RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SAR3/RP74349JD01A

Page: 40 of 88

Issue Date: 02 March 2009

Test of: Dell Inspiron 1010 Netbook PC

To: OET Bulletin 65 Supplement C: (2001-01)

Appendix 1. Test Equipment Used

RFI No. Instrument		Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1094	Digital Camera	Sony	MVC - FD81	125805	-	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223-30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1184	Data Acquisition Electronics	Schmid & Partner	DAE3	394	25 June 2008	12
L0987	Probe	Schmid & Partner Engineering AG	ES3DV3	3173	23 June 2008	12
L0984	Probe	Schmid & Partner Engineering AG	EX3DV4	3646	19 Sept 2008	12
A1498	Oval Basin Phantom 3mm	MCL	OVAL 3mm	-	Calibrated before use	-
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	-	Calibrated before use	-
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	17 January 2007	24
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	11 June 2007	24
A1329	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	185	18 May 2007	24
L0986	5 GHz Dipole Kit	Schmid & Partner Engineering AG	D5GHzV2	1062	08 July 2008	12
A1474	Amplifier	Mini-Circuits	ZVE-8G	638700305	Calibrated as part of system	-
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
C1144	Cable	Rosenberger MICRO-COAX	FA147AF00150 3030	41842-1	Calibrated as part of system	-
C1145	Cable	Rosenberger MICRO-COAX	FA147AF00300 3030	41843-1	Calibrated as part of system	-

RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SAR3/RP74349JD01A

Page: 41 of 88

Issue Date: 02 March 2009

Test of: Dell Inspiron 1010 Netbook PC

To: OET Bulletin 65 Supplement C: (2001-01)

RFI No. Instrument		nstrument Manufacturer		Serial No.	Date Last Calibrated	Cal. Interval (Months)	
C1146	Cable	Rosenberger MICRO-COAX	FA147AF03000 3030	41752-1	Calibrated as part of system	-	
G0528	Robot Power Supply	Schmid & Partner	DASY	None	Calibrated before use	-	
L0988	Wireless Communication Test Set	Agilent	8960 Series 10	GB46310157	15 Dec 2008	12	
A1516	GSM Test Set	Rohde & Schwarz	CMU200	835687/011	Communication use only	-	
M010	NRV Power Meter	Rohde & Schwarz	NRV	882 317/065	08 May 2008	12	
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	24 September 2007	12	
M053	HP 8594A Spectrum Analyser	HP	8594A	3108U00205	Monitoring use only	-	
M1252	40 GHz Signal Generator	HP	83640A	3119A00489	02 Oct 2008	12	
M1047	Robot Arm	Staubli	RX908 L	F00/SD89A1/A/ 01	Calibrated before use	-	
M1069	Diode Power Sensor	Rohde & Schwarz	NRV-Z2	838824/010	08 May 2008	12	
M1129	Power Sensor	Rohde & Schwarz	URY-Z2	890242/16	08 May 2008	12	
M1144	Thermometer	Testo	110	112895	02 April 2008	12	
M103	Power Meter	Rohde & Schwarz	URY	None	08 May 2008	12	
M011	Power Sensor	Rohde & Schwarz	NRV-Z1	882 321/004	08 May 2008	12	
A1287	Power head	Rohde & Schwarz	URY-Z4	880 174/12	Calibrated before use	-	
M1270	Temperature/Hum idity/Pressure Meter	RS Components	None	None	Internal Calibration	-	

NB In accordance with UKAS requirements, all the measurement equipment is on a calibration schedule.

RFI GLOBAL SERVICES LTD

Test Report

Serial No: RFI/SAR3/RP74349JD01A

Page: 42 of 88

Issue Date: 02 March 2009

Test of: Dell Inspiron 1010 Netbook PC

To: OET Bulletin 65 Supplement C: (2001-01)

