

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	PEGATRON CORPORATION
Applicant Address	5F., NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 112 Taiwan
FCC ID	VUICLG8202-NA
Manufacturer's company	MAINTEK COMPUTER
Manufacturer Address	233 Jinfeng Rd., Suzhou, Jiangsu, PRC

Product Name	Wireless Home Automation and Security
Brand Name	CISCO
Model Name	CLG-8202 NA; CLG-8202-WW NA
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.249
Test Freq. Range	902~928MHz
Received Date	Jul. 21, 2014
Final Test Date	Aug. 26, 2014
Submission Type	Original Equipment

Statement

Test result included is only for the Z-wave of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CE	ERTIFICATE OF COMPLIANCE	1
2. SU	JMMARY OF THE TEST RESULT	2
	ENERAL INFORMATION	
3.1		
3.2	2. Accessories	3
3.3	3. Table for Carrier Frequencies	3
3.4	4. Table for Filed Antenna	4
3.5	5. Table for Test Modes	5
3.6	6. Table for Testing Locations	5
3.7	7. Table for Multiple Listing	6
3.8	8. Table for Supporting Units	6
3.9	9. Test Configurations	7
4. TES	ST RESULT	9
4.1		
4.2	2. Field Strength of Fundamental Emissions Measurement	13
4.3		
4.4	4. Radiated Emissions Measurement	18
4.5	5. Band Edge Emissions Measurement	26
4.6	6. Antenna Requirements	28
5. LIS	ST OF MEASURING EQUIPMENTS	29
6. ME	IEASUREMENT UNCERTAINTY	31
A DDE	ENDLY A TEST DUOTOS	A1 A5

:Sep. 18, 2014

Issued Date

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR472942AD	Rev. 01	Initial issue of report	Sep. 18, 2014

Certificate No.: CB10308145

Page No.

: 1 of 31

Issued Date : Sep. 18, 2014

1. CERTIFICATE OF COMPLIANCE

Product Name: Wireless Home Automation and Security

Brand Name : CISCO

Model Name : CLG-8202 NA; CLG-8202-WW NA

Applicant : PEGATRON CORPORATION

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.249

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jul. 21, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Reviewed By:

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit	
4.1	15.207	AC Power Line Conducted Emissions	Complies	6.08 dB	
4.2	15.249(a)	Field Strength of Fundamental Emissions	Complies	3.76 dB	
4.3	15.215(c)	20dB Spectrum Bandwidth	Complies	-	
4.4	15.249(a)/(d)	Radiated Emissions	Complies	1.66 dB	
4.5	15.249(d)	Band Edge Emissions	Complies	12.90 dB	
4.6	15.203	Antenna Requirements	Complies	-	

Report Format Version: Rev. 01 Page No. : 2 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From Power Adapter and button cell
Modulation	FSK/GFSK
Data Rate	9.6kbps
Frequency Range	902~928MHz
Operation Frequency Range	908.42MHz
Channel Number	1
Channel Band Width (99%)	24.31 MHz
Max. Field Strength	90.24 dBuV/m at 3m (QP)
Carrier Frequencies	Please refer to section 3.3

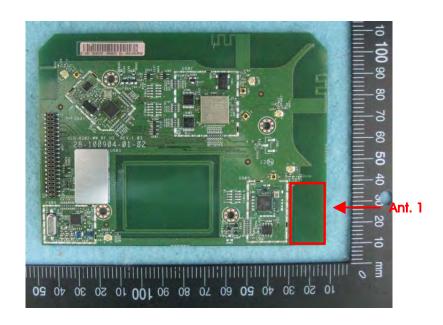
3.2. Accessories

Power	Brand	Model	Rating
A slave to v	ADD		INPUT: 100-240V ~, 50-60Hz, 0.8A Max.
Adapter	APD	WA-23A15FU	OUTPUT: 15V, 1.5A
		Others	
Cradle*1			

3.3. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
902~928MHz	1	908.42 MHz

Report Format Version: Rev. 01 Page No. : 3 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014



3.4. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	HL	-	Printed Antenna	Murata	2.46

For Z-Wave (1TX, 1RX)

Only Ant. 1 can be used as transmitting/receiving antenna.

