

FCC LISTED, REGISTRATION NUMBER: 905266

IC LISTED REGISTRATION NUMBER IC 4621

AT4 wireless, S.A. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 29590 Campanillas/ Málaga/ España Tel. 952 61 91 00 - Fax 952 61 91 13 MÁLAGA, C.I.F. A29 507 456 Registro Mercantil de Málaga,Tomo 1169, Libro 82, Folio 133, Hoja MA3729

	TEST REPORT
	REFERENCE STANDARD:
USA	FCC Part 22, Part 24 and 15.207
С	ANADA IC RSS-132, RSS-133
NIE:	31912RET.001
Approved by (name / position & signature):	A. Llamas / RF Lab. manager
Elaboration date:	22/09/2010
Identification of item tested:	Mobile Broadband Module
Trademark:	Ericsson
Model name:	F3307
Type number:	KRD 131 16/01, KRD 131 16/02, KRD 131 16/G0
Other identification of the product:	FCC ID: VV7-MBMF33071, VV7-MBMF33072, VV7-MBMF3307S
	IC Type Approval #: 287AG-MBMF33071, 287AG-MBMF33072, 287AG-MBMF3307S
Final HW version:	R2
Final SW version:	R2A09
Features	QUAD BAND GSM/GPRS/EGPRS class 10
	WCDMA Bands:
	KRD 131 16/01: II/V
	KRD 131 16/02: I/VIII
	KRD 131 16/G0: I
	HSDPA Cat. 8 HSUPA Cat. 6
Description	Mini-PCIe Wireless WAN card
Applicant	Ericsson AB
Address	Lindholmspiren 11, SE-417 56, Gothenburg, Sweden
CIF/NIF/Passport:	N/A
Contact person::	Fredrik Claesson
Telephone / Fax:	+46 10 712 7856 / +46 10 712 6033
e-mail::	fredrik.a.claesson@ericsson.com
Test samples supplier:	Same as applicant
Manufacturer	Same as applicant

Test method requested:	See Standard
Standard	USA FCC Part 22 10-01-09 Edition.
	USA FCC Part 24 10-01-09 Edition.
	CANADA IC RSS-132 Issue 2, Sep. 2005.
	CANADA IC RSS-133 Issue 5, Feb. 2009.
	USA FCC part 15.207 10-01-09 Edition: Conducted limits.
Test procedure:	1. PEET000: Medidas de equipos radioeléctricos en condiciones radiadas.
	2. PEET003: Medidas conducidas de equipos radioeléctricos.
	3. PEEM001: Medida de la tensión perturbadora en bornes de alimentación según EN 55022.
Non-standardized test method:	N/A

Jsed instrumentation			Last Cal.	Cal. due date
	1.	Semianechoic Absorber Lined Chamber IR 11. BS	N.A.	N.A.
	2.	Control Chamber IR 12.BC	N.A.	N.A.
	3.	Hybrid Bilog antenna Sunol Sciences Corporation JB6	2008-10	2011-10
	4.	Antenna mast EM 1072 NMT	N.A.	N.A.
	5.	Rotating table EM 1084-4. ON	N.A.	N.A.
	6.	Double-ridge Guide Horn antenna 1-18 GHz HP 11966E	2008-03	2011-03
	7.	Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J	2008-09	2011-09
	8.	EMI Test Receiver R&S ESIB26	2009-09	2011-09
	9.	Universal Radio communication Tester R&S CMU200	2009-02	2011-02
	10.	Multi Device Controller EMCO 2090	N.A.	N.A.
	11.	Spectrum Analyzer R&S ESU40	2009-11	2011-11
	12.	Spectrum Analyzer Agilent E4440A	2010-02	2012-02
	13.	Power amplifier AMF-4D- 00400600-50-30P	2009-04	2011-04
	14.	Log-Periodic antenna R&S HL 040	2009-10	2012-10
	15.	RF generator Agilent ESG E4438C	2010-09	2012-09
	16.	Climatic chamber HERAEUS VM 07/100	2010-02	2013-02
	17.	Transient limiter. HP 11947A	2009-06	2011-06
	18.	Line Impedance Stabilization Network (L.I.S.N.) R&S. ESH2-Z5	2010-06	2012-06
	19.	RF pre-amplifier Miteq AFS5-04001300-15-10P-6.	2010-07	2012-07
	20.	RF pre-amplifier Schaffner CPA 9231.	2009-03	2011-03
	21.	RF pre-amplifier Miteq JS4- 12002600-30-5A.	2010-07	2012-07

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless, S.A.

INDEX

Competences and guarantees	5
General conditions	5
Uncertainty	
Usage of samples	6
Testing period	7
Environmental conditions	7
Summary	
Remarks and comments	
Testing verdicts	9
APPENDIX A: Test results for FCC parts 22 & 24	
APPENDIX B: Measuring results for electromagnetic emission	

Competences and guarantees

AT4 wireless, S.A. is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 905266.

AT4 wireless, S.A. is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance programme for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

test have been selected by: the posed of the following element	he client.		
nosed of the following eleme			
posed of the following clelle	ents		
Description	<u>Model / Type</u>	<u>Serial No.</u>	Date of reception
Mobile Broadband Module	F3307 / KRD 131 16/01	IMEI: 004401700405489 Serial #: C3700201LE	30/08/2010
Test board			22/06/2009
AC Adaptor	04151V-050300		26/03/2009
Antenna			25/03/2010
nposed of the following el	ements:		
Description	Model / Type	Serial N°	Date of reception
Mobile Broadband Module	F3307 / KRD 131 16/01	IMEI: 004401700405489 Serial #: C3700201LE	2010/08/30
nposed of the following el	ements:		
Description	<u>Model / Type</u>	<u>Serial Nº</u>	Date of reception
Mobile Broadband Module	F3307 / KRD 131 16/02	IMEI: 004401700405588 Serial #: C370020JRP	2010/08/30
nposed of the following el	ements		
Description	Model / Type	Serial N°	Date of reception
Mobile Broadband Module	F3307 / KRD 131 16/G0	IMEI: 004401700406024 Serial #: C370020QXU	2010/08/30
used with the samples S/0	01, S/02 & S/03:		
Description	<u>Model</u>	<u>Serial N°</u>	Date of reception
Laptop simulator			2010/03-25
Cradle			2008/12/30
ordic Power AC-DC Power adaptor	AMPLUS / 04151V-050)300	2009/03/26
)1 has undergone the followi	ng test(s) specified in subcla	ause "Test method requester	d":
rt 22 and part 24 / IC RSS-12	32 Issue 2 and IC RSS-133 I	Issue 5 tests indicated in an	pendix A.
	Test board AC Adaptor Antenna posed of the following el Description Mobile Broadband Module posed of the following el Description Mobile Broadband Module posed of the following el Description Mobile Broadband Module used with the samples S/0 Description Laptop simulator Cradle ordic Power AC-DC Power adaptor	Test board AC Adaptor 04151V-050300 Antenna aposed of the following elements: Description Mobile Broadband Module F3307 / KRD 131 16/01 aposed of the following elements: Model / Type aposed of the following elements: Model / Type Mobile Broadband Module F3307 / KRD 131 16/02 aposed of the following elements: Model / Type Mobile Broadband Module F3307 / KRD 131 16/02 aposed of the following elements: Model / Type Mobile Broadband Module F3307 / KRD 131 16/02 uposed of the samples S/02 & S/03: Description Mobile Broadband Module F3307 / KRD 131 16/02 used with the samples S/02 & S/03: Description Laptop simulator Cradle Ordic Power AC-DC Power adaptor AMPLUS / 04151V-050 Mobile Power AC-DC Power AMPLUS / 04151V-050 Maptor Mobile Power AC-DC Power AMPLUS / 04151V-050	Serial #: C3700201LE Test board AC Adaptor 04151V-050300 Antenna aposed of the following elements: Description Model / Type Serial N° Mobile Broadband Module F3307 / KRD 131 16/01 IMEI: 004401700405589 Serial #: C3700201LE aposed of the following elements: Escription Model / Type Serial N° Mobile Broadband Module F3307 / KRD 131 16/02 IMEI: 004401700405588 Serial #: C370020JRP aposed of the following elements: IMEI: 004401700405588 IMEI: 0044017004065588 Serial #: C370020JRP aposed of the following elements: IMEI: 004401700406024 Serial #: C370020QXU IMEI: 004401700406024 Serial #: C370020QXU aposed of the following test(s) system IMEI: 004401700406024 Serial #: C370020QXU IMEI: 004401700406024 Serial #: C370020QXU used with the samples S/01, S/02 & S/03: IMEI: 004401700406024 Serial #: C370020QXU IMEI: 004401700406024 Serial PC Laptop simulator Cradle Cradle Ordic Power AC-DC Power adaptor AMPLUS / 04151V-050300 I has undergone

Continuous conducted emission, power leads, indicated in appendix B.

Testing period

The performed test started on 2010-09-07 and finished on. 2010-09-20.

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = $26.1 ^{\circ}C$
	Max. = 26.5 °C
Relative humidity	Min. = 42.8 %
	Max. = 43.5 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

In the semianechoic chamber (21 meters x 11 meters x 8 meters), the following limits were not exceeded during the test.

Temperature	Min. = 25.3 °C
	Max. = 25.7 °C
Relative humidity	Min. = 45 %
	Max. = 48 %
Air pressure	Min. = 1018 mbar
	Max. $= 1019$ mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	$< 0,5 \Omega$
Normal site attenuation (NSA)	$< \pm 4$ dB at 10 m distance between item
	under test and receiver antenna, (30 MHz to
	1000 MHz)
Field homogeneity	More than 75% of illuminated surface is
	between 0 and 6 dB (26 MHz to 1000
	MHz).

In the chamber for conducted measurements the following limits were not exceeded during the test:

Temperature	Min. = 24.7 °C
-	Max. = 25.2 °C
Relative humidity	Min. = 51.3 %
	Max. = 52.7 %
Air pressure	Min. = 1020 mbar
	Max. $= 1020$ mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	$< 0.5 \Omega$

Summary

Considering the results of the performed test according to standards USA FCC Part 22, Part 24, Part 15.207, Canada IC RSS-132 and RSS-133, the item under test is **IN COMPLIANCE** with the requested specifications specified in the standard.

NOTE: The results presented in this Test Report apply only to the particular item under test established in page 1 of this document, as presented for test on the date(s) shown in section, "USAGE OF SAMPLES, TESTING PERIOD AND ENVIRONMENTAL CONDITIONS".

Remarks and comments

GSM mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because the modulation scheme and the power maximum levels are the same as for GPRS mode.

Taking into account the above comments, testing in GSM mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as GPRS mode. GPRS mode has been tested as indicated on the present test report.

HSDPA modulation mode has not been tested to prove USA FCC Part 22 and Part 24 and Canada IC RSS-132 and RSS-133 compliance because it is an improved mode of operation only for Downlink (UE reception), but using the normal WCDMA mode for UL (Up Link, UE transmission). Therefore HSDPA has no associated a Power class or modulation scheme different than WCDMA mode for the UL transmission.

Taking into account the above comments, testing in HSDPA modulation mode is redundant for FCC Parts 22 and Part 24 and IC RSS-132 and RSS-133 as it is the same as WCDMA mode as long as UE transmission is concerned. WCDMA modulation mode has been tested as indicated on the present test report.

The equipment with FCC ID: VV7-MBMF33071 is also commercialised under other FCC IDs with the following structure:

FCC ID: VV7-MBMF33071-X

Where X is a letter identifying variants of the product.

This equipment is certified in Canada with the model name KRD 131 16.

The equipment with FCC ID: VV7-MBMF33072 is also commercialised under other FCC IDs with the following structure:

FCC ID: VV7-MBMF33072-X

Where X is a letter identifying variants of the product.

This equipment is certified in Canada with the model name KRD 131 16.

Testing verdicts	
Not applicable:	NA
Pass:	Р
Fail:	F
Not measured	NM

FCC PART 22/IC RSS-132 PARAGRAPH	ART 22/IC RSS-132 PARAGRAPH VERDICT		DICT	Γ	
	NA	Р	F	NM	
Clause 22.913/RSS-132 Clause 4.4: RF output power		Р			
Clause 2.1047/RSS-132 Clause 4.2: Modulation characteristics	Р				
Clause 22.355/RSS-132 Clause 4.3: Frequency stability	Р				
Clause 2.1049: Occupied Bandwidth		Р			
Clause 22.917/RSS-132 Clause 4.5: Spurious emissions at antenna terminals P					
Clause 22.917/RSS-132 Clause 4.5: Radiated emissions	Р				

FCC PART 24/IC RSS-133 PARAGRAPH	VERDICT			
	NA	P	F	NM
Clause 24.232/RSS-133 Clause 6.4: RF output power		Р		
Clause 2.1047/RSS-133 Clause 6.2: Modulation characteristics	Р			
Clause 24.235/RSS-133 Clause 6.3: Frequency stability	Р			
Clause 2.1049: Occupied Bandwidth		Р		
Clause 24.238/RSS-133 Clause 6.5: Spurious emissions at antenna terminals	SS-133 Clause 6.5: Spurious emissions at antenna terminals P			
Clause 24.238/RSS-133 Clause 6.5: Radiated emissions	Р			

FCC PART 15 PARAGRAPH				VERDICT			
		NA	Р	F	NM		
Section 15.207.	Conducted limits		Р				

APPENDIX A: Test results for FCC parts 22 & 24

INDEX

TEST RESULTS FOR FCC PART 22 AND IC RSS-132	12 13 22
	13 22
RF Output Power (conducted and E.R.P.)	22
Modulation Characteristics	
Frequency Stability	25
Occupied Bandwidth	
Spurious emissions at antenna terminals	
Spurious emissions at antenna terminals at Block Edges	
Radiated emissions	
TEST RESULTS FOR FCC PART 24 AND RSS-133	58
TEST CONDITIONS	58
RF Output Power (conducted and E.I.R.P.)	59
Modulation Characteristics	68
Frequency Stability	71
Occupied Bandwidth	
Spurious emissions at antenna terminals	
Spurious emissions at antenna terminals at Block Edges	
Radiated emissions	

TEST RESULTS FOR FCC PART 22 AND IC RSS-132

TEST CONDITIONS

Power supply (V):

 $V_{nom} = 3.3 \text{ Vdc}$ $V_{max} = 3.6 \text{ Vdc}$ $V_{min} = 3.0 \text{ Vdc}$

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

Type of power supply = DC Voltage from external power supply

Type of antenna = external connectable antenna structure for Laptop computer

TEST FREQUENCIES:

GPRS AND EDGE MODULATION Lowest channel (128): 824.2 MHz Middle channel (190): 836.6 MHz Highest channel (251): 848.8 MHz

WCDMA AND HSUPA MODULATION Lowest channel (4132): 826.4 MHz Middle channel (4182): 836.4 MHz Highest channel (4233): 846.6 MHz

RF Output Power (conducted and E.R.P.)

SPECIFICATION

§2.1046 and 22.913.

The Effective Radiated Power (E.R.P.) of mobile transmitter and auxiliary test transmitter must not exceed 7 Watts (38.45 dBm).

<u>METHOD</u>

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator, power splitter and spectrum analyser. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

For radiated measurements the EUT was placed on a 1 m high non-conductive stand inside an anechoic chamber. The measuring antenna was placed at 3 m distance and the maximum field strength was measured for the three channels. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The Effective Radiated Power (E.R.P.) is obtained by using the Substitution Method according to ANSI/TIA/EIA-603-C: 2004.

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	33.17	33.24	33.41
Maximum peak power (W)	2.07	2.11	2.19
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	33.19	33.28	33.44
Maximum peak power (W)	2.08	2.13	2.21
Measurement uncertainty (dB)		±0.5	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	27.54	27.82	27.57
Maximum peak power (W)	0.57	0.60	0.57
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	26.93	27.67	27.17
Maximum peak power (W)	0.49	0.58	0.52
Measurement uncertainty (dB)		±0.5	

MAXIMUM EFFECTIVE RADIATED POWER E.R.P. (RADIATED).

GPRS MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gd (respect to λ/2 dipole) (dB)	E.R.P. (dBm) = (1) - (2) + (3)
824.1298	-12.66	Horizontal	24.84	0.3	6.3	30.84
836.4697	-14.20	Horizontal	23.90	0.3	6.2	29.80
848.7499	-13.93	Horizontal	24.17	0.3	6.1	29.97

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Maximum peak power E.R.P. (dBm)	30.84	29.80	29.97
Maximum peak power (W)	1.21	0.95	0.99
Measurement uncertainty (dB)		± 3.8	

EDGE MODULATION

Substitution method data

Max. Instrument reading (dBm)	Polarization	(1) RF Generator+power amplifieroutput (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gd (respect to $\lambda/2$ dipole) (dB)	E.R.P. (dBm) = (1) - (2) + (3)
-13.32	Horizontal	24.18	0.3	6.3	30.18
-14.35	Horizontal	23.75	0.3	6.2	29.65
-15.14	Horizontal	22.96	0.3	6.1	28.76
-	Instrument reading (dBm) -13.32 -14.35	Instrument reading (dBm) -13.32 Horizontal -14.35 Horizontal	Instrument reading (dBm) -13.32 Horizontal 24.18 -14.35 Horizontal 23.75	Instrument reading (dBm)+power amplifier output (dBm)(dB)-13.32Horizontal24.180.3-14.35Horizontal23.750.3	Instrument reading (dBm)+power amplifier output (dBm)(dB)gain Gd (respect to λ/2 dipole) (dB)-13.32Horizontal24.180.36.3-14.35Horizontal23.750.36.2

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Maximum peak power E.R.P. (dBm)	30.18	29.65	28.76
Maximum peak power (W)	1.04	0.92	0.75
Measurement uncertainty (dB)			

WCDMA MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator+power amplifieroutput (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gd (respect to λ/2 dipole) (dB)	E.R.P. (dBm) = (1) - (2) + (3)
828.1535	-15.08	Horizontal	22.42	0.3	6.3	28.42
837.4521	-15.48	Horizontal	22.62	0.3	6.2	28.52
844.6461	-14.74	Horizontal	23.36	0.3	6.1	29.16

RBW = VBW = 8 MHz

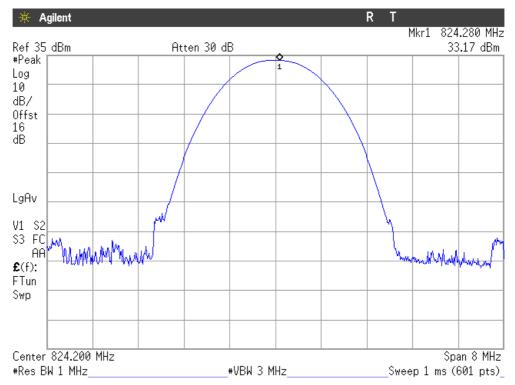
Channel	Lowest	Middle	Highest
Maximum peak power E.R.P. (dBm)	28.42	28.52	29.16
Maximum peak power (W)	0.69	0.71	0.82
Measurement uncertainty (dB)	nent uncertainty (dB)		

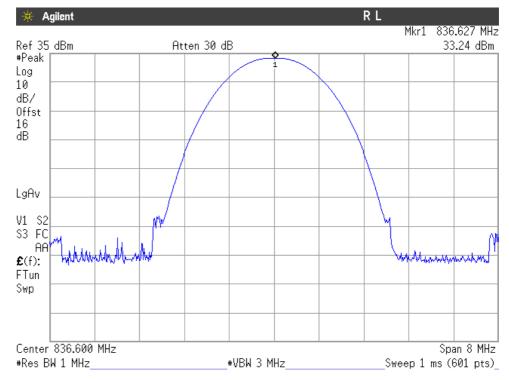
HSUPA MODULATION Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gd (respect to λ/2 dipole) (dB)	E.R.P. (dBm) = (1) - (2) + (3)
828.4541	-15.49	Horizontal	22.01	0.3	6.3	28.01
839.8569	-15.90	Horizontal	22.20	0.3	6.2	28.10
849.0549	-15.97	Horizontal	22.13	0.3	6.1	27.93

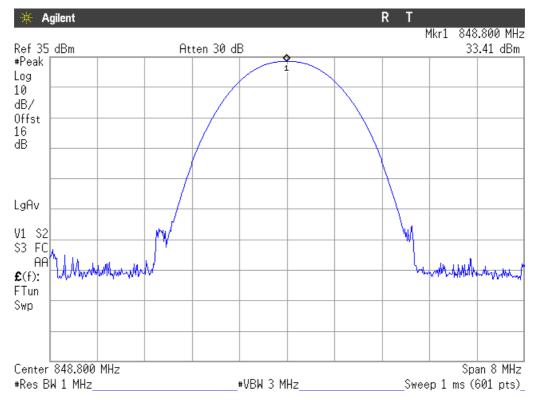
RBW = VBW = 8 MHz

Channel	Lowest	Middle	Highest
Maximum peak power E.R.P. (dBm)	28.01	28.10	27.93
Maximum peak power (W)	0.63	0.64	0.62
Measurement uncertainty (dB)		± 3.8	

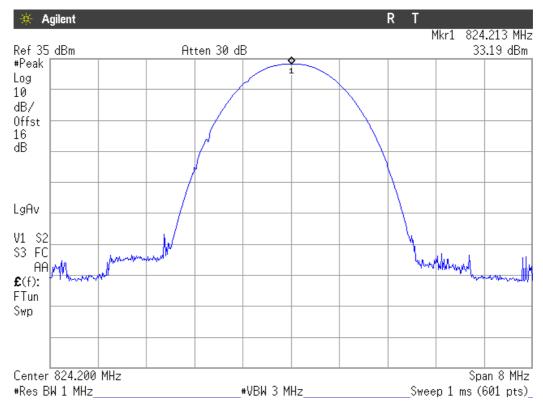

Verdict: PASS

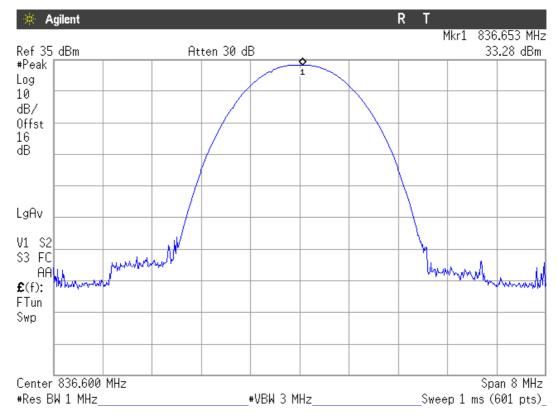

PEAK OUTPUT POWER (CONDUCTED).

GPRS MODULATION


Lowest Channel.