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Issued: August 15, 2008

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client		Certi	Rcate:No: ES3-3173_Juπ08
07.4818127.48(0)\4	(612129112187.8	(5)	
Object	ESSIDVS ESNA	173	
Calibration procedure(s)		and QA CAL-23.v3 edure for dosimetric E-field	probes
Calibration date:	June 23, 2008		
Condition of the calibrated item	In Tolerance		
The measurements and the unc	ertainties with confidence	ntional standards, which realize the phy probability are given on the following p	ages and are part of the certificate.
Calibration Equipment used (M8		ory facility: environment temperature (2	22 ± 3) C and numicity < 70%.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2 DAE4	SN: 3013 SN: 660	2-Jan-08 (No. ES3-3013_Jan08) 3-Sep-07 (No. DAE4-660_Sep07)	Jan-09 Sep-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07) In house check: Oct-08
Calibrated by:	Name Katja Pokovic	Function Fechnical Manager	Signature
Approved by:	Niels Kuster	Quality Manager	1.165

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3173_Jun08

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,v,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3173_Jun08 Page 2 of 9

Probe ES3DV3

SN:3173

Manufactured:
Calibrated:

January 23, 2008 June 23, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3173_Jun08

Page 3 of 9

DASY - Parameters of Probe: ES3DV3 SN:3173

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.16 ± 10.1%	μ V/(V/m) ²	DCP X	90 mV
NormY	1.23 ± 10.1%	μ V/(V/m) ²	DCP Y	93 mV
NormZ	1.34 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.7	6.3
SAR _{be} [%]	With Correction Algorithm	8.0	0.3

TSL

1750 MHz

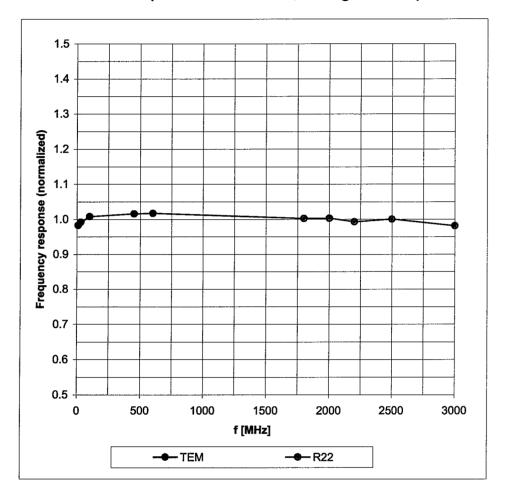
Typical SAR gradient: 10 % per mm

Sensor Center t	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	9.4	5.8
SAR _{be} [%]	With Correction Algorithm	0.5	0.1

