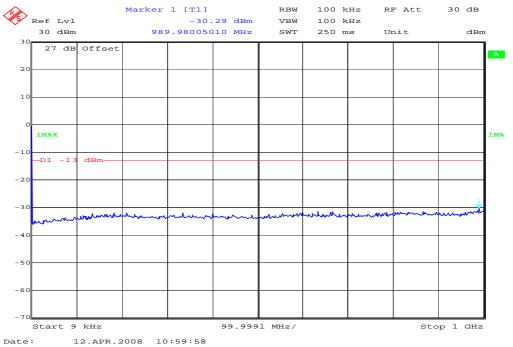
Harmonic	Tx ch 9262 Freq. (MHz)	Level (dBm)	Tx ch9400 Freq. (MHz)	Level (dBm)	Tx ch9538 Freq. (MHz)	Level (dBm)
2	3704.8	-	3760	-	3815.2	-
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-

2008-04-19 Page 92 of 152

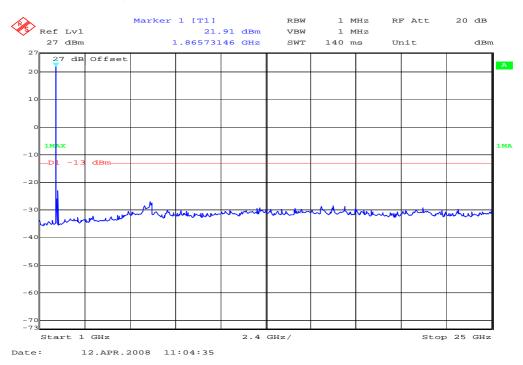


Channel 9262 (30 MHz - 1 GHz)

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT

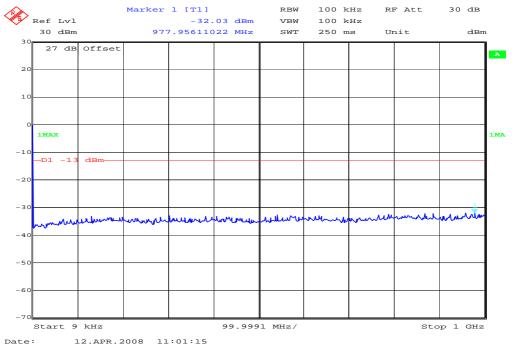

Channel 9262 (1 GHz - 25 GHz)

2008-04-19 Page 93 of 152

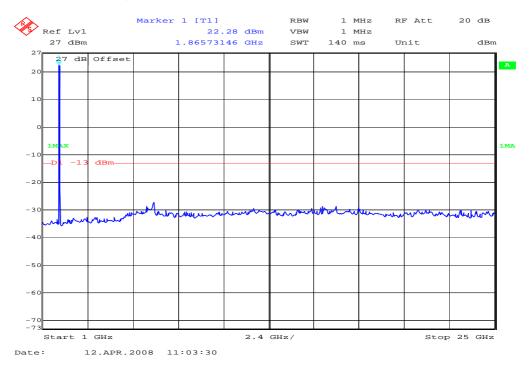


Channel 9400 (30 MHz - 1 GHz)

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT


Channel 9400 (1 GHz - 25 GHz)

2008-04-19 Page 94 of 152



Channel 9538 (30 MHz - 1 GHz)

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT

Channel 9538 (1 GHz - 25 GHz)

2008-04-19 Page 95 of 152

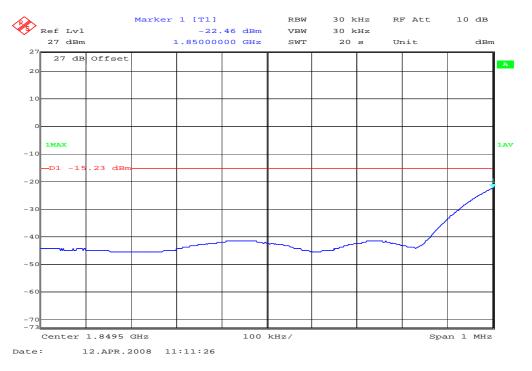
Test report no.: 4-2918-01-02/07

5.1.6 Block Edge Compliance

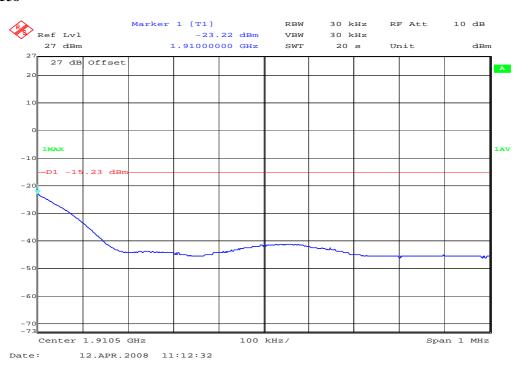
Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 3, Section 6.5

Measurement Limit:

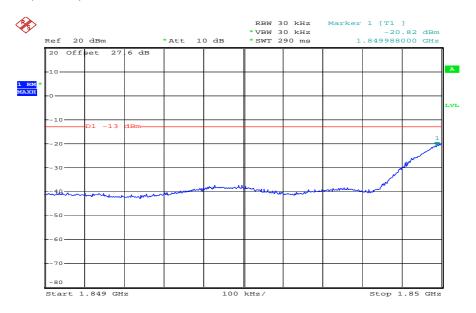

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

2008-04-19 Page 96 of 152


Test report no.: 4-2918-01-02/07

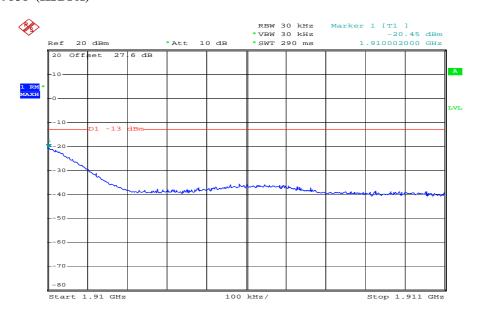
Channel 9262

Channel 9538



2008-04-19 Page 97 of 152

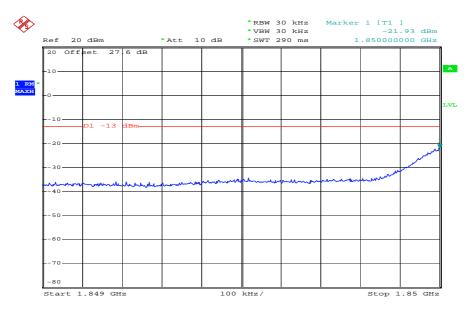
Test report no.: 4-2918-01-02/07



Channel 9262 (HSDPA)

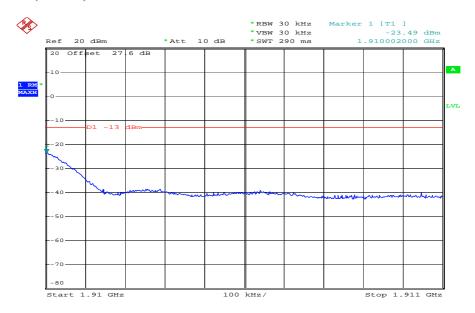
Date: 16.APR.2008 11:45:06

Channel 9538 (HSDPA)


Date: 16.APR.2008 11:46:02

2008-04-19 Page 98 of 152

Test report no.: 4-2918-01-02/07



Channel 9262 (HSUPA)

Date: 16.APR.2008 12:32:39

Channel 9538 (HSUPA)

Date: 16.APR.2008 12:34:27

2008-04-19 Page 99 of 152

Test report no.: 4-2918-01-02/07

5.1.7 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 3, Section 6.5

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

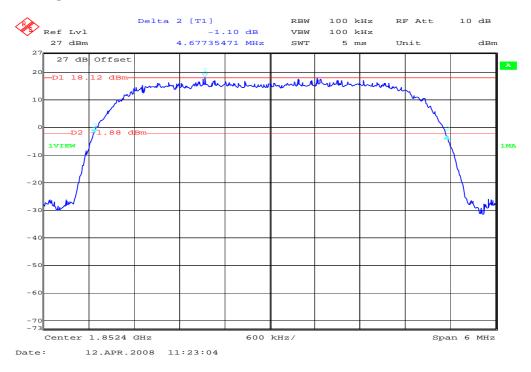
Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1852.4 MHz	4677	4845
1880.0 MHz	4665	4833
1907.6 MHz	4653	4845

HSDPA mode

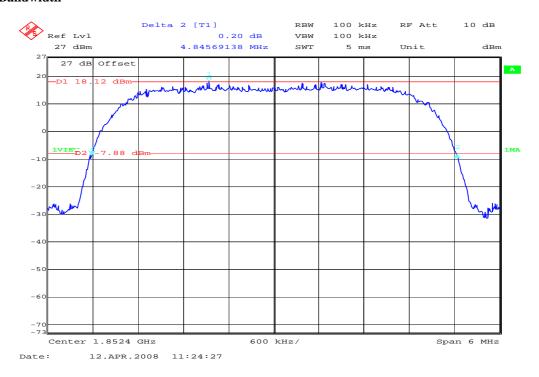
Frequency	99% Occupied Bandwidth KHz	-26 dBc Bandwidth KHz
1852.4 MHz	4644	4812
1880.0 MHz	4632	4800
1907.6 MHz	4656	4812

HSUPA mode

Frequency	99% Occupied Bandwidth KHz	-26 dBc Bandwidth KHz
1852.4 MHz	4644	4824
1880.0 MHz	4644	4824
1907.6 MHz	4660	4812

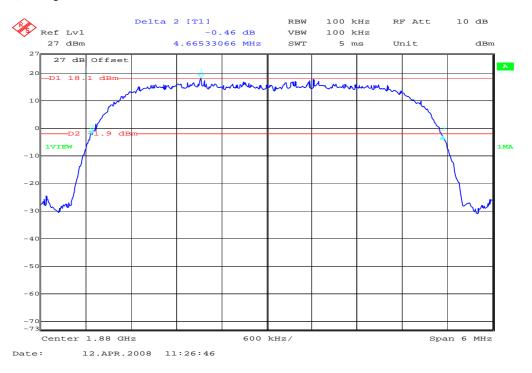

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 5MHz, this equates to a resolution bandwidth of at least 50 KHz. For this testing, a resolution bandwidth 100 kHz was used.

