

TEST REPORT

Applicant	PEGATRON CORPORATION
Address	5F., NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY, Taiwan

Manufacturer or Supplier	PEGATRON CORPORATION
Address	5F., NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY, Taiwan
Product	Tablet PC
Brand Name	Q00Q/SQ00L
Model	MT10UWA116
Additional Model & Model Difference	N/A
Date of tests	Oct. 23, 2015 ~ Nov. 3, 2015 Apr 10, 2016 ~ May 17, 2016

the tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart E, Section 15.407

account to declare the compliance or non-compliance to the specification

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Tested by Breeze Jiang Project Engineer / EMC Department	Approved by Chris Chen Assistant Manager / EMC Department		
preed	May 17, 2016		
This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof			
based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error of comission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tes conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken in			

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

BUREAU VERITAS Test Report No.: RF151008N004-3R1

TABLE OF CONTENTS

RELEAS	SE CONTROL RECOR	۲D	
1 SU	IMMARY OF TEST RE	SULTS	5
2 ME	EASUREMENT UNCE	RTAINTY	5
3 GE	NERAL INFORMATIC	DN	6
3.1	GENERAL DESCRIPT	ION OF EUT	6
3.2	DESCRIPTION OF TE	ST MODES	8
3.2	2.1 TEST MODE AP	PLICABILITY AND TESTED CHANNEL D	DETAIL 9
3.3	DUTY CYCLE OF TES	ST SIGNAL	
3.4	DESCRIPTION OF SL	IPPORT UNITS	
3.4	.1 CONFIGURATIC	N OF SYSTEM UNDER TEST	
3.5	GENERAL DESCRIPT	ION OF APPLIED STANDARDS	
4. TE	ST TYPES AND RES	JLTS	14
4.1	RADIATED EMISSION	AND BANDEDGE MEASUREMENT	
4.1	.1 LIMITS OF RAD	ATED EMISSION AND BANDEDGE ME	ASUREMENT14
4.1	.2 LIMITS OF UNW	ANTED EMISSION OUT OF THE REST	RICTED BANDS 14
4.1	.3 TEST INSTRUM	ENTS	
4.1	.4 TEST PROCEDU	JRES	
4.1	.5 DEVIATION FRO	M TEST STANDARD	
4.1	.6 TEST SETUP		
4.1	.7 EUT OPERATIN	G CONDITION	
4.1	.8 TEST RESULTS		
4.2	CONDUCTED EMISS	ON MEASUREMENT	
4.2	2.1 LIMITS OF CON	DUCTED EMISSION MEASUREMENT	
4.2	2.2 TEST INSTRUM	ENTS	
4.2	2.3 TEST PROCEDU	JRES	
4.2	2.4 DEVIATION FRO	M TEST STANDARD	
4.2	2.5 TEST SETUP		
4.2	2.6 EUT OPERATIN	G CONDITIONS	
4.2	2.7 TEST RESULTS		
4.3	CONDUCTED OUTPL	IT POWER MEASUREMENT	
4.3	3.1 LIMITS OF CON	DUCTED OUTPUT POWER MEASUREN	MENT 62
Bureau Veritas Sher Dongguan Branch	nzhen Co., Ltd.	No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China	Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

	4.3.2	TEST SETUP	32
	4.3.3	TEST INSTRUMENTS	52
	4.3.4	TEST PROCEDURE	33
	4.3.5	DEVIATION FROM TEST STANDARD	33
	4.3.6	EUT OPERATING CONDITIONS	33
	4.3.7	TEST RESULTS	34
4	.4 PEA	K POWER SPECTRAL DENSITY MEASUREMENT 8	31
	4.4.1	LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT	31
	4.4.2	TEST SETUP	31
	4.4.3	TEST INSTRUMENTS	31
	4.4.4	TEST PROCEDURES	31
	4.4.5	DEVIATION FROM TEST STANDARD	32
	4.4.6	EUT OPERATING CONDITIONS	32
	4.4.7	TEST RESULTS	33
4	.5 FRE	QUENCY STABILITY) 5
	4.5.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT	98
	4.5.2	TEST SETUP	98
	4.5.3	TEST INSTRUMENTS	98
	4.5.4	TEST PROCEDURE	99
	4.5.5	DEVIATION FROM TEST STANDARD	99
	4.5.6	EUT OPERATING CONDITION	99
	4.5.7	TEST RESULTS)0
5.	РНОТС	OGRAPHS OF THE TEST CONFIGURATION10)4
6.	APPENI	DIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT BY	THE LAB)5

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF151008N004-3 R1	Original release	May 17, 2016