Sensor Offset

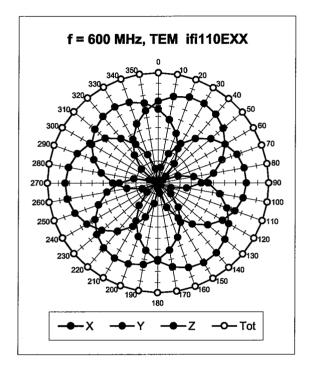
Probe Tip to Sensor Center

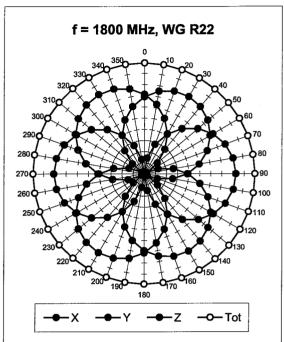
2.0 mm

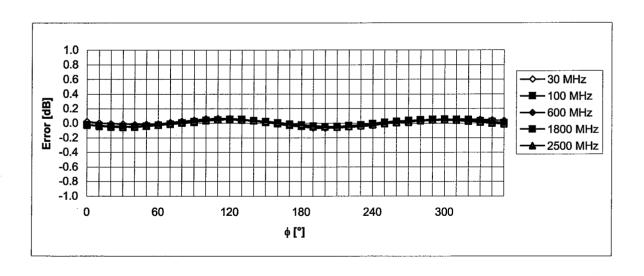

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

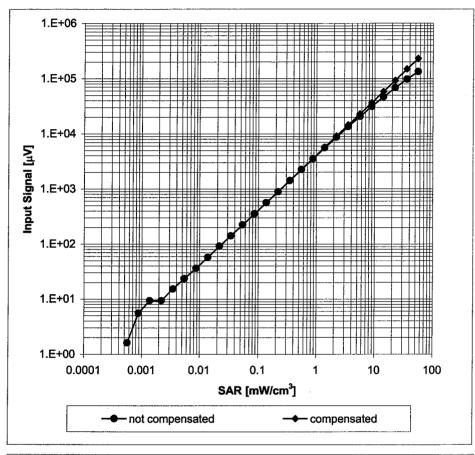

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

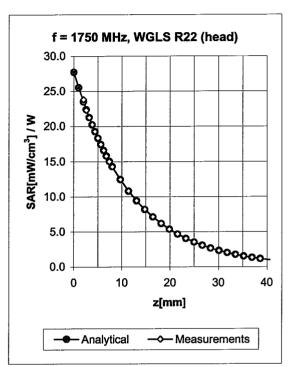



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3173_Jun08

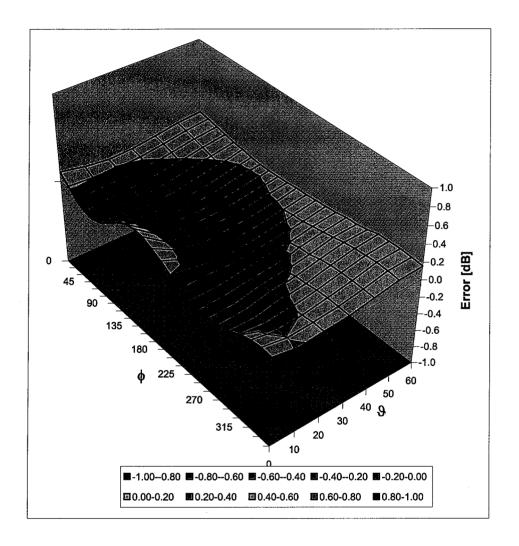
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.25	2.24	5.88 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.40	1.65	5.26 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.40	1.60	4.91 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.40	1.70	4.50 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.29	1.97	5.79 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.43	1.65	4.81 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.40	1.85	4.66 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.50	1.70	4.05 ± 11.0% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Accreditation No.: SCS 108

Certificate No: EX3-3646_Sep08

Object EX3DV4 - SN:3646 Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v8 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: September 19, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013_Jan08) Jan-09 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Name **Function** Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Niels Kuster Quality Manager Issued: September 20, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, v, z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx.v.z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,v,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

September 19, 2008

EX3DV4 SN:3646

Probe EX3DV4

SN:3646

Manufactured:

Calibrated:

January 8, 2006

September 19, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3646

Sensitivity	:		CA
Sensitivity	ın	⊢ree	Space

Diode Compression^B

NormX	0.34 ± 10.1%	$\mu V/(V/m)^2$	DCP X	87 mV
NormY	0.36 ± 10.1%	μ V/(V/m) ²	DCP Y	87 mV
NormZ	0.48 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	89 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	6.6	3.0
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

TSL

1810 MHz

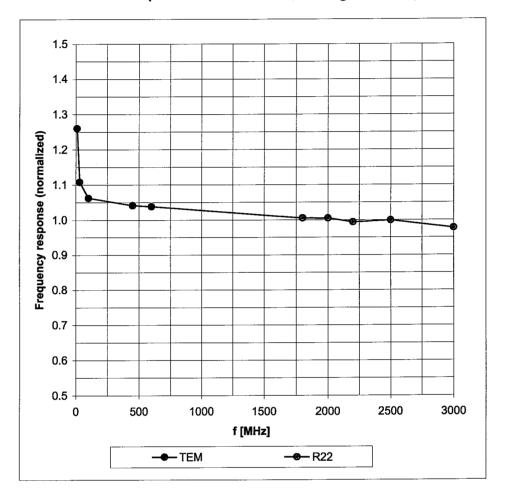
Typical SAR gradient: 10 % per mm

Sensor Center t	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.1
SAR _{be} [%]	With Correction Algorithm	0.6	0.2