Report Format Version: Rev. 01 : 4 of 31 Page No. FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	CTX	-	-
Field Strength of Fundamental Emissions	CTX	1	1
20dB Spectrum Bandwidth			
Radiated Emissions 30MHz \sim 1GHz	СТХ	-	-
Radiated Emissions 1GHz~10 th Harmonic	CTX	1	1
Band Edge Emissions	CTX	1	1

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. EUT Standing-CTX

For Radiated Emission test:

Mode 1. EUT Standing-CTX

Note:

There are two Simultaneous Transmission Configurations as following:

Mode 1: WiFi+Z-wave+Zigbee+NFC

Mode 2: Bluetooth+Z-wave+Zigbee+NFC

3.6. Table for Testing Locations

Test Site Location						
Address:	No.	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886	886-3-656-9065				
FAX:	886-3-656-9085					
Test Site N	О.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-0	СВ	SAC	Hsin Chu	262045	IC 4086D	-
CO02-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	3	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Report Format Version: Rev. 01 Page No. : 5 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

3.7. Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Brand Name	Model Name	Description
CICCO	CLG-8202 NA	All the models are identical, the difference model for difference
CISCO	CLG-8202-WW NA	brand served as marketing strategy.

Note: Assessed as above, there is only model: CLG-8202 NA selected to test and recorded in the report as a result.

3.8. Table for Supporting Units

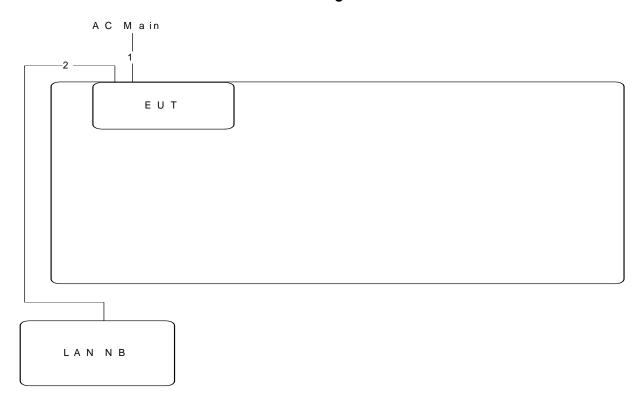
For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID	
Notebook	DELL	M1340	E2K4965AGNM	

For Test Site No: CO02-CB

Support Unit	Brand	Model	FCC ID	
Notebook	DELL	E6430	DoC	

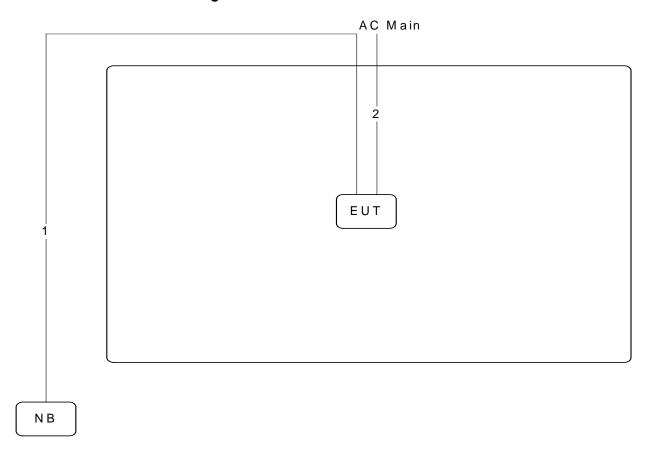
For Test Site No: TH01-CB


Support Unit	Brand	Model	FCC ID	
Notebook	DELL	M1340	E2K4965AGNM	

Report Format Version: Rev. 01 Page No. : 6 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

3.9. Test Configurations

3.9.1. AC Power Line Conduction Emissions Test Configuration



Item	Connection	Connection Shielded	
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