2008-04-19 Page 100 of 152

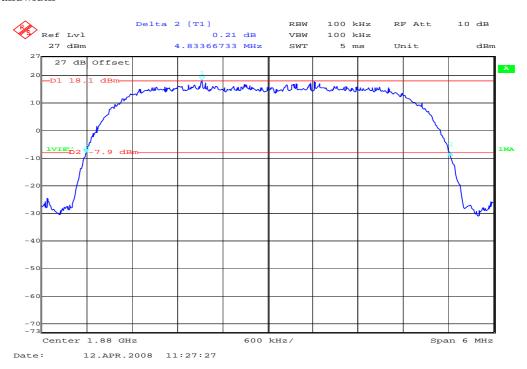

Test report no.: 4-2918-01-02/07

Channel 9262 99% (-20 dB) Occupied Bandwidth

Channel 9262 -26 dBc Bandwidth

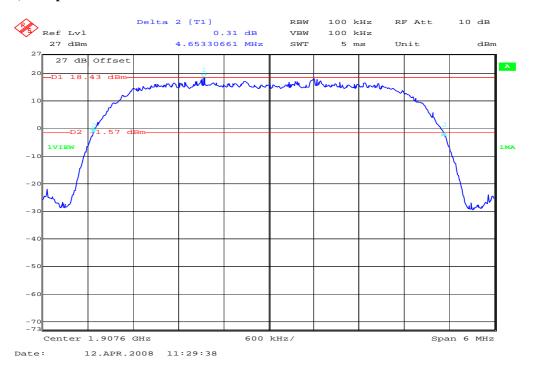


2008-04-19 Page 101 of 152

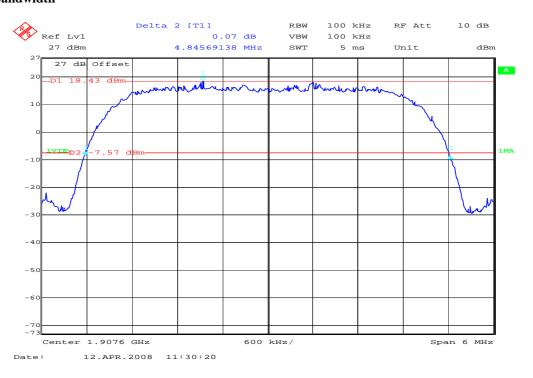

Test report no.: 4-2918-01-02/07

Channel 9400 99% (-20 dB) Occupied Bandwidth

Channel 9400 -26 dBc Bandwidth

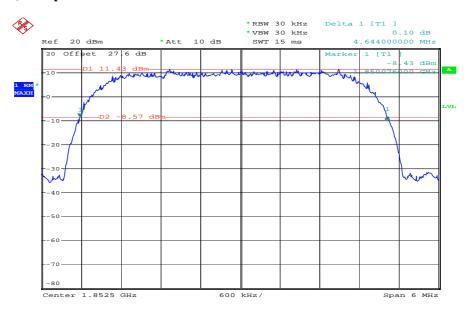


2008-04-19 Page 102 of 152


Test report no.: 4-2918-01-02/07

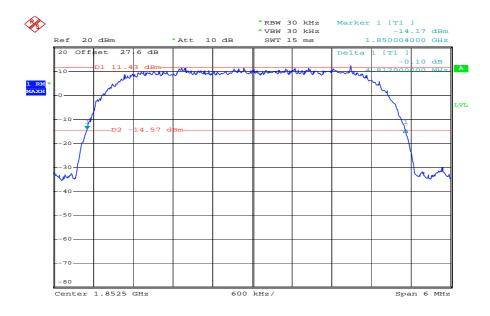
Channel 9538 99% (-20 dB) Occupied Bandwidth