Sensor Offset

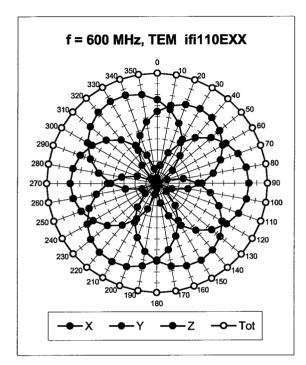
Probe Tip to Sensor Center

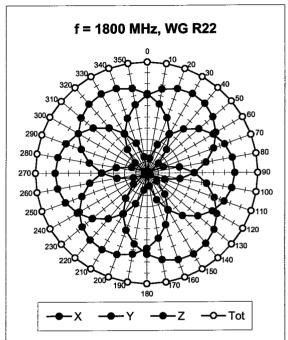
1.0 mm

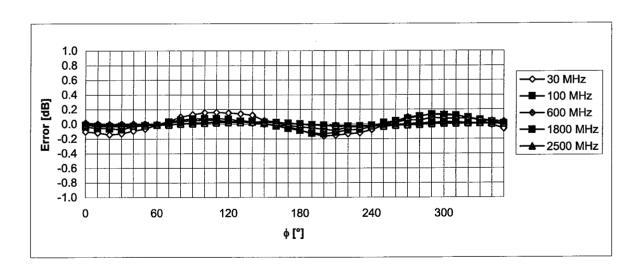

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

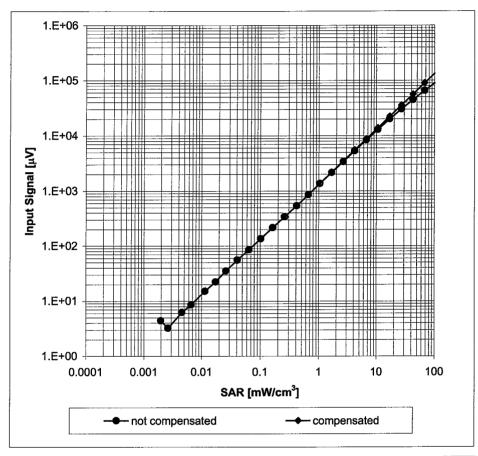

Frequency Response of E-Field

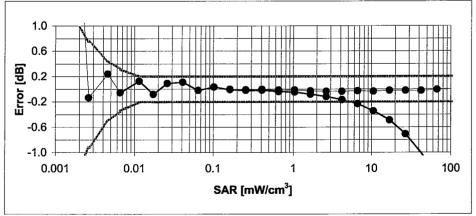

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

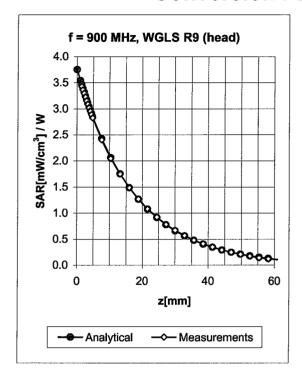


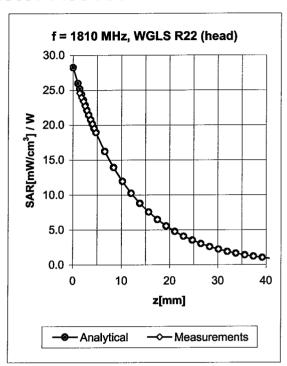


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

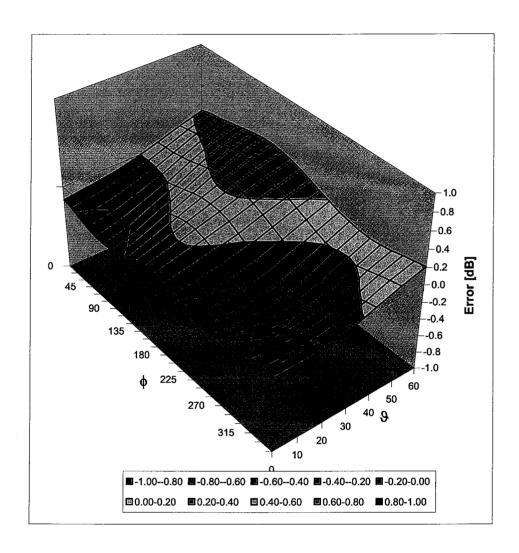




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3646_Sep08

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.70	0.60	8.54 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.41	0.80	7.60 ± 11.0% (k=2)
3700	± 50 / ± 100	Body	51.0 ± 5%	3.55 ± 5%	0.46	1.07	6.04 ± 13.1% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.50	1.75	4.42 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.50	1.75	3.92 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.55	1.75	3.81 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)