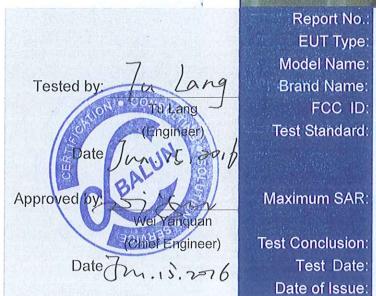


ISSUED BY Shenzhen BALUN Technology Co., Ltd.


FOR

Tablet PC

ISSUED TO PEGATRON CORPORATION

5F, NO. 76, LIGONG ST, BEITOU DISTRICT, TAIPEI CITY, Taiwan

www.baluntek.com

bort No.:BL-SZ1640050-701IT Type:Tablet PCI Name:MT10UWA116I Name:Q00Q/SQ00LCC ID:VUI-MT10UWandard:FCC 47 CFR Part 2.1093ANSI C95.1: 1992IEEE 1528: 2013I EEE 1528: 2013Body (1 g): 1.131 W/kg

Test Conclusion: Pass Test Date: Nov. 3, 2015 ~ Nov. 4, 2015 Date of Issue: Jun. 15, 2016

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Revision History

Version	Issue Date	Revisions
<u>Rev. 01</u> <u>Rev. 02</u>	<u>Jun. 13, 2016</u> Jun, 15, 2016	Initial Issue Deleted the inapplicable test standards, in section 3.1 Deleted description about Hotspot and section 9.2

TABLE OF CONTENTS

1	GENER	AL INFORMATION	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
	1.3	Test Environment Condition	4
	1.4	Announce	5
2	PRODU	JCT INFORMATION	6
	2.1	Applicant	6
	2.2	Manufacturer	6
	2.3	Factory Information	6
	2.4	General Description for Equipment under Test (EUT)	6
	2.5	Ancillary Equipment	7
	2.6	Technical Information	7
3	SUMMA	ARY OF TEST RESULT	8
	3.1	Test Standards	8
	3.2	Device Category and SAR Limit	9
	3.3	Test Result Summary	10
	3.4	Test Uncertainty	11
4	MEASL	IREMENT SYSTEM	15
	4.1	Specific Absorption Rate (SAR) Definition	15
	4.2	DASY SAR System	16
5	SYSTE	M VERIFICATION	24
	5.1	Purpose of System Check	24
	5.2	System Check Setup	24
6	TEST F	POSITION CONFIGURATIONS	25
	6.1	Head Exposure Conditions	25

	6.2	6.2 Body-worn Position Conditions		
	6.3	Hotspot Mode Exposure Position Conditions	28	
7	MEASU	JREMENT PROCEDURE	29	
	7.1	Measurement Process Diagram	29	
	7.2	SAR Scan General Requirement	30	
	7.3	Measurement Procedure	31	
	7.4	Area & Zoom Scan Procedure	31	
8	CONDU	JCTED RF OUPUT POWER	32	
	8.1	WIFI	32	
	8.2	Bluetooth	33	
9	TEST E	EXCLUSION CONSIDERATION	34	
	9.1	SAR Test Exclusion Consideration Table	35	
10	TEST F	RESULT	37	
	10.1	1 WIFI 2.4GHz	37	
	10.2	2 WIFI 5GHz	38	
11	SAR M	easurement Variability	39	
12	SIMUL	TANEOUS TRANSMISSION	40	
	12.1	1 Simultaneous Transmission Mode Consider	40	
	12.2	2 Estimated SAR Calculation	41	
13	TEST E	EQUIPMENTS LIST	42	
ANI	NEX A	SIMULATING LIQUID VERIFICATION RESULT	43	
ANI	NEX B	SYSTEM CHECK RESULT	44	
ANI	NEX C	TEST DATA	48	
ANI	NEX D	EUT EXTERNAL PHOTOS	70	
ANI	NEX E	SAR TEST SETUP PHOTOS	70	
ANI	NEX F	CALIBRATION REPORT	71	
	F.1	E-Field Probe	71	
	F.2	Data Acquisition Electronics	82	
	F.3	2450MHz Dipole	87	
	F.4	5GHz Dipole	95	

1 GENERAL INFORMATION

1.1 Identification of the Testing Laboratory

Company Name Shenzhen BALUN Technology Co.,Ltd.		
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,	
Audress	Nanshan District, Shenzhen, Guangdong Province, P. R. China	
Phone Number +86 755 6685 0100		
Fax Number	+86 755 6182 4271	

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Addroop	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,		
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers of		
	test site are 11524A-1.		
Accreditation Certificate	The laboratory has been listed by US Federal Communications		
	Commission to perform electromagnetic emission measurements. The		
	recognition numbers of test site are 832625.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according to		
	ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe		
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.		
	China 518055		

1.3 Test Environment Condition

Ambient Temperature	21 to 23°C
Ambient Relative Humidity	40 to 50%
Ambient Pressure	100 to 102KPa

1.4 Announce

- (1) The test report reference to the report template version v2.1.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant

Applicant	PEGATRON CORPORATION	
Address	5F, NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY, Taiwan	

2.2 Manufacturer

Manufacturer	PEGATRON CORPORATION	
Address	5F, NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY, Taiwan	

2.3 Factory Information

Factory	NANJING WANLIDA TECHNOLOGY CO., TLD.	
Address	WANLIDA INDUSTRY ZONE, NANJING, ZHANGZHOU, FUJIAN,	
Address	CHINA.	

2.4 General Description for Equipment under Test (EUT)

EUT Type	Tablet PC		
Model Name Under Test	MT10UWA116		
Series Model Name	MT10UWA232, MT10UWA264		
	The model number MT10UWA116, MT10UWA232 and MT10UWA264		
Description of Model	are identical in electrical design, firmware, PCB layout, appearance.		
Description of Model Name Differentiation	Only MT10UWA116 the flash storage is 16GB, DDR is 1GB;		
Name Differentiation	MT10UWA232 the flash storage is 32GB, DDR is 2GB;		
	MT10UWA264 the flash storage is 64GB, DDR is 2GB.		
Hardware Version	9184C		
Software Version	N/A		
Dimensions (Approx.)	294.61 x 213.92 x 11.55 mm		
Weight (Approx.)	804 g (with battery)		
Network and Wireless	WILANI: Blueteeth: CBS: CLONASS		
connectivity	WLAN; Bluetooth; GPS; GLONASS		
EUT Stage	Portable Device		

2.5 Ancillary Equipment

	Battery		
Ancillary Equipment 1	Brand Name	N/A	
	Model No.	BT-BOBFV	
	Serial No.	N/A	
	Capacitance	8000 mAh	
	Rated Voltage	3.80 V	
	Limit Charge Voltage	4.35 V	
	Charger 1		
	Brand Name	N/A	
Appillant Equipment 2	Model No.	SA69-050200V	
Ancillary Equipment 2	Serial No.	N/A	
	Rated Input	100-240 V~, 0.3 A, 50/60 Hz	
	Rated Output	5 V=, 2 A	
	Charger 2		
	Brand Name	N/A	
Appillant Equipment 2	Model No.	ASSA55a 050200	
Ancillary Equipment 3	Serial No.	N/A	
	Rated Input	100-240 V~, 0.45 A, 50/60 Hz	
	Rated Output	5 V=, 2 A	
	USB Data Cable		
Appillant Equipment 4	Brand Name	N/A	
Ancillary Equipment 4	Model No.	N/A	
	Length (Approx)	1.0 m	

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	WLAN; Bluetooth		
	802.11b/g	302.11b/g 2400 MHz ~ 2483.5 MHz	
	802.11n(HT20)	2400 MHz ~ 2483.5 MHz	
	802.11a	5150 MHz ~ 5250 MHz	
		5250 MHz ~ 5350 MHz	
		5470 MHz ~ 5725 MHz	
Frequency Range		5725 MHz ~ 5850 MHz	
	802.11n(HT20)	5150 MHz ~ 5250 MHz	
		5250 MHz ~ 5350 MHz	
		5470 MHz ~ 5725 MHz	
		5725 MHz ~ 5850 MHz	
	Bluetooth	2400 MHz ~ 2483.5 MHz	
Antenna Type	WLAN: PIFA Antenna		
Аптенна туре	Bluetooth: PIFA Antenna		
DTM	Not Support		
Hotspot Function	Not Support		
Exposure Category	General Population/Uncontrolled exposure		

3 SUMMARY OF TEST RESULT

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters;
	47 OFR Fail 2	General Rules and Regulations
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure
2	C95.1-1992	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
	IEEE Std.	Recommended Practice for Determining the Peak Spatial-Average
3	1528-2013	Specific Absorption Rate (SAR) in the Human Head from Wireless
	1526-2015	Communications Devices: Measurement Techniques
4	FCC KDB 447498	Mobile and Portable Device RF Exposure Procedures and
4	D01 v06	Equipment Authorization Policies
5	FCC KDB 865664	SAR Measurement 100 MHz to 6 GHz
5	D01 v01r04	SAR Measurement 100 Minz to 0 Ginz
6	FCC KDB 865664	DE Expedure Departing
0	D02 v01r02	RF Exposure Reporting
7	FCC KDB 616217	SAR Evaluation Considerations for Laptop, Notebook, Netbook
/	D04 v01r02	and Tablet Computers
8	FCC KDB 248227	
0	D01 v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

	SAR Value (W/Kg)						
Body Position	General Population/	Occupational/					
	Uncontrolled Exposure	Controlled Exposure					
Whole-Body SAR	0.08	0.4					
(averaged over the entire body)	0.08	0.4					
Partial-Body SAR	1.60	8.0					
(averaged over any 1 gram of tissue)	1.00	8.0					
SAR for hands, wrists, feet and							
ankles	4.0	20.0					
(averaged over any 10 grams of tissue)							

Table of Exposure Limits:

NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR (1 g Value)

Band	Maximum Scaled SAR (W/kg) Body-worn	Maximum Report SAR (W/kg) Body-worn	Limit (W/kg)
2.4G WLAN 802.11b	1.110	1.131	
5.2G WLAN 802.11a	1.020	1.098	
5.3G WLAN 802.11a	1.080	1.113	1.6
5.6G WLAN 802.11a	1.120	1.123	
5.8G WLAN 802.11a	0.574	0.579	
Verdict		Pass	

3.3.2 Highest Simultaneous SAR

Note: 2.4G WIFI, 5G WIFI and Bluetooth shares the same antenna and cannot transmit simultaneously. So the simultaneous multi-band transmission evaluation is not required in this report.

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4	O all M M M M M M M M M M	15	
1)	System Measurement Uncertaint	y (frequency r	ange from 300 MHz to 3 GHz)

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
	(+- %)	Dist.		(1g)	(10g)	(+-%)	(+-%)	VI
Measurement System								
Probe calibration	6.0	Ν	1	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.90	1.90	∞
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.90	3.90	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	8
Readout Electronics	0.3	Ν	1	1	1	0.30	0.30	8
Reponse Time	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.50	1.50	8
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	8
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	8
Probe positioner Mechanical Tolerance	0.4	R	$\sqrt{3}$	1	1	0.20	0.20	8
Probe positioning with respect to Phantom Shell	2.9	R	$\sqrt{3}$	1	1	1.70	1.70	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation		R	$\sqrt{3}$	1	1	1.20	1.20	8
Test sample Related						L		
Test sample positioning	2.9	N	1	1	1	2.90	2.90	N-1
Device Holder Uncertainty	3.6	Ν	1	1	1	3.60	3.60	N-1
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.90	2.90	8
SAR scaling	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Phantom and Tissue Parameters			I	I	I	I	1	
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	3.50	3.50	8
SAR correction	1.9	R	$\sqrt{3}$	1	0.84	1.10	0.90	8
Liquid conductivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.78	0.71	1.10	1.00	8
Liquid permittivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.26	0.26	0.30	0.40	8
Liquid conductivity - temperature uncertainty	3.4	Ν	$\sqrt{3}$	0.78	0.71	1.50	1.40	8
Liquid permittivity - temperature uncertainty	0.4	Ν	$\sqrt{3}$	0.26	0.26	0.10	0.10	8
Combined Standard Uncertainty		RSS				13.1	13.0	
Expanded Uncertainty (95% Confidence interval)		K=2				26.1	26.1	

2) System Measurement Uncertainty (frequency range from 3 GHz to 6 GHz)