Channel 9538 -26 dBc Bandwidth



2008-04-19 Page 103 of 152

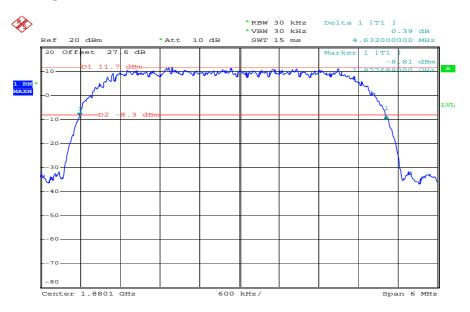
Test report no.: 4-2918-01-02/07



Channel 9262 (HSDPA) 99% (-20 dB) Occupied Bandwidth

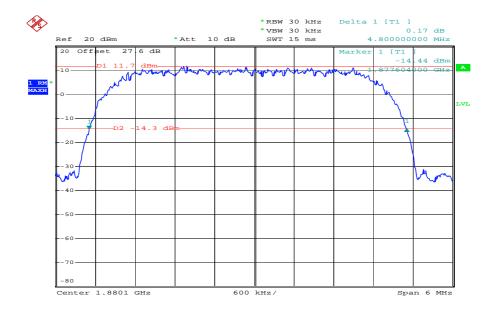
Date: 16.APR.2008 12:01:03

Channel 9262 (HSDPA) -26 dBc Bandwidth


Date: 16.APR.2008 12:01:48

2008-04-19 Page 104 of 152

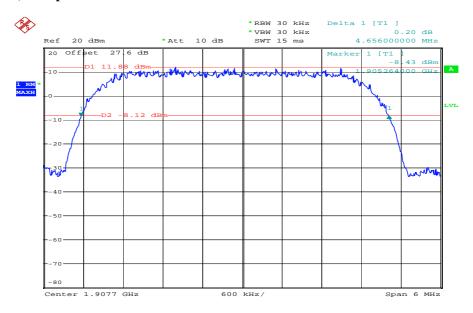
Test report no.: 4-2918-01-02/07



Channel 9400 (HSDPA) 99% (-20 dB) Occupied Bandwidth

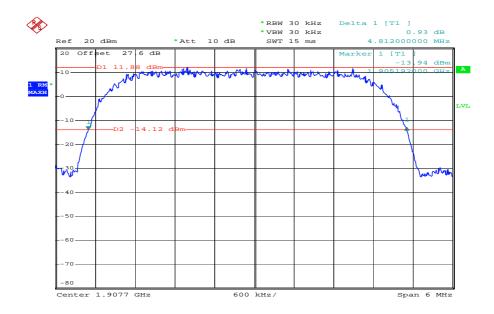
Date: 16.APR.2008 11:57:56

Channel 9400 (HSDPA) -26 dBc Bandwidth


Date: 16.APR.2008 11:58:40

2008-04-19 Page 105 of 152

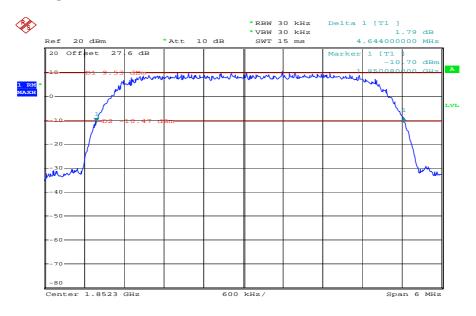
Test report no.: 4-2918-01-02/07



Channel 9538 (HSDPA) 99% (-20 dB) Occupied Bandwidth

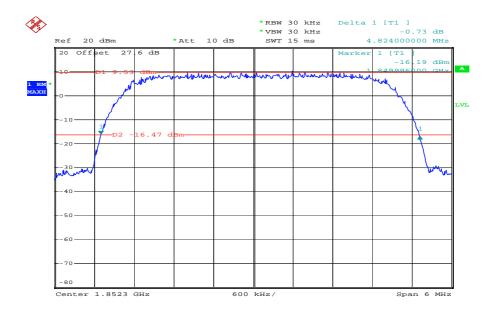
Date: 16.APR.2008 11:50:25

Channel 9538 (HSDPA) -26 dBc Bandwidth


Date: 16.APR.2008 11:51:19

2008-04-19 Page 106 of 152

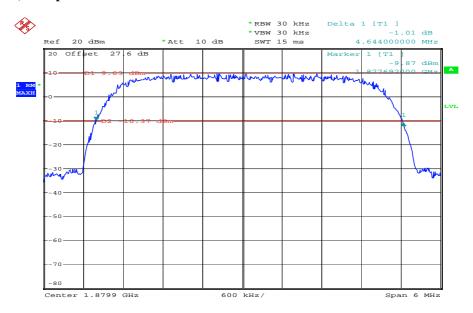
Test report no.: 4-2918-01-02/07



Channel 9262 (HSUPA) 99% (-20 dB) Occupied Bandwidth

Date: 16.APR.2008 10:56:41

Channel 9262 (HSUPA) -26 dBc Bandwidth


Date: 16.APR.2008 10:57:20

2008-04-19 Page 107 of 152

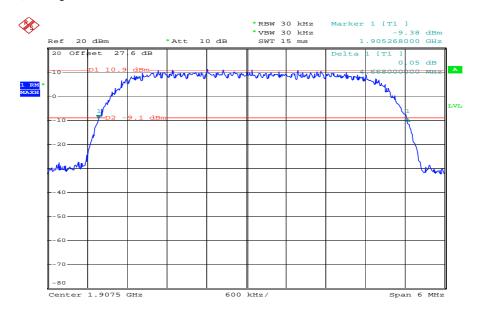
Test report no.: 4-2918-01-02/07



Channel 9400 (HSUPA) 99% (-20 dB) Occupied Bandwidth

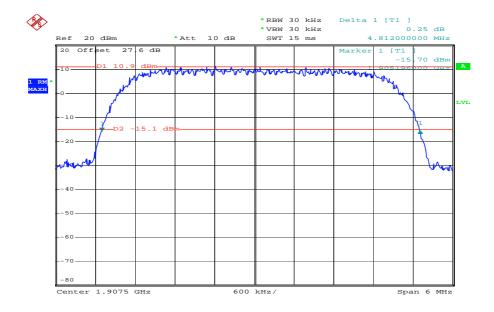
Date: 16.APR.2008 10:50:20

Channel 9400 (HSUPA) -26 dBc Bandwidth


Date: 16.APR.2008 10:51:11

2008-04-19 Page 108 of 152

Test report no.: 4-2918-01-02/07



Channel 9538 (HSUPA) 99% (-20 dB) Occupied Bandwidth

Date: 16.APR.2008 10:43:46

Channel 9538 (HSUPA) -26 dBc Bandwidth

Date: 16.APR.2008 10:46:13

2008-04-19 Page 109 of 152

Test report no.: 4-2918-01-02/07

5.2 PART UMTS Band V

5.2.1 RF Power Output

Reference

FCC: CFR Part 22.9.1.3, 2.1046
IC: RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 826.4 MHz, 836.0 MHz and 846.6 MHz (bottom, middle and top of operational frequency range).

WCDMA 850 (RMC 12.2 kBit/s)							
Channel / frequency Max. RMS Peak							
4132 / 826.4 MHz	23.28 dBm	26.00 dBm					
4180 / 836.0 MHz	23.62 dBm	26.38 dBm					
4233 / 846.6 MHz	23.37 dBm	26.07 dBm					

Table 1: Test results conducted peak power measurement WCDMA

WCDMA + HSDPA 850							
Channel / frequency	sub-test	Max. RMS	Peak				
4132 / 826.4 MHz	1	23.22 dBm	25.99 dBm				
4180 / 836.0 MHz	1	23.49 dBm	26.13 dBm				
4233 / 846.6 MHz	1	23.17 dBm	25.67 dBm				
4132 / 826.4 MHz	2	22.72 dBm	26.09 dBm				
4180 / 836.0 MHz	2	23.00 dBm	26.46 dBm				
4233 / 846.6 MHz	2	22.71 dBm	26.04 dBm				
4132 / 826.4 MHz	3	22.54 dBm	26.27 dBm				
4180 / 836.0 MHz	3	22.70 dBm	26.59 dBm				
4233 / 846.6 MHz	3	22.39 dBm	26.06 dBm				
4132 / 826.4 MHz	4	22.61 dBm	26.30 dBm				
4180 / 836.0 MHz	4	22.77 dBm	26.56 dBm				
4233 / 846.6 MHz	4	22.48 dBm	26.10 dBm				

Table 2: Test results conducted peak power measurement WCDMA + HSDPA

2008-04-19 Page 110 of 152

Test report no.: 4-2918-01-02/07

WCDMA + HSDPA + HSUPA 850							
Channel / frequency	Sub-test	Max. RMS	Peak				
4132 / 826.4 MHz	1	22.86 dBm	26.82 dBm				
4180 / 836.0 MHz	1	23.08 dBm	26.98 dBm				
4233 / 846.6 MHz	1	23.02 dBm	26.76 dBm				
4132 / 826.4 MHz	2	21.59 dBm	26.14 dBm				
4180 / 836.0 MHz	2	21.68 dBm	26.70 dBm				
4233 / 846.6 MHz	2	21.31 dBm	26.82 dBm				
4132 / 826.4 MHz	3	21.72 dBm	26.05 dBm				
4180 / 836.0 MHz	3	21.68 dBm	25.93 dBm				
4233 / 846.6 MHz	3	21.62 dBm	26.98 dBm				
4132 / 826.4 MHz	4	21.72 dBm	26.10 dBm				
4180 / 836.0 MHz	4	21.80 dBm	26.28 dBm				
4233 / 846.6 MHz	4	21.88 dBm	26.30 dBm				
4132 / 826.4 MHz	5	22.78 dBm	26.45 dBm				
4180 / 836.0 MHz	5	22.88 dBm	26.50 dBm				
4233 / 846.6 MHz	5	22.61 dBm	26.06 dBm				

Table 3: Test results conducted peak power measurement WCDMA + HSDPA + HSUPA

Remark: values in bold letters represent the subtest with maximum output power, which was compared to the standard WCDMA set-up to decide which modes need to be tested.

5.2.1.1 Test set-up requirements according to 3GPP 34.121

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	$eta_{ m c}$	eta_d	$\beta_d (SF)$	β_c/β_d	$\beta_{hs}^{(1)}$	$CM(dB)^{(2)}$
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \Longleftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Longleftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$

Table 3: Subtests for UMTS Release 5 HSDPA

2008-04-19 Page 111 of 152

Test report no.: 4-2918-01-02/07

They were tested using the following settings for HSDPA FRC + H-Set 1 QPSK (see table C.8.1.1 of 3GPP 34.121)

Parameter Value

Nominal average inf. bit rate 534 kbit/s

Inter-TTI Distance 3 TTI's

Number of HARQ Processes 2 Processes

Information Bit Payload 3202 Bits

MAC-d PDU size 336 Bits

Number Code Blocks 1 Block

Binary Channel Bits Per TTI 4800 Bits

Total Available SMLs in UE 19200 SMLs

Number of SMLs per HARQ Process 9600 SMLs

Coding Rate 0.67

Number of Physical Channel Codes 5

Table 4: settings of required H-Set 1 QPSK in HSDPA mode

2008-04-19 Page 112 of 152

Test report no.: 4-2918-01-02/07

The following HSUPA sub-tests are defined by 3GPP 34.121 (table C.11.1.3)

Sub-	$oldsymbol{eta_c}$	$\beta_{\mathbf{d}}$	$\beta_{\rm d}$	β_c/β_d	${\beta_{hs}}^{(1)}$	$oldsymbol{eta_{ec}}$	$\beta_{\rm ed}$	$\beta_{\rm ec}$	$\beta_{\rm ed}$	CM ⁽²⁾	MPR	$AG^{(4)}$	E-
test			(SF)					(SF)	(code)	(dB)	(dB)	Index	TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$ $\beta_{ed2}:47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=10/15$ and $\beta_d=15/15$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c=14/15$ and $\beta_d=15/15$

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g

Note 6 : $\beta_{\text{ed}} \, \text{can}$ not be set directly; it is set by Absolute Grant Value

Table 5: Subtests for UMTS Release 6 HSUPA

Some HSUPA sub test settings of parameters defined in the table above cannot be set directly. Instead $\Delta_{\text{E-DPCCH}}$, Reference E-TFCI and Reference E-TFCI Power Offset were set according to table 5.2B.2 of 3GPP 34.121, and CMU200 operating manual instructions of firmware V4x50.a11 were followed to reach a test condition with maximum output power and one E-TFCI.

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
	+30	± 2

2008-04-19 Page 113 of 152

Test report no.: 4-2918-01-02/07

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.

(l) Repeat for all different test signal frequencies

2008-04-19 Page 114 of 152

Test report no.: 4-2918-01-02/07

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

- (d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna):
- .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

2008-04-19 Page 115 of 152

Test report no.: 4-2918-01-02/07

Limits:

Nominal Peak Output Power (dBm)
+38.45

Measurement Results Output Power (Radiated) UMTS Mode

Frequency (MHz)	BURST Peak (dBm)		
826.4	24.55		
836.0	25.12		
846.6	24.96		
Measurement uncertainty	±0.5 dB		

Measurement Results Output Power (Radiated) HSDPA Mode

Frequency	BURST Peak
(MHz)	(dBm)
826.4	24.54
836.0	24.87
846.6	24.56
Measurement uncertainty	±0.5 dB

Measurement Results Output Power (Radiated) HSUPA Mode

Frequency	BURST Peak		
(MHz)	(dBm)		
826.4	25.37		
836.0	25.72		
846.6	25.65		
Measurement uncertainty	±0.5 dB		

Sample calculation:

Freg	SA Reading	SG Setting	Ant.	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dBμV	dBm	dBi	dBd	dB	dBm	
846.6	124.9	21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

2008-04-19 Page 116 of 152

Test report no.: 4-2918-01-02/07

5.2.2 Frequency Stability

Reference

FCC: CFR Part 22.355, 2.1055
IC: RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at $10~\rm C$ increments from -30 C to +60 C. Allow at least $1~\rm 1/2$ hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