3.9.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length(m)	
1	RJ-45 cable	No	10m	
2	Power cable	No	1.5m	

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

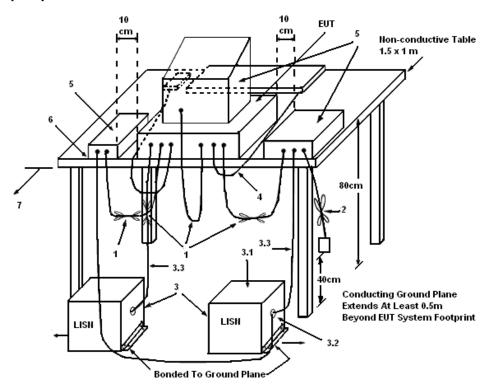
For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

: 9 of 31 Page No. FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.1.4. Test Setup Layout

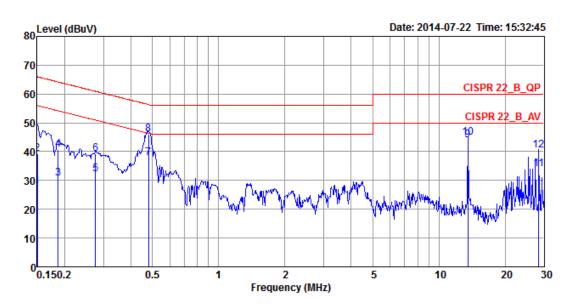
LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test


The EUT was placed on the test table and programmed in normal function.

Report Format Version: Rev. 01 Page No. : 10 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23°C	Humidity	47%
Test Engineer	Ryo Fan	Phase	Line
Configuration	СТХ		

			0ver	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
_									
	MHz	dBuV	dB	dBuV	dB	dBuV	dB		
1	0.1500	27.99	-28.01	56.00	0.22	27.59	0.18	LINE	Average
2	0.1500	39.12	-26.88	66.00	0.22	38.72	0.18	LINE	QP
3	0.1864	30.70	-23.50	54.20	0.21	30.29	0.20	LINE	Average
4	0.1864	40.74	-23.46	64.20	0.21	40.33	0.20	LINE	QP
5	0.2759	32.06	-18.88	50.94	0.21	31.65	0.20	LINE	Average
6	0.2759	39.18	-21.76	60.94	0.21	38.77	0.20	LINE	QP
7	0.4812	37.75	-8.57	46.32	0.22	37.33	0.20	LINE	Average
8 q	0.4812	45.95	-10.37	56.32	0.22	45.53	0.20	LINE	QP
9 a	13.5599	43.92	-6.08	50.00	0.56	42.97	0.39	LINE	Average
10	13.5599	44.77	-15.23	60.00	0.56	43.82	0.39	LINE	QP
11	28.3744	33.81	-16.19	50.00	0.96	32.25	0.60	LINE	Äverage
12	28.3744	40.44	-19.56	60.00	0.96	38.88	0.60	LINE	QP

Report Format Version: Rev. 01 Page No. : 11 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

Temperature	21°C	Humidity	61%
Test Engineer	Peter Wu	Phase	Neutral
Configuration	CTX		

	Freq	Level	Over Limit	Limit Line	LISN Factor	Read Level	Cable Loss	Pol/Phase	Remark
-	MHz	dBuV	dB	dBuV	dB	dBuV	dB		
	MHZ	авич	ав	abuv	ав	авич	ав		
1	0.1500	26.99	-29.01	56.00	0.09	26.72	0.18	NEUTRAL	Average
2	0.1500	41.34	-24.66	66.00	0.09	41.07	0.18	NEUTRAL	QP
3	0.1616	34.04	-21.34	55.38	0.08	33.77	0.19	NEUTRAL	Average
4	0.1616	46.88	-18.50	65.38	0.08	46.61	0.19	NEUTRAL	QP
5	0.1904	30.33	-23.69	54.02	0.07	30.06	0.20	NEUTRAL	Average
6	0.1904	41.67	-22.35	64.02	0.07	41.40	0.20	NEUTRAL	QP
7	0.4761	29.95	-16.46	46.41	0.08	29.67	0.20	NEUTRAL	Average
8	0.4761	39.51	-16.90	56.41	0.08	39.23	0.20	NEUTRAL	QP
9 a	13.5599	43.58	-6.42	50.00	0.38	42.81	0.39	NEUTRAL	Average
10 q	13.5599	44.41	-15.59	60.00	0.38	43.64	0.39	NEUTRAL	QP
11	27.4320	30.60	-19.40	50.00	0.71	29.30	0.59	NEUTRAL	Average
12	27.4320	37.32	-22.68	60.00	0.71	36.02	0.59	NEUTRAL	QP