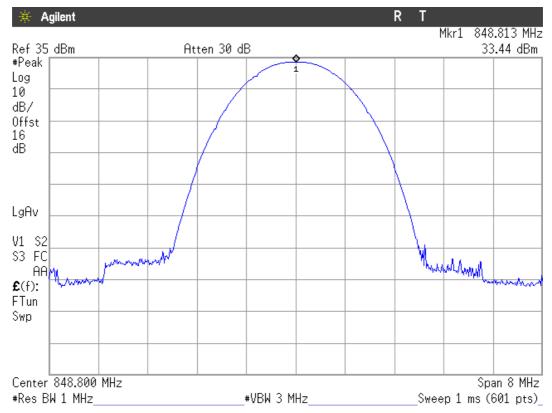
Middle Channel.

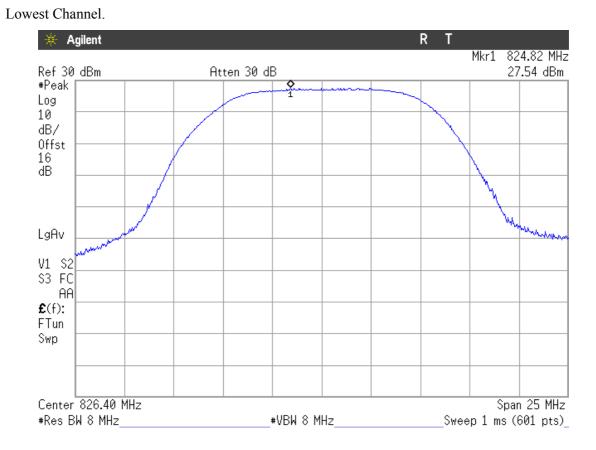



Highest Channel.

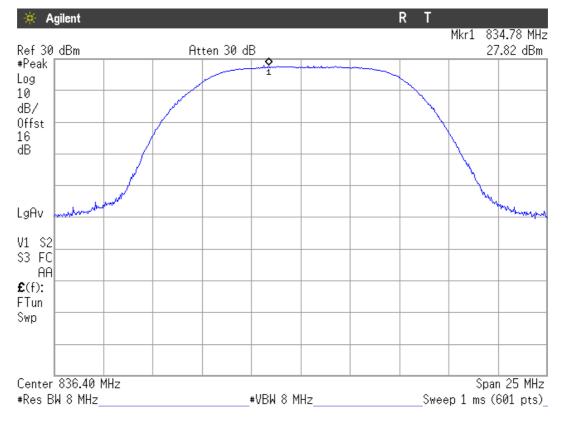
EDGE MODULATION

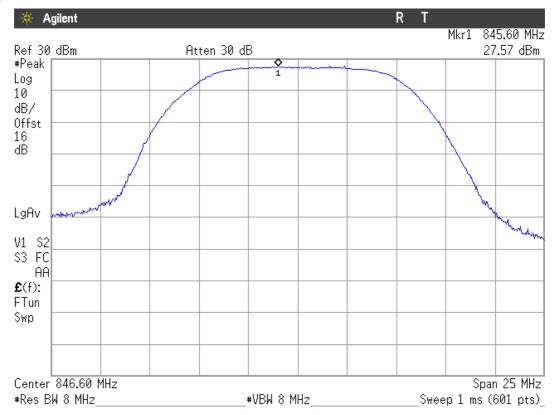
Lowest Channel.



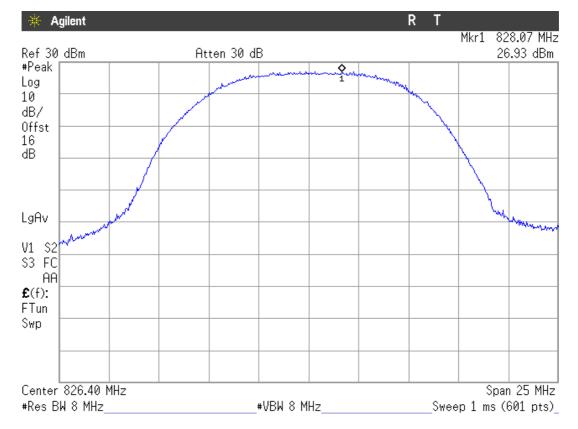

Middle Channel.

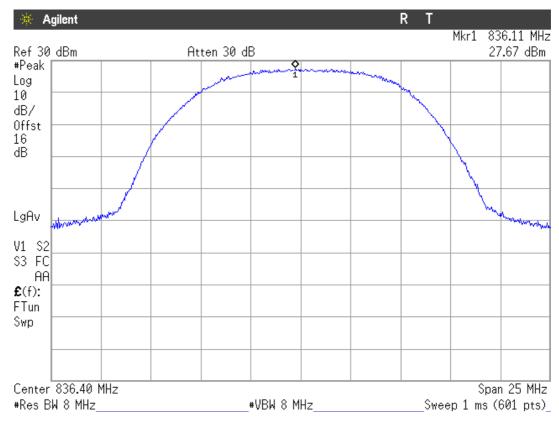
Highest Channel.



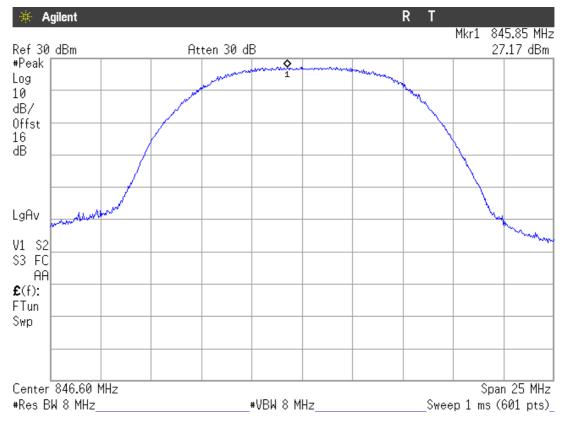

WCDMA MODULATION

Middle Channel.




HSUPA MODULATION

Lowest Channel


Highest Channel.

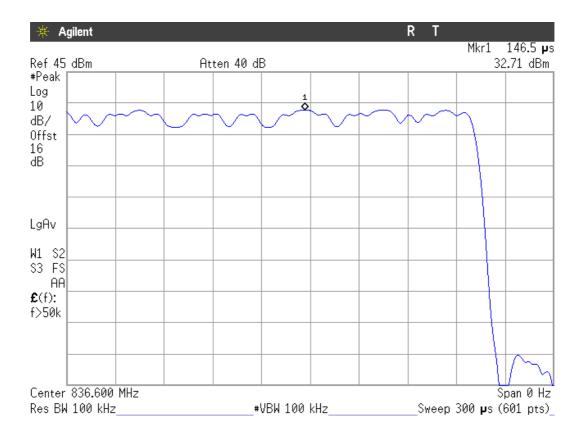
Middle Channel

Highest Channel

Modulation Characteristics

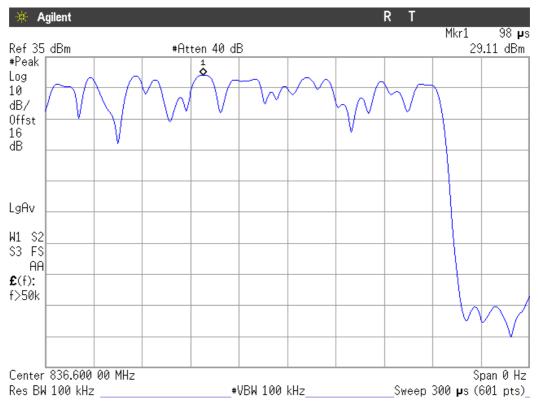
SPECIFICATION

§2.1047

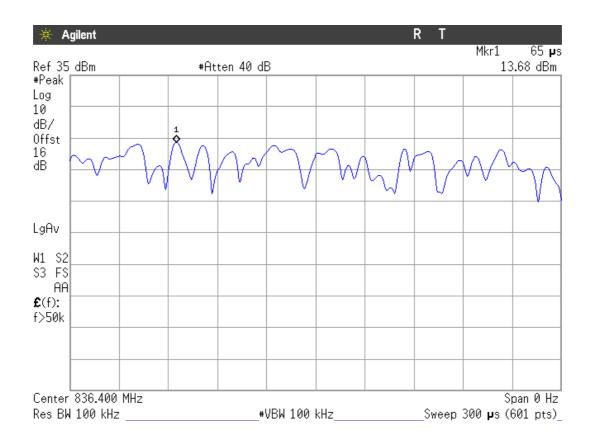

METHOD

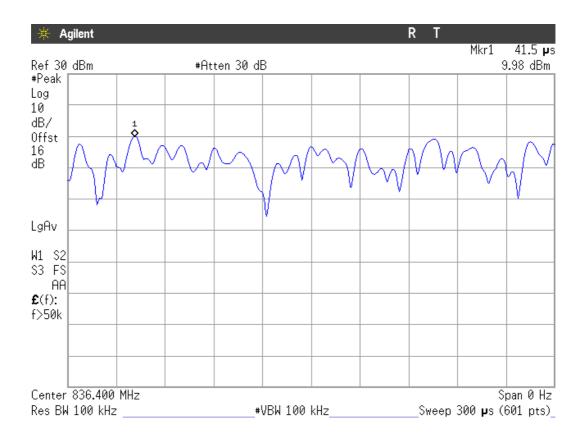
The EUT operates with GPRS (GMSK), EDGE (8-PSK), WCDMA (QPSK) and HSUPA (QPSK) modes, in which the information is digitised and coded into a bit stream.

RESULTS


The following plot shows the modulation schemes in the EUT.

GPRS MODULATION





WCDMA MODULATION

Frequency Stability

SPECIFICATION

§2.1055 and §22.355

METHOD

The frequency tolerance measurements over temperature variations were made over the temperature range of -30° C to $+50^{\circ}$ C. The EUT was placed inside a climatic chamber and the temperature was raised hourly in 10°C steps from -30° C up to $+50^{\circ}$ C.

The EUT was set in "call mode" in the middle channel using the Universal Radio Communication tester R&S CMU200 (for modulations GPRS, EDGE, WCDMA and HSUPA) and the maximum frequency error was measured using the frequency meter of CMU200.

RESULTS

Frequency stability over temperature variations.

GPRS MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-27	-0.0323	-0.00000323
+40	-23	-0.0275	-0.00000275
+30	-13	-0.0155	-0.00000155
+20	-19	-0.0227	-0.00000227
+10	-11	-0.0131	-0.00000131
0	-19	-0.0227	-0.00000227
-10	21	0.0251	0.00000251
-20	13	0.0155	0.00000155
-30	18	0.0215	0.00000215

EDGE MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-17	-0.0203	-0.00000203
+40	-18	-0.0215	-0.00000215
+30	-14	-0.0167	-0.00000167
+20	-21	-0.0251	-0.00000251
+10	-22	-0.0263	-0.00000263
0	12	0.0143	0.00000143
-10	27	0.0323	0.00000323
-20	21	0.0251	0.00000251
-30	36	0.0430	0.00000430

WCDMA MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-38	-0.0454	-0.00000454
+40	-18	-0.0215	-0.00000215
+30	23	0.0275	0.00000275
+20	-41	-0.0490	-0.00000490
+10	-29	-0.0347	-0.00000347
0	-32	-0.0383	-0.00000383
-10	21	0.0251	0.00000251
-20	26	0.0311	0.00000311
-30	-16	-0.0191	-0.00000191

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-43	-0.0514	-0.00000514
+40	-22	-0.0263	-0.00000263
+30	31	0.0371	0.00000371
+20	32	0.0383	0.00000383
+10	-64	-0.0765	-0.00000765
0	-48	-0.0574	-0.00000574
-10	23	0.0275	0.00000275
-20	28	0.0335	0.00000335
-30	12	0.0143	0.00000143

Frequency stability over voltage variations.

GPRS MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-26	-0.0311	-0.00000311
Vmin	3.0	-24	-0.0287	-0.0000287

EDGE MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-32	-0.0383	-0.00000383
Vmin	3.0	-26	-0.0311	-0.00000311

WCDMA MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-71	-0.0849	-0.00000849
Vmin	3.0	-79	-0.0945	-0.00000945

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-68	-0.0813	-0.00000813
Vmin	3.0	-49	-0.0586	-0.00000586

Occupied Bandwidth

SPECIFICATION

§2.1049

METHOD

The EUT was configured to transmit a modulated carrier signal. An IF bandwidth of 3 kHz was used to determined the occupied bandwidth of the modulated emission for GPRS and EDGE modulation and 51 kHz for WCDMA and HSUPA modulation. The 99% occupied bandwidth and the -26 dBc bandwidth were measured directly using the built-in bandwidth measuring option of spectrum analyser E4440A.

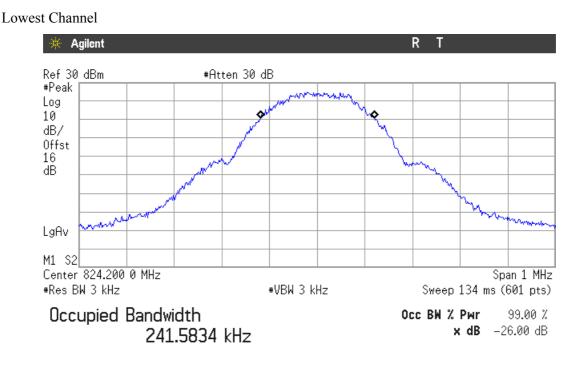
<u>RESULTS</u>

GPRS MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	241.58	243.62	243.53
-26 dBc bandwidth (kHz)	315.11	311.72	316.15
Measurement uncertainty (kHz)		<±1.67	

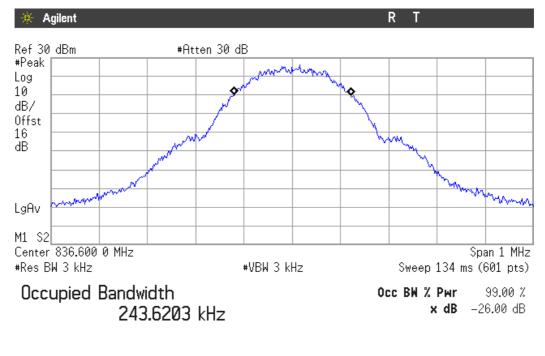
EDGE MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	237.17	236.67	236.66
-26 dBc bandwidth (kHz)	310.03	312.26	309.48
Measurement uncertainty (kHz)		<±1.67	

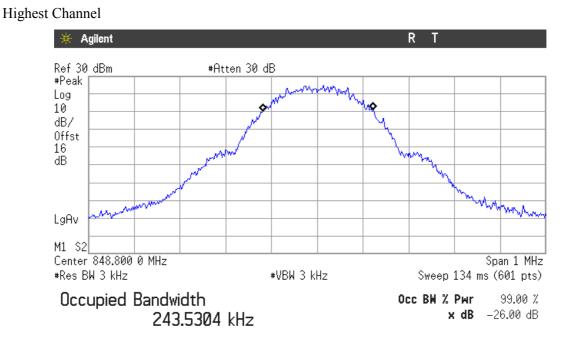

WCDMA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4176.9	4172.2	4167.0
-26 dBc bandwidth (kHz)	4826	4829	4839
Measurement uncertainty (kHz)		<±13.3	

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4185.6	4188.2	4191.8
-26 dBc bandwidth (kHz)	4821	4810	4840
Measurement uncertainty (kHz)		<±13.3	

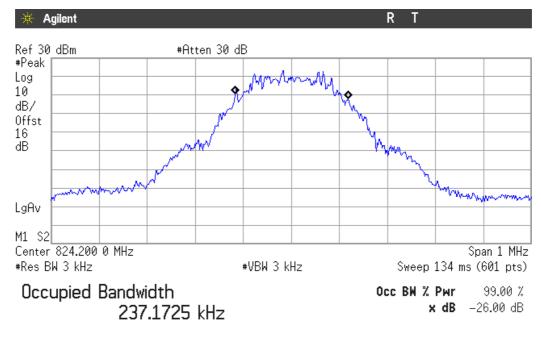


GPRS MODULATION


Transmit Freq Error	801.672 Hz
x dB Bandwidth	315.106 kHz

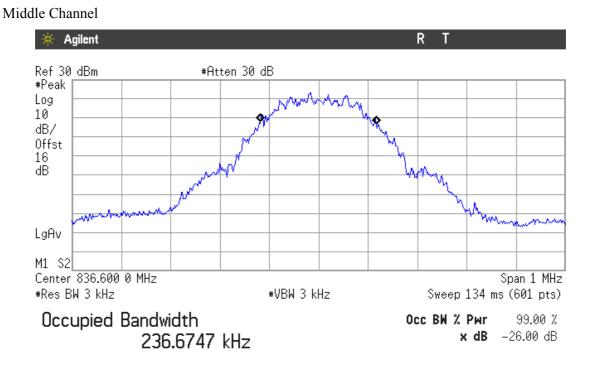
Middle Channel

Transmit Freq Error	704.771 Hz
x dB Bandwidth	311.722 kHz

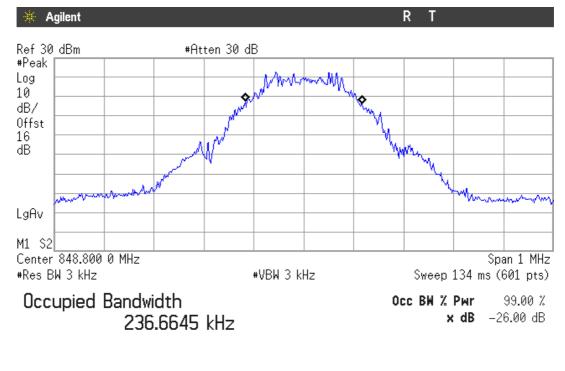


Transmit Freq Error	1.017 kHz
x dB Bandwidth	316.150 kHz

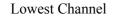
EDGE MODULATION

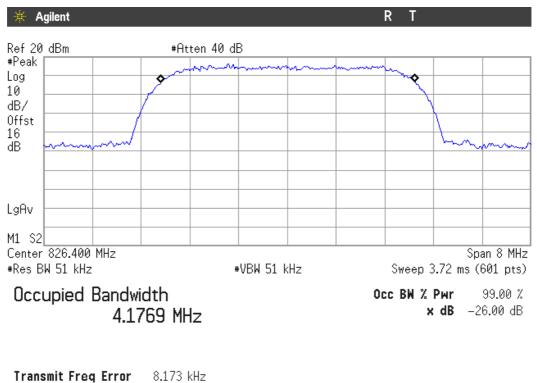

Lowest Channel

Transmit Freq Error 593.120 Hz x dB Bandwidth 310.033 kHz


Report N°(NIE): 31912RET.001

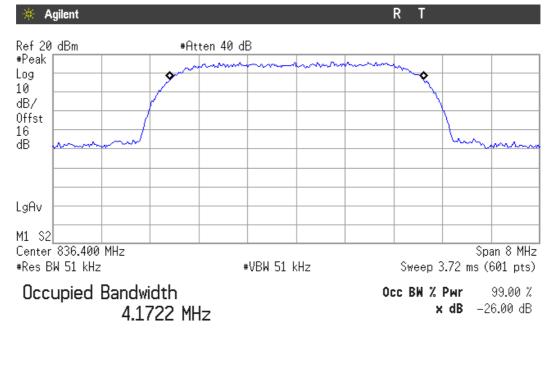
Transmit Freq Error	-678.191 Hz
x dB Bandwidth	312.262 kHz



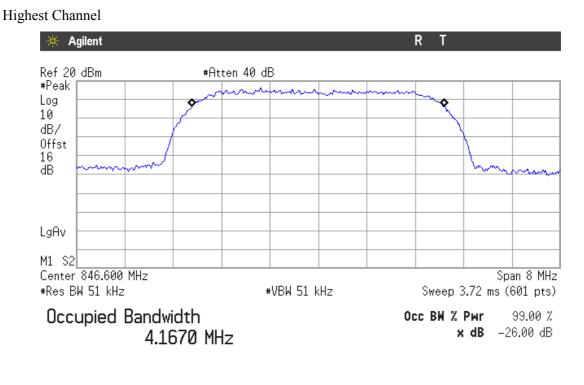


Transmit Freq Error-202.717 Hzx dB Bandwidth309.482 kHz

WCDMA MODULATION

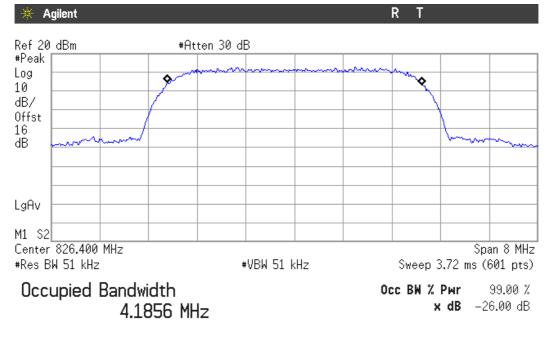


Middle Channel

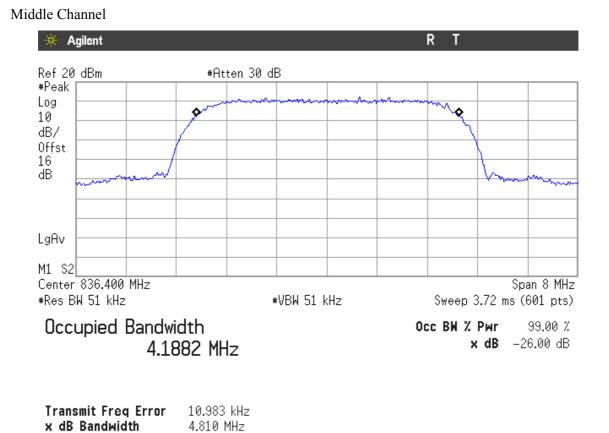

x dB Bandwidth

4.826 MHz

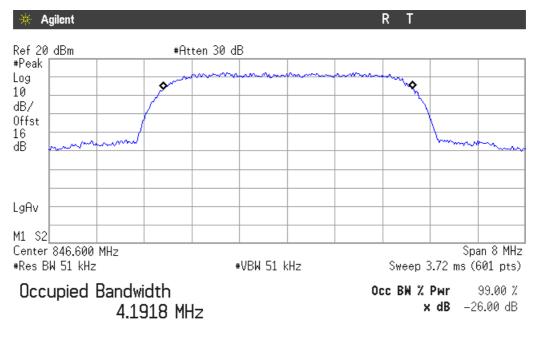
Transmit Freq Error5.431 kHzx dB Bandwidth4.829 MHz



Transmit Freq Error	-8.701 kHz
x dB Bandwidth	4.839 MHz


HSUPA MODULATION

Lowest Channel



Transmit Freq Error5.514 kHzx dB Bandwidth4.821 MHz

Highest Channel

Transmit Freq Error11.827 kHzx dB Bandwidth4.840 MHz

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §22.917

METHOD

The EUT RF output connector was connected to an spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to at least 100 kHz. The spectrum was investigated from 30 MHz to 10 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

WCDMA MODULATION

 CHANNEL: LOWEST No spurious signals were found in all the range.
CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

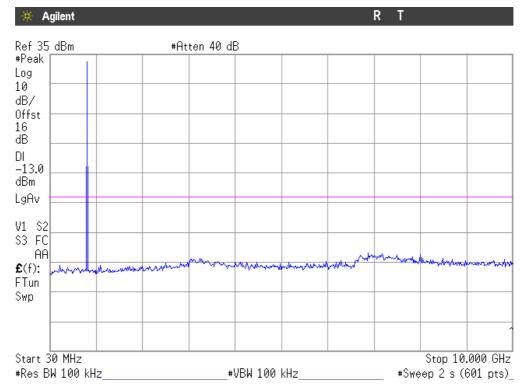
No spurious signals were found in all the range.