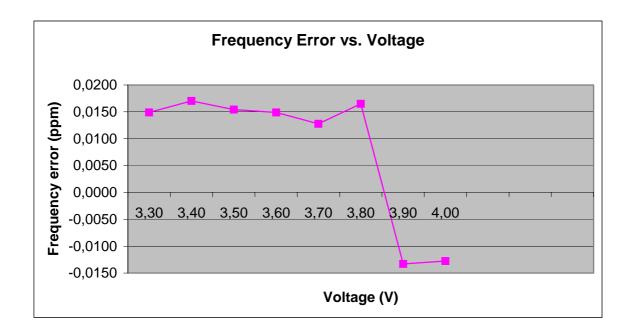
Measurement Limit:

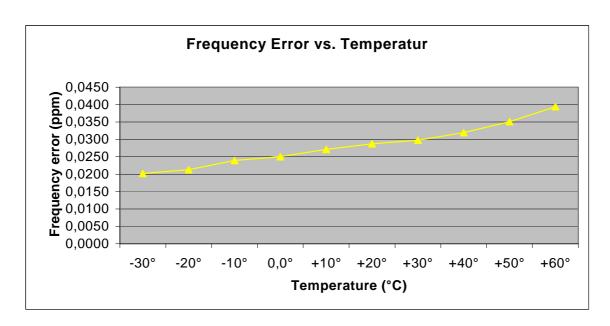
According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

2008-04-19 Page 117 of 152

Test report no.: 4-2918-01-02/07

Test Results: AFC FREQ ERROR vs. VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.0	-24	-0,00000128	-0,0128
3.1	-25	-0,00000133	-0,0133
3.2	-23	-0,00000122	-0,0122
3.3	28	0,0000149	0,0149
3.4	32	0,0000170	0,0170
3.5	29	0,0000154	0,0154
3.6	28	0,00000149	0,0149
3.7	24	0,00000128	0,0128
3.8	31	0,0000165	0,0165
3.9	-25	-0,00000133	-0,0133
4.0	-24	-0,00000128	-0,0128


Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	38	0,00000202	0,0202
-20	40	0,00000213	0,0213
-10	45	0,00000239	0,0239
±0.0	47	0,00000250	0,0250
+10	51	0,00000271	0,0271
+20	54	0,00000287	0,0287
+30	56	0,00000298	0,0298
+40	60	0,00000319	0,0319
+50	66	0,00000351	0,0351
+60	74	0,00000394	0,0394

2008-04-19 Page 118 of 152

2008-04-19 Page 119 of 152

Test report no.: 4-2918-01-02/07

5.2.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:
- e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

2008-04-19 Page 120 of 152

Test report no.: 4-2918-01-02/07

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (826.4 MHz, 836.0 MHz and 846.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

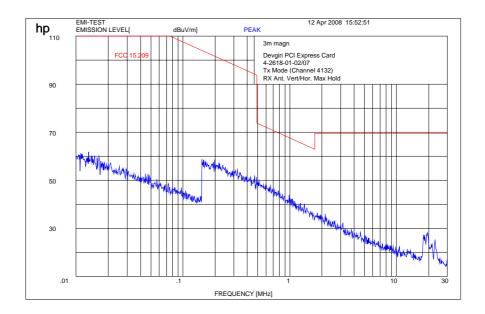
All measurements were done in horizontal and vertical polarization, the plots shows the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch4132 Freq. (MHz)	Level (dBm)	Tx ch4180 Freq. (MHz)	Level (dBm)	Tx ch4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	-	8466.0	-

Sample calculation:

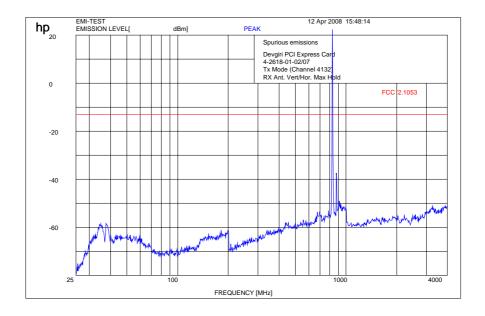
Freg	SA Reading	SG Setting	Ant.	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dΒμV	dBm	dBi	dBd	dB	dBm	
846.6	124.9	21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

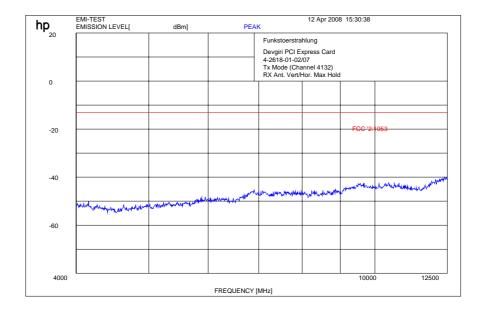

2008-04-19 Page 121 of 152

^{*}ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Test report no.: 4-2918-01-02/07


Traffic mode up to 30 MHz (Valid for all 3 channels)

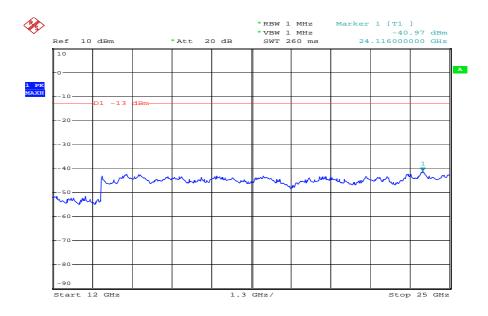
2008-04-19 Page 122 of 152



Channel 4132 (30 MHz - 4 GHz)

f < 1 GHz: RBW/VBW: 100 kHz f > 1 GHz: RBW/VBW: 1 MHz

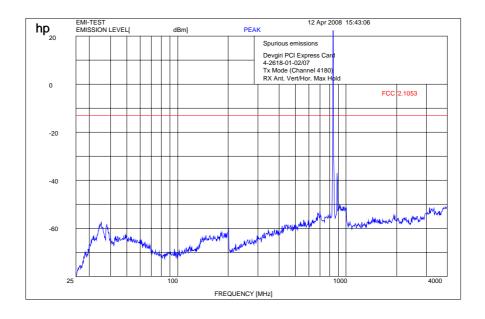
Channel 4132 (4 GHz - 12.5 GHz)



RBW / VBW 1 MHz

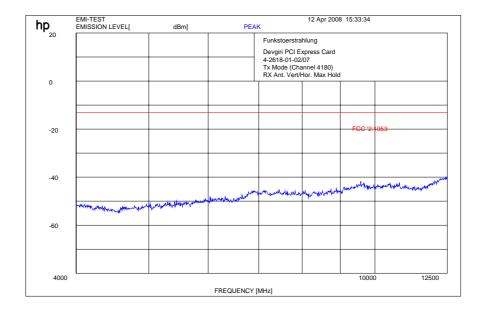
2008-04-19 Page 123 of 152

Channel 4132 (12 GHz - 25 GHz) valid for all 3 channels



Date: 16.APR.2008 13:54:20

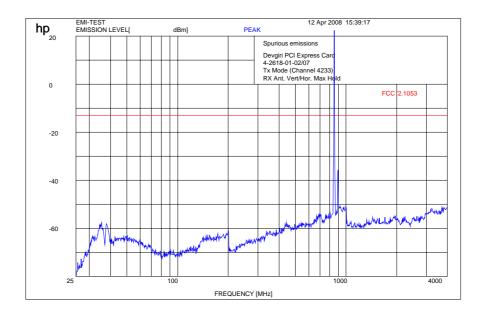
2008-04-19 Page 124 of 152



Channel 4180 (30 MHz - 4 GHz)

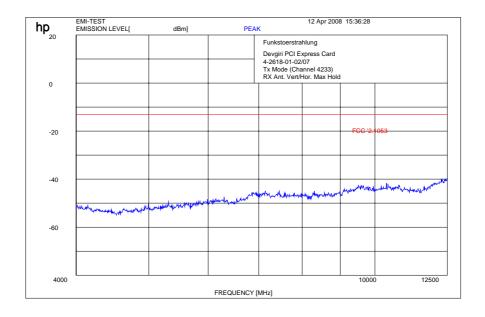
f < 1 GHz: RBW/VBW: 100 kHz f > 1 GHz: RBW/VBW: 1 MHz

Channel 4180 (4 GHz - 12.5 GHz)



RBW / VBW 1 MHz

2008-04-19 Page 125 of 152



Channel 4233 (30 MHz - 4 GHz)

f < 1 GHz: RBW/VBW: 100 kHz f > 1 GHz: RBW/VBW: 1 MHz

Channel 4233 (4 GHz - 12.5 GHz)

RBW / VBW 1 MHz

2008-04-19 Page 126 of 152

Test report no.: 4-2918-01-02/07

5.2.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053

IC: RSS 132, Issue 2, Section 4.6 and 6.6

	SPURIOUS EMISSIONS LEVEL (μV/m)							
	Idle Mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (μV/m)
No c	ritical peaks f	ound	-	-	=	-	-	-
-	-	-	-	-	=	-	-	-
-	-	-	ı	-	-	-	-	-
-	-	-	ı	-	1	ı	-	ı
-	-	-	ı	-	1	ı	-	ı
-	-	-	-	-	-	-	-	-
-	-	-	ı	-	-	ı	-	-
=	-	-	ı	-	-	ı	-	ı
-	-	-	-	-	=	-	-	
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
Measi	irement uncer	rtainty			±3 c	łВ		·

