1.1 Standard Applicable

According to \$ 1.1307(b)(1), system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	F/300	6
1500-100000	/	/	5	6

(a) Limits for Occupational / Controlled Exposure

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-100000	/	/	1	30

Note: f = frequency in MHz: * = Plane-wave equivalents power density

1.2 MPE Calculation Method

- $S = (30*P*G) / (377*R^2)$
- S = power density (in appropriate units, e.g., mw/cm²)
- P = power input to the antenna (in appropriate units, e.g., mw)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator,
 - the power gain factor is normally numeric gain.
- \mathbf{R} = distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.3 MPE Calculation Result

Model No.: <u>ATM2000</u> FCC ID: <u>VUJATM2000S1</u> Device category: <u>Mobile or Fixed device</u>

With Antenna 1: Maximum peak output power: <u>26.75 (dBm)</u>
Maximum peak output power at antenna input terminal: <u>473.15(mW)</u>
Prediction distance: <u>>20(cm)</u>
Prediction frequency: <u>902.75 (MHz)</u>
Antenna gain: <u>1 (dBi)</u>
Directional gain: <u>1.26 (numeric)</u>
The worst case is power density at prediction frequency at 20cm: <u>0.12(mw/cm²)</u>
MPE limit for general population exposure at prediction frequency: <u>0.60 (mw/cm²)</u>

 $0.12(mw/cm^2) < 0.60 (mw/cm^2)$

With Antenna 2: Maximum peak output power: <u>26.75 (dBm)</u> Maximum peak output power at antenna input terminal: <u>473.15(mW)</u> Prediction distance: <u>>20(cm)</u> Prediction frequency: <u>902.75 (MHz)</u> Antenna gain: <u>-1 (dBi)</u> Directional gain: <u>0.79 (numeric)</u> The worst case is power density at prediction frequency at 20cm: <u>0.07(mw/cm²)</u> MPE limit for general population exposure at prediction frequency: <u>0.60 (mw/cm²)</u>

 $0.07(mw/cm^2) < 0.60 (mw/cm^2)$

So the transmitter complies with the RF exposure requirements and the SAR is not required.