HSUPA MODULATION

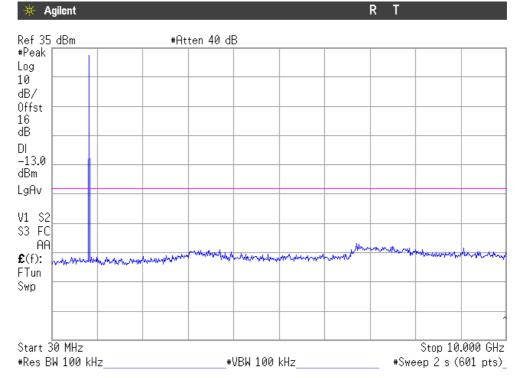
 CHANNEL: LOWEST No spurious signals were found in all the range.
CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

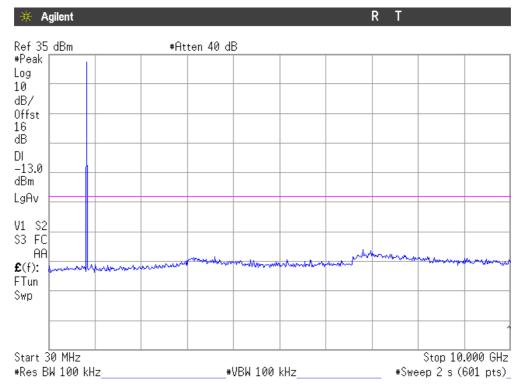

No spurious signals were found in all the range.

Verdict: PASS



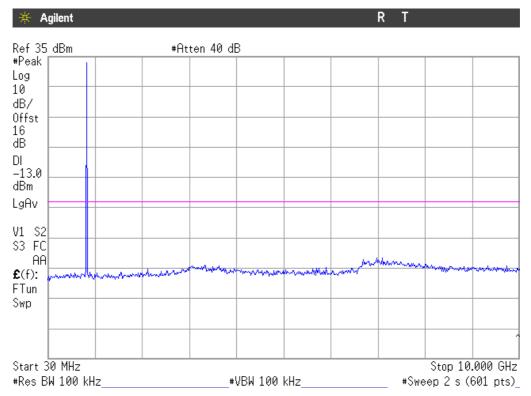
GPRS MODULATION

1. CHANNEL: LOWEST

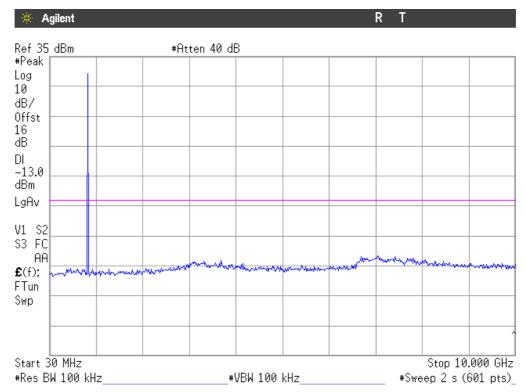

Note: The peak above the limit is the carrier frequency.

2. CHANNEL: MIDDLE

3. CHANNEL: HIGHEST

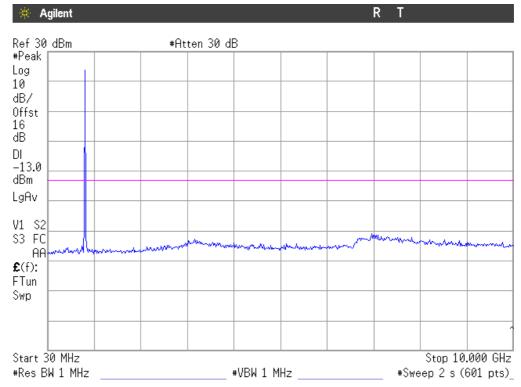

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION 1. CHANNEL: LOWEST

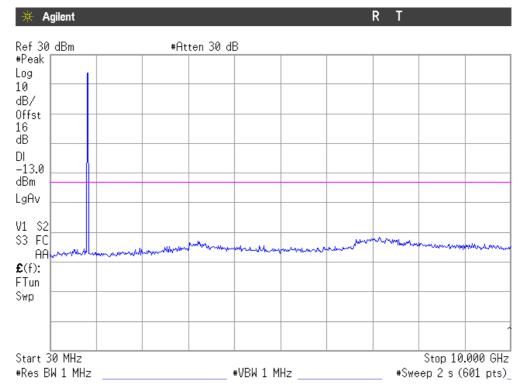

🔆 Agilent R T Ref 35 dBm #Peak #Atten 40 dB Log 10 dB/ Offst 16 dB DI –13.0 dBm LgAv V1 S2 S3 FC AA de hinder **£**(f): FTun Swp Start 30 MHz Stop 10.000 GHz #Res BW 100 kHz #VBW 100 kHz #Sweep 2 s (601 pts)_

2. CHANNEL: MIDDLE

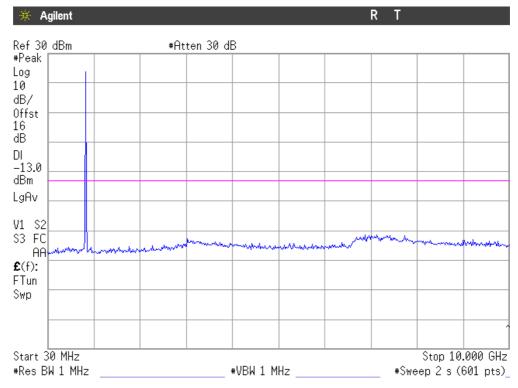
Note: The peak above the limit is the carrier frequency.



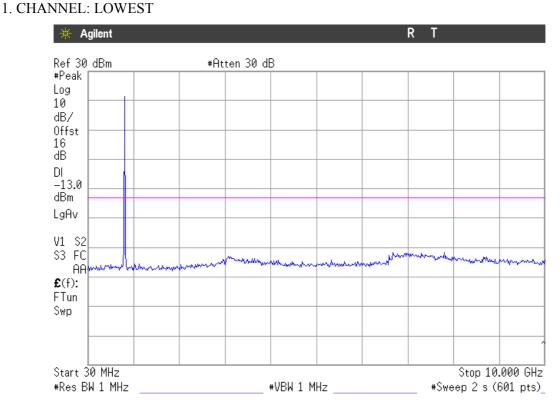
3. CHANNEL: HIGHEST


WCDMA MODULATION

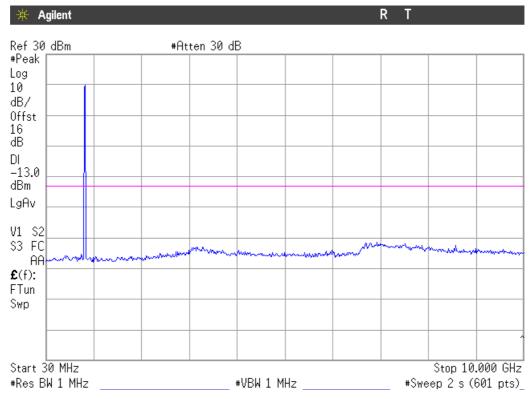
1. CHANNEL: LOWEST


Note: The peak above the limit is the carrier frequency.

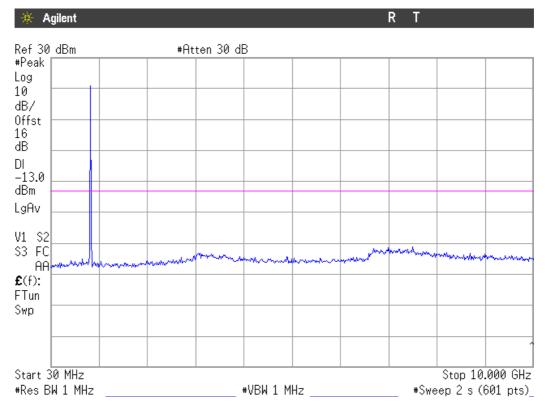
2. CHANNEL: MIDDLE



3. CHANNEL: HIGHEST


Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION



2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §22.917

<u>METHOD</u>

As indicated in FCC part 22, in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 3.3 kHz was used for GPRS and EDGE modulations and 50 kHz for WCDMA and HSUPA modulations.

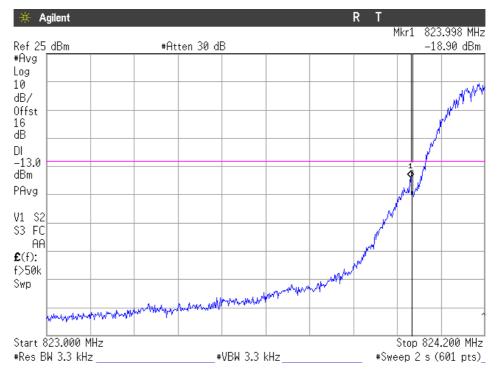
Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

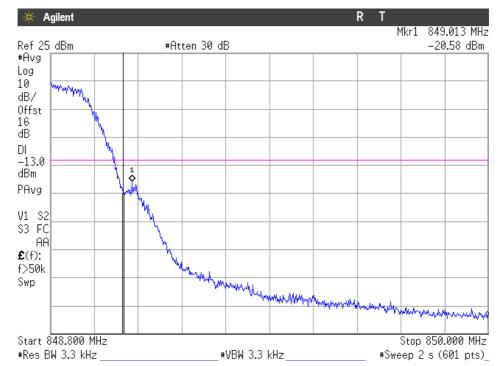
At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)


MODULATION	Maximum level at lowest Block Edge (dBm)	Maximum level at highest Block Edge (dBm)
GPRS	-18.90	-20.58
EDGE	-25.11	-24.18
WCDMA	-17.72	-17.48
HSUPA	-21.19	-20.96

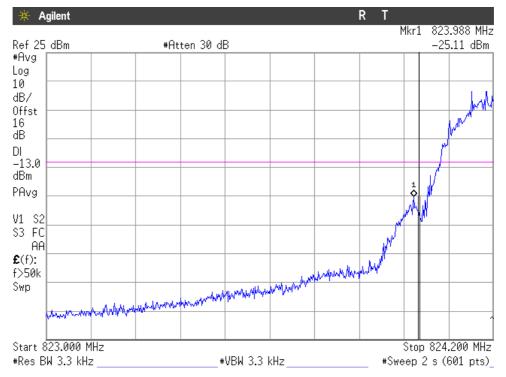
Measurement uncertainty = ± 1.57 dB.



GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power

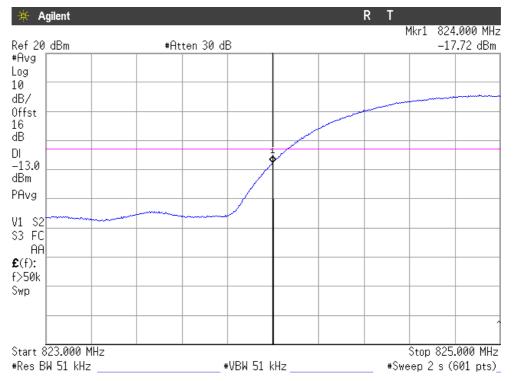

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

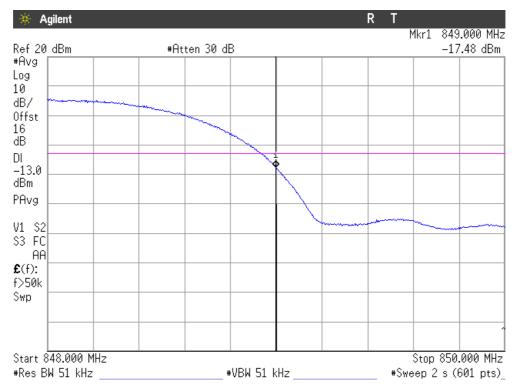
EDGE MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power


CHANNEL HIGHEST

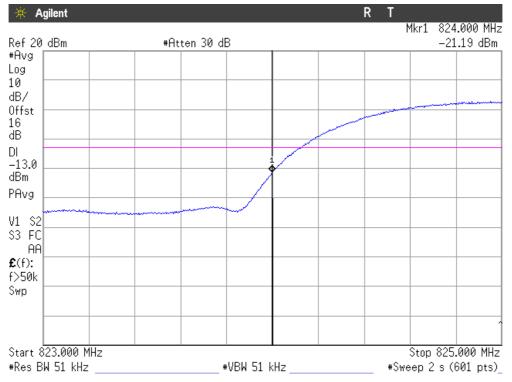
NOTE: The equipment transmits at the maximum output power



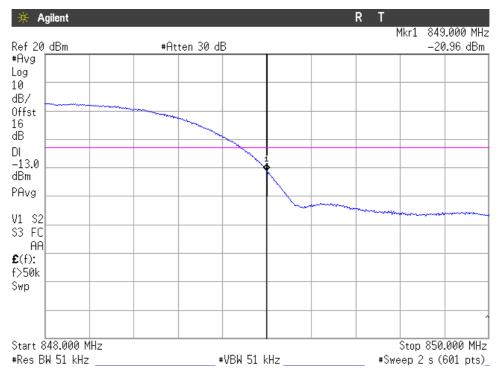
WCDMA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power


CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power



HSUPA MODULATION

NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Radiated emissions

SPECIFICATION

§ 22.917

<u>METHOD</u>

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emissions were substituted by the Substitution method, in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS

GPRS MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

WCDMA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz.

No spurious signals were found in all the range.

Report N°(NIE): 31912RET.001

HSUPA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

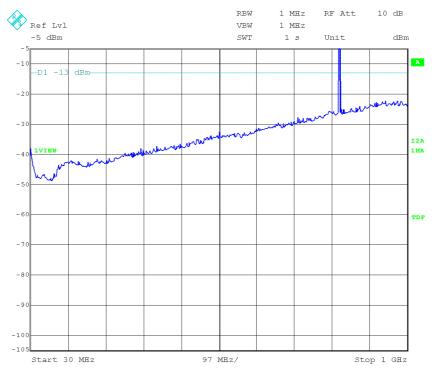
Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-12.75 GHz. No spurious signals were found in all the range.

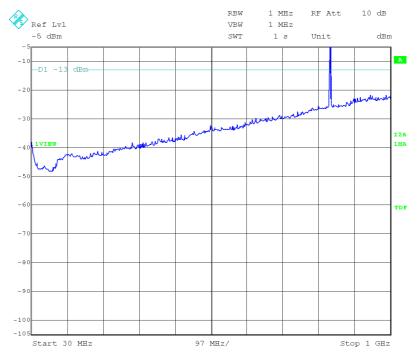
3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

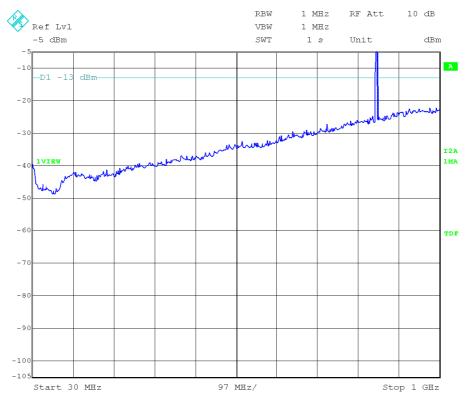
Frequency range 1 GHz-12.75 GHz.


No spurious signals were found in all the range.

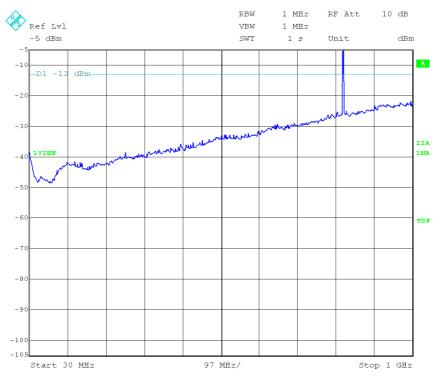
FREQUENCY RANGE 30 MHz-1000 MHz.


GPRS MODULATION

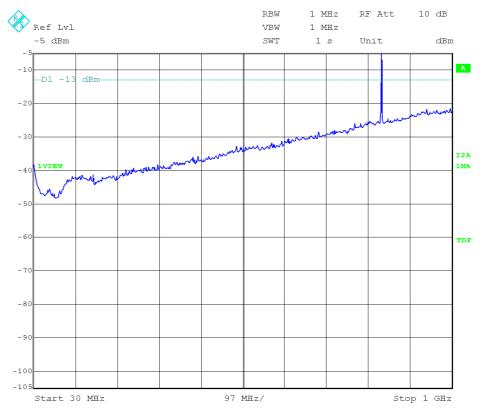
CHANNEL: LOWEST


Note: The peak above the limit is the carrier frequency.

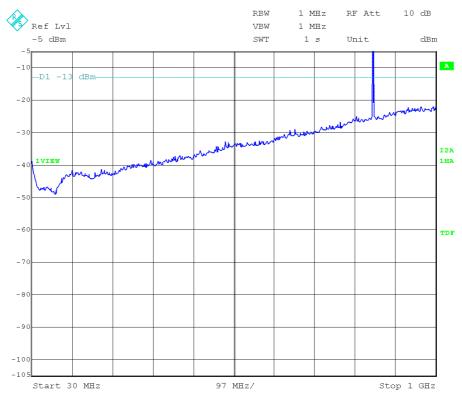
CHANNEL: MIDDLE


CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

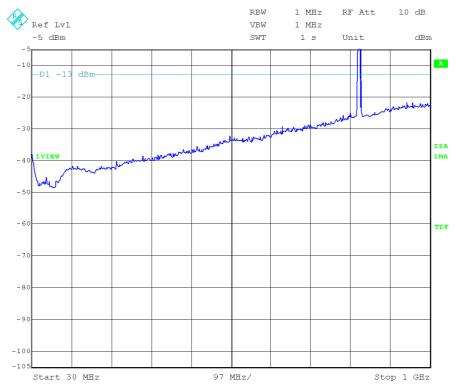

EDGE MODULATION

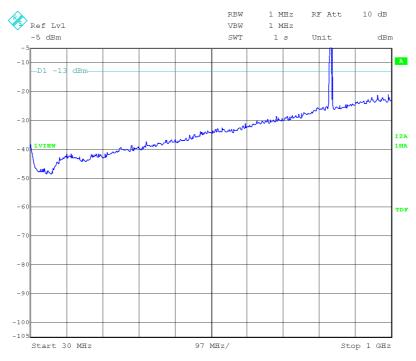
CHANNEL: LOWEST



CHANNEL: MIDDLE

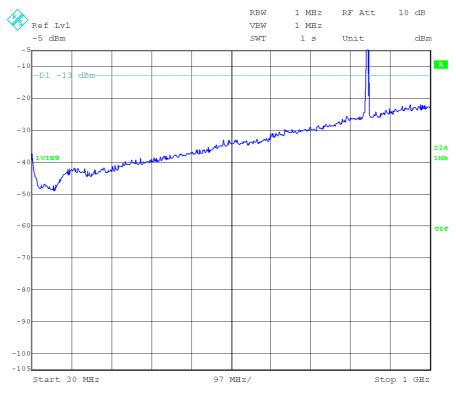
Note: The peak above the limit is the carrier frequency.


CHANNEL: HIGHEST

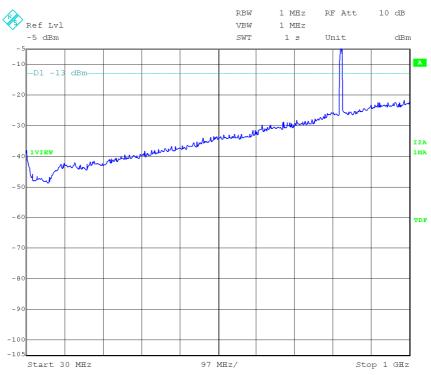


WCDMA MODULATION

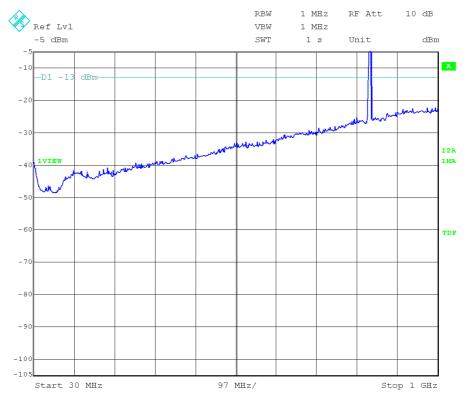
CHANNEL: LOWEST


Note: The peak above the limit is the carrier frequency.

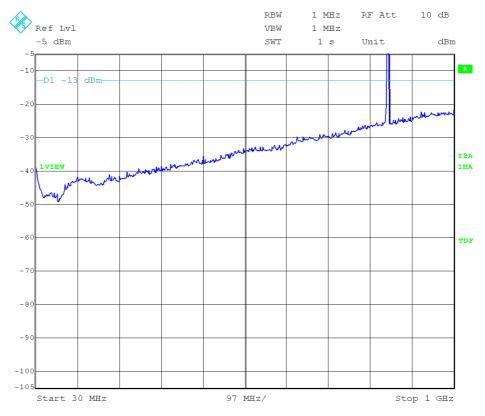
CHANNEL: MIDDLE

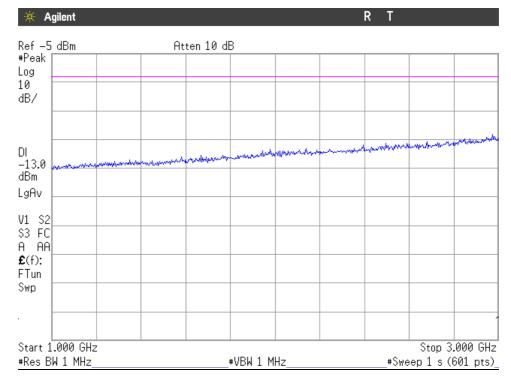

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

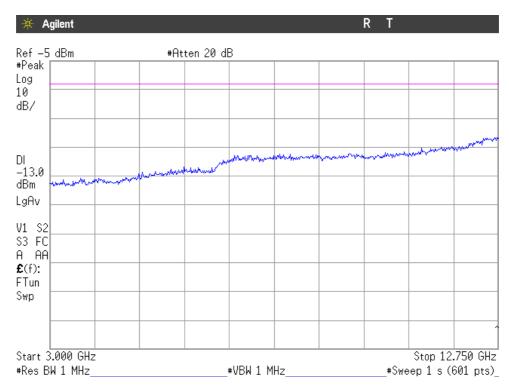

HSUPA MODULATION

CHANNEL: LOWEST




CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency. CHANNEL: HIGHEST



FREQUENCY RANGE 1 GHz to 3 GHz.