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}$: RBW/VBW: 1 MHz

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3

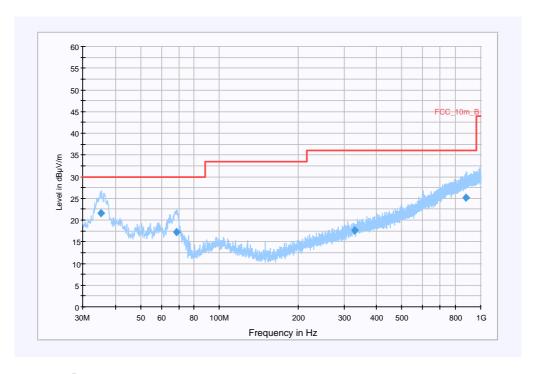
2008-04-19 Page 127 of 152

Test report no.: 4-2918-01-02/07

Idle-Mode (30 MHz - 1 GHz)

EUT: F3507G
Serial Number: C37000069F
Test Description: FCC class B @ 10 m
Operating Conditions: IDLE WCDMA V
Operator Name: Hennemann

Comment: EUT fixed on test board


Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: EMI radiated\Electric Field (NOS)

Level Unit: $dB\mu V/m$

SubrangeDetectorsIF BandwidthMeas. TimeReceiver30MHz - 1GHzQuasiPeak120kHz15sReceiver

FCC_1GHz

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
35.309250	21.5	1000.000	120.000	120.0	V	111.0	13.2	8.5	30.0	
68.570350	17.2	1000.000	120.000	120.0	V	88.0	9.9	12.8	30.0	
329.981650	17.5	1000.000	120.000	120.0	V	198.0	15.6	18.5	36.0	
880.208450	25.2	1000.000	120.000	120.0	Н	62.0	25.8	10.8	36.0	

2008-04-19 Page 128 of 152

Test report no.: 4-2918-01-02/07

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30MHz - 2GHz

Receiver: Receiver [ESCI 3]

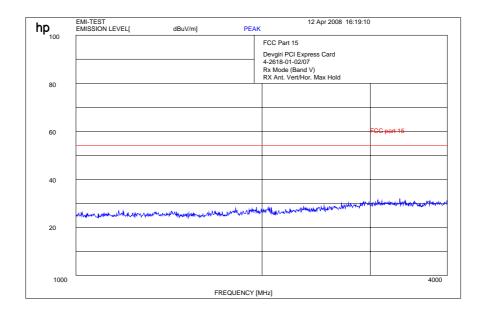
@ GPIB0 (ADR 20), SN 100083/003, FW 3.32, CAL 07.01.2009

Signal Path: without Notch

FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---, CAL 08.04.2010 Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cabel with switch (0408)

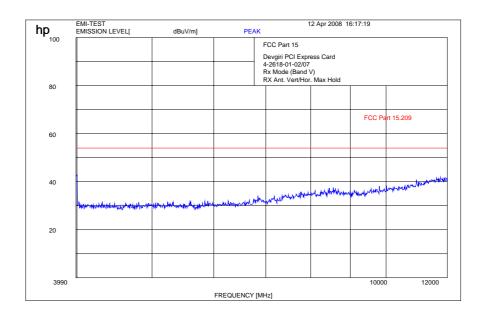

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

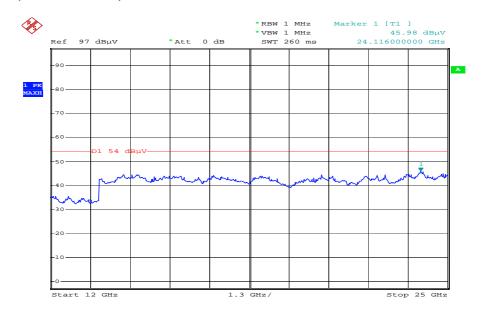
@ GPIB0 (ADR 9)

Idle-Mode (1 GHz - 4 GHz)



f < 1 GHz: RBW/VBW: 100 kHz f > 1 GHz: RBW/VBW: 1 MHz

2008-04-19 Page 129 of 152



Idle-Mode (4 GHz – 12.0 GHz)

RBW / VBW 1 MHz

Idle-Mode (12 GHz - 25 GHz)

Date: 16.APR.2008 14:04:16

2008-04-19 Page 130 of 152

Test report no.: 4-2918-01-02/07

5.2.5 Conducted Spurious Emissions

Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

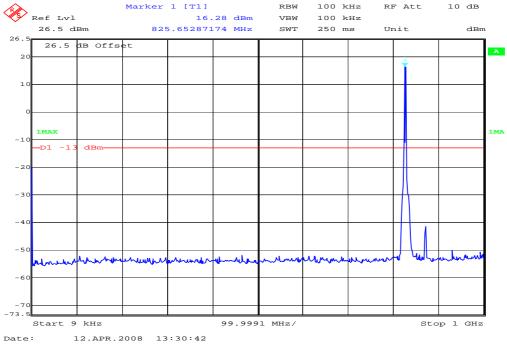
- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS Transmitter Channel Frequency 4132 826.4 MHz 4180 836.0 MHz 4233 846.6 MHz

Measurement Limit

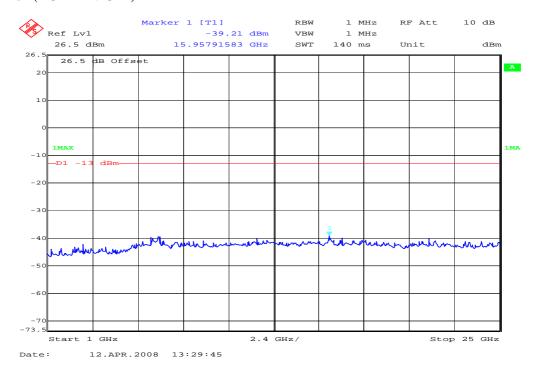
(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results


Harmonic	Tx ch4132 Freq. (MHz)	Level (dBm)	Tx ch4180 Freq. (MHz)	Level (dBm)	Tx ch 4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	1	8466.0	-

2008-04-19 Page 131 of 152

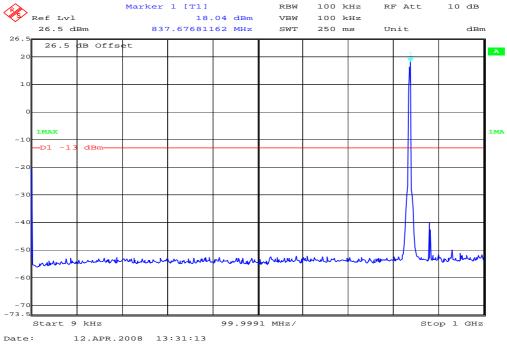
Test report no.: 4-2918-01-02/07



Channel 4132 (30 MHz - 1 GHz)

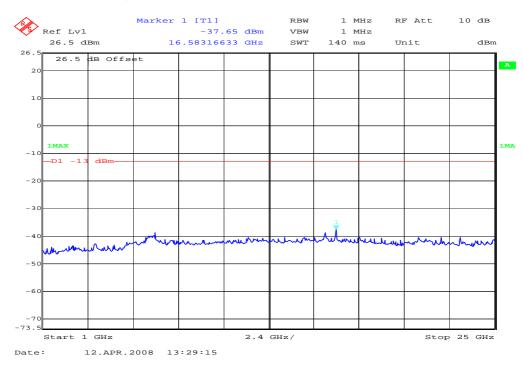
The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT

Channel 4132 (1 GHz - 25 GHz)



2008-04-19 Page 132 of 152

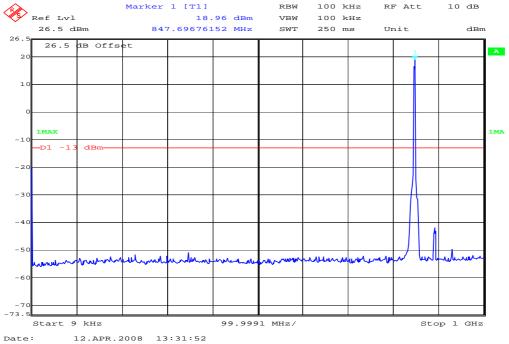
Test report no.: 4-2918-01-02/07



Channel 4180 (30 MHz - 1 GHz)

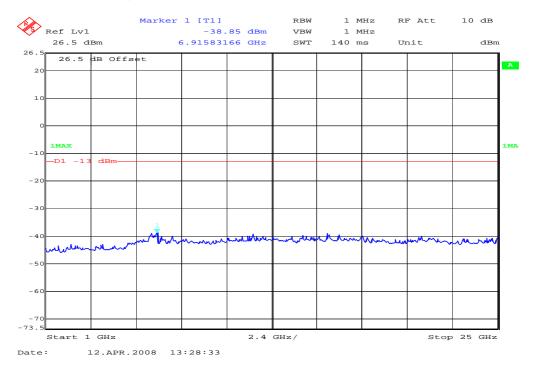
The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT

Channel 4180 (1 GHz - 25 GHz)



2008-04-19 Page 133 of 152

Test report no.: 4-2918-01-02/07



Channel 4233 (30 MHz - 1 GHz)

The peak at the beginning of the Plot is the LO from the measuring spectrum Analyzer and not from the EUT

Channel 4233 (1 GHz - 25 GHz)

2008-04-19 Page 134 of 152

Test report no.: 4-2918-01-02/07

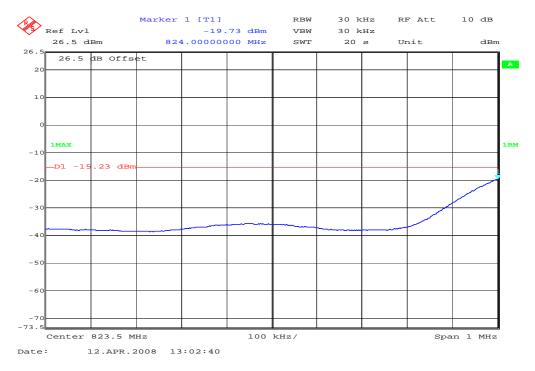
5.2.6 Block Edge Compliance

Reference

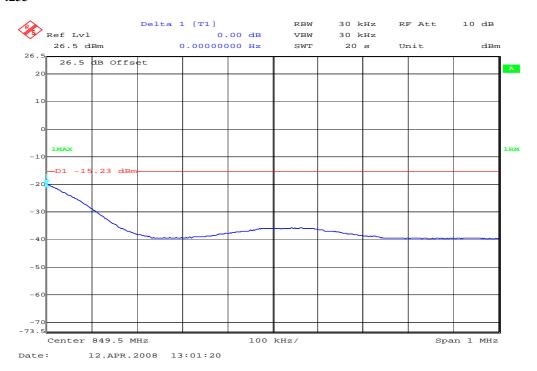
FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

Measurement Limit:

Sec. 22.917(b) Emission Limits.