Note: Level = Read Level + LISN Factor + Cable Loss.

4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

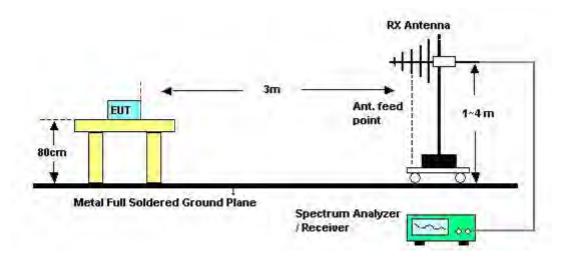
The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
902-928	94 (QP)

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Power Meter Parameter	Setting
RBW	100 kHz
VBW	300 kHz
Detector	QP
Trace	Max Hold
Sweep Time	Auto


4.2.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
 meter above ground. The phase center of the receiving antenna mounted on the top of a
 height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For Fundamental emissions, use 100kHz VBW and 300kHz RBW for QP reading in spectrum analyzer.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Report Format Version: Rev. 01 Page No. : 13 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	26°C	Humidity	68%
Test Engineer	Satoshi Yang	Configurations	Channel 1
Test Date	Aug. 17, 2014		

Channel 1

	Freq	Level	Limit Line	Over Limit						A/Pos	-	Pol/Phase
•	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	908.42	90.24	94.00	-3.76	93.46	3.54	20.60	27.36	QP	100	302	HORIZONTAL

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

 Report Format Version: Rev. 01
 Page No. : 15 of 31

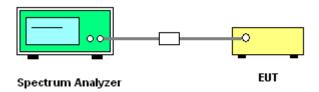
 FCC ID: VUICLG8202-NA
 Issued Date : Sep. 18, 2014

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (902~928MHz).

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- Measured the spectrum width with power higher than 6dB below carrier.

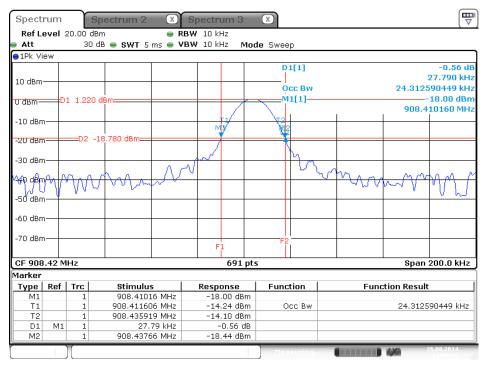
4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


Report Format Version: Rev. 01 : 16 of 31 Page No. FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	20°C	Humidity	53%
Test Engineer	Serway Lin	Configurations	Channel 1

Frequency	20dB BW (MHz)	99% OBW (MHz)	Frequency range (MHz) f _L > 902MHz	Frequency range (MHz) f _H < 928MHz	Test Result
908.42 MHz	27.79	24.31	908.4102	908.4377	Complies

20 dB/99% Bandwidth Plot on 908.42 MHz

Date: 26.AUG.2014 11:08:15

Report Format Version: Rev. 01 Page No. : 17 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.4. Radiated Emissions Measurement

4.4.1. Limit

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1 MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for Peak

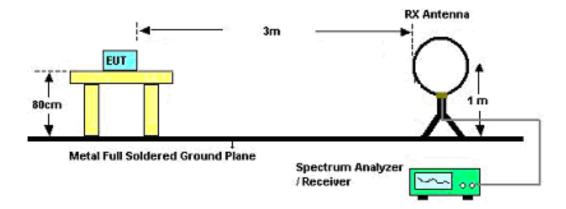
Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