(This plot is valid for all three channels and all modulations)

FREQUENCY RANGE 3 GHz to 12.75 GHz.

(This plot is valid for all three channels and all modulations)

TEST RESULTS FOR FCC PART 24 AND RSS-133

TEST CONDITIONS

Power supply (V):

 $V_{nom} = 3.3 \text{ Vdc}$ $V_{max} = 3.6 \text{ Vdc}$ $V_{min} = 3.0 \text{ Vdc}$

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

Type of power supply = DC Voltage from external power supply

Type of antenna = external connectable antenna structure for Laptop computer

TEST FREQUENCIES:

GPRS AND EDGE MODULATION Lowest channel (512): 1850.2 MHz Middle channel (662): 1880.2 MHz Highest channel (810): 1909.8 MHz

WCDMA AND HSUPA MODULATION Lowest channel (9262): 1852.4 MHz Middle channel (9400): 1880.0 MHz Highest channel (9538): 1907.6 MHz

RF Output Power (conducted and E.I.R.P.)

SPECIFICATION

§2.1046 and 24.232

Mobile/portable stations are limited to 2 Watts (33 dBm) Effective Isotropic Radiated Power (E.I.R.P.) peak power.

<u>METHOD</u>

The conducted RF output power measurements were made at the RF output terminals of the EUT using an attenuator, power splitter and spectrum analyser. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

For radiated measurements the EUT was placed on a 1 m high non-conductive stand inside an anechoic chamber. The measuring antenna was placed at 1 m distance and the maximum field strength was measured for the three channels. The EUT was controlled via the Universal Radio Communication tester R&S CMU200 selecting maximum transmission power of the EUT and different modes of modulation.

The Effective Isotropic Radiated Power (E.I.R.P.) is obtained by using the Substitution Method according to ANSI/TIA/EIA-603-C: 2004.

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See plots in next pages.

GPRS MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	30.06	30.05	29.37
Maximum peak power (W)	1.01	1.01	0.86
Measurement uncertainty (dB)		±0.5	

EDGE MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	30.12	30.07	29.38
Maximum peak power (W)	1.03	1.02	0.87
Measurement uncertainty (dB)		±0.5	

WCDMA MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	27.50	27.78	27.22
Maximum peak power (W)	0.56	0.60	0.53
Measurement uncertainty (dB)		±0.5	

HSUPA MODULATION

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	26.96	27.09	26.43
Maximum peak power (W)	0.50	0.51	0.44
Measurement uncertainty (dB)		±0.5	

MAXIMUM EFFECTIVE ISOTROPIC RADIATED POWER E.I.R.P. (RADIATED).

GPRS MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. (dBm) = (1) - (2) + (3)
1850.2835	-3.42	Horizontal	20.98	0.5	8.6	29.08
1880.1507	-4.83	Horizontal	20.07	0.5	8.3	27.87
1909.8505	-4.52	Horizontal	20.78	0.5	8.0	28.28

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	29.08	27.87	28.28
Maximum peak power (W)	0.81	0.61	0.67
Measurement uncertainty (dB)		± 4.0	

EDGE MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. (dBm) = (1) - (2) + (3)
1850.1675	-4.32	Horizontal	20.08	0.5	8.6	28.18
1880.2505	-5.30	Horizontal	19.60	0.5	8.3	27.40
1909.8675	-4.58	Horizontal	20.72	0.5	8.0	28.22

RBW = VBW = 1 MHz

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	28.18	27.40	28.22
Maximum peak power (W)	0.66	0.55	0.66
Measurement uncertainty (dB)		± 4.0	

WCDMA MODULATION

Substitution method data

Frequency (MHz) at max. reading	Max. Instrument reading (dBm)	Polarization	(1) RF Generator +power amplifier output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. (dBm) = (1) - (2) + (3)
1854.5013	-5.93	Horizontal	18.47	0.5	8.6	26.57
1879.5355	-5.92	Horizontal	18.98	0.5	8.3	26.78
1908.9753	-5.30	Horizontal	20.00	0.5	8.0	27.50

RBW = VBW = 8 MHz

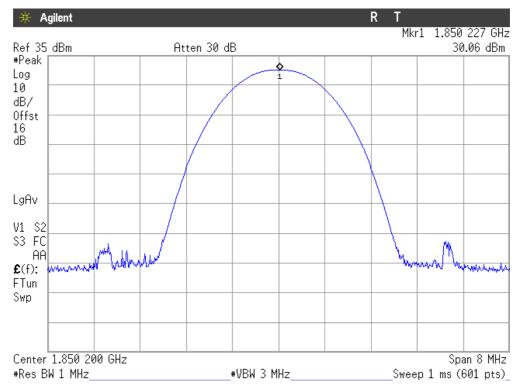
Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	26.57	26.78	27.50
Maximum peak power (W)	0.45	0.48	0.56
Measurement uncertainty (dB)		± 4.0	

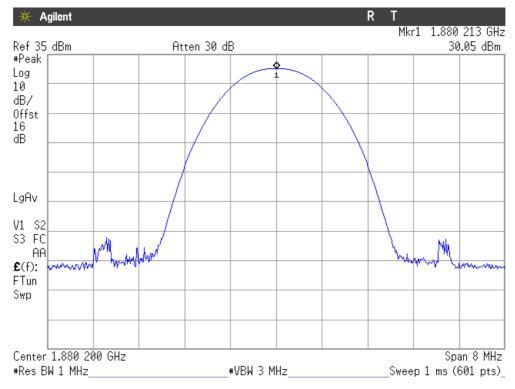
HSUPA MODULATION

Substitution method data

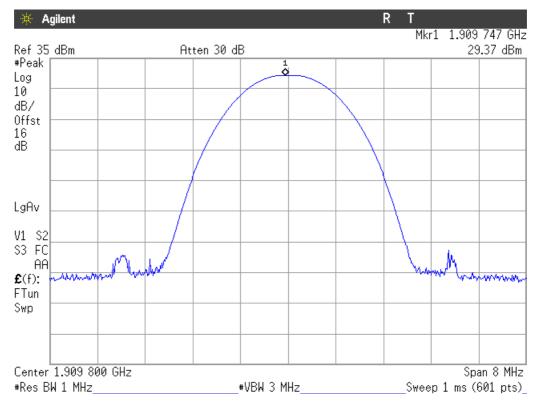
Frequency (MHz) at max. reading	Max. Instrument reading	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. (dBm) = (1) - (2) + (3)
1854.5383	(dBm) -8.33	Horizontal	16.07	0.5	8.6	24.17
1879.5772	-8.34	Horizontal	16.56	0.5	8.3	24.36
1909.2355	-7.88	Horizontal	17.42	0.5	8.0	24.92

RBW = VBW = 8 MHz

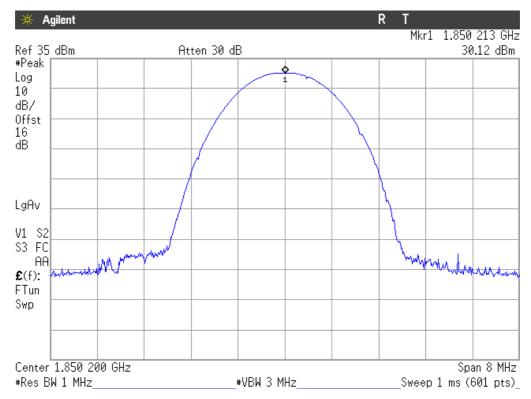

Channel	Lowest	Middle	Highest
Maximum peak power (dBm)	24.17	24.36	24.92
Maximum peak power (W)	0.26	0.27	0.31
Measurement uncertainty (dB)	± 4.0		

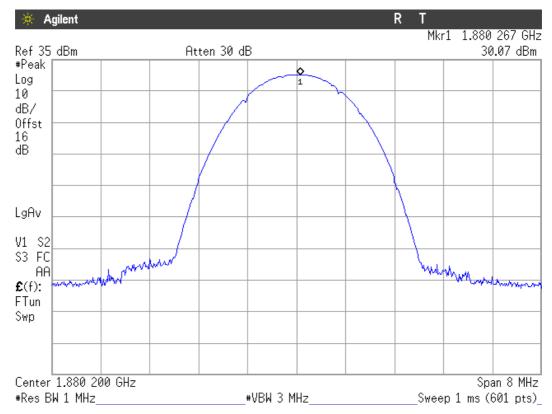

PEAK OUTPUT POWER (CONDUCTED).

GPRS MODULATION

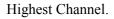

Lowest Channel.

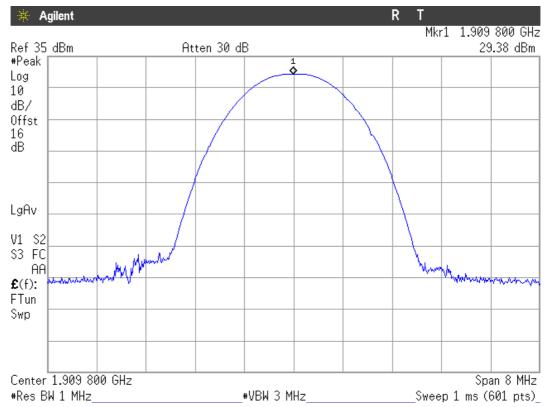
Middle Channel.

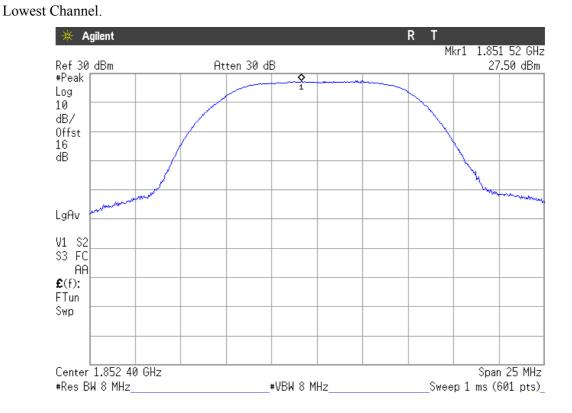


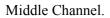

Highest Channel.

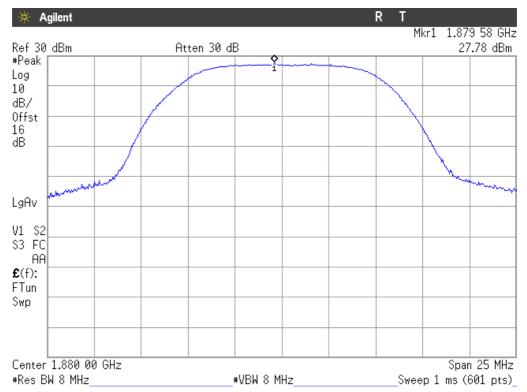
EDGE MODULATION

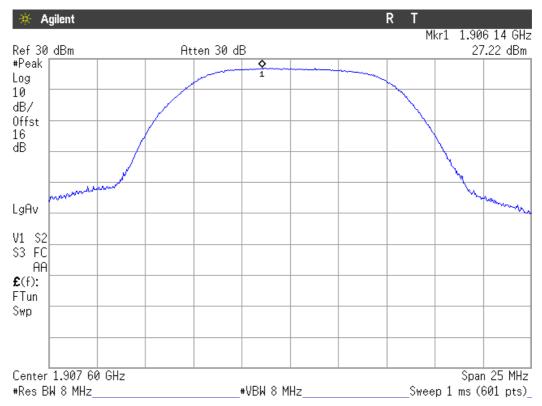

Lowest Channel.

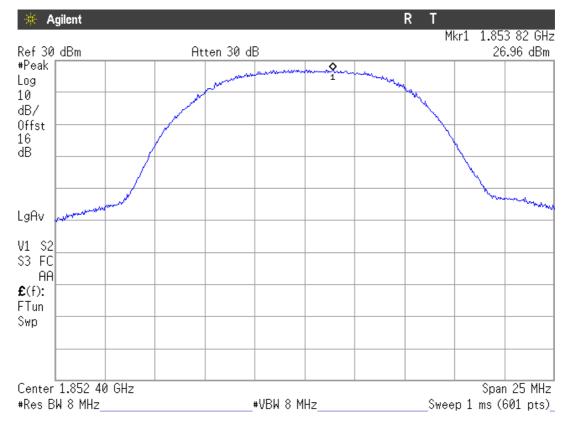


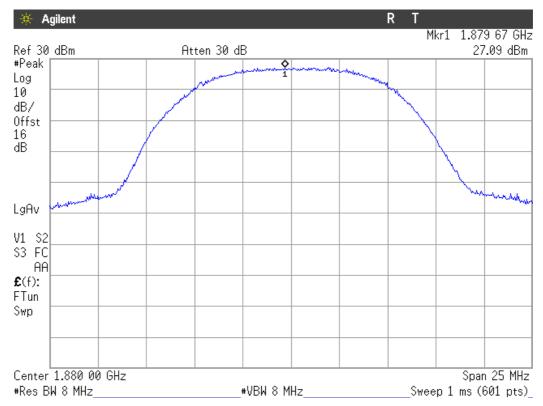

Middle Channel.





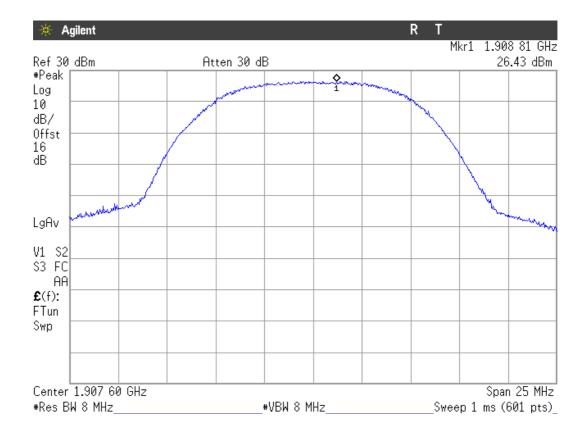

WCDMA MODULATION




Highest Channel.

HSUPA MODULATION

Lowest Channel



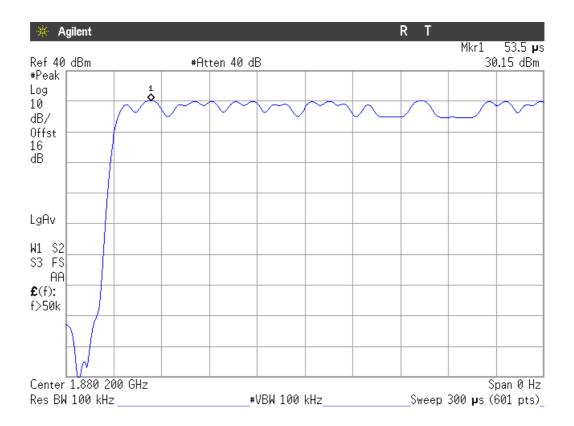
Middle Channel

Highest Channel

Modulation Characteristics

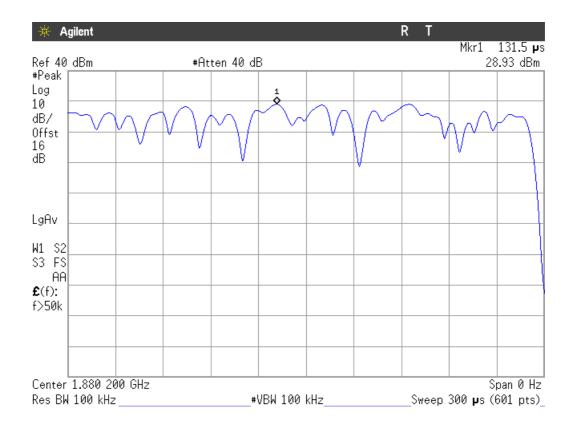
SPECIFICATION

§2.1047

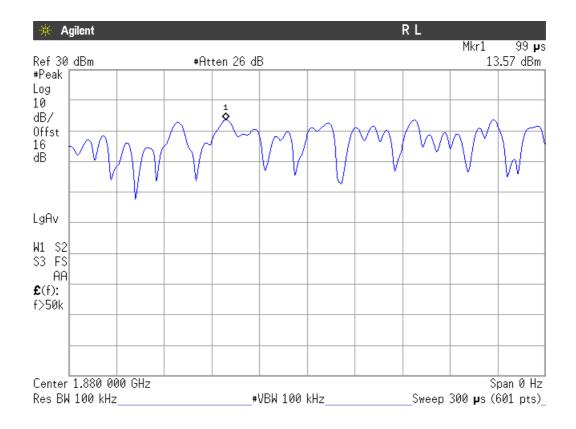

METHOD

The EUT operates with GPRS (GMSK), EDGE (8-PSK), WCDMA (QPSK) and HSUPA (QPSK) modes, in which the information is digitised and coded into a bit stream.

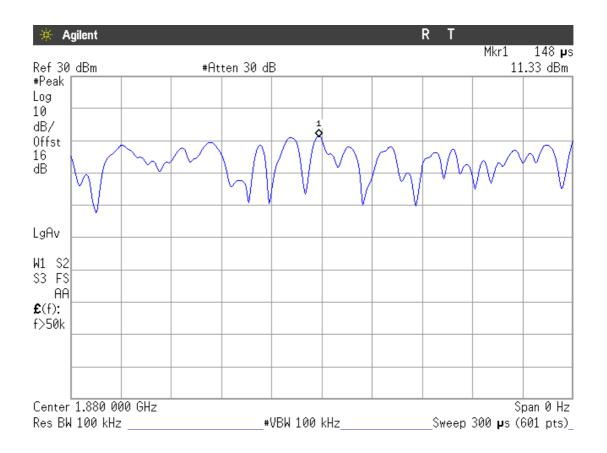
RESULTS


The following plot shows the modulation schemes in the EUT.

GPRS MODULATION



EDGE MODULATION



WCDMA MODULATION

HSUPA MODULATION

Frequency Stability

SPECIFICATION

§2.1055 and 24.235

METHOD

The frequency tolerance measurements over temperature variations were made over the temperature range of -30° C to $+50^{\circ}$ C. The EUT was placed inside a climatic chamber and the temperature was raised hourly in 10°C steps from -30° C up to $+50^{\circ}$ C.

The EUT was set in "call mode" in the middle channel using the Universal Radio Communication tester R&S CMU200 (for modulations GPRS, EDGE, WCDMA and HSUPA) and the maximum frequency error was measured using the frequency meter of CMU200.

RESULTS

Frequency stability over temperature variations.

GPRS MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-41	-0.0218	-0.00000218
+40	16	0.0085	0.00000085
+30	-28	-0.0149	-0.00000149
+20	-35	-0.0186	-0.00000186
+10	20	0.0106	0.00000106
0	-29	-0.0154	-0.00000154
-10	32	0.0170	0.00000170
-20	18	0.0096	0.00000096
-30	-31	-0.0165	-0.00000165

EDGE MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-37	-0.0197	-0.00000197
+40	-32	-0.0170	-0.00000170
+30	-41	-0.0218	-0.00000218
+20	-11	-0.0059	-0.00000059
+10	-31	-0.0165	-0.00000165
0	-35	-0.0186	-0.00000186
-10	41	0.0218	0.00000218
-20	32	0.0170	0.00000170
-30	14	0.0074	0.00000074

WCDMA MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-78	-0.0415	-0.00000415
+40	-47	-0.0250	-0.00000250
+30	30	0.0160	0.00000160
+20	-32	-0.0170	-0.00000170
+10	-21	-0.0112	-0.00000112
0	38	0.0202	0.00000202
-10	-17	-0.0090	-0.00000090
-20	-22	-0.0117	-0.00000117
-30	27	0.0144	0.00000144

HSUPA MODULATION

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
+50	-89	-0.0473	-0.00000473
+40	-64	-0.0340	-0.00000340
+30	48	0.0255	0.00000255
+20	-36	-0.0191	-0.00000191
+10	-18	-0.0096	-0.00000096
0	-41	-0.0218	-0.00000218
-10	-22	-0.0117	-0.00000117
-20	23	0.0122	0.00000122
-30	42	0.0223	0.00000223

Frequency stability over voltage variations.

GPRS MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-70	-0.0372	-0.00000372
Vmin	3.0	-61	-0.0324	-0.00000324

EDGE MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-46	-0.0245	-0.00000245
Vmin	3.0	-59	-0.0314	-0.00000314

WCDMA MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-73	-0.0388	-0.00000388
Vmin	3.0	-58	-0.0309	-0.00000309

HSUPA MODULATION

Battery Supply voltage	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)	Frequency Error (%)
Vmax	3.6	-70	-0.0372	-0.00000372
Vmin	3.0	-66	-0.0351	-0.00000351

Occupied Bandwidth

SPECIFICATION

§2.1049

METHOD

The EUT was configured to transmit a modulated carrier signal. An IF bandwidth of 3 kHz was used to determined the occupied bandwidth of the modulated emission for GPRS and EDGE modulation and 50 kHz for WCDMA and HSUPA modulation. The 99% occupied bandwidth and the -26 dBc bandwidth were measured directly using the built-in bandwidth measuring option of spectrum analyser E4440A.