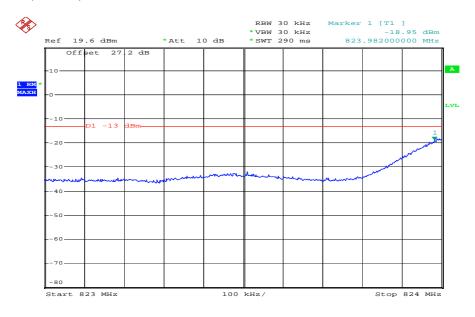

(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

2008-04-19 Page 135 of 152


Test report no.: 4-2918-01-02/07

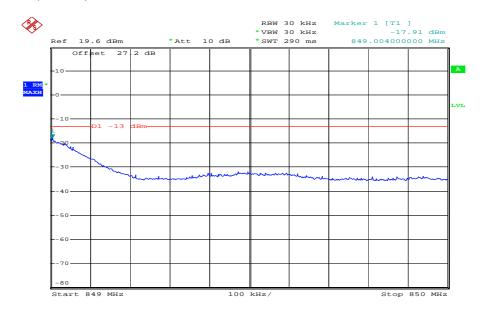
Channel 4132

Channel 4233



2008-04-19 Page 136 of 152

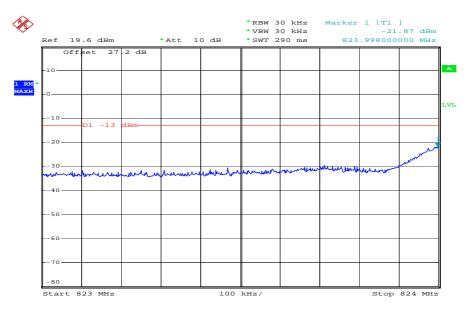
Test report no.: 4-2918-01-02/07



Channel 4132 (HSDPA)

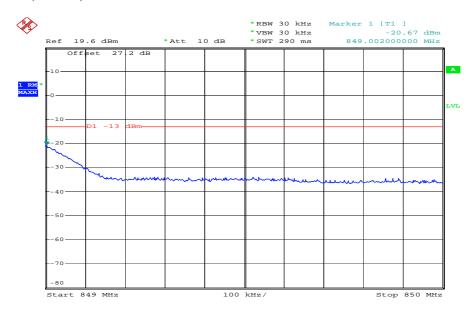
Date: 16.APR.2008 11:40:32

Channel 4233 (HSDPA)


Date: 16.APR.2008 11:39:13

2008-04-19 Page 137 of 152

Test report no.: 4-2918-01-02/07



Channel 4132 (HSUPA)

Date: 16.APR.2008 12:29:17

Channel 4233 (HSUPA)

Date: 16.APR.2008 12:27:29

2008-04-19 Page 138 of 152

Test report no.: 4-2918-01-02/07

5.2.7 Occupied Bandwidth

Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

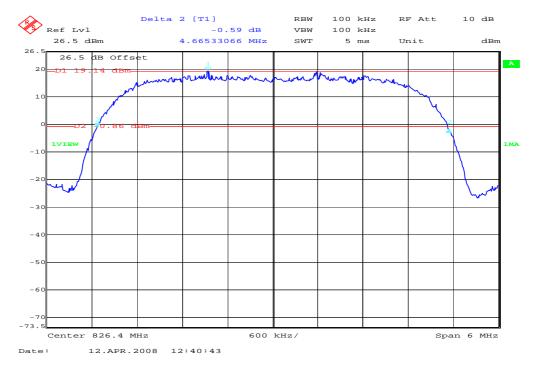
Frequency	99% Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
826.4 MHz	4665	4869
836.0 MHz	4677	4857
846.6 MHz	4689	4869

HSDPA mode

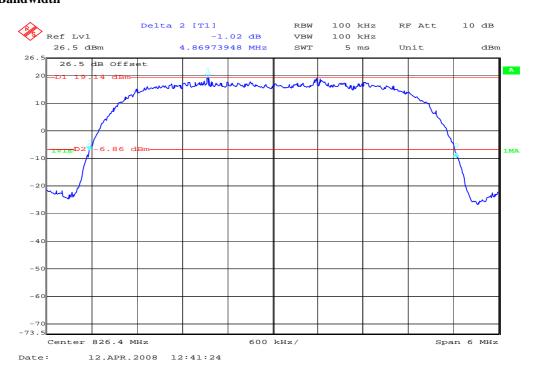
Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
	(kHz)	(kHz)
826.4 MHz	4656	4848
836.0 MHz	4668	4824
846.6 MHz	4680	4860

HSUPA mode

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
	(kHz)	(kHz)
826.4 MHz	4668	4848
836.0 MHz	4608	4800
846.6 MHz	4668	4848

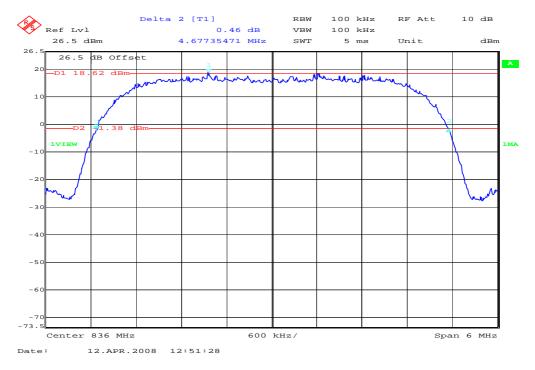

Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 5 MHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

2008-04-19 Page 139 of 152

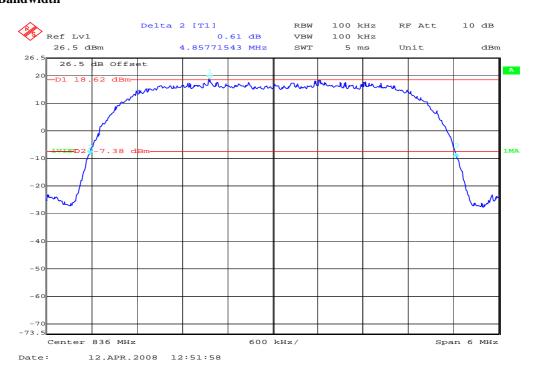

Test report no.: 4-2918-01-02/07

Channel 4132 99% (-20 dB) Occupied Bandwidth

Channel 4132 -26 dBc Bandwidth

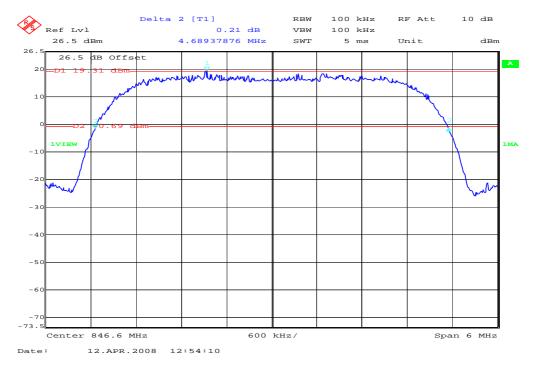


2008-04-19 Page 140 of 152

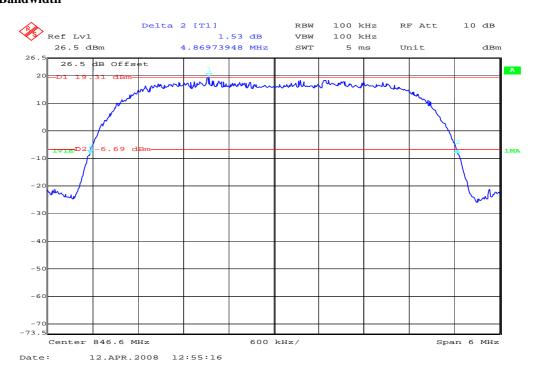

Test report no.: 4-2918-01-02/07

Channel 4180 99% (-20 dB) Occupied Bandwidth

Channel 4180 -26 dBc Bandwidth

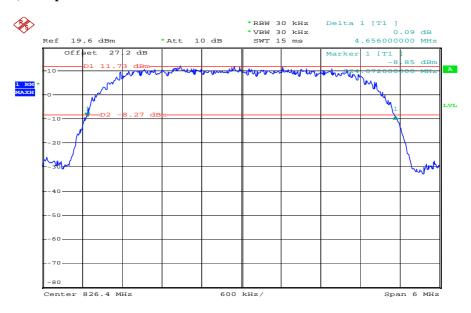


2008-04-19 Page 141 of 152


Test report no.: 4-2918-01-02/07

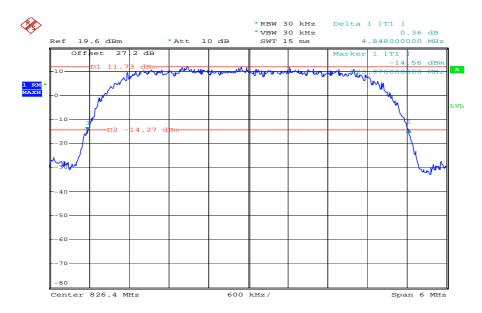
Channel 4233 99% (-20 dB) Occupied Bandwidth