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
	(+- %)	Dist.	Div.	(1g)	(10g)	(+-%)	(+-%)	VI
Measurement System			1	T	1	1		
Probe calibration	6.55	Ν	1	1	1	6.55	6.55	∞
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.90	1.90	∞
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.90	3.90	∞
Boundary effect	2.0	R	$\sqrt{3}$	1	1	1.20	1.20	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	8
Readout Electronics	0.3	Ν	1	1	1	0.30	0.30	8
Reponse Time	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.50	1.50	∞
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	∞
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	∞
Probe positioner Mechanical Tolerance	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	∞
Probe positioning with respect to Phantom Shell	6.7	R	$\sqrt{3}$	1	1	3.90	3.90	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	4.0	R	$\sqrt{3}$	1	1	2.30	2.30	∞
Test sample Related			1	<u> </u>	1		1	
Test sample positioning	2.9	N	1	1	1	2.90	2.90	N-1
Device Holder Uncertainty	3.6	Ν	1	1	1	3.60	3.60	N-1
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.90	2.90	∞
SAR scaling	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Phantom and Tissue Parameters	-1						•	
Phantom Uncertainty (Shape and thickness tolerances)	6.6	R	$\sqrt{3}$	1	1	3.80	3.80	∞
SAR correction	1.9	R	$\sqrt{3}$	1	0.84	1.10	0.90	∞
Liquid conductivity - measurement uncertainty	2.5	N	$\sqrt{3}$	0.78	0.71	1.10	1.00	∞
Liquid permittivity - measurement uncertainty	2.5	N	$\sqrt{3}$	0.26	0.26	0.30	0.40	∞
Liquid conductivity - temperature uncertainty	3.4	N	$\sqrt{3}$	0.78	0.71	1.50	1.40	∞
Liquid permittivity - temperature uncertainty	0.4	N	$\sqrt{3}$	0.26	0.26	0.10	0.10	∞
Combined Standard Uncertainty		RSS		•		14.0	14.0	
Expanded Uncertainty (95% Confidence interval)		K=2				28.1	28.0	

3.4.2 Measurement uncertainly evaluation for system check

This measurement uncertainty budget is suggested by IEEE 1528. The break down of the individual uncertainties is as follows:

1) System Measurement Uncertainty (frequency range from 300 MHz to 3 GHz)

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
		Dist.	5.0.	(1g)	(10g)	(+-%)	(+-%)	••
Measurement System	-			1	1	1		
Probe calibration	6.0	Ν	1	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.90	3.90	8
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	8
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	8
Readout Electronics	0.3	Ν	1	1	1	0.30	0.30	8
Reponse Time	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.50	1.50	8
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	8
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	8
Probe positioner Mechanical Tolerance	0.4	R	$\sqrt{3}$	1	1	0.20	0.20	8
Probe positioning with respect to Phantom Shell	2.9	R	$\sqrt{3}$	1	1	1.70	1.70	8
Extrapolation, interpolation and integration Algoritms for		ſ	$\sqrt{3}$		4	4.00	1.00	
Max. SAR Evaluation	2.0	R	√3	1	1	1.20	1.20	8
Dipole								
Deviation of experimental dipole	5.5	R	$\sqrt{3}$	1	1	3.20	3.20	8
Dipole axis to liquid distance	2.0	R	1	1	1	1.20	1.20	8
Power drift	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	8
Phantom and Tissue Parameters								
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	3.50	3.50	8
SAR correction	1.9	R	$\sqrt{3}$	1	0.84	1.10	0.90	8
Liquid conductivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.78	0.71	1.10	1.00	8
Liquid permittivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.26	0.26	0.30	0.40	8
Liquid conductivity - temperature uncertainty	3.4	Ν	$\sqrt{3}$	0.78	0.71	1.50	1.40	8
Liquid permittivity - temperature uncertainty	0.4	Ν	$\sqrt{3}$	0.26	0.26	0.10	0.10	8
Combined Standard Uncertainty		RSS				10.56	10.52	
Expanded Uncertainty (95% Confidence interval)		K=2				21.12	21.04	

2) System Measurement Uncertainty (frequency range from 3 GHz to 6 GHz)

Uncertainty Component	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g Ui	Vi
Uncertainty Component	(+- %)	Dist.	Div.	(1g)	(10g)	(+-%)	(+-%)	VI
Measurement System								
Probe calibration	6.55	Ν	1	1	1	6.55	6.55	8
Axial Isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.90	3.90	∞
Boundary effect	2.0	R	$\sqrt{3}$	1	1	1.20	1.20	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.60	0.60	∞
Readout Electronics	0.3	Ν	1	1	1	0.30	0.30	∞
Reponse Time	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	8
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.50	1.50	8
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	8
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.70	1.70	∞
Probe positioner Mechanical Tolerance	0.8	R	$\sqrt{3}$	1	1	0.50	0.50	∞
Probe positioning with respect to Phantom Shell	6.7	R	$\sqrt{3}$	1	1	3.90	3.90	∞
Extrapolation, interpolation and integration Algoritms for	4.0	ſ	5			0.00	0.00	
Max. SAR Evaluation	4.0	R	$\sqrt{3}$	1	1	2.30	2.30	∞
Dipole								
Deviation of experimental dipole	5.5	R	$\sqrt{3}$	1	1	3.20	3.20	∞
Dipole axis to liquid distance	2.0	R	1	1	1	1.20	1.20	∞
Power drift	4.7	R	$\sqrt{3}$	1	1	2.70	2.70	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (Shape and thickness tolerances)	6.6	R	$\sqrt{3}$	1	1	3.80	3.80	∞
SAR correction	1.9	R	$\sqrt{3}$	1	0.84	1.10	0.90	∞
Liquid conductivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.78	0.71	1.10	1.00	∞
Liquid permittivity - measurement uncertainty	2.5	Ν	$\sqrt{3}$	0.26	0.26	0.30	0.40	∞
Liquid conductivity - temperature uncertainty	3.4	Ν	$\sqrt{3}$	0.78	0.71	1.50	1.40	∞
Liquid permittivity - temperature uncertainty	0.4	Ν	$\sqrt{3}$	0.26	0.26	0.10	0.10	∞
Combined Standard Uncertainty		RSS				11.75	11.72	
Expanded Uncertainty (95% Confidence interval)		K=2				23.50	23.44	

4 MEASUREMENT SYSTEM

4.1 Specific Absorption Rate (SAR) Definition

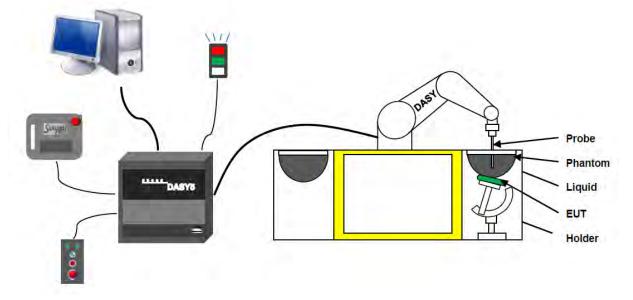
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$


Where: $\boldsymbol{\sigma}$ is the conductivity of the tissue,

pis the mass density of the tissue and E is the RMS electrical field strength.

4.2 DASY SAR System

4.2.1 DASY SAR System Diagram

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- 6. The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
- 7. DASY5 software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

4.2.2 Robot

The Dasy SAR system uses the high precision robots.Symmetrical design with triangular coreBuilt-in optical fiber for surface detection system For the 6-axis controller system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application:

- High precision
 (repeatability ±0.02 mm)
- High reliability
 (industrial design)
- Low maintenance costs (virtually maintenancefree due to direct drive gears; no belt drives)
- Jerk-free straight movements
 (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control _elds shielded via the closed metallic constructionshields)

4.2.3 E-Field Probe

The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4-SN:7340 with following specifications is used.

Symmetrical design with triangular core Built-in optical fiber for surface detection system
Built-in shielding against static charges PEEK enclosure material (resistant to organic
solvents, e.g., glycolether)
ISO/IEC 17025 calibration service available
10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
\pm 0.2 dB in HSL (rotation around probe axis) ; \pm 0.4 dB in HSL (rotation normal to probe
axis)
5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from
probe tip to dipole centers: 1.0 mm
General dosimetry up to $3~\mathrm{GHz}$ Compliance tests of mobile phones Fast automatic
scanning in arbitrary phantoms (EX3DV4)

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1/2 annexe technique using reference guide at the five frequencies.

4.2.4 Data Acquisition Electronics

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

- Input Impedance: 200MOhm
- The Inputs: Symmetrical and Floating
- Commom Mode Rejection: Above 80dB

4.2.5 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Left hand
Right hand
Flat phantom

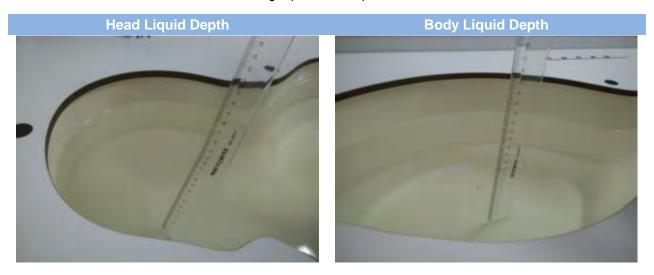
Photo of Phantom SN1857

Photo of Phantom SN1859

Serial Number	Serial Number Material		Height
SN 1857 SAM1	Vinylester, glass fiber reinforced	1000	500
SN 1859 SAM2	Vinylester, glass fiber reinforced	1000	500

4.2.6 Device Holder

The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA"s only. If necessary an additional support of polystyrene material is used. Larger DUT"s (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.



The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.7 Simulating Liquid

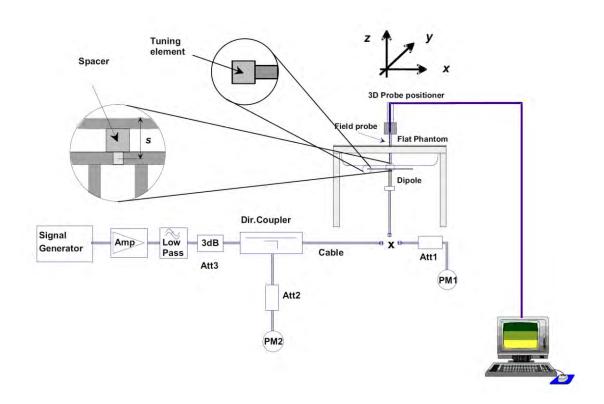
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

	Head (Reference IEEE1528)									
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity		
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε		
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9		
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5		
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5		
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0		
2450	55.0	0	0	0.1	0	44.9	1.80	39.2		
2600	54.9	0	0	0.1	0	45.0	1.96	39.0		
Frequency	Water	ŀ	lexyl Carbito	bl	Triton X-100		Conductivity	Permittivity		
(MHz)	(%)		(%)		(%)		σ (S/m)	3		
5200	62.52		17.24		17.24		4.66	36.0		
5800	62.52		17.24		17.24		5.27	35.3		
		Body (Fro	om instrun	nent man	ufacturer)					
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity		
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3		
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5		
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2		
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0		
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3		
2450	68.6	0	0	0.1	0	31.3	1.95	52.7		
2600	68.2	0	0	0.1	0	31.7	2.16	52.5		

Report No.: BL-SZ1640050-701

	Water	DGBE	Salt	Conductivity	Permittivity
Frequency(MHz)	vvaler	(%)	(%)	σ (S/m)	ε
5200	78.60	21.40	1	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

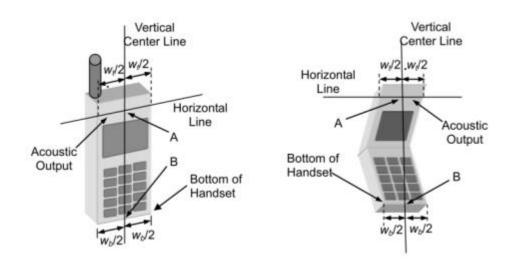

5 SYSTEM VERIFICATION

5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.2 System Check Setup

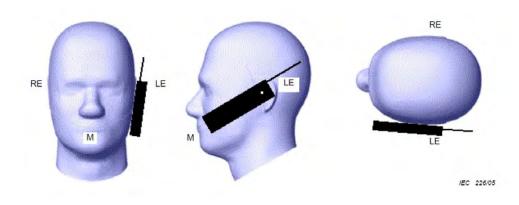
In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:


6 TEST POSITION CONFIGURATIONS

6.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below.