RESULTS

GPRS MODULATION

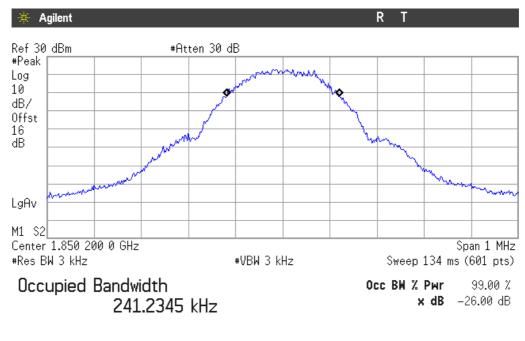
Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	241.23	242.23	242.21
-26 dBc bandwidth (kHz)	316.63	318.24	318.19
Measurement uncertainty (kHz)		<±1.67	

EDGE MODULATION

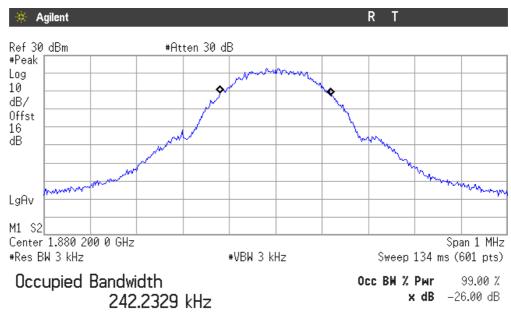
Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	237.75	240.86	237.30
-26 dBc bandwidth (kHz)	306.87	307.32	312.51
Measurement uncertainty (kHz)		<±1.67	

WCDMA MODULATION

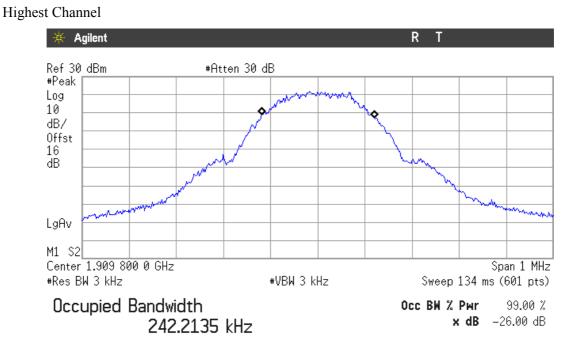
Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4184.4	4164.0	4177.3
-26 dBc bandwidth (kHz)	4836	4817	4817
Measurement uncertainty (kHz)		<±13.3	


HSUPA MODULATION

Channel	Lowest	Middle	Highest
99% Occupied bandwidth (kHz)	4179.8	4179.3	4179.7
-26 dBc bandwidth (kHz)	4825	4814	4810
Measurement uncertainty (kHz)		<±13.3	

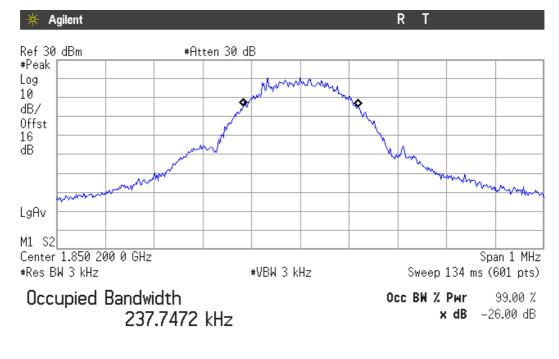

GPRS MODULATION

Lowest Channel


	14.050 Hz 6.628 kHz
--	------------------------

Middle Channel

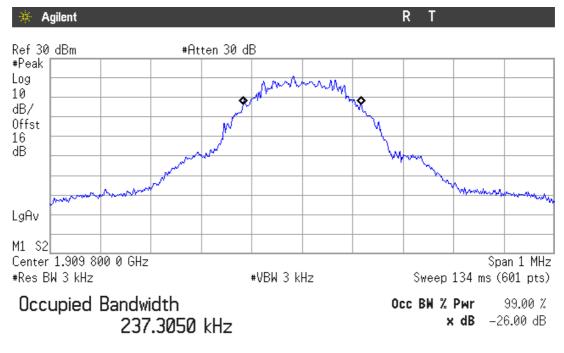
Transmit Freq Error-614.833 Hzx dB Bandwidth318.239 kHz



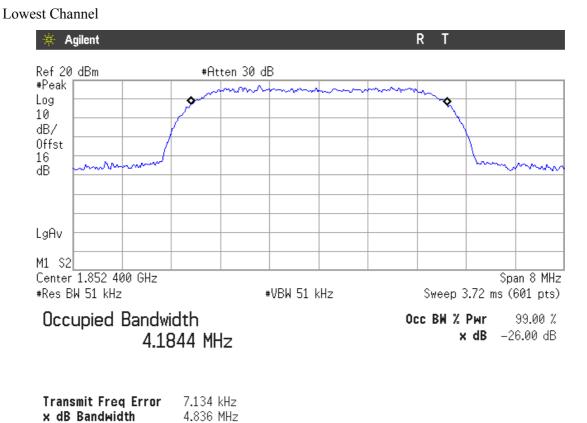
Transmit Freq Error x dB Bandwidth	705.263 Hz 318.194 kHz		
---------------------------------------	---------------------------	--	--

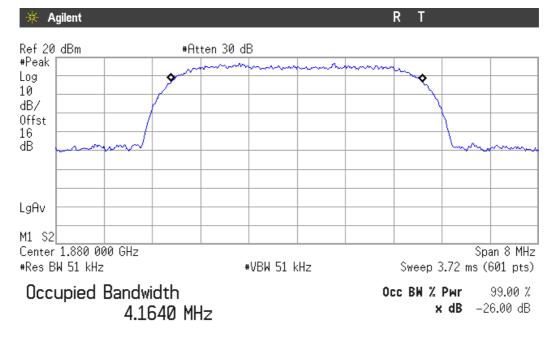
EDGE MODULATION

Lowest Channel

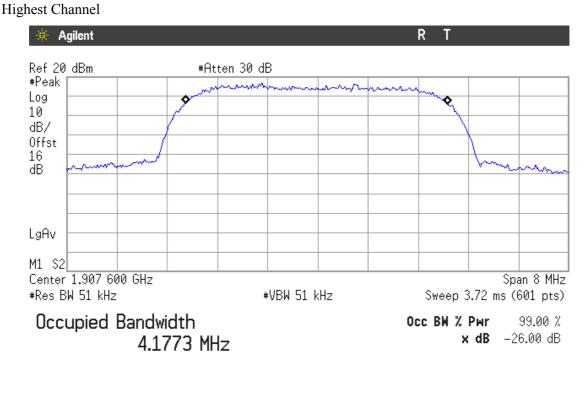

Transmit Freq Error	669.431 Hz
x dB Bandwidth	306.867 kHz

Transmit Freq Error	–1.272 kHz
x dB Bandwidth	307.319 kHz



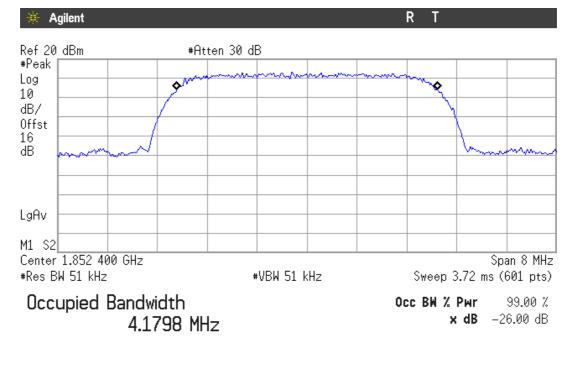

Transmit Freq Error	95.036 Hz
x dB Bandwidth	312 . 514 kHz

WCDMA MODULATION

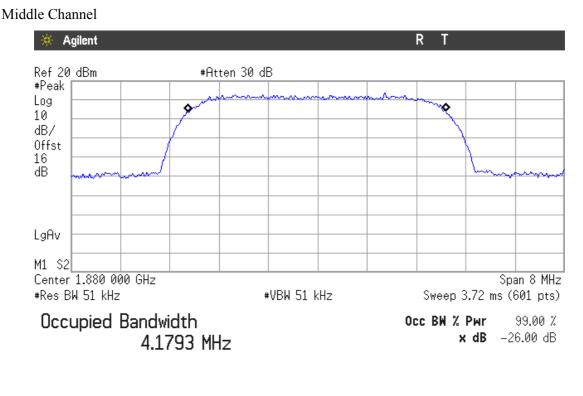


Middle Channel

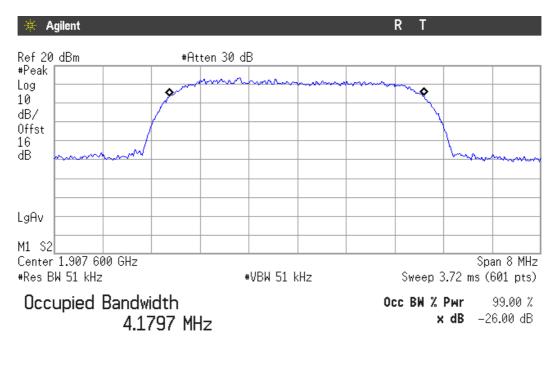
Transmit Freq Error-5.111 kHzx dB Bandwidth4.817 MHz



Transmit Freq Error	–17.578 kHz
x dB Bandwidth	4.817 MHz


HSUPA MODULATION

Lowest Channel


Transmit Freq Error2.207 kHzx dB Bandwidth4.825 MHz

Transmit Freg Error	–12.686 kHz
x dB Bandwidth	4.814 MHz

Highest Channel

Transmit Freq Error-14.332 kHzx dB Bandwidth4.810 MHz

Spurious emissions at antenna terminals

SPECIFICATION

§2.1051 and §24.238

METHOD

The EUT RF output connector was connected to a spectrum analyser using an 50 ohm attenuator and the resolution bandwidth of the spectrum analyser was set to 1 MHz. The spectrum was investigated from 30 MHz to 20 GHz.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)

GPRS MODULATION

1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

WCDMA MODULATION

1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Spurious frequency (MHz)	Level (dBm)	Measurement uncertainty (dB)
3757.5326	-30.76	±1.57

3. CHANNEL: HIGHEST

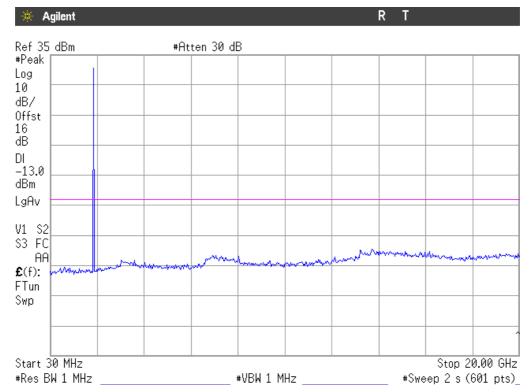
Spurious frequency (MHz)	Level (dBm)	Measurement uncertainty (dB)
3816.8505	-28.79	±1.57

HSUPA MODULATION

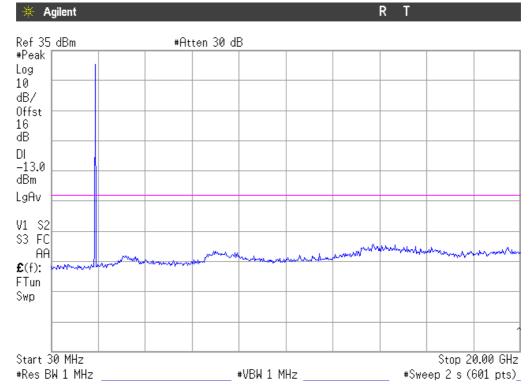
1. CHANNEL: LOWEST No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

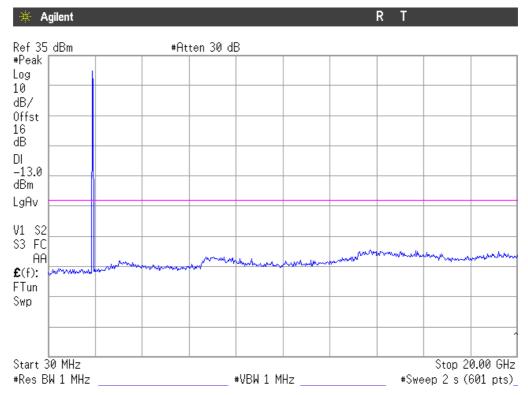
No spurious signals were found in all the range.

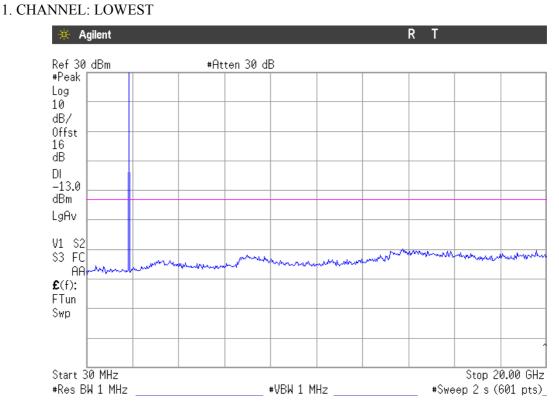

3. CHANNEL: HIGHEST

No spurious signals were found in all the range.

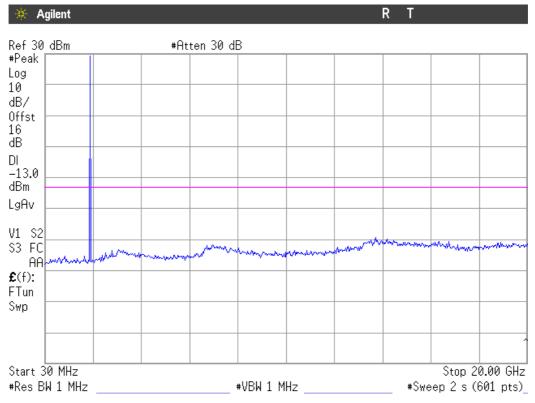

GPRS MODULATION

1. CHANNEL: LOWEST

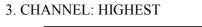

Note: The peak above the limit is the carrier frequency.

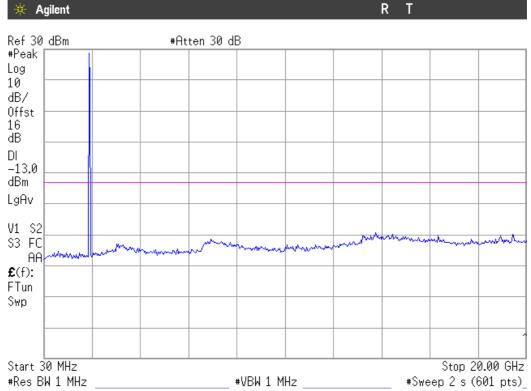


3. CHANNEL: HIGHEST


Note: The peak above the limit is the carrier frequency.

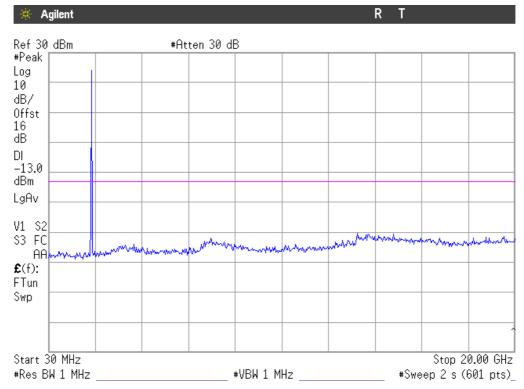
EDGE MODULATION

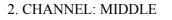


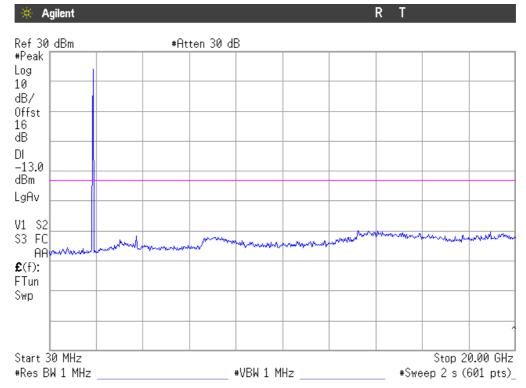


2. CHANNEL: MIDDLE

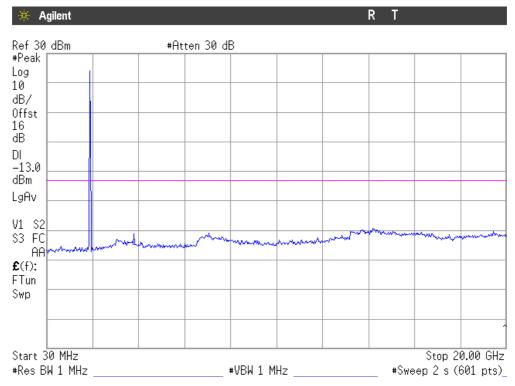
Note: The peak above the limit is the carrier frequency.

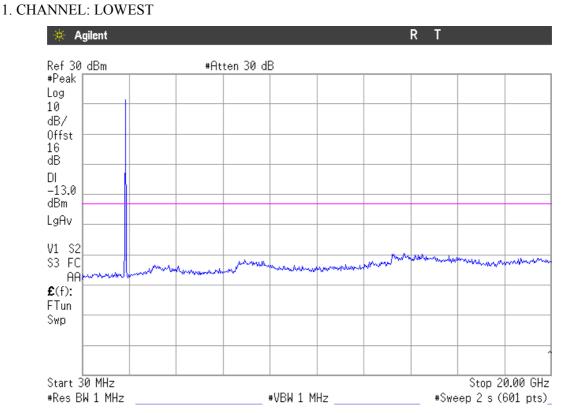




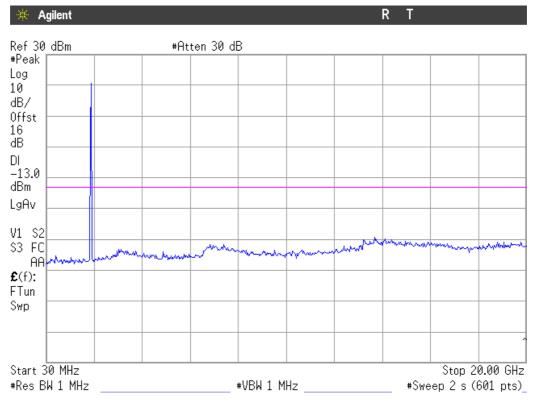

WCDMA MODULATION

1. CHANNEL: LOWEST

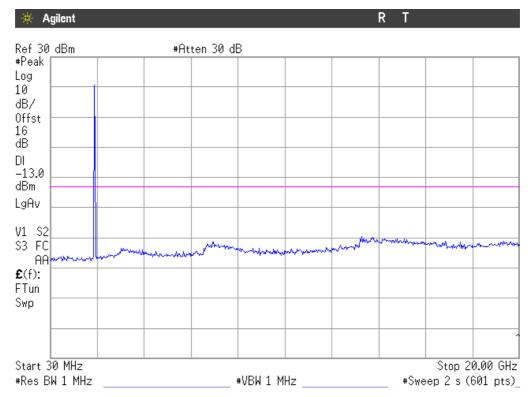

Note: The peak above the limit is the carrier frequency.



3. CHANNEL: HIGHEST


Note: The peak above the limit is the carrier frequency.

HSUPA MODULATION



2. CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

3. CHANNEL: HIGHEST

Spurious emissions at antenna terminals at Block Edges

SPECIFICATION

§2.1051 and §24.238

<u>METHOD</u>

As indicated in FCC part 24, in the 1 MHz bands immediately outside and adjacent to the frequency block or band a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A resolution bandwidth of 5 kHz/3.3 kHz was used for GPRS and EDGE modulations, and 50 kHz for WCDMA and HSUPA modulations.

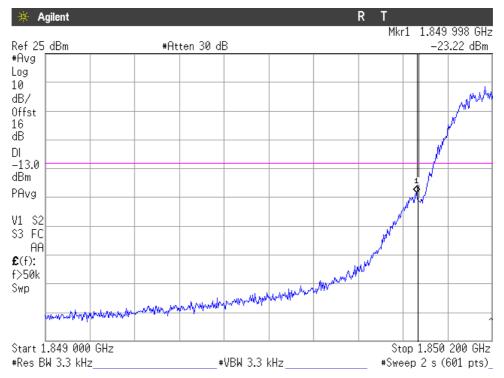
Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

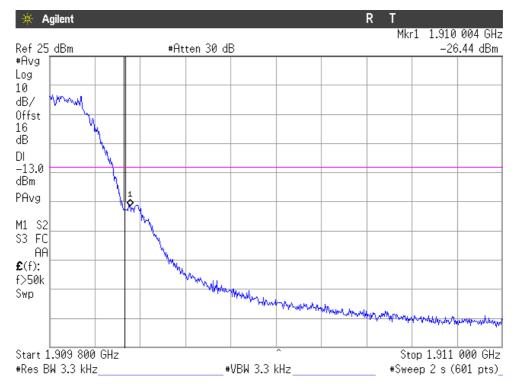
At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS (see plots in next pages)


MODULATION	Maximum level at lowest Block Edge (dBm)	Maximum level at highest Block Edge (dBm)
GPRS	-23.22	-26.44
EDGE	-26.92	-30.67
WCDMA	-16.58	-18.24
HSUPA	-20.11	-21.38

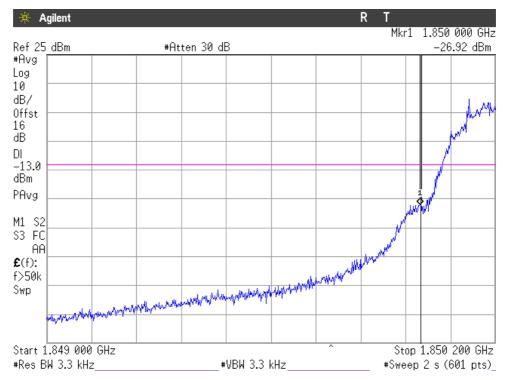
Measurement uncertainty = ± 1.57 dB.