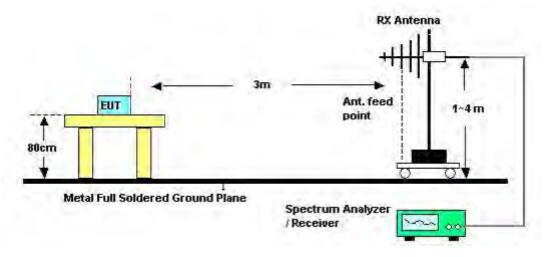
Report Format Version: Rev. 01 Page No. : 18 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.4.3. Test Procedures

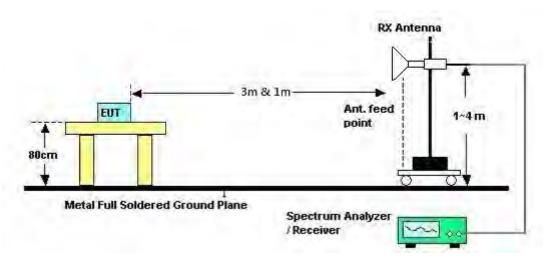
Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Report Format Version: Rev. 01 Page No. : 19 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014



4.4.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

Report Format Version: Rev. 01 Page No. : 20 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 21 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	26°C	Humidity	68%
Test Engineer	Mars Lin / Satoshi Yang	Test Date	Apr. 26, 2014
Configurations	CTX		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

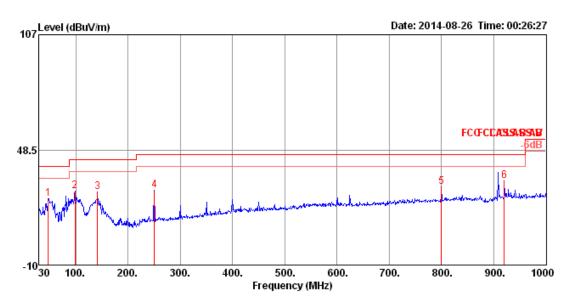
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

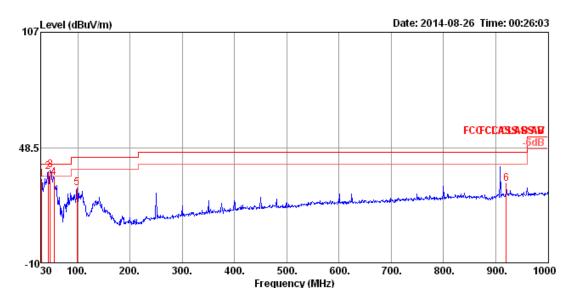
 Report Format Version: Rev. 01
 Page No. : 22 of 31


 FCC ID: VUICLG8202-NA
 Issued Date : Sep. 18, 2014

4.4.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26℃	Humidity	68%
Test Engineer	Mars Lin / Satoshi Yang	Configurations	CTX

Horizontal


	Freq	Level		0ver Limit					A/Pos	T/Pos	Pol/Phase	Remark
			Line	Limit	20001	2033	. accor	raccor			1 01/1 11030	Nome: K
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	47.46	23.66	40.00	-16.34	46.03	0.82	8.62	31.81	400	258	HORIZONTAL	Peak
2	98.87	27.77	43.50	-15.73	48.03	1.17	10.17	31.60	300	265	HORIZONTAL	Peak
3	141.55	27.25	43.50	-16.25	46.63	1.41	10.74	31.53	150	248	HORIZONTAL	Peak
4	250.19	28.18	46.00	-17.82	45.86	1.90	11.91	31.49	100	219	HORIZONTAL	Peak
5	800.18	29.58	46.00	-16.42	37.42	3.67	19.76	31.27	100	248	HORIZONTAL	Peak
6	920.46	32.58	46.00	-13.42	39.09	4.00	20.66	31.17	150	190	HORIZONTAL	Peak