6.1.1 Two Imaginary Lines on the Handset

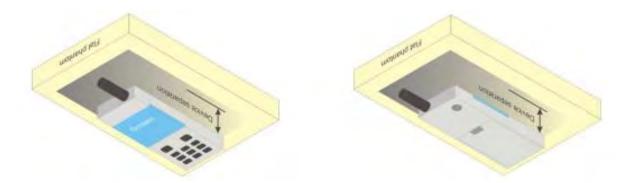

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w t of the handset at the level of the acoustic output, and the midpoint of the width w b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

6.1.2 Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

6.1.3 Tilted Position

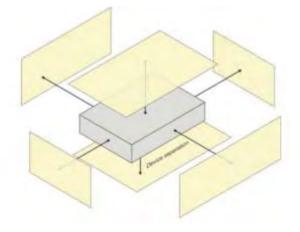
- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.



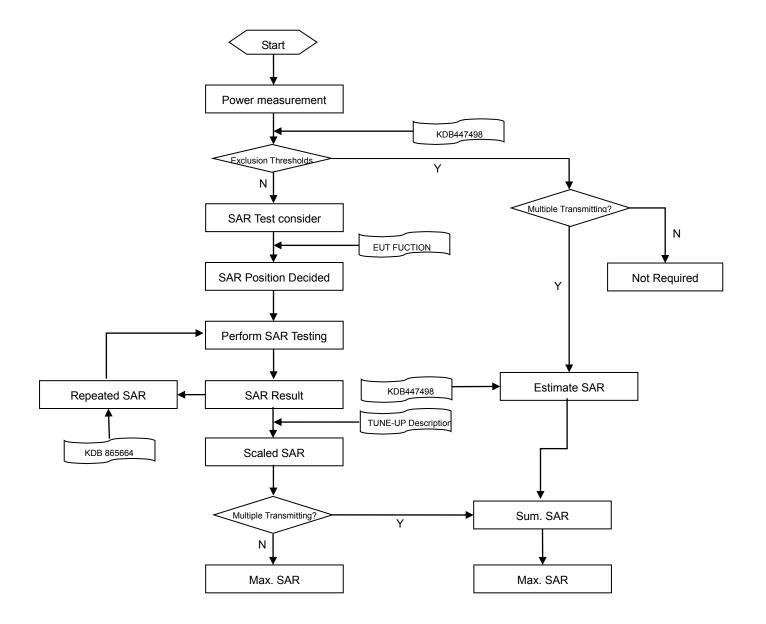
6.2 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in EN 62209-2 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.


Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

6.3 Hotspot Mode Exposure Position Conditions


For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

7 MEASUREMENT PROCEDURE

7.1 Measurement Process Diagram

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz		
Maximum distance from	closest mea	surement point	5±1 mm	½·δ·ln(2)±0.5 mm		
(geometric center of prot	e sensors) t	o phantom surface	5±1 mm	$\frac{1}{2}.0.11(2) \pm 0.511111$		
Maximum probe angle fro	om probe ax	is to phantom surface	30°±1°	20°±1°		
normal at the measurem	neasurement location					
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm		
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm		
			When the x or y dimension of t	he test device, in the		
Maximum area scan spa	tial resolutio	n: Δx Area , Δy Area	measurement plane orientation, is smaller than the above, the			
			measurement resolution must be ≤ the corresponding x or y			
			dimension of the test device with at least one measurement			
			point on the test device.			
NA			≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*		
Maximum zoom scan spa	atial resolutio	on: Δx Zoom , Δy Zoom	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*		
Maximum zoom scan spatial resolution, normal to phantom				3–4 GHz: ≤ 4 mm		
	unifor	m grid: Δz Zoom (n)	≤ 5 mm	4–5 GHz: ≤ 3 mm		
				5–6 GHz: ≤ 2 mm		
		Δz Zoom (1): between		3–4 GHz: ≤ 3 mm		
		1st two points closest	≤ 4 mm	4–5 GHz: ≤ 2.5 mm		
surface	graded	to phantom surface		5–6 GHz: ≤ 2 mm		
	grid	Δz Zoom (n>1):				
		between subsequent	≤ 1.5·Δz 2	Zoom (n-1)		
		points				
				3–4 GHz: ≥ 28 mm		
Minimum zoom		x, y, z	≥30 mm	4–5 GHz: ≥ 25 mm		
scan volume				5–6 GHz: ≥ 22 mm		

1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 Measurement Procedure

The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 *32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan andzoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for otherpeaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

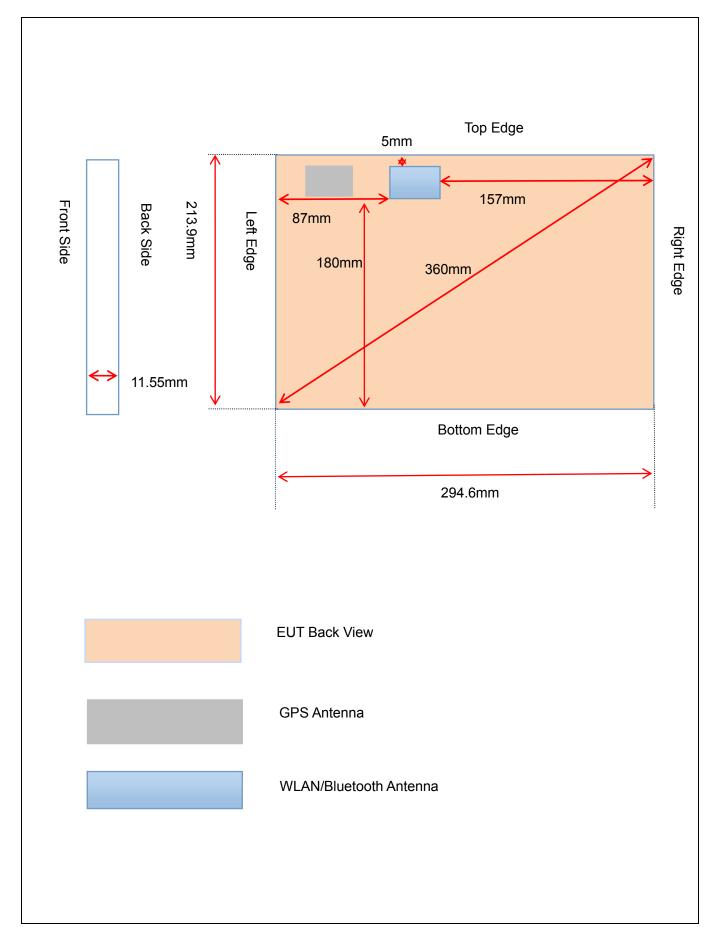
8.1 WIFI

8.1.1 2.4G WIFI

Band	Mode	Channel	Freq.	Avg. Power	SAR Test	
(GHz)	wode	Channer	(MHz)	(dBm)	Require.	
		1	2412	15.02	Yes	
	802.11b	6	6 2437 1		No	
		11	2462	14.06	No	
2.4		1	2412	13.78	No	
2.4	802.11g	6	2437	13.59	No	
(2.4~2.4835)		11	2462	13.46	No	
		1	2412	13.01	No	
	802.11n(HT20)	6	2437	12.28	No	
		11	2462	11.75	No	

8.1.2 5GWIFI

Band	Mada	Freq.		Avg. Power	SAR Test
(GHz)	Mode	Channel	(MHz)	(dBm)	Require.
		36	5180	7.10	No
	802.11a	44	5220	8.48	No
5.2		48	5240	8.78	Yes
(5.15~5.25)		36	5180	6.95	No
	802.11n(HT20)	44	5220	7.46	No
		48	5240	7.25	No
		52	5260	8.97	No
	802.11a	60	5300	9.01	Yes
5.3		64	5320	8.97	No
(5.25~5.35)		52	5260	7.05	No
	802.11n(HT20)	60	5300	8.12	No
		64	5320	7.84	No
		100	5500	8.39	Yes
	802.11a	116	5580	7.37	No
5.6		140	5700	7.08	No
(5.47~5.725)		100	5500	6.71	No
	802.11n(HT20)	116	5580	6.45	No
		140	5700	6.56	No
		149	5745	8.78	No
	802.11a	157	5785	8.86	Yes
5.8		161	5805	8.81	No
(5.725~5.850)		149	5745	8.26	No
	802.11n(HT20)	157	5785	7.55	No
		161	5805	7.39	No



8.2 Bluetooth

Mode	GFSK			π/4-DQPSK			
Channel	0	39	78	0	39	78	
Frequency (MHz)	2402	2441	2480	2402	2441	2480	
Peak Power (dBm)	7.5	7.79	6.91	7.29	7.52	6.69	
Mode		8-DPSK		BLE			
Channel	0	39	78	0	19	39	
Frequency (MHz)	2402	2441	2480	2402	2440	2480	
Peak Power (dBm)	8.14	8.25	7.45	7.85	7.90	6.37	

9 TEST EXCLUSION CONSIDERATION

9.1 SAR Test Exclusion Consideration Table

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \leq 50 mm> Table, this Device SAR test configurations consider as following :

Band		Max. Peak Power		Test Position Configurations					
	Mode			Head	Front/	Left	Right	Тор	Bottom
		dBm	mW	Tieau	Back	Edge	Edge	Edge	Edge
	Distance to User			<5mm	5.5mm	87mm	157mm	5mm	180mm
	802.11b	15.02	31.77	No	Yes	No	No	Yes	No
WLAN 2.4G	802.11g	13.78	23.88	No	No	No	No	No	No
2.40	802.11n(HT20)	13.01	20.00	No	No	No	No	No	No
	802.11n(HT40)	7.90	6.17	No	No	No	No	No	No
WLAN	802.11a	8.78	7.55	No	Yes	No	No	Yes	No
5.2G	802.11n(HT20)	7.46	5.57	No	No	No	No	No	No
WLAN	802.11a	9.01	7.96	No	Yes	No	No	Yes	No
5.3G	802.11n(HT20)	8.12	6.49	No	No	No	No	No	No
WLAN	802.11a	8.39	6.90	No	Yes	No	No	Yes	No
5.6G	802.11n(HT20)	6.71	4.69	No	No	No	No	No	No
WLAN	802.11a	8.86	7.69	No	Yes	No	No	Yes	No
5.8G	802.11n(HT20)	8.26	6.70	No	No	No	No	No	No
	Distance to User			<5mm	<5mm	<5mm	55mm	<5mm	116mm
Bluetooth	Bluetooth BR/EDR	8.25	6.68	No	No	No	No	No	No
	Bluetooth BLE	7.90	6.17	No	No	No	No	No	No

Note:

1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units

2. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.

3. Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold

 Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

a. f(GHz) is the RF channel transmit frequency in GHz

b. Power and distance are rounded to the nearest mW and mm before calculation

c. The result is rounded to one decimal place for comparison

d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / $[\sqrt{f(GHz)}]$ · [(min. test separation distance, mm)] = exclusion threshold of mW.

5. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following

a. [Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b. [Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz

6. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA /HSUPA /DC-HSDPA output

power is < 0.25dB higher than RMC12.2Kbps, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.

7. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate

10 TEST RESULT

10.1 WIFI 2.4GHz

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power(dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Body-worn	Accessory										
		0	1	2412	-4.28	1.110	15.02	15.10	1.019	1.131	1#
	Front Side	0	6	2437	4.23	0.964	14.79	15.10	1.006	0.970	2#
		0	11	2462	3.99	0.837	14.06	15.10	1.271	1.063	3#
802.11 b		0	1	2412	2.09	0.822	15.02	15.10	1.019	0.837	4#
	Back Side	0	6	2437	-2.05	0.759	14.79	15.10	1.074	0.815	5#
		0	11	2462	-1.60	0.658	14.06	15.10	1.271	0.836	6#
	Top Edge	0	1	2412	-3.17	0.509	15.02	15.10	1.019	0.518	7#
Note: Pow	er Drift(%)=10^[N	leas Pow	er Drift(d	B)/10]-1.	•						

10.2 WIFI 5GHz

Fre. Band	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1 g Meas. SAR (W/Kg)	Meas. Power (dBm)	Max. tune-up Power (dBm)	Scaling Factor	1 g Scaled SAR (W/Kg)	Meas. No.
Body-worn Accessory												
		Front Side	0	48	5240	1.86	1.070	8.78	8.80	1.005	1.075	8#
5.2G	802.11 a	FIGHL SIDE	0	44	5220	3.51	1.020	8.48	8.80	1.076	1.098	9#
5.20	002.11 a	Back Side	0	48	5240	-2.28	0.303	8.78	8.80	1.005	0.304	10#
		Top Edge	0	48	5240	-3.84	0.156	8.78	8.80	1.005	0.157	11#
		Front Side	0	60	5300	1.39	1.000	9.01	9.10	1.021	1.021	12#
5.3G	802.11 a		0	64	5320	2.57	1.080	8.97	9.10	1.030	1.113	13#
5.50	002.11 a	Back Side	0	60	5300	3.51	0.440	9.01	9.10	1.021	0.449	14#
		Top Edge	0	60	5300	3.04	0.201	9.01	9.10	1.021	0.205	15#
		Front Side	0	100	5500	2.57	1.120	8.39	8.40	1.002	1.123	16#
5.6G	802.11 a		0	116	5580	1.39	0.612	7.37	8.40	1.268	0.776	17#
5.00	002.11 a	Back Side	0	100	5500	2.09	0.553	8.39	8.40	1.002	0.554	18#
		Top Edge	0	100	5500	2.80	0.338	8.39	8.40	1.002	0.339	19#
		Front Side	0	157	5785	0.93	0.574	8.86	8.90	1.009	0.579	20#
5.8G	802.11 a	Back Side	0	157	5785	2.80	0.435	8.86	8.90	1.009	0.439	21#
		Top Edge	0	157	5785	-3.84	0.179	8.86	8.90	1.009	0.181	22#
Note: P	ower Drift(%)=	=10^[Meas Powe	er Drift(dB)/10]-1.								

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent media. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Frequency Band (Hz)	Wireless Band	Ch.	RF Exposure Conditions	Test Position	Highest Measured SAR (W/kg)	Repeated SAR (Yes/No)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Radio
2.4G	802.11n	1	Body	Front Side	1.110	Yes	1.090	1.02
5.2G	802.11a	48	Body	Front Side	1.070	Yes	0.996	1.07
5.3G	802.11a	60	Body	Front Side	1.080	Yes	1.100	1.02
5.6G	802.11a	100	Body	Front Side	1.120	Yes	1.060	1.06
Note: The ra	Note: The ratio of largest to smallest SAR for the original and first repeated measurements is < 1.20, the second repeated measurement is not required.							

12 SIMULTANEOUS TRANSMISSION

12.1 Simultaneous Transmission Mode Consider

2.4G WIFI, 5G WIFI and Bluetooth shares the same antenna and cannot transmit simultaneously. So the simultaneous multi-band transmission evaluation is not required in this report.

12.2 Estimated SAR Calculation

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

Estimated SAR =
$$\frac{Max.Tune Up Power(mw)}{Min Test Separation Distance} * \frac{\sqrt{f_{GHz}}}{x}$$
 (where $x = 7.5$ for 1-g SAR)

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Band	Mode	Position	Antenna To user (mm)	SAR Testing	Max. Tune-up Power (dBm)	Max. Tune-up Power (mW)	Frequency (GHz)	Calculation Distance/Gap (mm)	Estimated SAR (W/kg)
		Front Side	5	NO	8.40	6.92	2441	5	0.288
BR/EDR	8-DPSK	Back Side	5	NO	8.40	6.92	2441	5	0.288
		Top Edge	5	NO	8.40	6.92	2441	5	0.288
		Front Side	5	NO	8.00	6.31	2440	5	0.263
BLE	BLE GFSK	Back Side	5	NO	8.00	6.31	2440	5	0.263
		Top Edge	5	NO	8.00	6.31	2440	5	0.263

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
2450MHz Validation Dipole	Speag	D2450V2	SN: 952	2014/11/27	2015/11/26
5G Validation Dipole	Speag	D5GHzV2	SN 1200	2014/12/04	2015/12/03
E-Field Probe	Speag	EX3DV4	SN: 7340	2014/12/02	2015/12/01
Phantom1	Speag	SAM	SN: 1859	N/A	N/A
Phantom2	Speag	SAM	SN: 1857	N/A	N/A
Data acquisition electronics	Speag	DAE4	SN: 1454	2014/12/01	2015/11/30
Signal Generator	R&S	SMBV100A	260592	2015/07/16	2016/07/15
Power Meter	Agilent	E4419B	GB40201833	2015/10/14	2016/10/13
Power Sensor	R&S	NRP-Z21	103971	2015/07/16	2016/07/15
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	2015/08/17	2016/08/16
Network Analyzer	R&S	ZVL-6	EMY46103472	2015/07/16	2016/07/15
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp. (℃)	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ε)	Target Conductivity (σ) (S/m)	Target Permittivity (ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2015.11.03	Body	2450	21.6	1.93	52.50	1.95	52.70	-1.03	-0.38
2015.11.04	Body	5200	21.8	5.18	49.20	5.30	49.00	-2.26	0.41
2015.11.04	Body	5800	21.8	5.95	48.40	6.00	48.20	-0.83	0.41
Note: The to	lerances l	imit of Con	ductivity	and Permittivity	is ± 5%.				

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %(for 1 g).

Dete	Liquid	Freq.	Power	Measured	Normalized	DipoleSAR	Tolerance	Targeted	Tolerance
Date	Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
2015.11.03	Body	2450	100	4.96	49.6	50.6	-1.98	52.4	-5.34
2015.11.04	Body	5200	100	7.48	74.8	75.3	-0.66	76.5	-2.22
2015.11.04	Body	5800	100	7.42	74.2	74.7	-0.67	78.0	-4.87
Note: The to	lerance lir	nit of Syste	m validatior	i ±10%.					

System Performance Check Data (2450MHz Body)

2450-BODY-2015-11-03

Communication System Band: CD2450 (2450.0 MHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; σ = 1.93 S/m; ϵ_r = 52.50; ρ = 1000 kg/m³

Phantom section: Flat Section

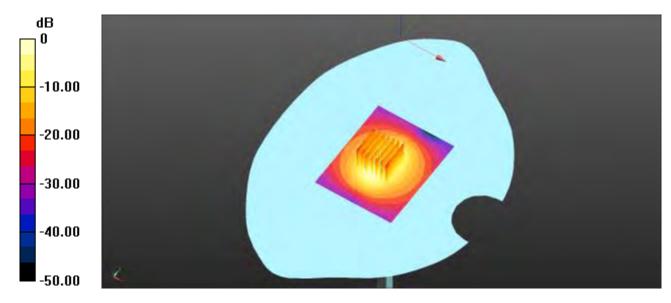
Ambient Temperature:22.3 Liquid Temperature:21.6

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)
- •

Configuration/CW 2450 100mW BODY/Area Scan (81x101x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.76 W/kg


Configuration/CW 2450 100mW BODY/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.83 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 10.6 W/kg

SAR(1 g) = 4.96 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 5.65 W/kg

0 dB = 5.76 W/kg = 7.60 dBW/kg

System Performance Check Data (5200MHz Body)

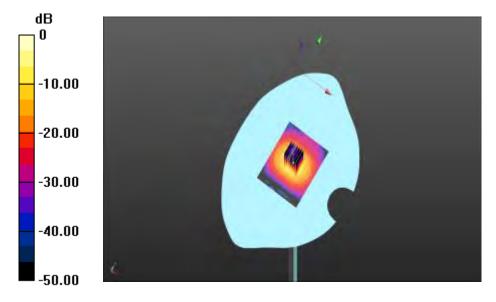
5200-Body-2015-11-04

Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.18 S/m; ϵ_r = 49.20; ρ = 1000 kg/m³

Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/CW 5200/Area Scan (81x101x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.26 W/kg

Configuration/CW 5200/Zoom Scan (7x7x21)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 45.3 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 25.1 W/kg SAR(1 g) =7.48W/kg; SAR(10 g) = 2.34W/kg

Maximum value of SAR (measured) = 12.14 W/kg

0 dB = 12.14 W/kg = 10.84 dBW/kg

System Performance Check Data (5800MHz Body)

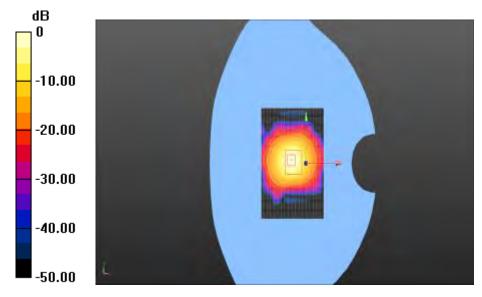
5800-Body-2015-11-04

Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 5.95 S/m; ϵ _r = 48.40; ρ = 1000 kg/m³

Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.31, 4.31, 4.31); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/CW 5800/Area Scan (81x101x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.35 W/kg

Configuration/CW 5800/Zoom Scan (7x7x21)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 46.19 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 24.7 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.15W/kg

Maximum value of SAR (measured) = 8.41 W/kg

0 dB = 8.41 W/kg = 9.25 dBW/kg

ANNEX C TEST DATA

MEAS. 1 Body Plane with Front Side on Low Channel in IEEE 802.11b mode

Date/Time: 11/3/2015

Communication System Band: WLAN(b); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; σ = 1.903 S/m; ϵ_r = 51.861; ρ = 1000 kg/m³ Phantom section: Flat Section

Ambient Temperature:22.3 Liquid Temperature:21.6

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Front on 1 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.39 W/kg


Configuration/WLAN(b) 2.4G Body Front on 1 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.91 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.422 W/kg

Maximum value of SAR (measured) = 1.33 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

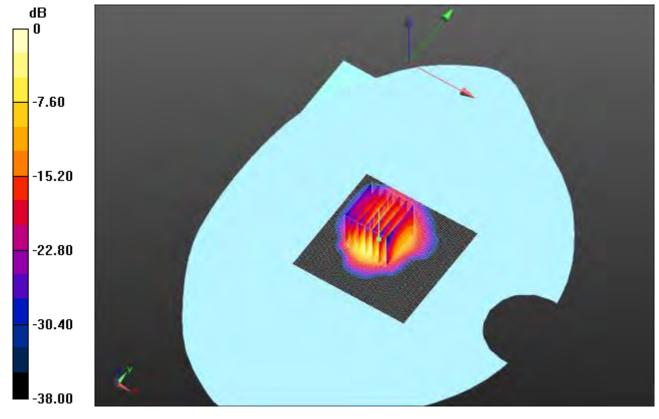
MEAS. 2 Body Plane with Front Side on Middle Channel in IEEE 802.11b mode

Date/Time: 11/3/2015 Communication System Band: WLAN(b); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.909 S/m; ϵ_r = 51.739; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.6 DASY5 Configuration: • Probe: EX3DV4 - SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014; • Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Front on 6 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg


Configuration/WLAN(b) 2.4G Body Front on 6 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.04 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 2.44 W/kg

SAR(1 g) = 0.964 W/kg; SAR(10 g) = 0.364 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

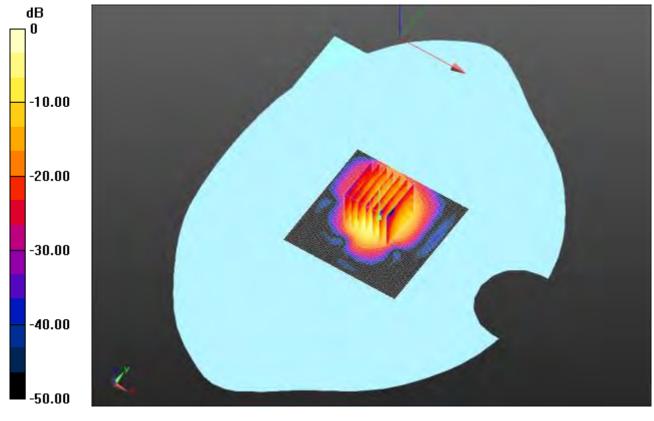
MEAS. 3 Body Plane with Front Side on High Channel in IEEE 802.11b mode

Date/Time: 11/3/2015 Communication System Band: WLAN(n); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.936 S/m; ϵ_r = 50.622; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.6 DASY5 Configuration: Probe: EX3DV4 - SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/1/2014

- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Front on 11 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.05 W/kg


Configuration/WLAN(b) 2.4G Body Front on 11 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.78 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 0.837 W/kg; SAR(10 g) = 0.313 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