Channel 4233 -26 dBc Bandwidth



2008-04-19 Page 142 of 152

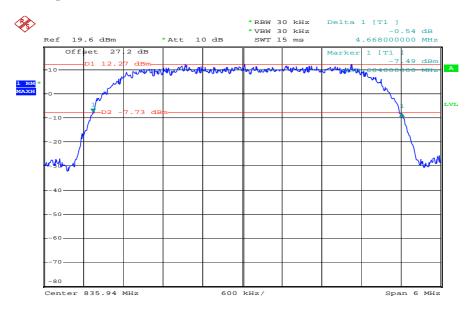
Test report no.: 4-2918-01-02/07



Channel 4132 (HSDPA) 99% (-20 dB) Occupied Bandwidth

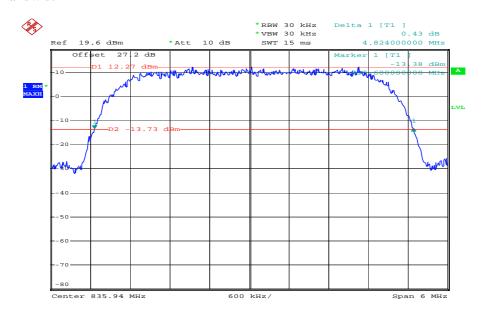
Date: 16.APR.2008 12:07:01

Channel 4132 (HSDPA) -26 dBc Bandwidth


Date: 16.APR.2008 12:07:43

2008-04-19 Page 143 of 152

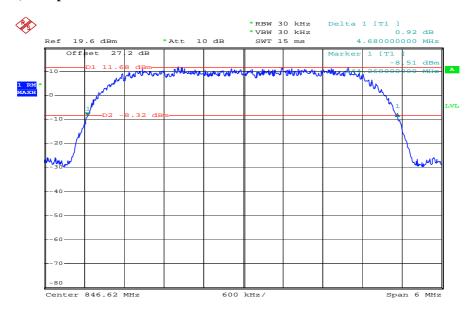
Test report no.: 4-2918-01-02/07



Channel 4180 (HSDPA) 99% (-20 dB) Occupied Bandwidth

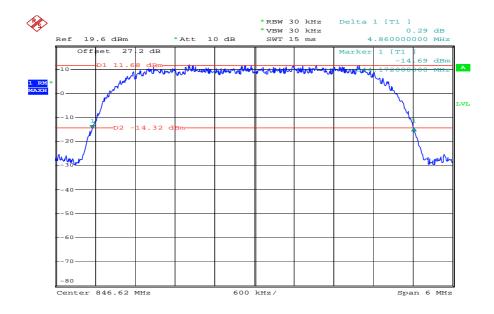
Date: 16.APR.2008 12:10:53

Channel 4180 (HSDPA) -26 dBc Bandwidth



Date: 16.APR.2008 12:11:48

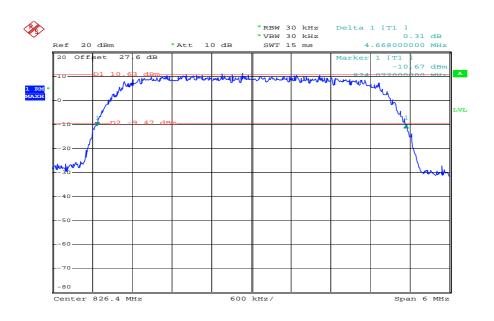
2008-04-19 Page 144 of 152



Channel 4233 (HSDPA) 99% (-20 dB) Occupied Bandwidth

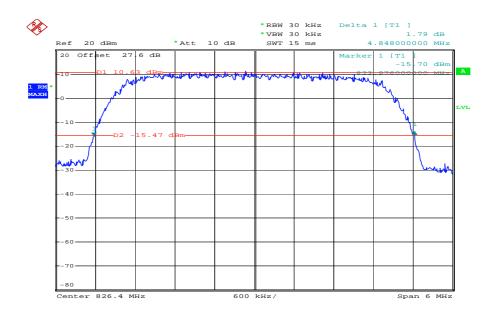
Date: 16.APR.2008 12:13:54

Channel 4233 (HSDPA) -26 dBc Bandwidth


Date: 16.APR.2008 12:14:31

2008-04-19 Page 145 of 152

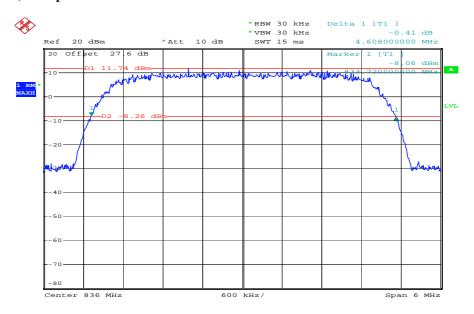
Test report no.: 4-2918-01-02/07



Channel 4132 (HSUPA) 99% (-20 dB) Occupied Bandwidth

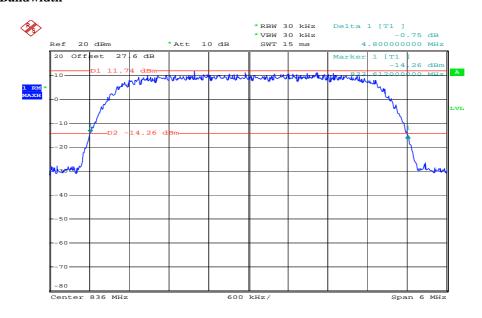
Date: 16.APR.2008 11:02:18

Channel 4132 (HSUPA) -26 dBc Bandwidth


Date: 16.APR.2008 11:04:11

2008-04-19 Page 146 of 152

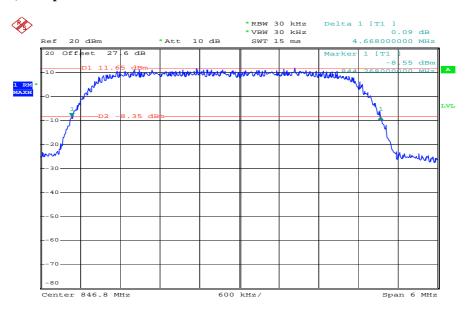
Test report no.: 4-2918-01-02/07



Channel 4180 (HSUPA) 99% (-20 dB) Occupied Bandwidth

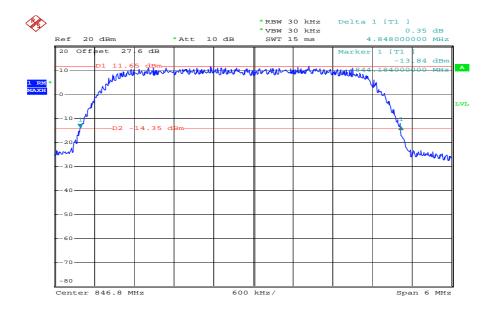
Date: 16.APR.2008 11:07:36

Channel 4180 (HSUPA) -26 dBc Bandwidth


Date: 16.APR.2008 11:08:21

2008-04-19 Page 147 of 152

Test report no.: 4-2918-01-02/07



Channel 4233 (HSUPA) 99% (-20 dB) Occupied Bandwidth

Date: 16.APR.2008 11:12:30

Channel 4233 (HSUPA) -26 dBc Bandwidth

Date: 16.APR.2008 11:13:09

2008-04-19 Page 148 of 152

Test report no.: 4-2918-01-02/07

6 Test equipment and ancillaries used for tests

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

Anechoic chamber C:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	Anechoic chamber	MWB	87400/02	300000996	Monthly verifi	Monthly verification	
2	System-Rack 85900	HP I.V.	*	300000222	n.a.		
3	Measurement System 1						
4	Spektrum Analyzer 8566B	HP	2747A05306	300001000	05.10.2006	24	05.10.2008
	Spektrum Analyzer Display 85662A	HP	2816A16541	300002297	05.10.2006	24	05.10.2008
6	Quasi-Peak-Adapter 85650A	HP	2811A01131	300000999	05.10.2006	24	05.10.2008
7	RF-Preselector 85685A	HP	2837A00779	300000218	08.11.2006	24	08.11.2008
8	PC Vectra VL	HP		300001688	n.a.		
9	Software EMI	HP		300000983	n.a.		
10	Measurement System 2						
11	FSP 30	R&S	100623	ICT 300003464	05.10.2007	24	15.10.2009
12	PC	F+W			n.a.		
13	TILE	TILE			n.a.		
14	Biconical antenna	EMCO	S/N: 860 942/003		Monthly verifi	cation (System	cal.)
15	Log. Period. Antenna 3146	EMCO	2130	300001603	Monthly verifi	cation (System	cal.)
16	Double Ridged Antenna HP 3115P	EMCO	3088	300001032	Monthly verifi	cation (System	cal.)
17	Active Loop Antenna 6502	EMCO	2210	300001015	Monthly verifi	cation (System	cal.)
18	Power Supply 6032A	HP	2818A03450	300001040	12.05.2007	36	12.05.2010
19	Busisolator	Kontron		300001056	n.a.		
20	Leitungsteiler 11850C	HP		300000997	Monthly verifi	cation (System	cal.)
21	Power attenuator 8325	Byrd	1530	300001595	Monthly verification (System cal.)		
22	Band reject filter WRCG1855/1910	Wainwrig ht	7	300003350	Monthly verification (System cal.)		
23	Band reject filter WRCG2400/2483	Wainwrig ht	11	300003351	Monthly verification (System cal.)		

