

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

Atid

Dates of Tests: JAN. 20 ~ FEB. 4, 2009 Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

VUJAT870

APPLICANT

ATID CO.,Ltd

Equipment Class	:	Part 15 Spread Spectrum Transmitter (DSS)
Manufacturing Description	:	Industrial PDA
Manufacturer	:	ATID CO.,Ltd
Model name	:	AT870
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C; ANSI C-63.4-2003
Frequency Range	:	2402 ~ 2480MHz
RF power	:	Peak 2.14dBm - Conducted
Data of issue	:	February 6, 2009

This test report is issued under the authority of:

Dong - Min JUNG, Technical Manager

The test was supervised by:

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 CARRIER FREQUENCY SEPARATION	6
3.2.2 NUMBER OF HOPPING FREQUENCIES	8
3.2.3 20 dB BANDWIDTH	11
3.2.4 TIME OF OCCUPANCY (Dwell Time)	15
3.2.5 TTANSMITTER OUTPUT POWER	17
3.2.6 BAND – EDGE & SPURIOUS	19
3.2.7 FIELD STRENGTH OF HARMONICS	25
3.2.8 AC CONDUCTED EMISSIONS	30

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS	 37

1. General information's

<u>1-1 Test Performed</u>

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2009-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2009-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2010-05-03	IC filing

2. Information's about test item

2-1 Applicant & Manufacturer

Company name	:	ATID CO.,Ltd
Address	:	#1210 Byuksan/Gyungin digital valley II #481 – 10 Gasan-Dong
		Gumchon-Gu Seoul KOREA
Tel / Fax	:	+82-2-544-1436 / +82-2-544-1438

2-2 Equipment Under Test (EUT)

Trade name	:	Industrial PDA
Model name	:	AT870
Serial number	:	Identical prototype
Date of receipt	:	January 13, 2009
EUT condition	:	Pre-production, not damaged
Antenna type	:	Chip Antenna Max Gain 1.84dBi
Frequency Range	:	2402 ~ 2480MHz
RF output power	:	Peak 2.14dBm - Conducted
Number of channels	:	79
Duty cycle	:	82.27 %
Channel spacing	:	1MHz
Channel Access Protocol	:	Frequency Hopping
Type of Modulation	:	GFSK
Power Source (Battery)		3.7Vdc Li-Ion Battery, 2960mAh

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2441	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
PC	HP COMPAG dx2200	CNG6500RX9	HP
Monitor	HSTND-2311-A	CNC816QHF2	HP
Keyboard	SK-8115	641-OEWW	DELL
Mouse	MO56UO	510022473	DELL
Print	STYLUS C65	N/A	EPSON
earphone	N/A	N/A	N/A
Adaptor	JPW118	KA050N08	AULT KOREA

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)	
15.247(a)	Carrier Frequency Separation	> 25 kHz		С	
15.247(a)	Number of Hopping Frequencies	> 15 hops	-	С	
15.247(a)	20 dB Bandwidth 99% Bandwidth	> 1.5 MHz		С	
15.247	Dwell Time	< 0.4 seconds	Conducted	С	
15.247(b)	Transmitter Output Power	< 250 mWatt		С	
15.247(d)	Conducted Spurious emission	> 20 dBc		С	
15.247(d)	Band Edge	> 20 dBc		С	
15.249 / 15.209	Field Strength of Harmonics	< 54 dBuV (at 3m)		С	
15.109	Field Strength	-	- Radiated	С	
15.207 /15.107	AC Conducted Emissions	EN 55022	Line Conducted	С	
15.203	Antenna requirement	-	-	С	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					
<i>Note 2</i> : The data in this test report are traceable to the national or international standards.					

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = 3 MHz (wide enough to capture the peaks of two adjacent channels)RBW = 10 kHz (1% of the span or more)Sweep = autoVBW = 10 kHzDetector function = peakTrace = max holdTrace = max hold

Measurement Data:

Test Results			
Carrier Frequency Separation (MHz) Result			
1.043	Complies		

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater.

