

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010

http://www.ltalab.com

Dates of Tests: December 06 - 11, 2007 Test Report S/N: LR500190712B Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

VUJAT570

ATID CO.,Ltd

Classification : Licensed Portable Transmitter Held to Ear (PCE)

Manufacturing Description : Industrial PDA
Manufacturer : ATID CO.,Ltd

Model name : AT570

Test Device Serial No.: : -

FCC Rule Part(s) : §24(E), §2

TX Frequency Range : 1850.2 ~ 1909.8 MHz (PCS1900)

RX Frequency Range : 1930.2 ~ 1989.8 MHz (PCS1900)

RF power : 0.741 W - Conducted

Emission Designator : 300KGXW

Data of issue : December 26, 2007

This test report is issued under the authority of:

The test was supervised by:

Dong –Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 FIELD STRENGTH OF HARMONICS	6
3.2.2 AC CONDUCTED EMISSIONS	11
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	15

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2008-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2009-06-20	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : ATID CO.,Ltd

Address : #1210 Byuksan/Gyungin digital valley II #481 – 10 Gasan-Dong

Gumchon-Gu Seoul KOREA

Tel / Fax : +82-2-544-1436 / +82-2-544-1438

2-2 Equipment Under Test (EUT)

Trade name : Industrial PDA

FCC ID : VUJAT570

Model name : AT570

Serial number : -

Date of receipt : December 06, 2007

EUT condition : Pre-production, not damaged
Antenna type : Helical Antenna Gain -3.2 dBi

Tx/Rx Frequency Range : 1850.2 ~ 1909.8 MHz (PCS1900) / 1930.2 ~ 1989.8 MHz (PCS1900)

RF output power : 0.741W - Conducted

Frequency Tolerance : 0.016 ppm Modulation(s) : GMSK

Emission Designators : 300KGXW(PCS1900)

Power Source-Battery : 3.7Vdc (Lithium Ion Battery)

Power Source-Adaptor : Input 100-240Vac, 50-60Hz, 0.5A Output: 5Vdc, 3.0A

2-3 Tested frequency

	PCS 1900 Channel Frequency (MHz)				
LOW	512	1850.2			
MID	661	1880.0			
HIGH	810	1909.8			

2-4 Ancillary Equipment

Equipment	Equipment Model No. Serial No.		Manufacturer
-	-	-	-
<u>-</u>	-	-	-

3. Test Report

3.1 Summary of tests

	Doromotor	Limit	Test	Status
Parameter	1 at ameter	Liiiit	Condition	(note 1)
•				

I. FCC Part Section(s)

PCS1900 Module is certified by FCC(FCC ID: QIPMC55).

II. Additional items						
Radiation Spurious	Radiated	C				
AC Conducted Em	nissions			Line Conducted	С	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable						
Note 2: The data in this test report are traceable to the national or international standards.						

The sample was tested according to the following specification:

FCC Parts 24E; ANSI C-63.4-2003

3.2 Technical Characteristics Test

3.2.1 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$ $VBW \geq RBW$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: Low frequency spurious

OPERATING FREQUENCY : <u>1850.2</u> MHz

CHANNEL: 512(Low)

OUTPUT POWER : $\underline{28.69}$ $\underline{dBm} = \underline{0.74}$ W

MODULATION : GSM(Internal)

DISTANCE : <u>3</u> meters

LIMIT : $43 + 10 \log_{10} (W) = 41.69$ dBc

Freq.	LEVEL@ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL	Result
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No	No emissions were detected are a level greater than 20dB below limit.				
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Blank ---

Measurement Data: Mid frequency spurious

OPERATING FREQUENCY : <u>1880.0</u> MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{28.69}$ $\underline{dBm} = \underline{0.74}$ W

MODULATION : GSM(Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 41.69$ dBc

Freq.	LEVEL@ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL	Result	
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)	
-	-	-	-	-	-	
No	No emissions were detected are a level greater than 20dB below limit.					
-	-	-	-	-	-	

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Blank ---

Measurement Data: High frequency spurious

OPERATING FREQUENCY : 1909.8 MHz

CHANNEL: 810(High)

MEASURED OUTPUT POWER : $\underline{28.69}$ $\underline{dBm} = \underline{0.74}$ W

MODULATION : GSM(Internal)

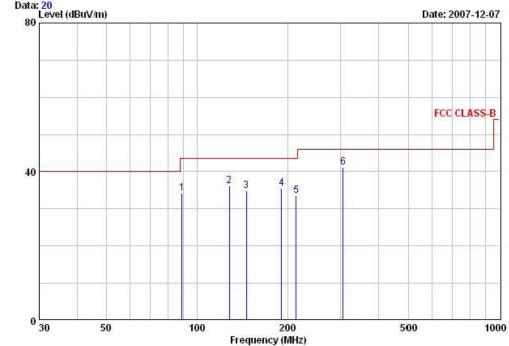
DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 41.69$ dBc

Freq.	LEVEL@ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL	Result
(MHz)	(dBm)	(dBi)	(dBm)	(H/V)	(dBc)
-	-	-	-	-	-
No	No emissions were detected are a level greater than 20dB below limit.				
-	-	-	-	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