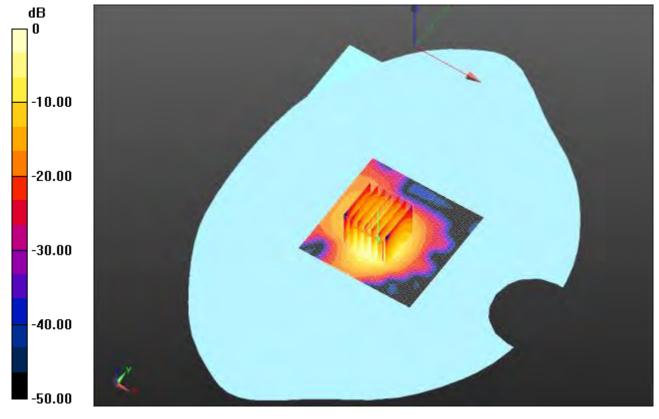
0 dB = 1.05 W/kg = 0.21 dBW/kg

MEAS. 4 Body Plane with Back Side on Low Channel in IEEE 802.11b mode

Date/Time: 11/3/2015 Communication System Band: WLAN(b); Frequency: 2412 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2412 MHz; σ = 1.903 S/m; ϵ_r = 51.861; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.6 DASY5 Configuration: • Probe: EX3DV4 - SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014; • Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Back on 1 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.05 W/kg


Configuration/WLAN(b) 2.4G Body Back on 1 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.68 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.822 W/kg; SAR(10 g) = 0.341 W/kg

Maximum value of SAR (measured) = 0.971 W/kg

0 dB = 0.971 W/kg = -0.13 dBW/kg

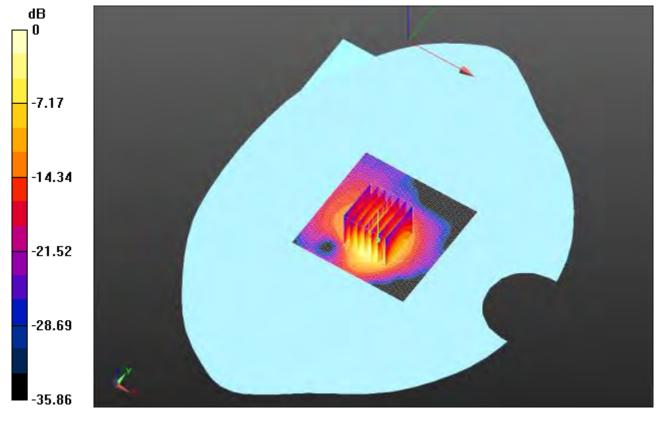
MEAS. 5 Body Plane with Back Side on Middle Channel in IEEE 802.11b mode

Date/Time: 11/3/2015 Communication System Band: WLAN(b); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.909 S/m; ϵ_r = 51.739; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.6 DASY5 Configuration: Probe: EX3DV4 - SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Back on 6 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.916 W/kg


Configuration/WLAN(b) 2.4G Body Back on 6 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.63 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 0.887 W/kg

0 dB = 0.887 W/kg = -0.52 dBW/kg

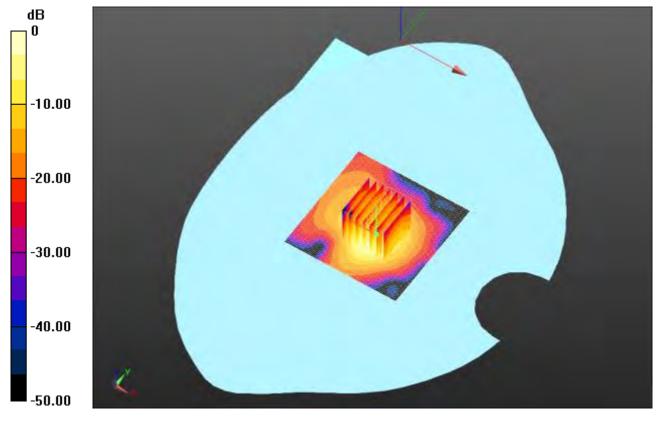
MEAS. 6 Body Plane with Back Side on High Channel in IEEE 802.11b mode

Date/Time: 11/3/2015 Communication System Band: WLAN(n); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.936 S/m; ε_r = 50.622; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.6 DASY5 Configuration: Probe: EX3DV4 - SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1454; Calibrated: 12/1/2014 Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Back on 11 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.826 W/kg


Configuration/WLAN(b) 2.4G Body Back on 11 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.52 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.267 W/kg

Maximum value of SAR (measured) = 0.779 W/kg

0 dB = 0.826 W/kg = -0.83 dBW/kg

MEAS. 7 Body Plane with Top Edge on Low Channel in IEEE 802.11b mode

Date/Time: 11/3/2015

Communication System Band: WLAN(b); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; σ = 1.903 S/m; ϵ_r = 51.861; ρ = 1000 kg/m³

Phantom section: Flat Section

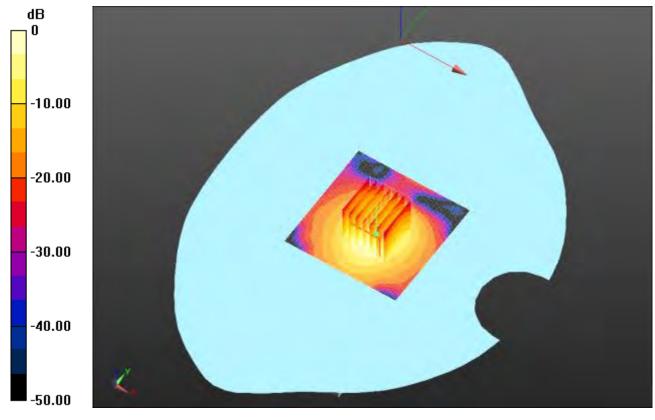
Ambient Temperature:22.3 Liquid Temperature:21.6

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(7.55, 7.55, 7.55); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 Right 1857; Type: QD000P40CD; Serial: TP1857
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(b) 2.4G Body Top on 1 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.625 W/kg


Configuration/WLAN(b) 2.4G Body Top on 1 Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.79 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.509 W/kg; SAR(10 g) = 0.222 W/kg

Maximum value of SAR (measured) = 0.587 W/kg

0 dB = 0.625 W/kg = -2.04 dBW/kg

MEAS. 8 Body Plane with Front Side on Channel 48 in IEEE 802.11a mode

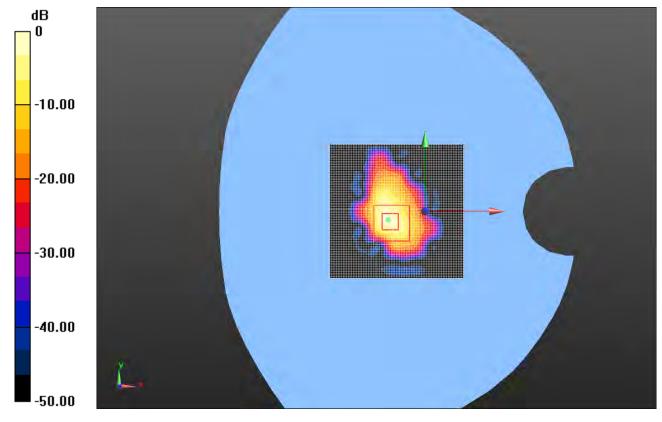
Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5240 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; σ = 5.36 S/m; ε_r = 46.8; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8 DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 48 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.46 W/kg

Configuration/WLAN(a) Body Front 48 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 9.515 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 4.41 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.264 W/kg

Maximum value of SAR (measured) = 2.14 W/kg

0 dB = 2.14 W/kg = 3.30 dBW/kg

MEAS. 9 Body Plane with Front Side on Channel 44 in IEEE 802.11a mode

Date/Time: 11/4/2015

Communication System Band: WLAN(a); Frequency: 5220 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5220 MHz; σ = 5.333 S/m; ϵ_r = 47.06; ρ = 1000 kg/m³

Phantom section: Flat Section

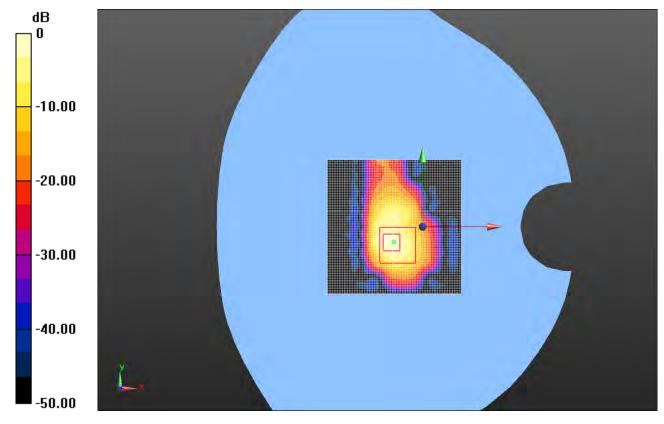
Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 44 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.24 W/kg


Configuration/WLAN(a) Body Front 44 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.326 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 4.37 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.245 W/kg

Maximum value of SAR (measured) = 2.18 W/kg

0 dB = 1.24 W/kg = 0.93 dBW/kg

MEAS. 10 Body Plane with Back Side on Channel 48 in IEEE 802.11a mode

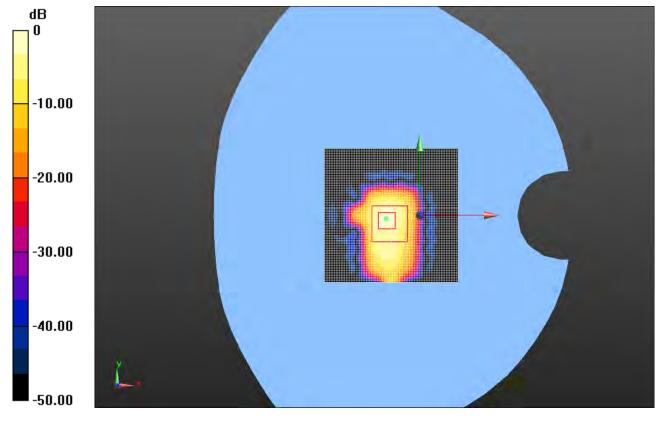
Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5240 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; σ = 5.36 S/m; ϵ_r = 46.8; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8 DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Back 48 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.414 W/kg

Configuration/WLAN(a) Body Back 48 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 8.019 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.087 W/kg

Maximum value of SAR (measured) = 0.592 W/kg

0 dB = 0.592 W/kg = -2.28 dBW/kg

MEAS. 11 Body Plane with Top Edge on Channel 48 in IEEE 802.11a mode

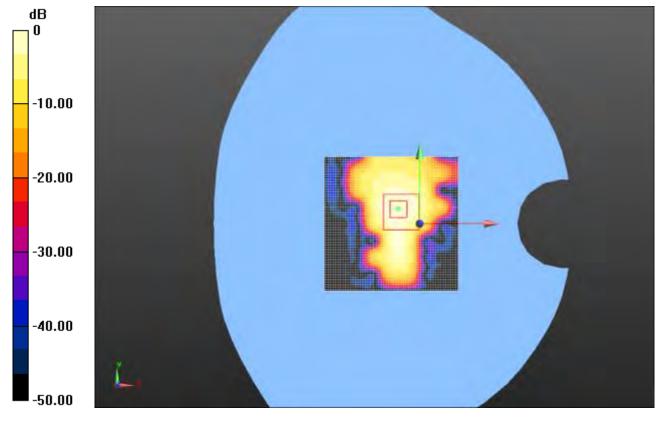
Date/Time: 11/4/2015
Communication System Band: WLAN(a); Frequency: 5240 MHz;Duty Cycle: 1:1
Medium parameters used: f = 5240 MHz; σ = 5.36 S/m; ε_r = 46.8; ρ = 1000 kg/m³
Phantom section: Flat Section
Ambient Temperature:22.3 Liquid Temperature:21.8
DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Top 48 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.179 W/kg


Configuration/WLAN(a) Body Top 48 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.698 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.547 W/kg

SAR(1 g) = 0.156 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.309 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

MEAS. 12 Body Plane with Front Side on Channel 60 in IEEE 802.11a mode

Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.38 S/m; ε_r = 46.7; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8 DASY5 Configuration: • Probe: EX3DV4 - SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014; • Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface

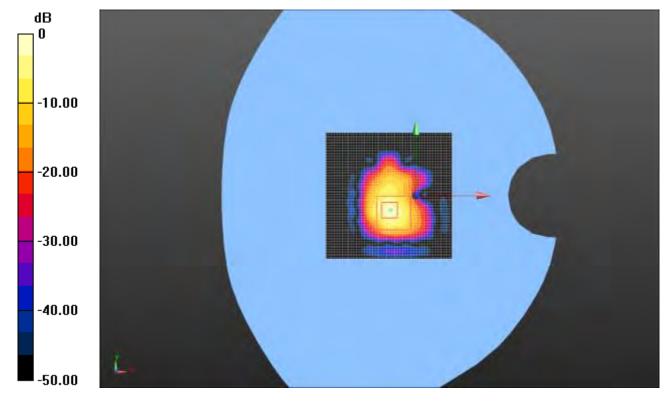
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 60 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.27 W/kg

Configuration/WLAN(a) Body Front 60 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm


Detection)

Reference Value = 8.874 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 4.39 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.238 W/kg

Maximum value of SAR (measured) = 2.13 W/kg

0 dB = 2.13 W/kg = 3.28 dBW/kg

MEAS. 13 Body Plane with Front Side on Channel 64 in IEEE 802.11a mode

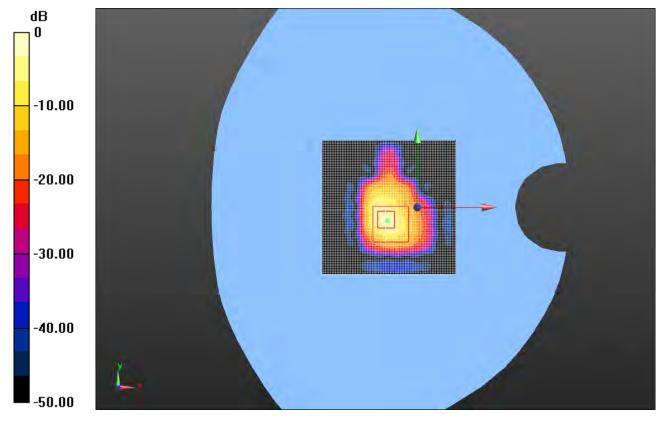
Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5320 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5320 MHz; σ = 5.29 S/m; ϵ_r = 46.9; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8 DASY5 Configuration: • Probe: EX3DV4 - SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;

- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 64 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.28 W/kg

Configuration/WLAN(a) Body Front 64 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 9.553 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 4.62 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.256 W/kg

Maximum value of SAR (measured) = 2.35 W/kg

0 dB = 2.35 W/kg = 3.71 dBW/kg

MEAS. 14 Body Plane with Back Side on Channel 60 in IEEE 802.11a mode

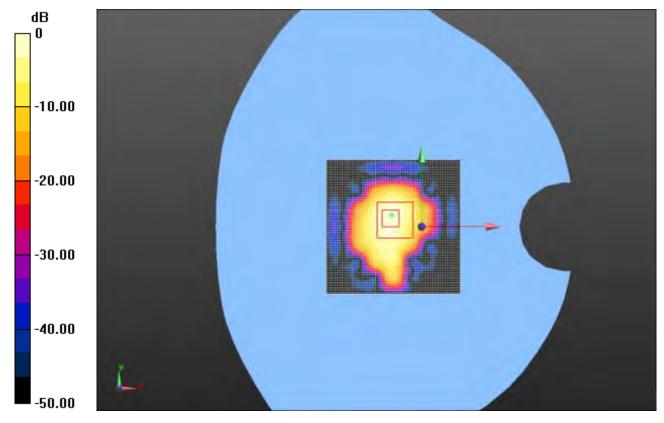
Date/Time: 11/4/2015
Communication System Band: WLAN(a); Frequency: 5300 MHz;Duty Cycle: 1:1
Medium parameters used: f = 5300 MHz; σ = 5.38 S/m; ε_r = 46.7; ρ = 1000 kg/m³
Phantom section: Flat Section
Ambient Temperature:22.3 Liquid Temperature:21.8
DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Back 60 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.514 W/kg


Configuration/WLAN(a) Body Back 60 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.775 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.113 W/kg

Maximum value of SAR (measured) = 0.927 W/kg

0 dB = 0.514 W/kg = -2.89 dBW/kg

MEAS. 15 Body Plane with Top Edge on Channel 60 in IEEE 802.11a mode

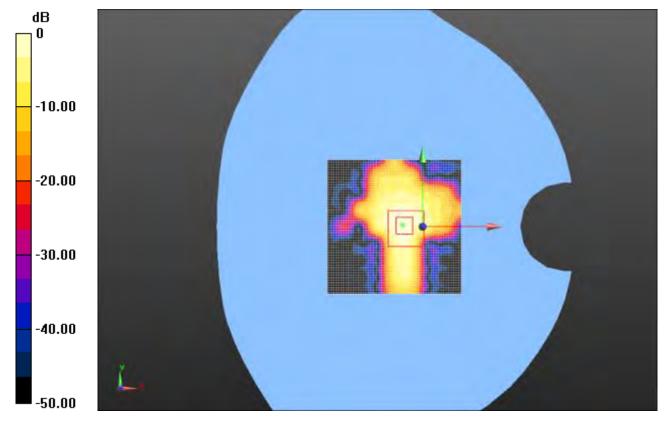
Date/Time: 11/4/2015
Communication System Band: WLAN(a); Frequency: 5300 MHz;Duty Cycle: 1:1
Medium parameters used: f = 5300 MHz; σ = 5.38 S/m; ε_r = 46.7; ρ = 1000 kg/m³
Phantom section: Flat Section
Ambient Temperature:22.3 Liquid Temperature:21.8
DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(4.62, 4.62, 4.62); Calibrated: 12/2/2014;
Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Top 60 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.257 W/kg


Configuration/WLAN(a) Body Top 60 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.696 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.723 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.064 W/kg

Maximum value of SAR (measured) = 0.389 W/kg

0 dB = 0.257 W/kg = -5.90 dBW/kg

MEAS. 16 Body Plane with Front Side on Channel 100 in IEEE 802.11a mode

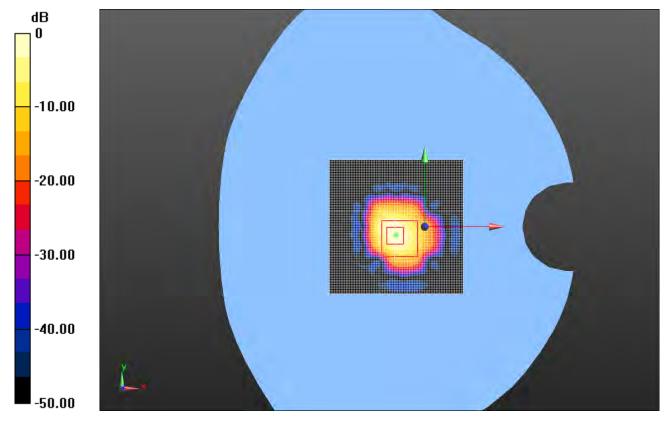
Date/Time: 11/4/2015
Communication System Band: WLAN(a); Frequency: 5500 MHz;Duty Cycle: 1:1
Medium parameters used: f = 5500 MHz; σ = 5.68 S/m; ε_r = 46.7; ρ = 1000 kg/m³
Phantom section: Flat Section
Ambient Temperature:22.3 Liquid Temperature:21.8
DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(4.1, 4.1, 4.1); Calibrated: 12/2/2014;
Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 100 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.46 W/kg


Configuration/WLAN(a) Body Front 100 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.18 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 4.61 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.268 W/kg

Maximum value of SAR (measured) = 2.41 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

MEAS. 17 Body Plane with Front Side on Channel 116 in IEEE 802.11a mode

Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5580 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5580 MHz; σ = 5.73 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8

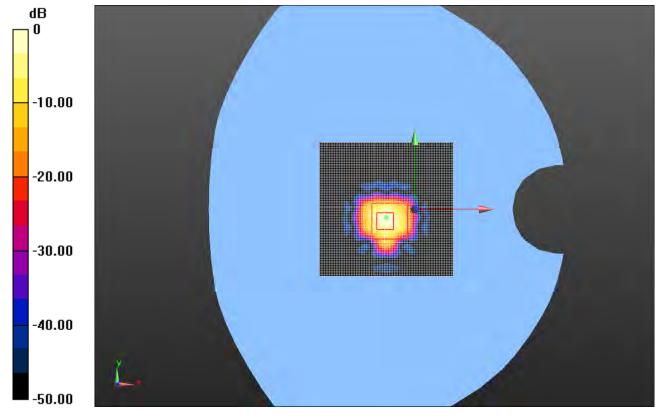
DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.1, 4.1, 4.1); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 116 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.01 W/kg

Configuration/WLAN(a) Body Front 116 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 8.666 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 0.612 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 1.34 W/kg

0 dB = 1.34 W/kg = 1.27 dBW/kg

MEAS. 18 Body Plane with Back Side on Channel 100 in IEEE 802.11a mode

Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.68 S/m; ϵ_r = 46.7; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature:22.3 Liquid Temperature:21.8

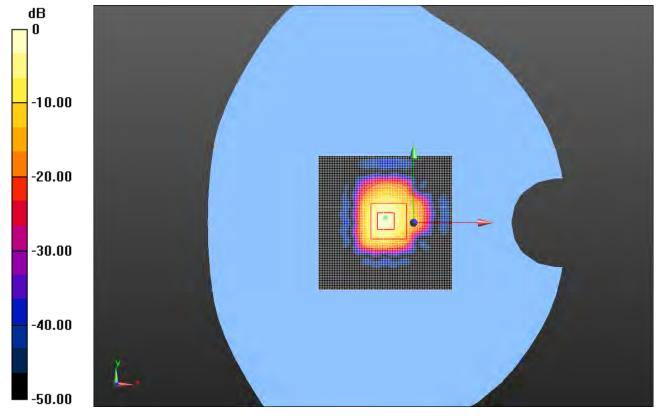
DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.1, 4.1, 4.1); Calibrated: 12/2/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Back 100 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.699 W/kg

Configuration/WLAN(a) Body Back 100 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 10.95 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

MEAS. 19 Body Plane with Top Edge on Channel 100 in IEEE 802.11a mode

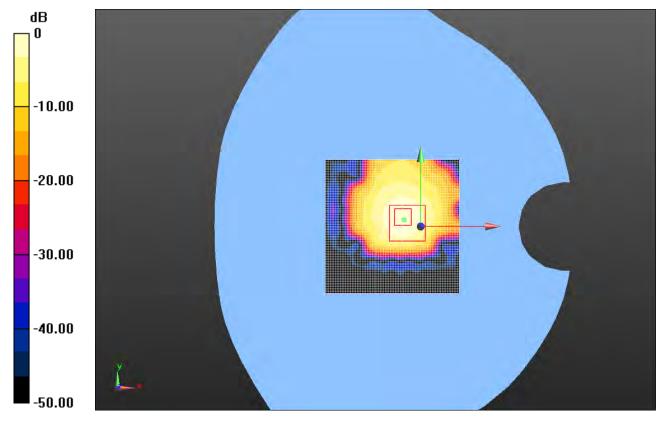
Date/Time: 11/4/2015
Communication System Band: WLAN(a); Frequency: 5500 MHz;Duty Cycle: 1:1
Medium parameters used: f = 5500 MHz; σ = 5.68 S/m; ε_r = 46.7; ρ = 1000 kg/m³
Phantom section: Flat Section
Ambient Temperature:22.3 Liquid Temperature:21.8
DASY5 Configuration:

Probe: EX3DV4 - SN7340; ConvF(4.1, 4.1, 4.1); Calibrated: 12/2/2014;
Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Top 100 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.363 W/kg


Configuration/WLAN(a) Body Top 100 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.457 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.338 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 0.664 W/kg

0 dB = 0.363 W/kg = -4.40 dBW/kg

MEAS. 20 Body Plane with Front Side on Channel 157 in IEEE 802.11a mode

Date/Time: 11/4/2015 Communication System Band: WLAN(a); Frequency: 5785 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 6$ S/m; $\epsilon_r = 46.55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