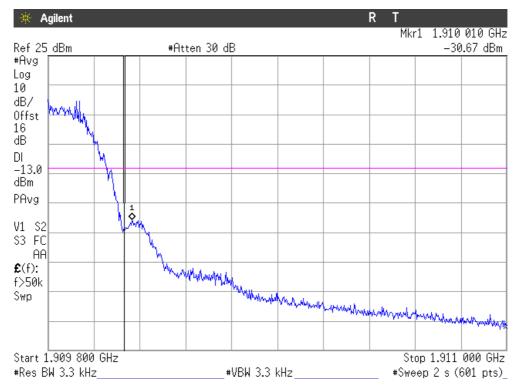
GPRS MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power


CHANNEL HIGHEST

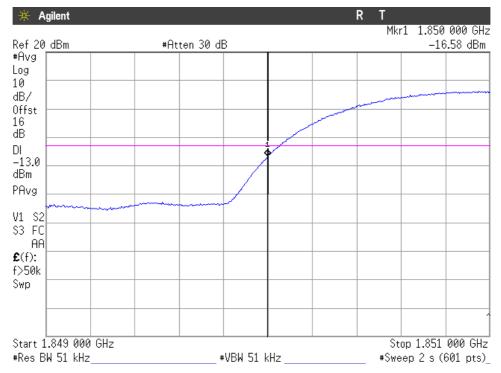
NOTE: The equipment transmits at the maximum output power



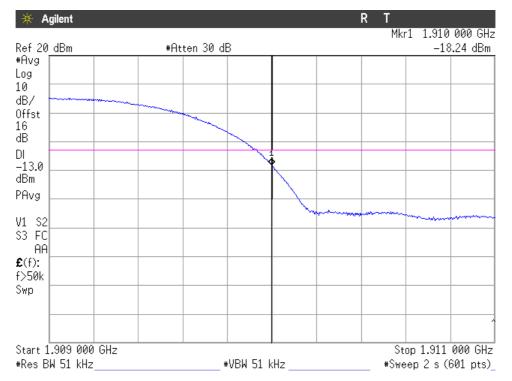
EDGE MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power


CHANNEL HIGHEST

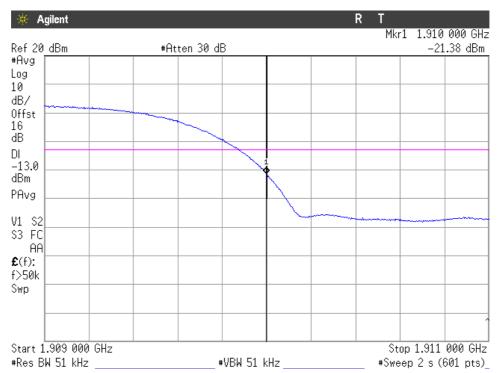
NOTE: The equipment transmits at the maximum output power



WCDMA MODULATION

CHANNEL LOWEST

NOTE: The equipment transmits at the maximum output power


CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

HSUPA MODULATION

CHANNEL LOWEST 🔆 Agilent R T Mkr1 1.850 000 GHz -20.11 dBm Ref 20 dBm #Atten 30 dB #Avg Log 10 dB/ Offst 16 dB DI -13.0 dBm PAvg V1 S2 S3 FC AA **£**(f): f>50k Swp Start 1.849 000 GHz Stop 1.851 000 GHz #Res BW 51 kHz ₩VBW 51 kHz #Sweep 2 s (601 pts)_ NOTE: The equipment transmits at the maximum output power

CHANNEL HIGHEST

NOTE: The equipment transmits at the maximum output power

Radiated emissions

SPECIFICATION

§ 24.238

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Each detected emissions were substituted by the Substitution method, in accordance with the ANSI/TIA/EIA-603-C: 2004.

Measurement Limit:

According to specification, the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$, P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po), and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm

RESULTS

GPRS MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

EDGE MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

WCDMA MODULATION

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

HSUPA MODULATION

1. CHANNEL: LOWEST

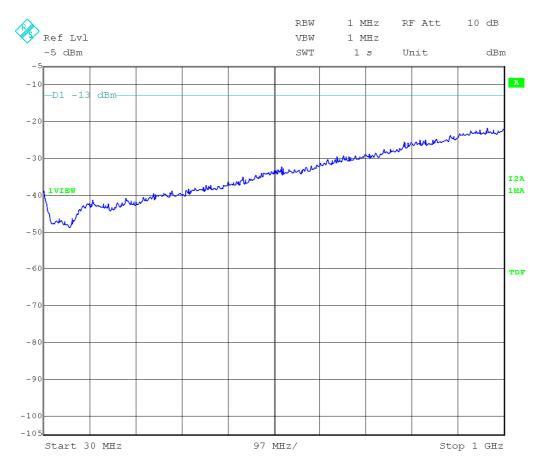
Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

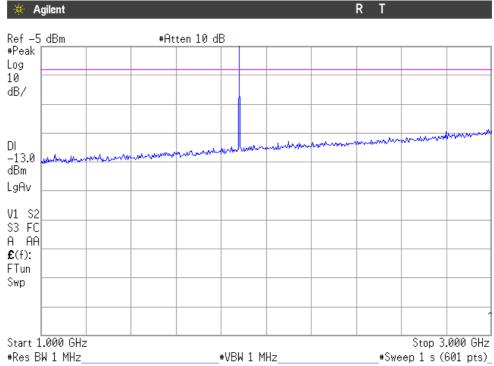

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz. No spurious signals were found in all the range.

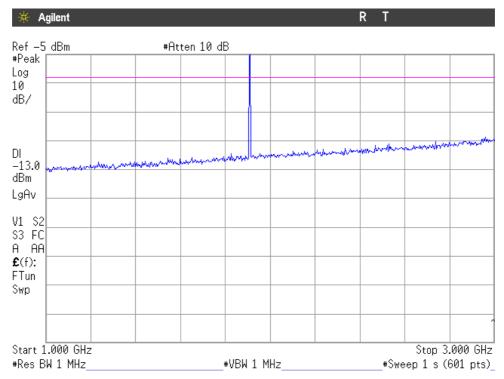
Frequency range 1 GHz-20 GHz. No spurious signals were found in all the range.

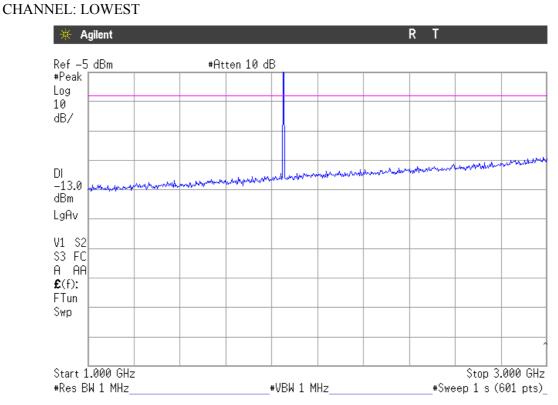
FREQUENCY RANGE 30 MHz-1000 MHz.

(This plot is valid for all three channels and all modulations).

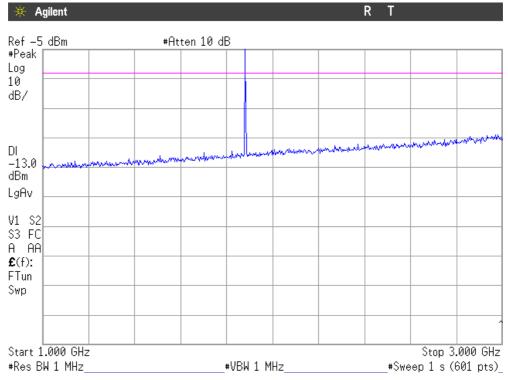

FREQUENCY RANGE 1 GHz to 3 GHz.

GPRS MODULATION

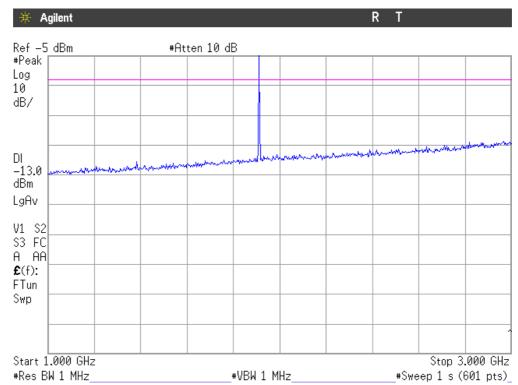

Note: The peak above the limit is the carrier frequency.



CHANNEL: HIGHEST

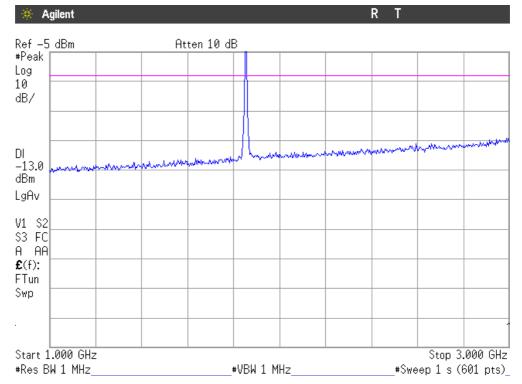

Note: The peak above the limit is the carrier frequency.

EDGE MODULATION

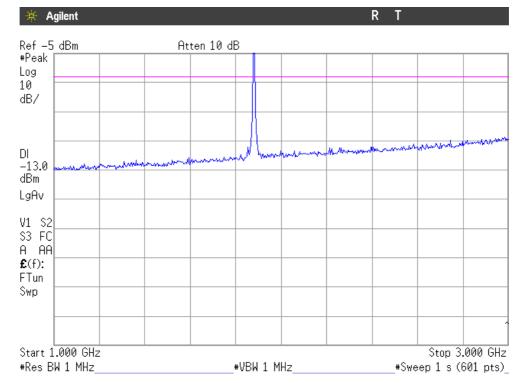


CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

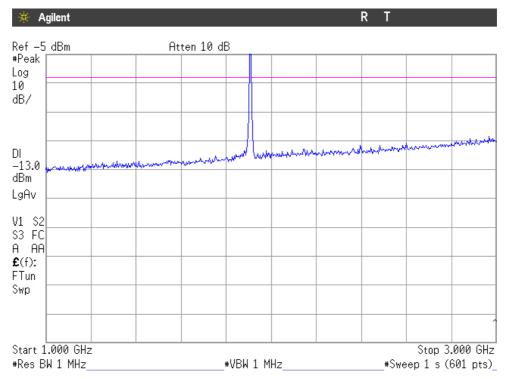


CHANNEL: HIGHEST

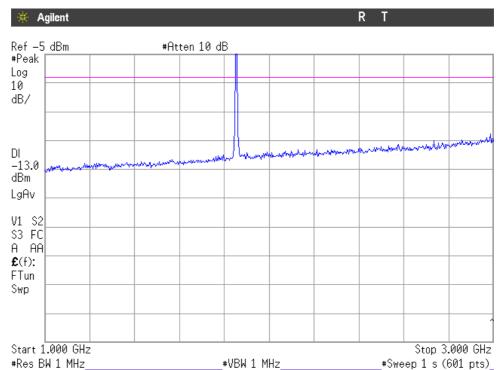


WCDMA MODULATION

CHANNEL: LOWEST

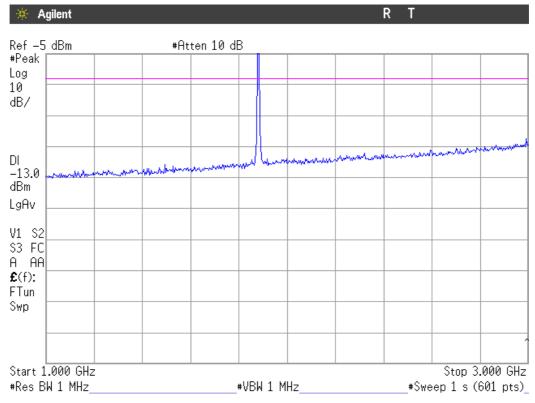

Note: The peak above the limit is the carrier frequency.

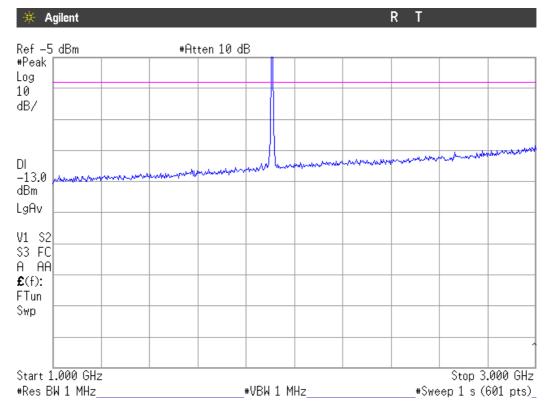
CHANNEL: MIDDLE



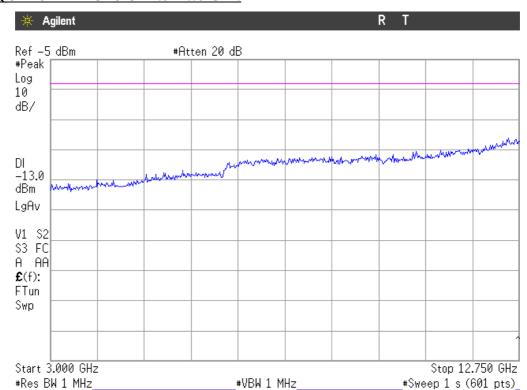
CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.


HSUPA MODULATION

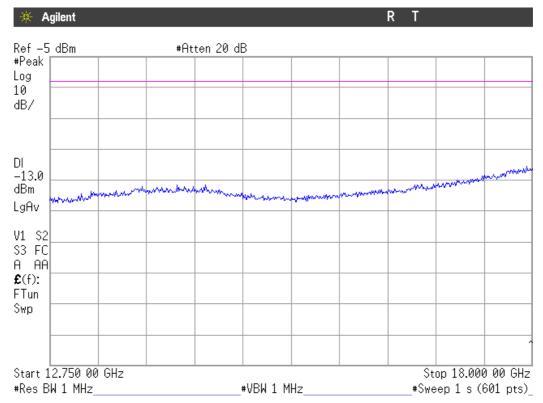

CHANNEL: LOWEST

CHANNEL: MIDDLE



Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST



FREQUENCY RANGE 3 GHz to 12.75 GHz.

(This plot is valid for all three channels and all modulations).

(This plot is valid for all three channels and all modulations).

FREQUENCY RANGE 18 GHz TO 20 GHz.

(This plot is valid for all three channels and all modulations).

APPENDIX B: Measuring results for electromagnetic emission

CONTENT:

DESCRIPTION OF THE OPERATION MODES	
CONTINUOUS CONDUCTED EMISSION ON POWER LEADS	109

DESCRIPTION OF THE OPERATION MODES

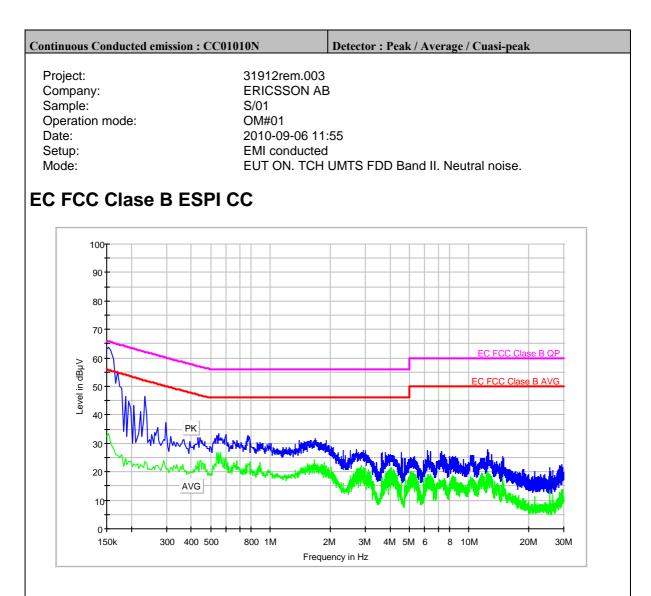
The operation modes described in this paragraph constitute a functionality of the sample under test for itself. Every operation mode takes a failure criteria for the immunity test that they were applying to it and a monitoring to guarantee performance of the same ones.

In the following table appears the operation modes used by the samples tested to that it refers the present test report.

OPERATION MODE	DESCRIPTION
OM#01	EUT ON. TCH UMTS FDD Band II. Power supply: AC/DC Adapter (115Vac).
OM#02	EUT ON. IDLE UMTS FDD Band II. Power supply: AC/DC Adapter. (115Vac).
OM#03	EUT ON. TCH UMTS FDD BAND V. Power supply: AC/DC Adapter. (115Vac).
OM#04	EUT ON. IDLE UMTS FDD BAND V. Power supply: AC/DC Adapter. (115Vac).
OM#05	EUT ON. TCH 850 MHz. Power supply: AC/DC Adapter. (115Vac).
OM#06	EUT ON. IDLE 850 MHz. Power supply: AC/DC Adapter. (115Vac).
OM#07	EUT ON. TCH 1900 MHz. Power supply: AC/DC Adapter. (115Vac).
OM#08	EUT ON. IDLE 1900 MHz. Power supply: AC/DC Adapter. (115Vac).

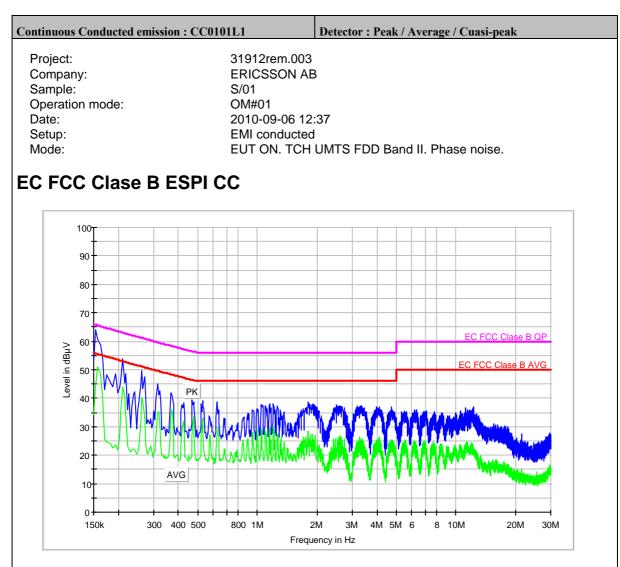
CONTINUOUS CONDUCTED EMISSION ON POWER LEADS

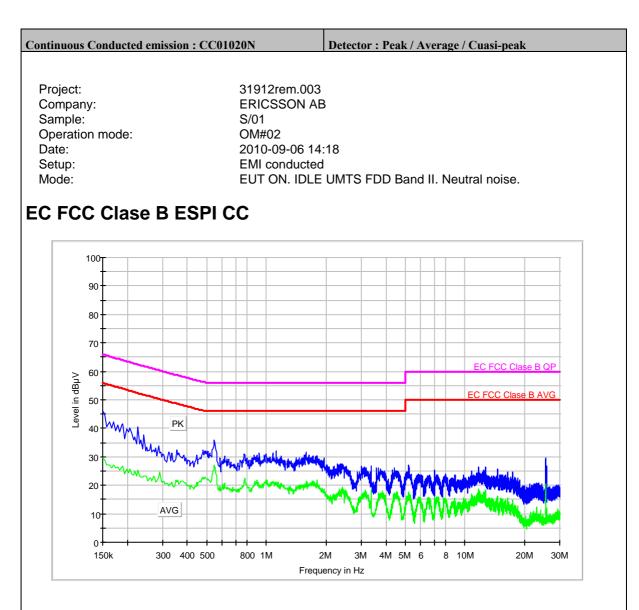
LIMITS:	Product standard :	FCC RULES AND REGULATIONS 47 CFR PART 15, SUBPART B & IC RSS-GEN ISSUE 2, JUNE 2007
	Test standard :	FCC RULES AND REGULATIONS 47 CFR PART 15, SUBPART B & IC RSS-GEN ISSUE 2, JUNE 2007

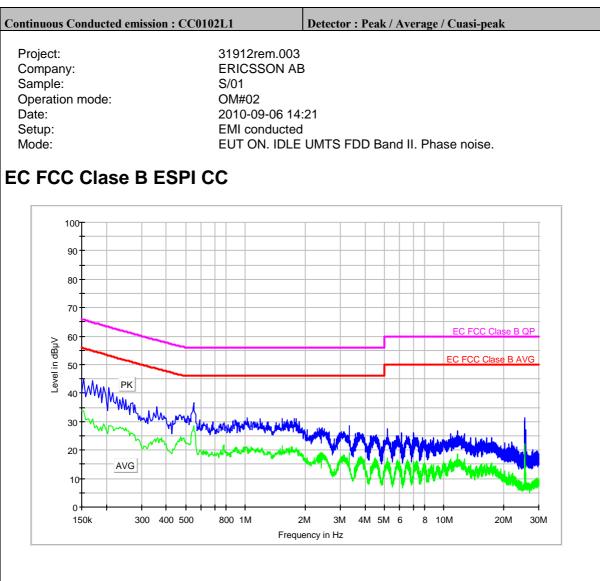

CLASS B

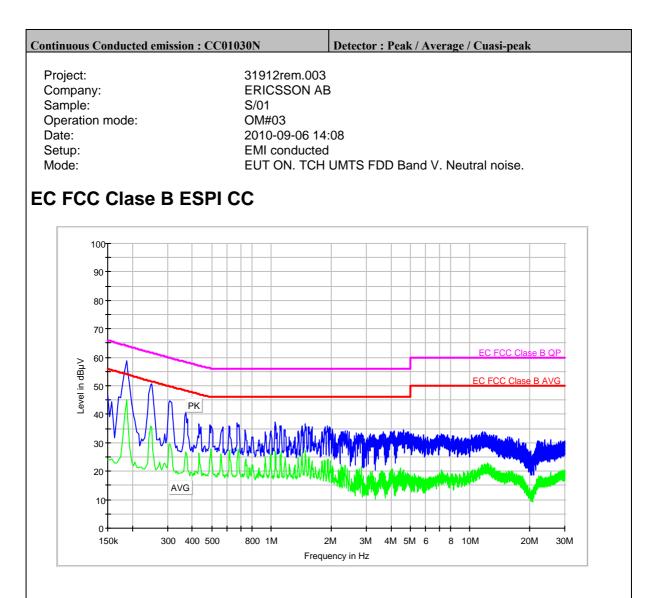
The applied limit for continuous conducted emissions in power leads, according with the requirements of FCC Rules and Regulations 47 CFR Part 15, Subpart B IC RSS-Gen Issue 2, June 2007 in the frequency range 0,15 to 30 MHz, for Class B equipment was:

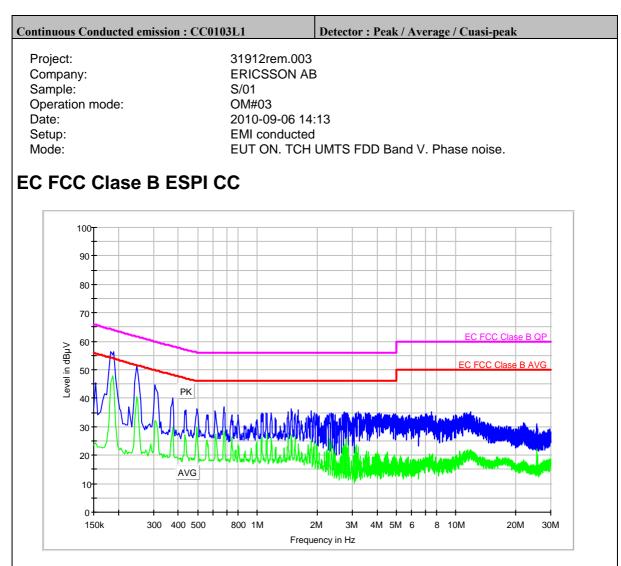
Frequency range		Limit (dBµV)			
(MHz)		Quasi-peak		Average	
0,15 to 0,5		66-56		56-46	
0,5 to 5		56		46	
5 to 30		60		50	
TESTED SAMPLES:		S/01; S/02 & S/03			
TESTED OPERATION MODES:		OM#01 to OM#08			
TEST RESULTS :		CCmmnnhh: CC, Conducted Condition; mm: Sample		ple	
		numb	er; nn: Oj	peration mode; hh: wire	