 Report Format Version: Rev. 01
 Page No. : 23 of 31

 FCC ID: VUICLG8202-NA
 Issued Date : Sep. 18, 2014

Vertical

			Limit	0∨er	Read	CableA	ntenna	Preamp	A/Pos	T/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	30.97	32.36	40.00	-7.64	46.09	0.65	17.44	31.82	100	248	VERTICAL	Peak
2	43.58	36.03	40.00	-3.97	56.84	0.78	10.25	31.84	100	281	VERTICAL	Peak
3	47.46	36.90	40.00	-3.10	59.27	0.82	8.62	31.81	100	248	VERTICAL	Peak
4	54.25	33.12	40.00	-6.88	57.86	0.86	6.18	31.78	100	289	VERTICAL	Peak
5	98.87	28.11	43.50	-15.39	48.37	1.17	10.17	31.60	100	79	VERTICAL	Peak
6	920.46	30.22	46.00	-15.78	36.73	4.00	20.66	31.17	125	18	VERTICAL	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

 $\label{eq:corrected_continuous_$

4.4.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	26°C	Humidity	68%
Test Engineer	Mars Lin / Satoshi Yang	Configurations	Channel 1
Test Date	Aug. 17. 2014		

Horizontal

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase	
•	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg		
1	2725.24	54.39	74.00	-19.61	56.03	4.40	29.05	35.09	Peak	100	211	HORIZONTAL	
2	2725.27	52.34	54.00	-1.66	53.98	4.40	29.05	35.09	Average	100	211	HORIZONTAL	

Vertical

	Freq	Level	Limit Line	0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	2725.10	54.20	74.00	-19.80	55.84	4.40	29.05	35.09	Peak	100	205	VERTICAL
2	2725.27	52.04	54.00	-1.96	53.68	4.40	29.05	35.09	Average	100	205	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: Rev. 01
 Page No. : 25 of 31

 FCC ID: VUICLG8202-NA
 Issued Date : Sep. 18, 2014

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	RBW 120kHz for QP
RBW / VBW (Emission in non-restricted band)	100kHz/300kHz for Peak

4.5.3. Test Procedures

- 1. The test procedure is the same as section 4.4.3, only the frequency range investigated is limited to 2MHz around bandedges.
- 2. In case the emission is fail due to the used RBW/VBW is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.4.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 26 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

4.5.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26°C	Humidity	68%
Test Engineer	Mars Lin / Satoshi Yang	Configurations	Channel 1
Test Date	Aug. 17. 2014		

Channel 1

	Freq	Level		0ver Limit						A/Pos		Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	901.26	33.10	46.00	-12.90	36.40	3.55	20.54	27.39	QP	124	11	VERTICAL
2	908.41	86.93	114.00	-27.07	90.15	3.54	20.60	27.36	QP	124	11	VERTICAL
3	908.42	86.94	94.00			3.54	20.60	27.36	Average	124	11	VERTICAL
4	928.53	33.19	54.00	-20.81	36.20	3.53	20.74	27.28	QP	124	11	VERTICAL

Item 3 are the fundamental frequency at 908.42 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: Rev. 01
 Page No. : 27 of 31

 FCC ID: VUICLG8202-NA
 Issued Date : Sep. 18, 2014

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.4 in this test report, antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 28 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 11, 2013	Conduction (CO02-CB)
MXE EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 30MHz	Jan. 22, 2014	Conduction (CO02-CB)
COND Cable	Woken	Cable	01	0.15MHz~30MHz	Dec. 04, 2013	Conduction (CO02-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO02-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

Report Format Version: Rev. 01 FCC ID: VUICLG8202-NA Page No. : 29 of 31 Issued Date : Sep. 18, 2014

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Report Format Version: Rev. 01 Page No. : 30 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014

 $[\]mbox{\ensuremath{^{\star}}}$ Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

Report Format Version: Rev. 01 Page No. : 31 of 31 FCC ID: VUICLG8202-NA Issued Date : Sep. 18, 2014