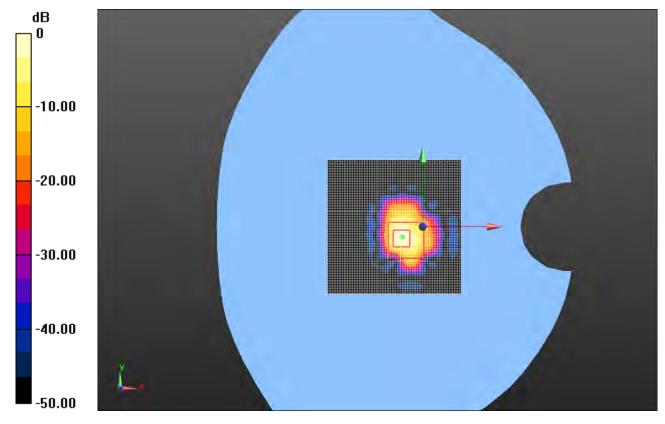
Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.31, 4.31, 4.31); Calibrated: 12/2/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Front 157 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.06 W/kg


Configuration/WLAN(a) Body Front 157 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.286 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.45 W/kg

SAR(1 g) = 0.574 W/kg; SAR(10 g) = 0.138 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

MEAS. 21 Body Plane with Back Side on Channel 157 in IEEE 802.11a mode

Date/Time: 11/4/2015

Communication System Band: WLAN(a); Frequency: 5785 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; σ = 6 S/m; ϵ_r = 46.55; ρ = 1000 kg/m³

Phantom section: Flat Section

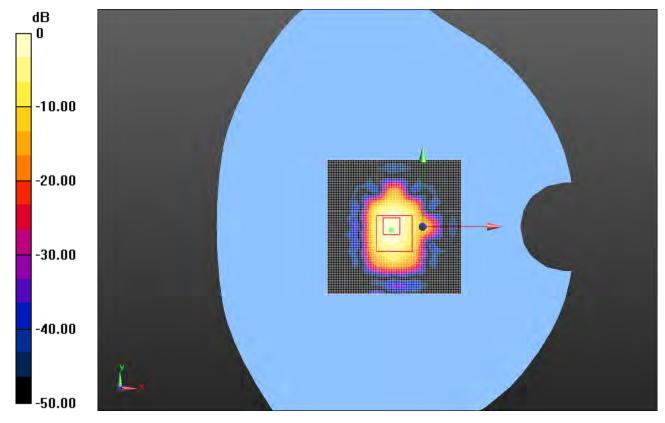
Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.31, 4.31, 4.31); Calibrated: 12/2/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Back 157 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.524 W/kg


Configuration/WLAN(a) Body Back 157 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.304 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.435 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.874 W/kg

0 dB = 0.524 W/kg = -2.81 dBW/kg

MEAS. 22 Body Plane with Top Edge on Channel 157 in IEEE 802.11a mode

Date/Time: 11/4/2015

Communication System Band: WLAN(a); Frequency: 5785 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; σ = 6 S/m; ϵ_r = 46.55; ρ = 1000 kg/m³

Phantom section: Flat Section

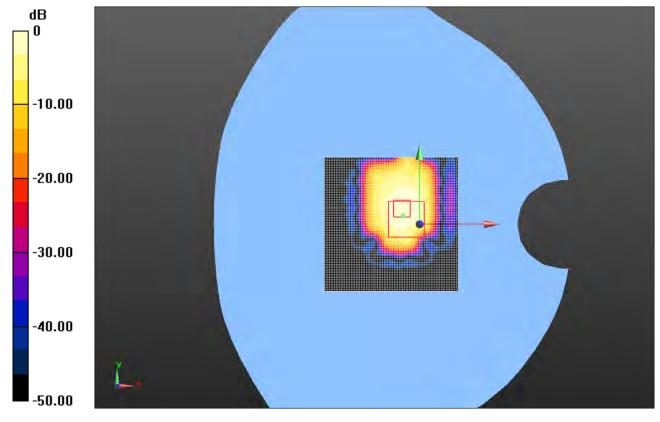
Ambient Temperature:22.3 Liquid Temperature:21.8

DASY5 Configuration:

- Probe: EX3DV4 SN7340; ConvF(4.31, 4.31, 4.31); Calibrated: 12/2/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1454; Calibrated: 12/1/2014
- Phantom: SAM (30deg probe tilt) with CRP v5.0 on left 1859; Type: QD000P40CD; Serial: TP:1859
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/WLAN(a) Body Top 157 Channel/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.215 W/kg


Configuration/WLAN(a) Body Top 157 Channel/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.291 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.179 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.362 W/kg

0 dB = 0.215 W/kg = -6.68 dBW/kg

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ1640050-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ1640050-AS.pdf".

ANNEX F CALIBRATION REPORT

F.1 E-Field Probe

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GRIGRATE S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signaturies to the EA Multilateral Agreement for the recognition of calibration certificates

Client Dgiele (Vitec)

Certificate No: EX3-7340_Dec14

	EVODUL ON TO	10					
Object	EX3DV4 - SN:73	40					
Calibration procedure(s)		QA CAL-14.v4, QA CAL-23.v5, QA dure for dosimetric E-field probes	CAL-25.v6				
Calibration date:	December 2, 2014						
The measurements and the un	certaintiles with confidence pr ucted in the closed laborator	onal standards, which realize the physical units robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate.				
Primary Standards	ID	Gal Date (Certificate No.)	Scheduled Calibration				
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Construction of the second state of the second				
Lower Jueral East 1912	Sector T The sector of T	Sector 14 Date Set Acta 11	Apr-15				
	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15 Apr-15				
Power sensor E4412A							
Power sensor E4412A Reference 3 dB Attenuator	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	MY41498087 SN: \$5054 (3c)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915)	Apr-15 Apr-15				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	MY41498087 SN: \$5054 (3c) SN: \$6277 (20x) SN: \$5129 (30b) SN: 3013	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919)	Apr-15 Apr-15 Apr-15				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	MY41498087 SN: \$5054 (3c) SN: \$5277 (20x) SN: \$5129 (30b)	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920)	Apr-15 Apr-15 Apr-15 Apr-15 Apr-15				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	MY41498087 SN: \$5054 (3c) SN: \$6277 (20x) SN: \$5129 (30b) SN: 3013	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01910) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Dec-14 Scheduled Check				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP B648C	MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Dec-14 Scheduled Check In house check: Apr-16				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753É	MY41498087 SN: S5054 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01919) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14)	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-15				
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP B648C	MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name	03-Apr-14 (No. 217-01911) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01915) 03-Apr-14 (No. 217-01920) 30-Dec-13 (No. ES3-3013_Dec13) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-14) Function	Apr-15 Apr-15 Apr-15 Apr-15 Dec-14 Dec-14 Scheduled Check In house check: Apr-16 In house check: Oct-15				

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx, y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	o rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7340_Dec14

Page 2 of 11

EX3DV4 - SN:7340

December 2, 2014

Probe EX3DV4

SN:7340

Manufactured: Calibrated:

July 23, 2014 December 2, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-7340_Dec14

Page 3 of 11

EX3DV4- SN:7340

December 2, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7340

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.53	0.49	0.46	± 10.1 %
DCP (mV) ^B	100.7	91.3	102.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	166.9	±3.3 %
_		Y	0.0	0.0	1.0		162.2	
		Z	0.0	0.0	1.0		149.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

EX3DV4- SN:7340

December 2, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7340

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	41.5	0.90	9.91	9.91	9.91	0.52	0.80	± 12.0 %
1750	40.1	1.37	9.13	9.13	9.13	0.55	0.75	± 12.0 %
1900	40.0	1.40	8.77	8.77	8.77	0.46	0.78	± 12.0 %
2450	39.2	1.80	7.83	7.83	7.83	0.41	0.86	± 12.0 %
2600	39.0	1.96	7.64	7.64	7.64	0.41	0.87	± 12.0 %
5200	36.0	4.66	5.28	5.28	5.28	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.72	4.72	4.72	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAP values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10%. The uncertainty is the RSS of the RSSS of the RSS of the

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 5 of 11

EX3DV4-SN:7340

December 2, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7340

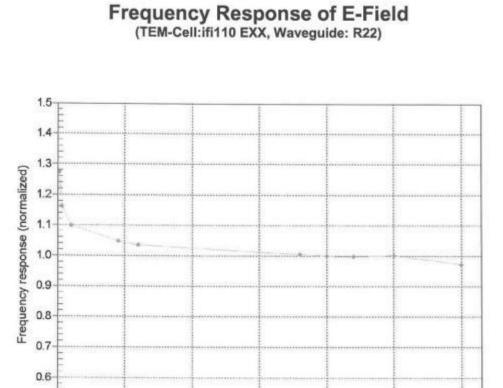
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	9.97	9.97	9.97	0.69	0.68	± 12.0 %
1750	53.4	1.49	8.53	8.53	8.53	0.41	0.93	± 12.0 %
1900	53.3	1.52	8.18	8.18	8.18	0.80	0.58	± 12.0 %
2450	52.7	1.95	7.55	7.55	7.55	0.80	0.50	± 12.0 %
2600	52.5	2.16	7.11	7.11	7.11	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.62	4.62	4.62	0.45	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.31	4.31	4.31	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Page 6 of 11

Report No.: BL-SZ1640050-701

EX3DV4- SN:7340

December 2, 2014

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

1500

f [MHz]

2000

2500

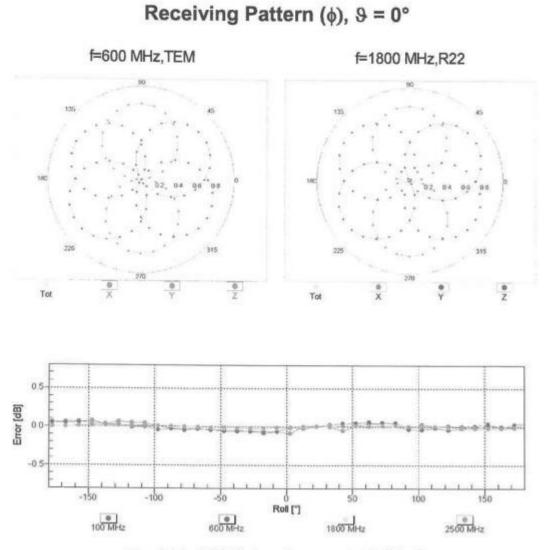
+ R22 3000

Certificate No: EX3-7340_Dec14

0.5

500

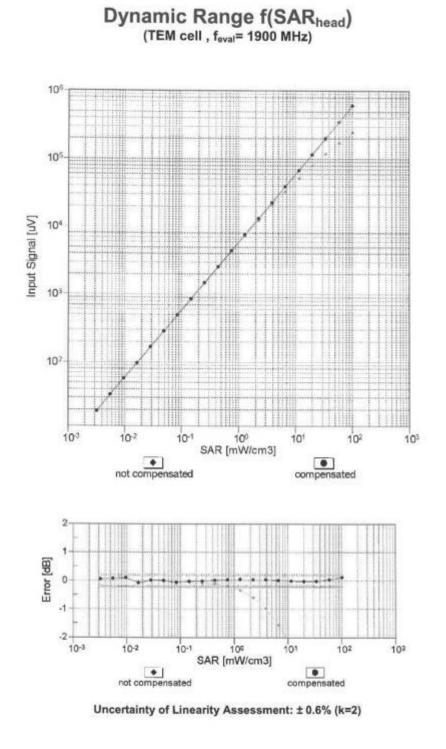
1000


TEM

Page 7 of 11

EX3DV4-SN:7340

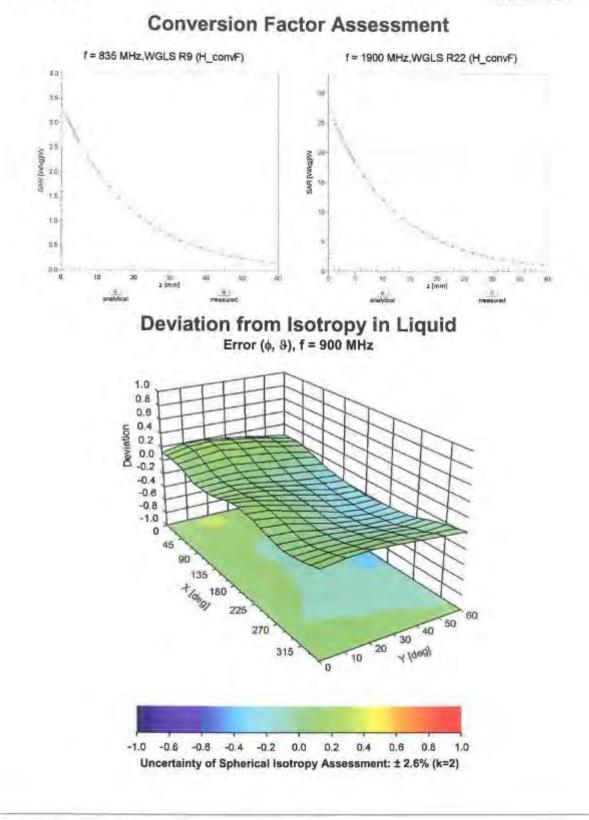
December 2, 2014


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Page 8 of 11

EX3DV4- SN:7340

December 2, 2014



Page 9 of 11

December 2, 2014

Certificate No: EX3-7340_Dec14

Page 10 of 11

EX3DV4- SN:7340

December 2, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7340

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-47.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-7340_Dec14