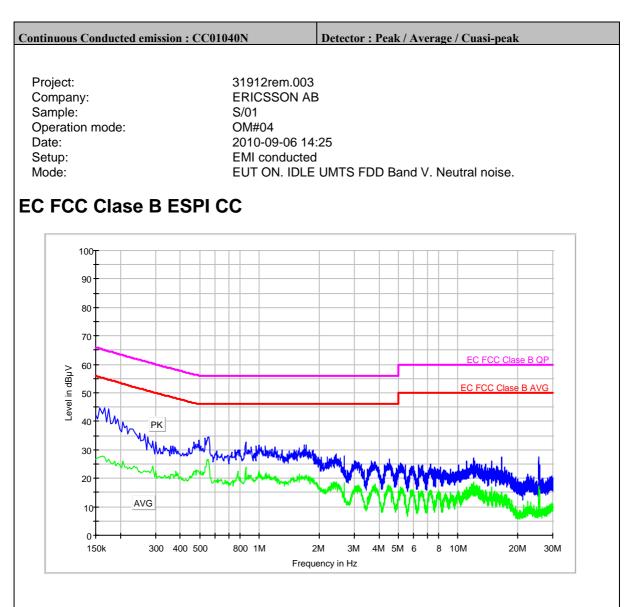

CCmmnnhh	Description	Result
CC0101L1	Phase wire noise	Р
CC01010N	Neutral wire noise	Р
CC0102L1	Phase wire noise	Р
CC01020N	Neutral wire noise	Р
CC0103L1	Phase wire noise	Р
CC01030N	Neutral wire noise	Р
CC0104L1	Phase wire noise	Р
CC01040N	Neutral wire noise	Р
CC0105L1	Phase wire noise	Р
CC01050N	Neutral wire noise	Р
CC0106L1	Phase wire noise	Р
CC01060N	Neutral wire noise	Р
CC0107L1	Phase wire noise	Р
CC01070N	Neutral wire noise	Р
CC0108L1	Phase wire noise	Р
CC01080N	Neutral wire noise	Р
CC0205L1	Phase wire noise	Р
CC02050N	Neutral wire noise	Р
CC0206L1	Phase wire noise	Р
CC02060N	Neutral wire noise	Р
CC0207L1	Phase wire noise	Р
CC02070N	Neutral wire noise	Р
CC0208L1	Phase wire noise	Р
CC02080N	Neutral wire noise	Р
CC0305L1	Phase wire noise	Р
CC03050N	Neutral wire noise	Р
CC0306L1	Phase wire noise	Р
CC03060N	Neutral wire noise	Р
CC0307L1	Phase wire noise	Р
CC03070N	Neutral wire noise	Р
CC0308L1	Phase wire noise	Р
CC03080N	Neutral wire noise	Р

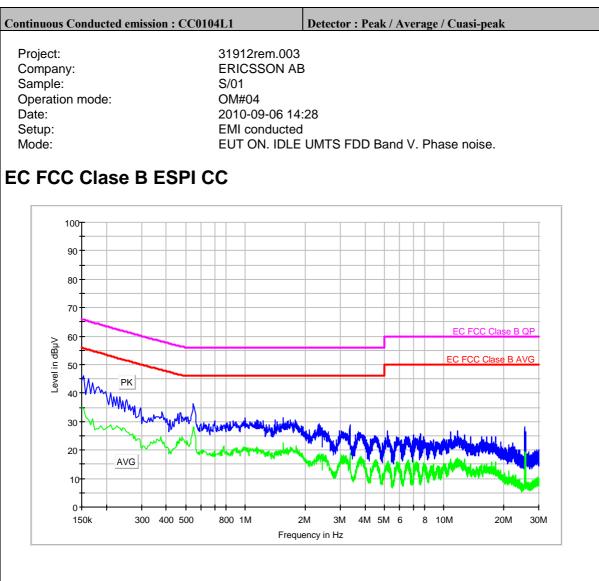

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	63.6	33.6
0.234000	46.6	23.7
0.186000	46.4	24.7
0.194000	44.8	23.6
0.206000	43.4	23.0
0.222000	41.1	22.6
0.298000	37.2	21.3
0.270000	35.5	22.1
0.550000	33.5	26.7
1.686000	31.7	22.0
12.466000	27.8	20.2
2.706000	27.8	16.8
2.526000	27.6	18.6

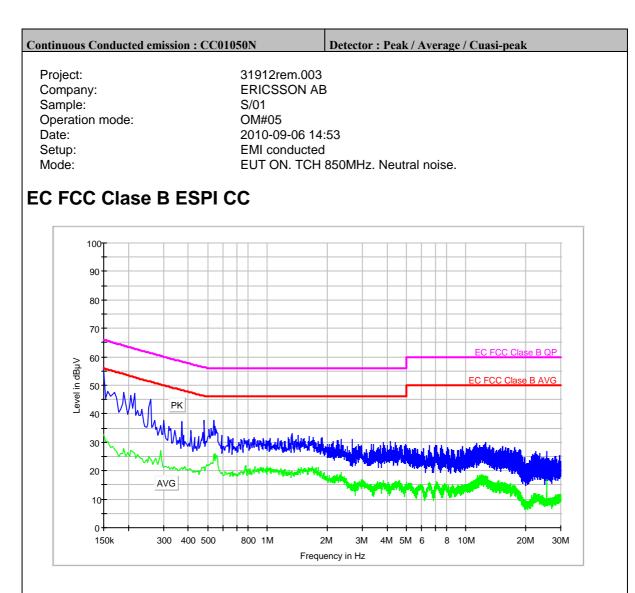

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	64.1	44.6
0.210000	53.9	43.9
0.262000	49.5	40.1
0.314000	44.9	35.0
0.242000	42.1	21.9
0.366000	41.8	34.0
0.470000	39.4	26.7
0.530000	39.1	33.1
1.802000	38.6	26.1
0.626000	38.6	27.1
0.426000	38.2	32.1
1.198000	38.0	24.1
1.154000	38.0	29.6

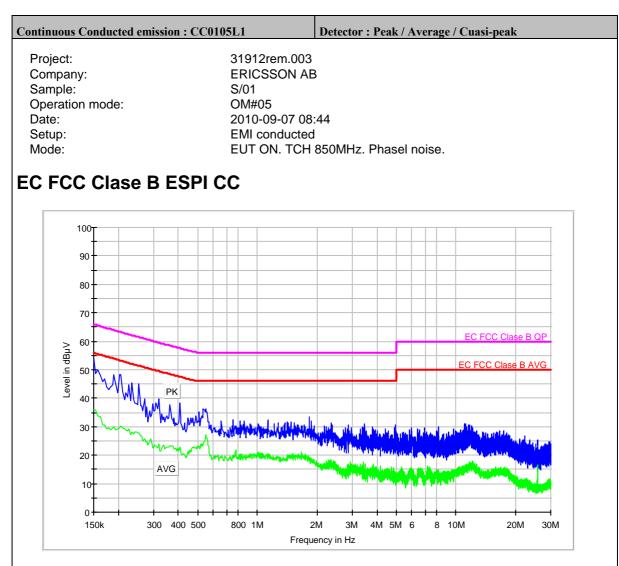

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	46.2	29.5
0.546000	35.9	26.9
1.122000	32.1	20.5
1.578000	31.5	20.9
25.582000	29.7	16.2
25.554000	27.7	9.9
25.642000	27.5	11.2
5.218000	26.9	17.4
25.658000	26.9	10.2
3.390000	26.9	16.2
3.022000	26.6	15.3
12.674000	26.6	18.3
11.730000	26.4	18.7

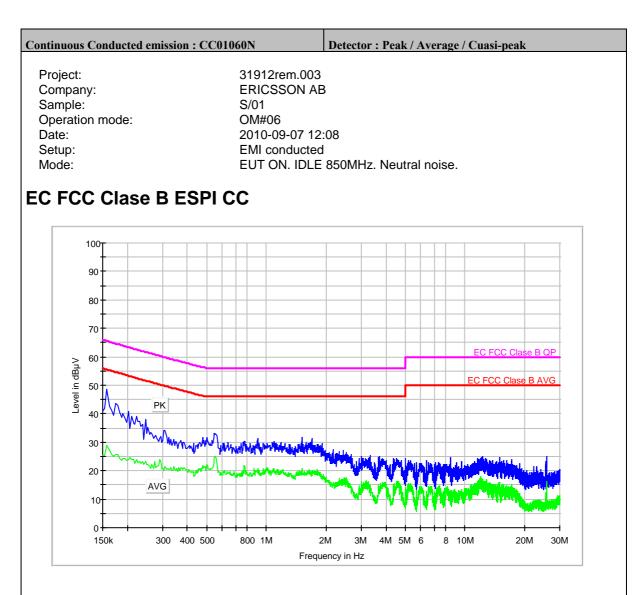

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	45.2	33.7
0.206000	42.0	28.4
0.550000	36.6	28.4
25.626000	31.2	15.7
25.590000	30.2	16.8
25.598000	30.2	15.5
3.338000	28.4	18.8
25.578000	28.4	12.9
25.642000	28.3	17.1
5.170000	27.5	15.1
25.666000	27.1	10.6
11.682000	26.9	18.6
7.010000	26.2	15.8

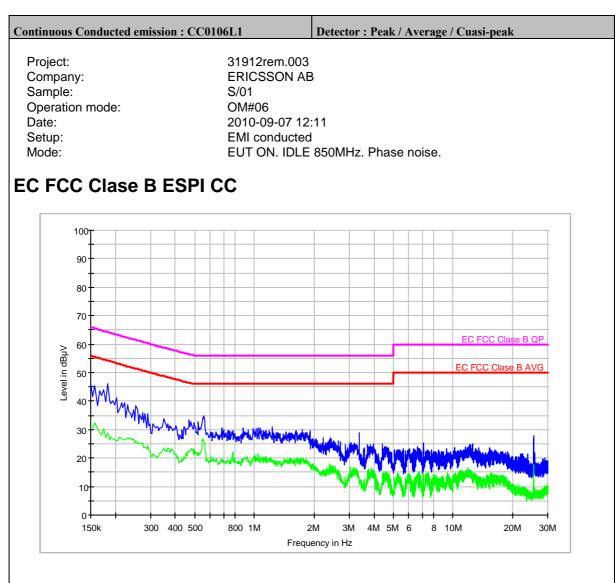

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.186000	58.7	45.2
0.250000	50.6	35.1
0.150000	47.0	24.1
0.310000	44.8	29.6
0.370000	40.7	26.6
1.050000	37.3	27.1
0.674000	36.9	23.4
0.434000	36.5	26.4
1.482000	36.5	25.2
0.490000	36.2	24.4
0.614000	36.0	25.8
1.118000	35.9	26.7
1.426000	35.8	26.3

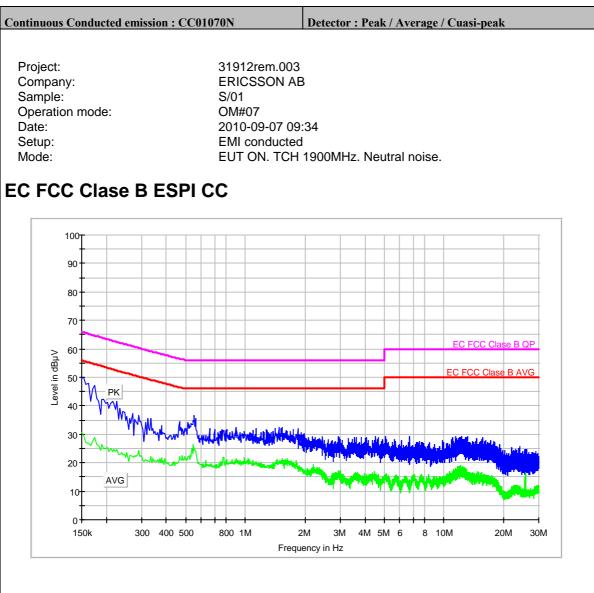

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.182000	56.5	45.5
0.246000	51.3	40.5
0.154000	45.2	24.5
0.306000	44.6	32.0
0.374000	40.0	29.4
0.226000	37.0	21.3
0.678000	37.0	28.4
0.498000	36.4	29.8
1.486000	36.1	27.2
0.438000	36.1	25.3
1.606000	36.0	23.8
0.614000	35.6	25.0
1.862000	35.6	25.1

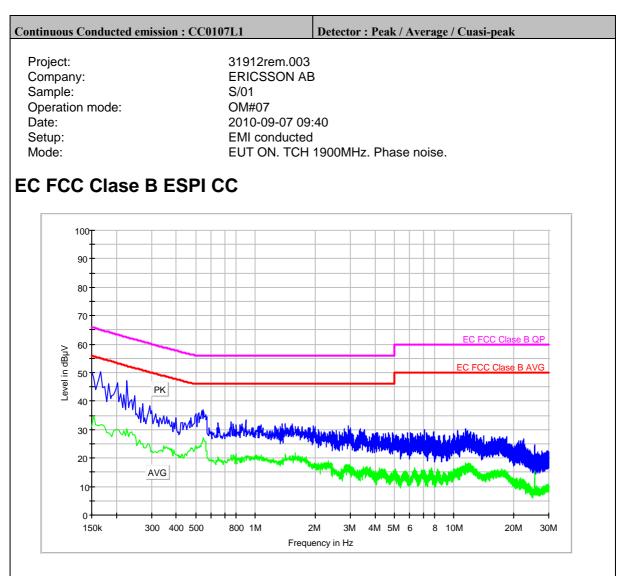

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	44.6	27.5
0.558000	34.5	25.4
0.854000	32.6	23.8
1.722000	31.7	21.0
2.674000	27.7	18.4
25.594000	27.5	13.7
16.654000	27.4	15.3
11.942000	27.3	18.8
4.514000	26.7	16.6
14.770000	26.2	17.0
3.018000	26.2	17.0
3.654000	26.0	14.6
11.002000	25.9	16.7

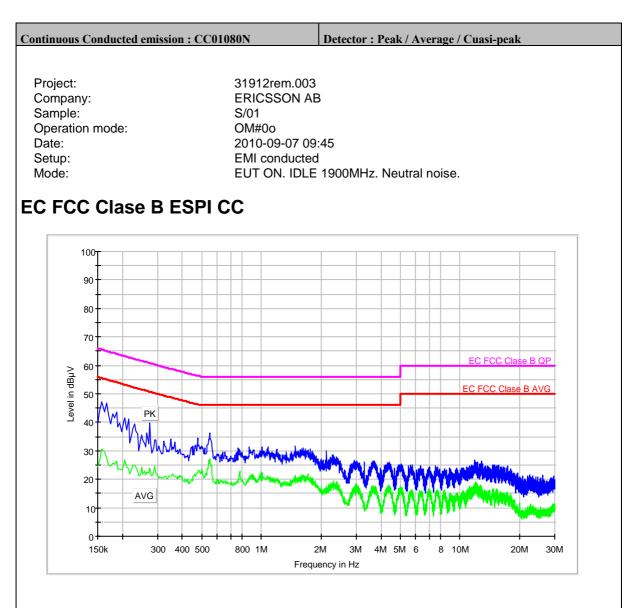

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	46.3	34.6
0.546000	36.4	27.7
1.554000	31.3	22.4
2.350000	29.2	17.0
3.358000	28.7	19.2
25.594000	28.3	13.4
2.446000	27.8	17.9
25.618000	27.4	19.3
11.706000	26.8	16.9
5.198000	26.6	15.9
25.666000	26.4	18.9
3.690000	26.4	14.3
10.762000	26.3	16.7

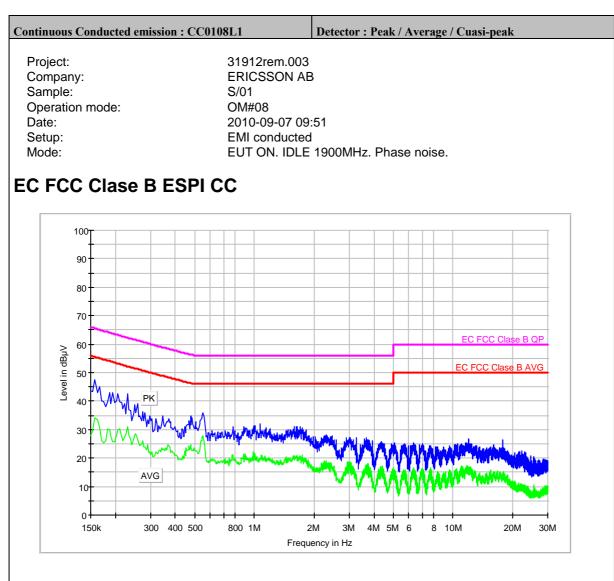

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	54.9	32.8
0.190000	47.5	27.7
0.214000	47.1	26.0
0.258000	45.0	24.0
0.482000	37.8	21.4
0.538000	37.5	25.5
0.370000	37.2	21.1
1.326000	33.1	19.6
1.898000	31.9	17.4
2.354000	31.0	18.7
2.678000	30.9	13.0
2.250000	30.5	16.8
4.170000	30.2	14.2

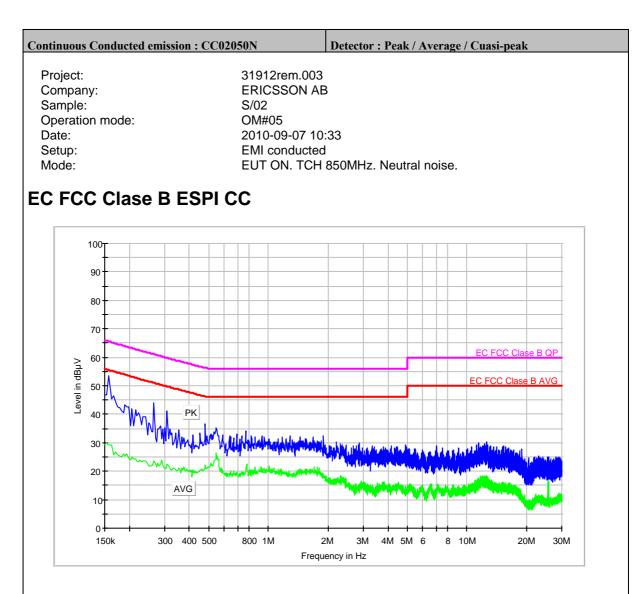

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	54.3	36.1
0.206000	48.3	30.2
0.234000	45.5	28.1
0.254000	45.2	28.0
0.318000	39.6	23.9
0.406000	38.4	22.9
0.362000	37.6	23.1
0.550000	36.3	27.1
1.822000	33.4	19.4
1.130000	32.6	20.4
0.754000	32.3	19.2
1.874000	32.0	18.6
1.474000	31.7	20.0

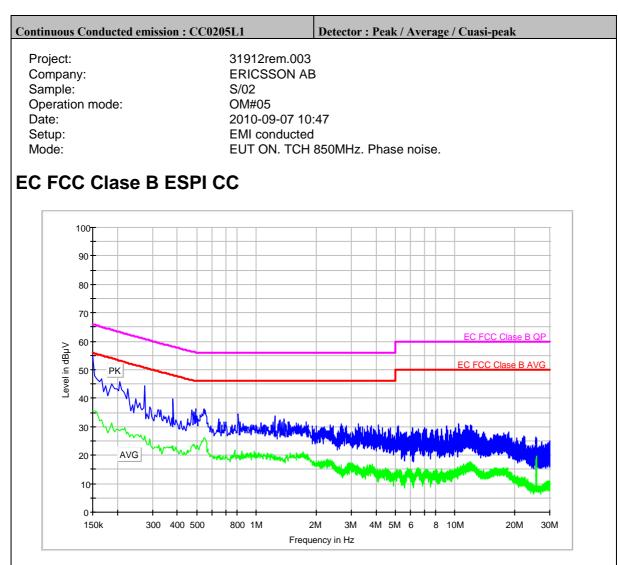

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	48.4	28.8
0.246000	38.1	23.3
0.550000	33.0	24.9
1.518000	31.7	20.7
3.346000	25.5	12.8
25.666000	24.9	16.2
12.226000	24.8	16.9
3.690000	24.8	12.9
14.994000	24.8	15.2
8.486000	24.5	13.2
4.354000	24.4	13.9
5.026000	24.2	13.2
17.246000	23.8	15.1

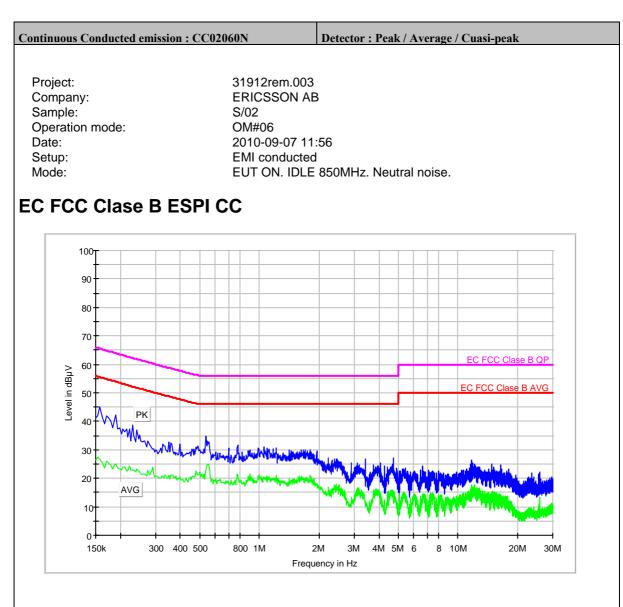

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	46.2	30.7
0.182000	46.1	29.0
0.558000	35.0	25.7
3.386000	28.8	12.4
25.626000	27.8	11.3
2.402000	27.2	16.9
25.590000	27.0	17.7
25.554000	26.6	9.5
7.098000	25.4	14.3
12.610000	24.9	14.8
3.970000	24.9	15.2
4.398000	24.8	13.4
2.878000	24.6	12.6

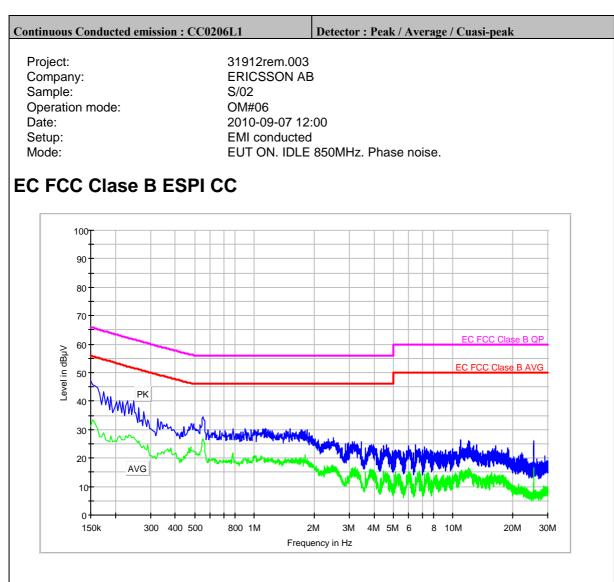

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	49.8	29.7
0.554000	36.6	24.3
0.290000	36.5	24.5
0.322000	35.5	20.8
1.482000	32.4	20.4
0.894000	32.3	21.3
1.986000	30.1	16.8
2.938000	29.2	17.3
11.502000	29.2	16.2
5.074000	29.2	15.7
4.510000	29.1	15.3
13.074000	29.1	15.8
2.450000	29.1	16.6