Measurement Setup

Carrier Frequency Separation

3.2.2 Number of Hopping Frequencies

Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the $2400 \sim 2483.5$ MHz FH band were examined.

The spectrum analyzer is set to:

Frequency range	1: Start = 2400.0MHz,	Stop = 2441.5 MHz
	2: Start = 2441.5MHz,	Stop = 2483.5 MHz
RBW = 100 kHz (1)	% of the span or more)	Sweep = auto
$VBW = 100 \text{ kHz} (VBW \geq RBW)$		Detector function = peak
Trace = max hold		Span > 40MHz

Measurement Data: Complies

Total number of Hopping Channels	79
----------------------------------	----

- See next pages for actual measured spectrum plots.

Minimum Standard:

At least 15 hopes

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Number of Hopping Frequencies

3.2.3 20 dB Bandwidth

Procedure:

The bandwidth at 20 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

RBW = 30 kHzSweep = autoVBW = 30 kHz (VBW $\geq \text{RBW}$)Detector function = peakTrace = max holddB/Div = 5dB

Measurement Data: Basic Mode

Frequency	Channel No	Test Results(MHz)		
(MHz) Channel No.		20dB Bandwidth	99% Bandwidth	
2402	0	0.945	0.915	
2441	39	0.940	0.893	
2480	78	0.935	0.900	

- See next pages for actual measured spectrum plots.

Minimum Standard:

The EUT shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of 20dB bandwidth of the hopping channel, whichever is greater. Therefore, limit of 20dB bandwidth is 1.5MHz.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth

99% Bandwidth

20 dB Bandwidth

99% Bandwidth

20 dB Bandwidth

99% Bandwidth

3.2.4 Time of Occupancy (Dwell Time)

Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:	
Center frequency = 2441 MHz	Span = zero
RBW = 1 MHz	$VBW = 1 MHz (VBW \ge RBW)$
Trace = max hold	Detector function = peak

Measurement Data:

Channel	Channel	Channel Test Results				
Number	(MHz)	Tacket Type	Duration Time (ms)	Dwell Time (ms)	Result	
		Basic DH 1	0.5875	188.06	Complies	
39	2441	Basic DH 3	1.8000	290.09	Complies	
		Basic DH 5	3.0750	327.46	Complies	

- See next pages for actual measured spectrum plots.

- dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms

Minimum Standard:

 $0.4\ seconds$ within a 30 second period per any frequency

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

#VBW 1 MHz

CENTER 2.441000 GHz #RES BW 1.0 MHz

RL

SPAN 0 Hz #SWP 5.00 msec

3.2.5 Transmitter Output Power

Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum	anal	yzer	is	set	to:

Center frequency = the highest, middle and the lowest channelsSpan = 20 MHz (approximately 5 times of the 20 dB bandwidth)RBW = 3 MHz (greater than the 20dB bandwidth of the emission being measured)VBW = 3 MHz (VBW \geq RBW)Detector function = peakTrace = max holdSweep = auto

Measurement Data: Basic Mode

Frequency	Ch	Test Results			
(MHz)	CII.	dBm	W	Result	
2402	0	2.14	0.0016	Complies	
2441	39	1.88	0.0015	Complies	
2480	78	1.48	0.0014	Complies	

- See next pages for actual measured spectrum plots.

< 250 mW

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

3.2.6 Band Edge

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:	
Center frequency = the highest, middle	and the lowest channels
RBW = 100 kHz	VBW = 100 kHz
Span = 10 MHz	Detector function = peak
Trace = max hold	Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Band – edge

Lower edge

Band-edges in the restricted band 2483.5 ~ 2500 MHz measurement

Frequency (MHz)	Detect mode	Pol.	Reading (dBuV/m)	T.F (dB)	Step 1 Data	delta	Step 3 Data	Limit
2492 5	РК	V	101.5	1.1	102.6	60.25	42.35	74
2483.5	AV	V	89.33	1.1	90.43	60.25	30.18	54