Page 11 of 11

Client

F.2 Data Acquisition Electronics

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Dgieie (Vitec)

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

A GNISS OF TO ROAD Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

and the second second

Accreditation No.: SCS 108

S

C

S

Certificate No: DAE4-1454_Dec14

Object	DAE4 - SD 000 D0	04 BM - SN: 1454	
Calibration procedure(s)	QA CAL-06.v28 Calibration proced	ure for the data acquisition electro	onics (DAE)
Calibration date:	December 01, 201	4	
The measurements and the unce All calibrations have been conduc	rtainties with confidence pro	nal standards, which realize the physical units bability are given on the following pages and a facility: environment lemperature $(22 \pm 3)^{\circ}$ C a	ire part of the certificate.
Calibration Equipment used (M&	C children for administration		
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 03-Oct-14 (No:15573)	Scheduled Calibration Oct-15
Calibration Equipment used (M&) Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ID #		
Primary Standards Keithley Multimeter Type 2001	ID # SN: 0810278	03-Oct-14 (No:15573) Check Date (in house)	Oct-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	03-Oct-14 (No:15573) Check Date (In house) 07-Jan-14 (in house check)	Oct-15 Scheduled Check In house check: Jan-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	03-Oct-14 (No:15573) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Oct-15 Scheduled Check In house check: Jan-15 In house check: Jan-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	03-Oct-14 (No:15573) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check) Function	Oct-15 Scheduled Check In house check: Jan-15 In house check: Jan-15

Certificate No: DAE4-1454_Dec14

Page 1 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CRIVER NO

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1454_Dec14

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV .	full range =	-1+3mV

Calibration Factors	X	Y	Z
High Range	404.134 ± 0.02% (k=2)	403.641 ± 0.02% (k=2)	403.713 ± 0.02% (k=2)
Low Range	4.01178 ± 1.50% (k=2)	3.98989 ± 1.50% (k=2)	3.99971 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	316.5 ° ± 1 °
---	---------------

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200031.80	-0.26	-0.00
Channel X + Input	20001.23	-2.68	-0.01
Channel X - Input	-20003.35	1.70	-0.01
Channel Y + Input	200039.44	7.23	0.00
Channel Y + Input	20000.28	-3.57	-0.02
Channel Y - Input	-20006.44	-1.22	0.01
Channel Z + Input	200040.26	7.92	0.00
Channel Z + Input	20000.97	-2.84	-0.01

-20007.52

Appendix (Additional assessments outside the scope of SCS108)

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.65	0.03	0.00
Channel X + Input	200.83	0.05	0.02
Channel X - Input	-198.91	0.45	-0.23
Channel Y + Input	2000.46	-0.10	-0.01
Channel Y + Input	199.94	-0.66	-0.33
Channel Y - Input	-199.92	-0.45	0.23
Channel Z + Input	2000.59	0.10	0.01
Channel Z + Input	199.12	-1.46	-0.73
Channel Z - Input	-200.88	-1.43	0.72

-2.33

0.01

2. Common mode sensitivity

Channel Z

- Input

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-14.55	-16.51
	- 200	17.71	16.60
Channel Y	200	-22.05	-22.66
	- 200	22.22	21.96
Channel Z	200	-12.87	-12.55
	- 200	10.00	9.91

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	•	-2.55	-2.28
Channel Y	200	4.25		-1.65
Channel Z	200	9.93	2.36	

Certificate No: DAE4-1454_Dec14

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16115	16385
Channel Y	16297	16505
Channel Z	16059	16142

5. Input Offset Measurement

DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.24	-1.34	0.92	0.37
Channel Y	-0.07	-1.28	0.82	0.40
Channel Z	-1.81	-2.74	-0.39	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

F.3 2450MHz Dipole

Calibration Laboratory of SWIS Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage CHUBRA С ac-MR **Engineering AG** Servizio svizzero di taratura S Zeughausstrasse 43, 8004 Zurich, Switzerland Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Dgieie (Vitec) Certificate No: D2450V2-952_Nov14 CALIBRATION CERTIFICATE Object D2450V2 - SN: 952 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 27, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) ID # Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) Apr-15 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec13) Dec-14 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 28, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-952_Nov14

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-952_Nov14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	united a	ः जन्मन्य

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.02 W/kg

Certificate No: D2450V2-952_Nov14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4 Ω + 3.0 jΩ
Return Loss	- 27.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω + 5.1 jΩ
Return Loss	- 25.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 05, 2014

Certificate No: D2450V2-952_Nov14

Page 4 of 8

Date: 27.11.2014

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

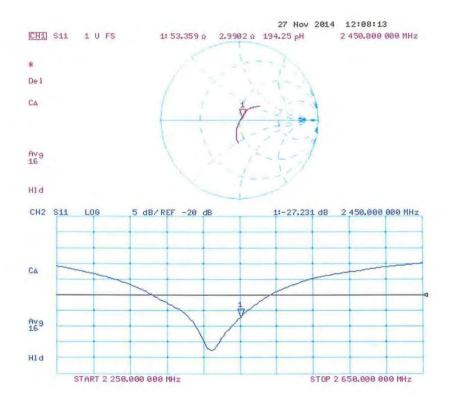
Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ε_r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 17.5 W/kg



Certificate No: D2450V2-952_Nov14

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-952_Nov14

Page 6 of 8

Date: 27.11.2014

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952

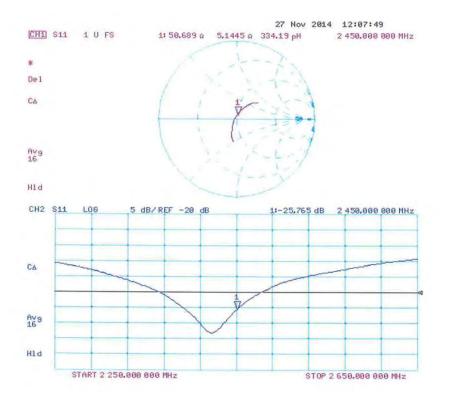
Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 50.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.25 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 17.3 W/kg



Certificate No: D2450V2-952_Nov14

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-952_Nov14

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.1 SCS 108

S

C

S

Accredited by the Swas Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Dgiele (Vitec)

Certificate No: D5GHzV2-1200_Dec14

Dbject	D5GHzV2 - SN:12	200	
Calibration procedure(s)	QA CAL-22.v2 Calibration proces	dure for dipole validation kits betw	ween 3-6 GHz
Calibration date:	December 04, 20	14	
This calibration certificate docu The measurements and the uno	ments the traceability to nati certainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages an	its of measurements (SI). d are part of the certificate.
All calibrations have been cond	ucted in the closed laborator	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
	&TE critical for calibration)		
Calibration Equipment used (M Primary Standards	&TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M Primary Standards Power meter EPM-442A	STE critical for calibration)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A	TE critical for calibration)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Oct-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-15 Oct-15 Oct-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092517 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092517 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092517 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	8TE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37380585 S4206	Cal Date (Certilicate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M Primary Standards Power meter EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	STE critical for calibration) 1D # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certilicate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D5GHzV2-1200_Dec14

Page 1 of 13

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1200_Dec14

Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W / kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.30 W/kg

Certificate No: D5GHzV2-1200_Dec14

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.24 W/kg

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

den des	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.45 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.12 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
		2.24 W/kg

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

M. J	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

mW input power 7.53 W/kg malized to 1W 74.7 W/kg ± 19.9 9	
malizad to 1W/ 74 7 W/kg + 19.9 9	or case of the later
manzed to two	% (k=2)
condition	
	-
nw input power	-
-	condition mW input power 2.08 W/kg

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	47.4 Ω - 1.4 jΩ
Return Loss	- 30.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	49.9 Ω + 5.7 jΩ	
Return Loss	- 24.9 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	49.5 Ω + 3.7 jΩ	
Return Loss	- 28.6 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	47.0 Ω + 0.4 jΩ	
Return Loss	- 30.2 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	50.0 Ω + 7.2 jΩ	
Return Loss	- 22.8 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	49.4 Ω + 5.5 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 11, 2014

Certificate No: D5GHzV2-1200_Dec14

Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 04.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

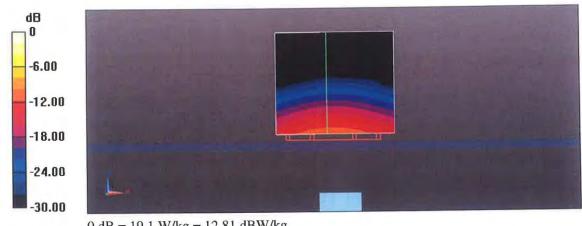
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ S/m; $\varepsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.89$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.09$ S/m; $\varepsilon_r = 33.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

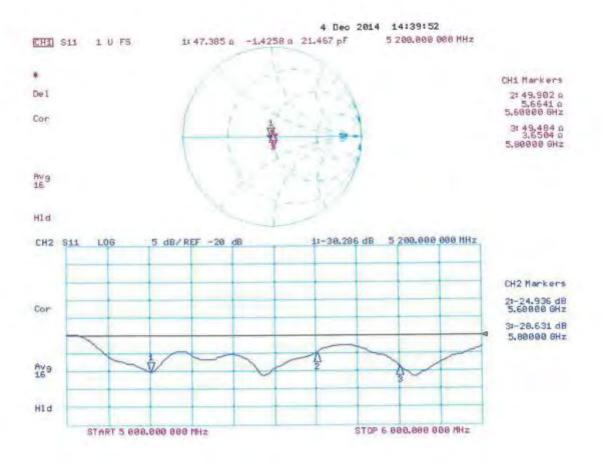
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.97 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 17.9 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.58 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.53 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: D5GHzV2-1200_Dec14

Page 8 of 13



0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 04.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

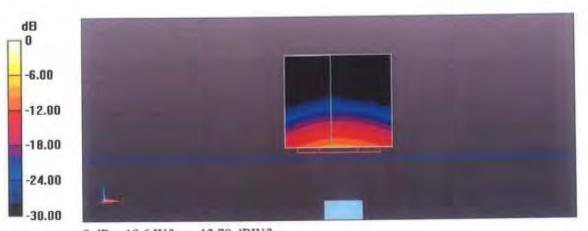
DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.45$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.98$ S/m; $\varepsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.25$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

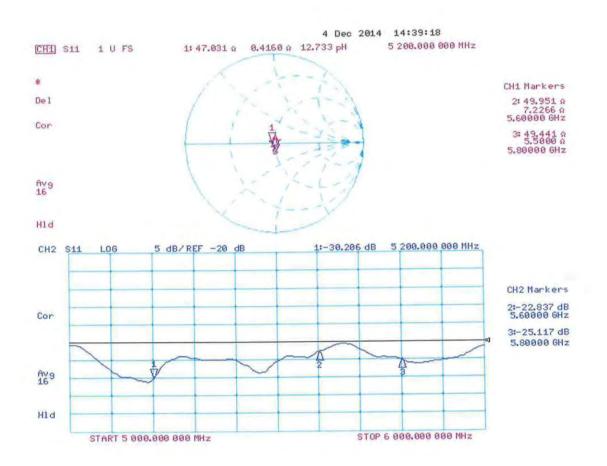
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.96 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 17.5 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.53 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.45 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 18.6 W/kg

Certificate No: D5GHzV2-1200_Dec14

Page 11 of 13



0 dB = 18.6 W/kg = 12.70 dBW/kg

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1200_Dec14

Page 13 of 13

--END OF REPORT--