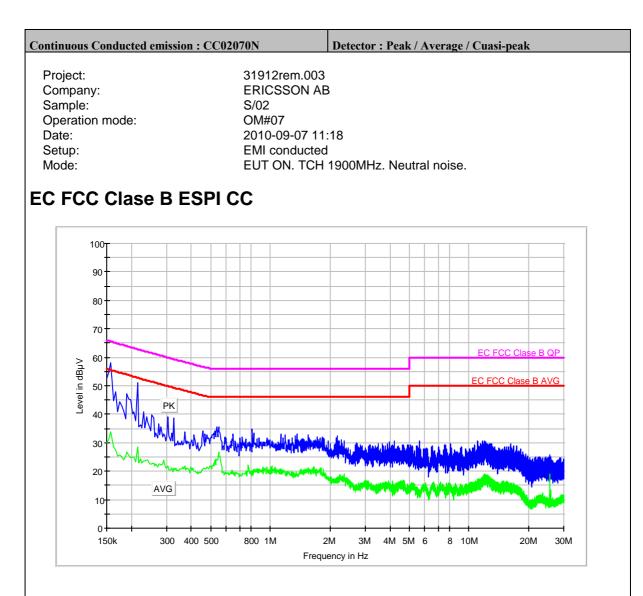

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.166000	50.5	31.5
0.150000	50.3	31.1
0.226000	47.2	30.3
0.202000	46.4	30.1
0.270000	39.2	25.2
0.294000	38.2	24.3
0.546000	37.1	27.0
0.894000	33.5	19.9
1.538000	32.1	20.6
1.362000	32.0	19.4
2.934000	31.3	17.7
1.966000	31.2	17.4
3.022000	30.7	16.0

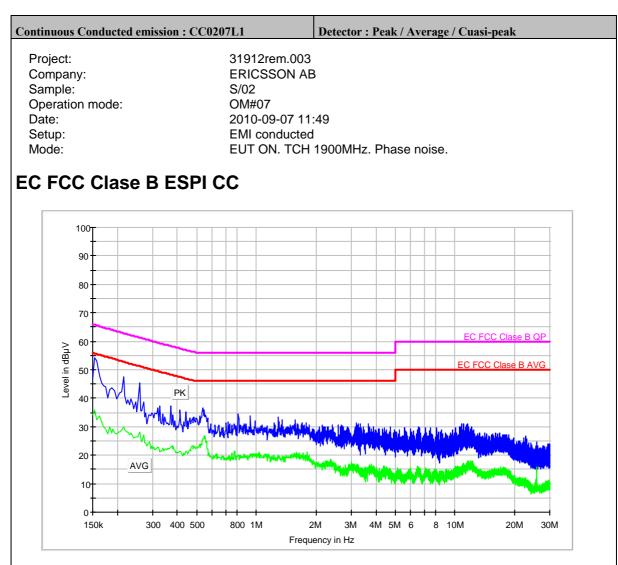

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	47.1	30.5
0.274000	39.9	23.9
0.230000	39.5	25.1
0.550000	36.2	27.0
1.486000	31.6	21.5
2.130000	30.0	17.7
2.922000	26.9	17.1
11.906000	26.6	17.8
12.774000	26.5	15.6
3.706000	26.4	15.9
3.314000	26.0	11.8
4.386000	25.9	17.5
5.058000	25.4	16.6

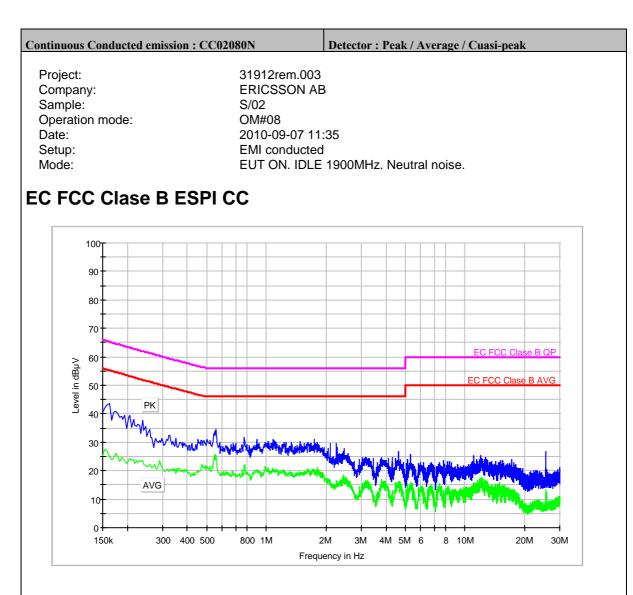

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	47.5	34.0
0.230000	42.5	31.1
0.258000	39.1	26.4
0.550000	36.1	27.3
1.070000	32.0	20.0
3.030000	27.1	17.3
3.646000	27.0	16.8
11.954000	26.9	16.3
17.846000	26.3	14.9
3.926000	25.9	11.8
4.354000	25.6	14.0
6.330000	25.4	15.9
5.074000	25.3	15.4

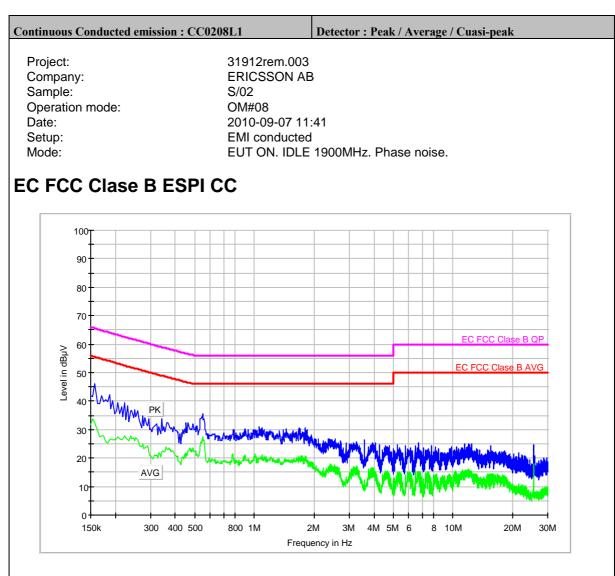

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dΒμV)
0.158000	53.6	29.3
0.266000	44.2	23.5
0.206000	42.0	25.1
0.310000	41.1	22.5
0.482000	36.6	22.1
0.546000	35.3	26.5
0.354000	34.4	21.1
0.770000	34.1	20.6
0.694000	33.0	19.6
1.282000	32.4	18.2
1.898000	32.2	18.5
1.442000	32.2	20.3
12.554000	30.3	16.3

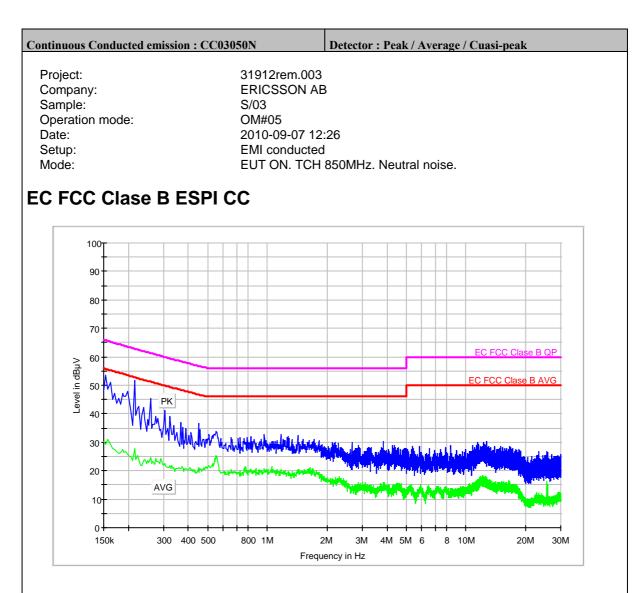

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	55.0	35.5
0.274000	44.3	26.8
0.382000	39.7	23.3
0.542000	36.3	26.2
0.810000	34.6	20.1
1.238000	33.8	19.8
0.646000	32.8	19.6
1.374000	32.6	17.6
10.458000	31.1	14.6
2.662000	31.1	15.2
3.266000	31.0	15.7
11.370000	30.8	16.1
12.030000	30.7	16.7

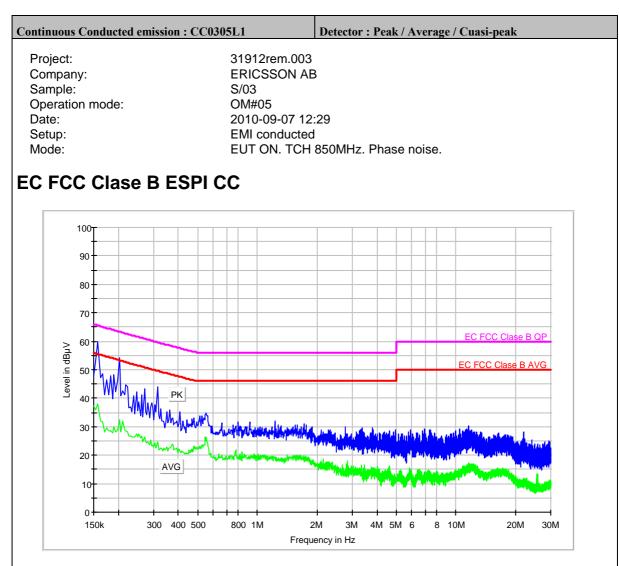

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	44.9	26.7
0.538000	35.0	22.8
0.778000	31.6	21.3
4.750000	26.9	13.2
3.402000	26.9	11.9
11.758000	26.3	17.6
2.894000	25.5	13.5
4.078000	25.2	12.1
11.586000	24.9	16.1
14.786000	24.9	13.9
16.438000	24.5	13.6
4.242000	24.4	11.9
6.610000	24.3	13.8

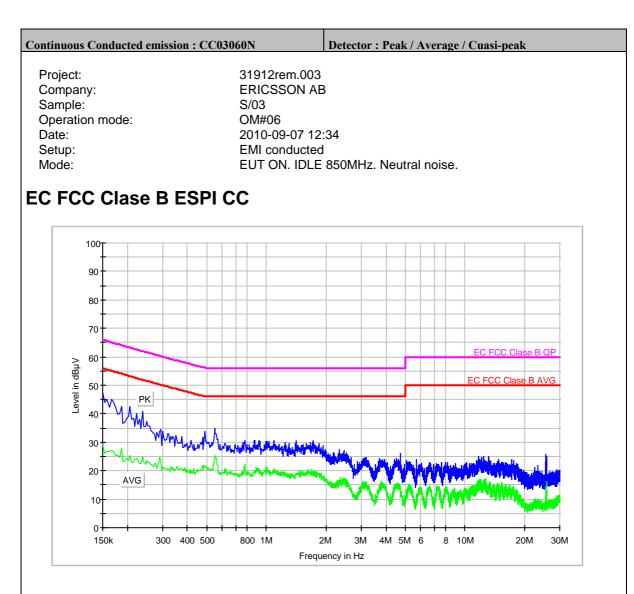

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	47.1	30.9
0.554000	34.5	26.8
10.938000	26.3	14.8
11.974000	26.1	15.9
25.598000	26.1	15.9
3.442000	25.7	11.9
2.966000	25.2	12.7
2.870000	25.0	12.9
13.190000	24.8	13.7
6.486000	24.8	13.2
4.626000	24.7	14.5
3.878000	24.6	15.8
16.482000	24.5	13.5

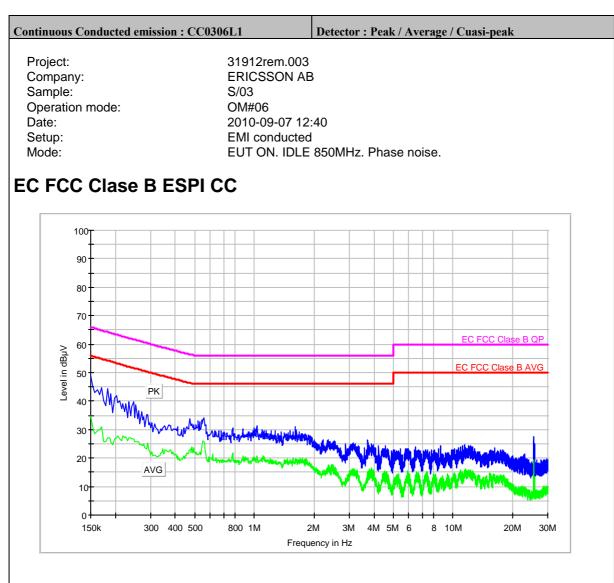

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	58.1	33.7
0.214000	51.1	28.6
0.190000	47.1	26.8
0.306000	39.0	21.8
0.326000	38.8	21.0
0.538000	35.7	23.9
0.810000	34.8	20.2
1.130000	33.2	20.9
0.650000	33.0	19.4
1.358000	33.0	18.7
1.546000	32.7	20.3
2.162000	32.5	18.1
2.154000	31.8	17.5

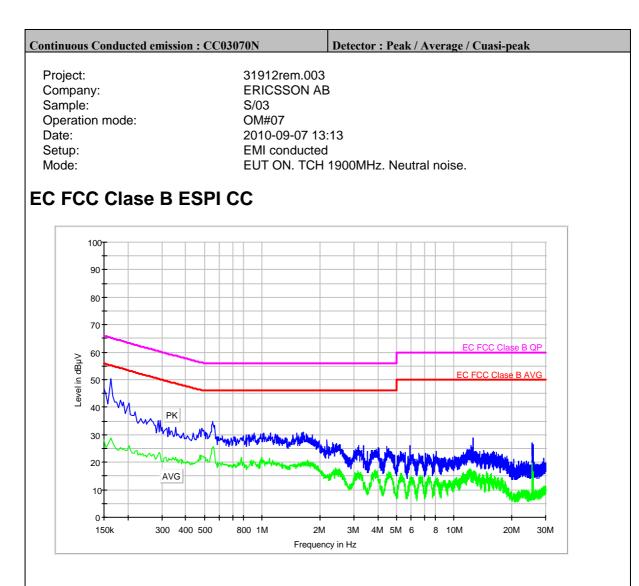

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.154000	54.1	36.0
0.214000	47.4	29.8
0.258000	45.4	28.0
0.326000	37.3	21.3
0.370000	37.2	22.9
0.538000	36.7	25.7
0.414000	35.8	21.5
0.442000	35.3	21.6
0.810000	34.5	20.0
0.934000	33.9	20.3
1.294000	33.5	19.5
1.574000	32.4	20.3
3,178000	31.4	16.1

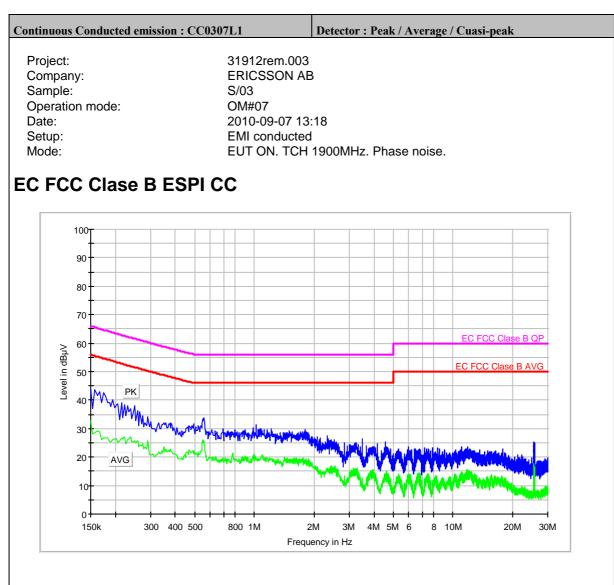

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.162000	43.7	24.9
0.558000	34.5	25.4
1.082000	31.2	20.0
2.090000	29.5	16.7
2.258000	29.4	16.5
4.622000	26.9	16.1
25.622000	26.7	10.4
5.294000	25.6	14.6
11.974000	25.3	17.1
11.106000	25.2	16.0
3.058000	24.8	15.6
3.790000	24.7	17.0
4.286000	24.7	12.7

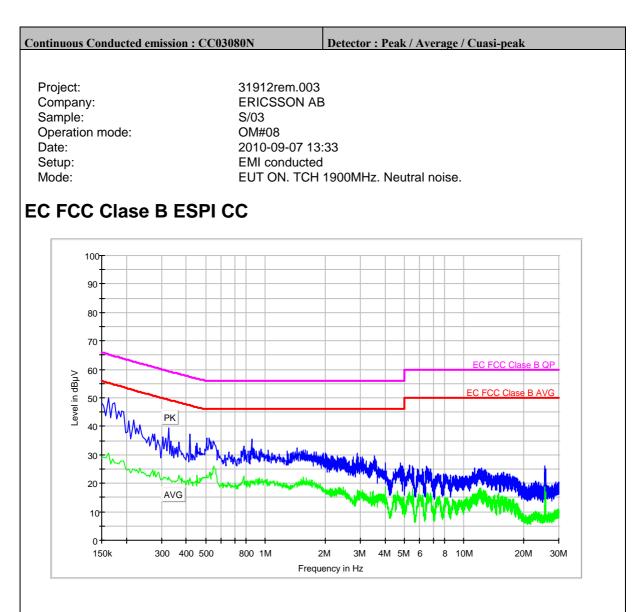

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	46.3	32.4
0.186000	42.4	26.5
0.150000	41.8	31.6
0.170000	41.7	27.9
0.154000	41.4	33.8
0.178000	40.4	25.6
0.194000	40.1	26.3
0.182000	39.9	25.5
0.174000	39.6	27.9
0.222000	39.6	27.9
0.206000	39.5	27.6
0.166000	39.2	27.5
0.162000	39.2	29.6

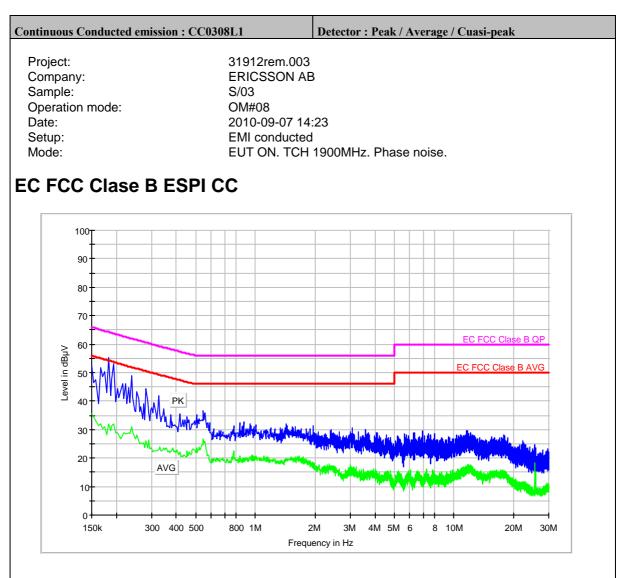

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dΒμV)
0.154000	53.6	29.1
0.214000	51.7	27.9
0.258000	45.4	24.6
0.238000	42.1	23.7
0.306000	41.2	22.6
0.322000	39.0	22.0
0.366000	36.8	20.8
0.450000	36.5	21.3
0.390000	35.0	20.8
0.458000	34.6	20.9
1.170000	32.9	20.3
0.966000	32.8	20.7
1.422000	32.2	19.6


Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.158000	59.9	38.2
0.202000	54.1	32.3
0.182000	48.0	28.4
0.314000	44.1	24.5
0.270000	43.3	26.5
0.246000	42.2	27.3
0.262000	41.2	26.9
0.362000	35.9	22.6
0.554000	35.0	26.4
1.222000	32.0	19.4
11.530000	30.2	16.7
2.778000	29.9	13.7
3.790000	29.5	14.9


Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	47.6	29.2
0.550000	34.9	24.8
4.730000	26.2	13.2
25.614000	25.8	13.2
13.122000	25.1	15.0
12.430000	24.9	16.6
25.646000	24.9	12.6
3.166000	24.6	15.9
3.726000	24.3	13.4
17.190000	24.1	12.3
5.706000	23.8	11.7
14.714000	23.8	15.2
5.074000	23.5	12.9


Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.150000	48.9	34.8
0.182000	44.3	27.3
0.202000	41.9	27.0
0.558000	34.0	25.6
1.606000	31.1	18.4
25.602000	27.6	19.5
25.578000	27.5	13.6
3.726000	26.3	15.2
25.558000	25.9	10.4
3.146000	25.2	15.6
25.658000	25.2	13.2
11.406000	24.5	14.8
4.234000	24.3	11.5


Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.162000	50.4	28.8
0.554000	35.0	25.2
12.594000	29.0	16.5
2.182000	28.1	14.6
25.642000	26.9	11.4
25.658000	26.5	13.2
5.902000	26.1	14.4
3.370000	26.0	12.5
12.246000	26.0	15.3
4.482000	25.7	16.0
4.042000	25.2	13.7
14.342000	24.2	13.3
8.090000	24.0	13.4
6.090000	24.0	13.4


Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dΒμV)
0.150000	44.0	32.7
0.158000	43.6	28.5
0.558000	33.9	25.7
3.506000	26.3	12.7
25.586000	25.2	10.9
4.554000	25.2	13.7
3.266000	25.1	14.6
2.830000	25.0	13.4
25.674000	25.0	16.6
4.178000	24.8	10.4
3.670000	23.9	11.7
11.866000	23.6	15.5
5.946000	23.6	12.6

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.162000	49.9	30.8
0.218000	42.3	24.9
0.326000	39.3	22.3
0.418000	37.4	22.0
0.506000	35.8	22.7
0.854000	35.4	20.7
0.778000	32.9	22.4
1.442000	32.4	19.7
2.890000	30.8	15.7
3.530000	29.4	14.6
2.774000	29.2	13.6
4.038000	27.0	16.7
4.770000	26.9	14.9

Frequency (MHz)	MaxPeak- ClearWrite (dBµV)	Average- ClearWrite (dBµV)
0.182000	55.1	31.9
0.194000	53.1	32.1
0.150000	52.5	35.6
0.166000	51.9	32.2
0.238000	49.1	31.1
0.214000	46.2	28.3
0.282000	44.4	26.2
0.254000	43.3	28.1
0.326000	41.8	22.9
0.546000	36.7	26.8
0.874000	32.7	20.1
1.434000	31.9	19.7
1.954000	31.5	18.4