2008-04-19 Page 149 of 152

Test report no.: 4-2918-01-02/07

Signalling Units:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency	Next
						(months)	Calibration
1	CBT	R&S	100313	300003516	24.10.2006	24	24.10.2008
2	CBT	R&S	100185	300003416	21.02.2006	24	21.02.2008
3	CMU-200	R&S	103992	300003231	27.04.2007	12	27.04.2008
4	CMU-200	R&S	106240	300003321	02.05.2006	24	02.05.2008

SRD Laboratory Room 002:

No	Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last Calibration	Frequency (months)	Next Calibration
1	System Controller PSM 12	R&S	835259/007	3000002681-00xx	n.a.		
2	Memory Extension PSM-K10	R&S	To 1	3000002681	n.a.		
3	Operating Software PSM-B2	R&S	To 1	3000002681	n.a.		
4	19" Monitor		22759020- ED	3000002681	n.a.		
5	Mouse		LZE 0095/6639	3000002681	n.a.		
6	Keyboard		G00013834L 461	3000002681	n.a.		
7	Spectrum Analyser FSIQ 26	R&S	835540/018	3000002681-0005	01.08.2006	24	01.08.2008
8	Tracking Generator FSIQ-B10	R&S	835107/015	3000002681	s.No.7		
10	RF-Generator SMIQ03 (B1 Signal)	R&S	835541/056	3000002681-0002	01.08.2006	36	01.08.2009
11	Modulation Coder SMIQ-B20	R&S	To 10	3000002681	s.No.10		
12	Data Generator SMIQ- B11	R&S	To 10	3000002681	s.No.10		
13	RF Rear Connection SMIQ-B19	R&S	To 10	3000002681	s.No.10		
14	Fast CPU SM-B50	R&S	To 10	3000002681	s.No.10		
15	FM Modulator SM-B5	R&S	835676/033	3000002681	s.No.10		
16	RF-Generator SMIQ03 (B2 Signal)	R&S	835541/055	3000002681-0001	01.08.2006	36	01.08.2009
17	Modulation Coder SMIQ-B20	R&S	To 16	3000002681	s.No.16		
18	Data Generator SMIQ- B11	R&S	To 16	3000002681	s.No.16		
19	RF Rear Connection SMIQ-B19	R&S	To 16	3000002681	s.No.16		
20	Fast CPU SM-B50	R&S	To 16	3000002681	s.No.16		
21	FM Modulator SM-B5	R&S	836061/022	3000002681	s.No.16		
22	RF-Generator SMP03 (B3 Signal)	R&S	835133/011	3000002681-0003	01.08.2006	36	01.08.2009
23	Attenuator SMP-B15	R&S	835136/014	3000002681	S.No.22		
24	RF Rear Connection SMP-B19	R&S	834745/007	3000002681	S.No.22		
25	Power Meter NRVD	R&S	835430/044	3000002681-0004	01.08.2006	24	01.08.2008
26	Power Sensor NRVD-Z1	R&S	833894/012	3000002681-0013	01.08.2006	24	01.08.2008
27	Power Sensor NRVD-Z1	R&S	833894/011	3000002681-0010	01.08.2006	24	01.08.2008
28	Rubidium Standard RUB	R&S		3000002681-0009	01.08.2006	24	01.08.2008

2008-04-19 Page 150 of 152

Test report no.: 4-2918-01-02/07

29	Switching and Signal Conditioning Unit SSCU	R&S	338864/003	3000002681-0006	01.08.2006	24	01.08.2008
30	Laser Printer HP Deskjet 2100	HP	N/A	3000002681-0011	n.a.		
31	19" Rack	R&S	11138363000 004	3000002681	n.a.		
32	RF-cable set	R&S	N/A	3000002681	n.a.		
33	IEEE-cables	R&S	N/A	3000002681	n.a.		
34	Sampling System FSIQ-B70	R&S	835355/009	3000002681	s.No.7		
35	RSP programmable attenuator	R&S	834500/010	3000002681-0007	01.08.2006	24	01.08.2008
36	Signalling Unit	R&S	838312/011	3000002681	n.a.		
37	NGPE programmable Power Supply for EUT	R&S	192.033.41	3000002681			
38	Climatic box VT 4002	Heraeus Vötsch	58566046820 010	300003019	11.05.2007	24	11.05.2009
39	Signaling Unit CMU200	R&S	832221/0055	300002862	12.01.2006	24	12.01.2008
40	Power Splitter 6005-3	Inmet Corp.	none	300002841	23.12.2006	24	23.12.2008
41	SMA Cables SPS-1151- 985-SPS	Insulated Wire	different	different	n.a.		
42	CBT32 with EDR Signaling Unit	R&S					
43	Coupling unit	Narda	N/A		n.a.		
44	2xSwitch Matrix PSU	R&S	872584/021	300001329	n.a.		
45	RF-cable set	R&S	N/A	different	n.a.		
46	IEEE-cables	R&S	N/A		n.a.		

Anmerkung: 3000002681-00xx als Systeme inventarisiert

Sytstem Rack Room 005:

Equipment/Type	Manuf.	Serial Nr.	Inv. No. Cetecom	Last	Frequency	Next
				Calibration	(months)	Calibration
FSP 30	R&S		300003575	02.04.2007	24	02.04.2009
CBT	R&S	100313	300003516	24.10.2006	24	24.10.2008
Switch Matrix	HP		300000929	n.a.		
Power Supply	HP	3041A00544	300002270	13.05.2007	36	13.05.2010
Signal Generator	R&S	836206/0092	300002680	30.05.2007	36	30.05.2010
	FSP 30 CBT Switch Matrix Power Supply	FSP 30 R&S CBT R&S Switch Matrix HP Power Supply HP	FSP 30 R&S CBT R&S 100313 Switch Matrix HP Power Supply HP 3041A00544	FSP 30 R&S 300003575 CBT R&S 100313 300003516 Switch Matrix HP 300000929 Power Supply HP 3041A00544 300002270	FSP 30 R&S 300003575 02.04.2007 CBT R&S 100313 300003516 24.10.2006 Switch Matrix HP 300000929 n.a. Power Supply HP 3041A00544 300002270 13.05.2007	FSP 30 R&S 300003575 02.04.2007 24 CBT R&S 100313 300003516 24.10.2006 24 Switch Matrix HP 300000929 n.a. Power Supply HP 3041A00544 300002270 13.05.2007 36

2008-04-19 Page 151 of 152

Test report no.: 4-2918-01-02/07

Anechoic chamber F:

No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identification					
	Radiated emission in chamber F									
F-1	Control Computer	F+W		FW0502032	300003303					
F-2	Bilog antenna	Chase	CBL 6112A	2110	300000573					
F-3a	Amplifier	Veritech Microwave Inc.	0518C-138	-/-	-/-					
F-4b	Switch	HP	3488A	-/-	300000368					
F-5	EMI Test receiver	R&S	ESCI	100083	300003312					
F-6	Turntable Controller	EMCO	1061 3M	1218	300000661					
F-7	Tower Controller	EMCO	1051 Controller	1262	300000625					
F-8	Tower	EMCO	1051 Tower	1262	300000625					
F-9	Ultra Notch-Filter Rejected band Ch. 62	WRCD		9						
	Radiated immunity in cham	ber F	•	•	•					
F-10	Control Computer	F+W		FW0502032	300003303					
F-11	Signal Generator	R&S	SML 03	102519	300003407					
F-12	RF-Amplifier	ar	50W1000	12932	300001438					
F-13	Directional Coupler	ar	DC 3010	12708	300001428					
F-14	Logper Antenna	R&S	HL023A1	323704/016	300001476					
F-15	RF-Amplifier	ar	60S1G3	313649	300003410					
F-16	Directional Coupler	ar	DC7144A	312786	300003411					
F-17	Horn Antenna	ar	AT 4002	19739	300000633					
F-18	Power Meter	R&S	NRV	860327/024	F033					
F-19	Power sensor	R&S	URV5-Z2	839080/005	300002844.02					
F-20	Power sensor	R&S	URV5-Z2	830755/057	F032					
	Harmonics and flicker in front of chamber F									
F-21	Flicker and Harmonics Test System	Spitzenberger & Spies	PHE4500/B I PHE4500/B II	B5983 B5984	300000210					
F-22	Control Unit	Spitzenberger & Spies	STE	B5980	300000210					
F-23	Power Amplifier	Spitzenberger & Spies	EP 4500/B	B5976	300000210					
F-24	Conect Panel	Spitzenberger & Spies	Conect panel	B5982	300000210					
F-25	Power Supply	Spitzenberger & Spies	NT-EP 4500	B3977	300000210					
F-26	Additional transformer	Spitzenberger & Spies	UT-EP 4500	B5978	300000210					
F-27	Analyzer Reference System	Spitzenberger & Spies	ARS 16/1	A3509 07/0 0205	300003314					
F-26	Power Supply	Hewlett Packard	6032 A	2920 A 04466	300000580					

2008-04-19 Page 152 of 152