--- Blank ---


Measurement Data: 802.11b mode

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: AT570 TEST MODE: GSM1900 mode Temp Humi : 3 / 41 Tested by: B.S.KIM

Data: 20 Level (dBuV/m) 80

	Freq	Reading	C.F	Result QK	Limit	Margin	Height	Angle	Polarity
	MHz	dBuV	dB	dBuV/m	dBuV/m	dВ	CIV.	deg	
1	89.27	50.00	-15.87	34.13	43.50	9.37	185	151	HORIZONTAL
2	128.13	48.20	-11.95	36.25	43.50	7.25	167	263	VERTICAL
3	145.78	45.50	-10.55	34.95	43.50	8.55	100	153	VERTICAL
4	191.15	48.30	-12.70	35.60	43.50	7.90	175	100	HORIZONTAL
5	213.63	46.40	-12.79	33.61	43.50	9.89	100	275	VERTICAL
6	305.72	50.50	-9.20	41.30	46.00	4.70	252	132	HORIZONTAL
	303572	20.00	5.20	41.50	40.00	4.70	202	102	HOKISOMIAL

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.2 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

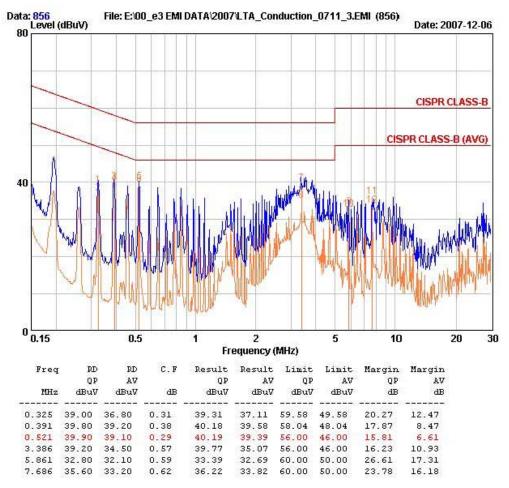
Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

AC Conducted Emissions –Line



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

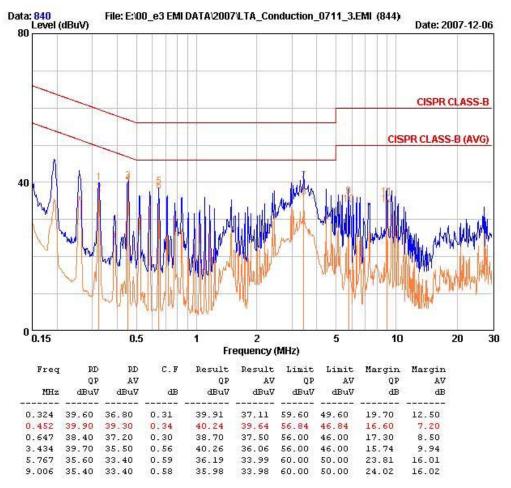
EUT / Model No. : AT570 Phase : LINE

Test Mode : GSM 1900 mode Test Power : 120 / 60

Temp./Humi: : 24 / 15 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions -Neutral



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : AT570 Phase : NEUTRAL

Test Mode : GSM1900 mode Test Power : 120 / 60

Temp./Humi. : 24 / 15 Test Engineer : B.S.KIM

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Apr-08
2	Signal Generator	8648C	3623A02597	НР	Apr-08
3	Attenuator (3dB)	8491A	37822	HP	Oct-08
4	Attenuator (10dB)	8491A	63196	НР	Oct-08
5	EMI Test Receiver	ESVD	843748/001	R&S	Aug-08
6	LISN	KNW-407	8-1430-1	Kyoritsu	Oct-08
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Oct-08
8	RF Amplifier	8447D	2949A02670	НР	Jan-08
9	RF Amplifier	8447D	2439A09058	НР	Oct-08
10	RF Amplifier	8449B	3008A02126	НР	Apr-09
11	Test Receiver	ESHS10	828404009	R&S	Aug-08
12	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Jul-08
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-09
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-09
15	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-09
16	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-08
17	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-08
18	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-08
19	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-08
20	Spectrum Analyzer	8591E	3649A05888	НР	Oct-08
21	Spectrum Analyzer	8563E	3425A02505	НР	Apr-08
22	Hygro-Thermograph	THB-36	0041557-01	ISUZU	May-08
23	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-08
24	RF Switch	MP59B	6200414971	ANRITSU	Jun-08
25	RF Switch	MP59B	6200438565	ANRITSU	Jun-08
26	Power Divider	11636A	6243	НР	Oct-08
27	DC Power Supply	6622A	3448A03079	HP	Oct-08
28	Attenuator (30dB)	11636A	6243	НР	Oct-08
29	Frequency Counter	5342A	2826A12411	HP	Apr-08
30	Power Meter	EPM-441A	GB32481702	HP	Apr-08
31	Power Sensor	8481A	2702A64048	HP	Apr-08
32	Audio Analyzer	8903B	3729A18901	HP	Oct-08
33	Modulation Analyzer	8901B	3749A05878	НР	Oct-08
34	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-08
35	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-09