- Document DA 00-705 Marker Delta Method

Note) Step 1 = Reading + T.F

(T.F = Ant.F + Cable loss - PreAmp Gain)

Step 3 = Step 1 – Delta Value

<u>Unwanted Emission – Low channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Unwanted Emission – Middle channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

-52.79 dBm at 7.3225 GHz

<u>Unwanted Emission – High channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

3.2.7 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel	
Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$	
RBW = 100 kHz (30MHz ~ 1 GHz)	Peak:VBW \geq RBW
= 1 MHz (1 GHz ~ 10 th harmonic)	Average:VBW=10Hz
Span = 100 MHz	Detector function = Peak and Average
Trace = max hold	Sweep = auto

Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 10dB below limit.
- The three antennas were used with this EUT during the Testing.
- The used antenna is "R-AN2400-1901RS" and it gave the worse case emissions.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

1. PEAK data

Low channel		Mid channel		High channel		
Frequency (MHz)	Level (dBuV/m)	Frequency (MHz)	Level (dBuV/m)	Frequency (MHz)	Level (dBuV/m)	
-	-	-	-	-	-	
No emissions were detected at a level greater than 20dB below limit.						
-	-	-	-	-	-	
-	-	-	-	-	-	
Measurement uncertainty		$\pm 6 \mathrm{dB}$				

2. AVERAGE data

Low channel		Mid channel		High channel		
Frequency (MHz)	Level (dBuV/m)	Frequency (MHz)	Level (dBuV/m)	Frequency (MHz)	Level (dBuV/m)	
-	-	-	-	-	-	
No emissions were detected at a level greater than 20dB below limit.						
-	-	-	-	-	-	
-	-	-	-	-	-	
Measurement uncertainty		\pm 6 dB				

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel :+82-31-3236008,9 Fax:+82-31-3236010

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.8 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.
- The used antenna is "R-AN2400-1901RS" and it gave the worse case emissions.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15 ~ 0.5	66 to 56 *	56 to 46 *	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

* Decreases with the logarithm of the frequency

AC Conducted Emissions – Line

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Neutral

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Line

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Neutral

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Line

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Neutral

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	HP	Apr-09
2	Signal Generator	8648C	3623A02597	HP	Apr-09
3	Attenuator (3dB)	8491A	37822	HP	Oct-09
4	Attenuator (10dB)	8491A	63196	HP	Oct-09
5	EMI Test Receiver	ESVD	843748/001	R&S	Aug-09
6	LISN	ENV216	100408	R&S	Oct-09
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Oct-09
8	RF Amplifier	8447D	2944A07684	HP	Oct-09
9	RF Amplifier	8447D	2439A09058	HP	Oct-09
10	RF Amplifier	8449B	3008A02126	HP	Apr-09
11	Test Receiver	ESHS10	828404009	R&S	Aug-09
12	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-09
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-09
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-09
15	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-09
16	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-09
17	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-09
18	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-09
19	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-09
20	Spectrum Analyzer	8591E	3649A05888	HP	Oct-09
21	Spectrum Analyzer	8563E	3425A02505	HP	Apr-09
22	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Apr-09
23	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-09
24	RF Switch	MP59B	6200414971	ANRITSU	Jun-09
25	RF Switch	MP59B	6200438565	ANRITSU	Jun-09
26	Power Divider	11636A	6243	HP	Oct-09
27	DC Power Supply	6622A	3448A03079	HP	Oct-09
28	Attenuator (30dB)	11636A	6243	HP	Oct-09
29	Frequency Counter	5342A	2826A12411	HP	Apr-09
30	Power Meter	EPM-441A	GB32481702	HP	Apr-09
31	Power Sensor	8481A	2702A64048	HP	Apr-09
32	Audio Analyzer	8903B	3729A18901	HP	Oct-09
33	Modulation Analyzer	8901B	3749A05878	HP	Oct-09
34	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-09
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-09
36	Stop Watch	HS-3	601Q09R	CASIO	Apr-09