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART E (SECTION 15.407 Under New/ Old Rule)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESUL T	REMARK
15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit.
15.407 (b)(1/2/3/4/6)	Radiated Emissions: 30MHz ~ 40000MHz	PASS	Meet the requirement of limit.
15.407 (b)(1/2/3/4/6)	Band Edge Measurement	PASS	Meet the requirement of limit.
15.407(a)(1/2/3)	Conducted output Power	PASS	Meet the requirement of limit.
15.407(a)(1/2/3)	Peak Power Spectral Density	PASS	Meet the requirement of limit.
15.407(g)	Frequency Stability	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.66dB
	9KHz ~ 30MHz	2.74dB
Radiated emissions	30MHz ~ 1GMHz	3.55dB
Radiated emissions	1GHz ~ 18GHz	4.84dB
	18GHz ~ 40GHz	4.84dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Tablet PC		
MODEL NO.	MT10UWA116		
ADDITIONAL MODELS	N/A		
FCC ID	VUI-MT10UW		
POWER SUPPLY	DC 3.8V by Li-ion Battery, DC5.0V by Adaptor or USB Host Unit		
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK		
MODULATION TECHNOLOGY	OFDM		
TRANSFER RATE	802.11a: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps 802 11n: up to 135Mbps		
OPERATING FREQUENCY	5180 ~ 5240MHz, 5260 ~ 5320MHz		
	5500 ~ 5700MHz, 5745 ~ 5825MHz		
NUMBER OF CHANNEL	5180 ~ 5240MHz: 3 for 802.11a, 802.11n (20MHz) 5260 ~ 5320MHz: 3 for 802.11a, 802.11n (20MHz) 5500 ~ 5700MHz: 3 for 802.11a, 802.11n (20MHz) 5745 ~ 5825MHz: 3 for 802.11a, 802.11n (20MHz)		
OUTPUT POWER	8.78 dBm for 5180 ~ 5240MHz (Maximum Peak Power) 9.01 dBm for 5260 ~ 5320MHz (Maximum Peak Power) 8.39 dBm for 5500 ~ 5700MHz (Maximum Peak Power) 8.86 dBm for 5745 ~ 5825MHz (Maximum Peak Power)		
ANTENNA TYPE	 5180 ~ 5240MHz: Monopole antenna with 3.51dBi gain 5260 ~ 5320MHz: Monopole antenna with 3.51dBi gain 5500 ~ 5700MHz: Monopole antenna with 3.51dBi gain 5745 ~ 5825MHz: Monopole antenna with 3.51dBi gain 		
DATA CABLE	USB Cable : Shielded, detachable, 1.0m		
I/O PORTS	Refer to user's manual		

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document (Reference No.: 151008N004) for detailed product photo.
- 4. Please refer to the EUT photo document (Reference No.: 150612N055) for detailed product photo.

5. The EUT was powered by the following adapters: ADAPTER 1

BRAND:	N/A
MODEL:	SA69-050200V
INPUT:	AC 100-240V, 50/60HZ, 300MA
OUTPUT:	DC 5V, 2000MA
ADAPTER 2	
BRAND:	N/A
MODEL:	ASSA55e-050200
INPUT:	AC 100-240V, 50/60HZ, 0.45A
OUTPUT:	DC 5V, 2A

3.2 DESCRIPTION OF TEST MODES

FOR 5150 ~ 5250MHz

3 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180 MHz	44	5220 MHz
48	5240 MHz		

FOR 5250 ~ 5350MHz

3 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
52	5260 MHz	60	5300MHz
64	5320 MHz		

FOR 5470 ~ 5725MHz

3 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
100	5500 MHz	116	5580 MHz
140	5700 MHz		

FOR 5725 ~ 5850MHz

3 channels are provided for 802.11a, 802.11n (20MHz):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745MHz	157	5785MHz
161	5805MHz		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		APPLIC	ABLE TO	DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
Α	\checkmark	\checkmark	\checkmark	-	Powered by Adapter with wifi(5G) link
В	-	-	-	\checkmark	Powered by Battery with wifi(5G) link
С	-	-	-	-	Powered by USB with wifi(5G) link
Where	RE≥1G: Radia	ted Emission a	bove 1GHz	RE<1G : R	Radiated Emission below 1GHz

Where

PLC: Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

APCM: Antenna Port Conducted Measurement

NOTE:

The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane. NOTE: "-"means no effect.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
А	802.11a	E190 E240	36 to 48	36, 44, 48	OFDM	BPSK	6.0
А	802.11n (20MHz)	5180-5240	36 to 48	36, 44, 48	OFDM	BPSK	MCS0
А	802.11a	5000 5000	52 to 64	52, 60, 64	OFDM	BPSK	6.0
А	802.11n (20MHz)	5260-5320	52 to 64	52, 60, 64	OFDM	BPSK	MCS0
А	802.11a	EE00 E700	100 to 140	100, 116, 140	OFDM	BPSK	6.0
А	802.11n (20MHz)	5500-5700	100 to 140	100, 116, 140	OFDM	BPSK	MCS0
A	802.11a	E70E E90E	149 to 165	149, 157, 161	OFDM	BPSK	6.0
А	802.11n (20MHz)	5725-5625	149 to 165	149, 157, 161	OFDM	BPSK	MCS0

Following channel(s) was (were) selected for the final test as listed below.

RADIATED EMISSION TEST (BELOW 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
А	802.11a	5180-5320	36 to 64	36	OFDM	BPSK	6.0

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
A	802.11a	5180-5320	36 to 64	36	OFDM	BPSK	6.0

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
А	802.11a	E190 E240	36 to 48	36	OFDM	BPSK	6.0
А	802.11n (20MHz)	5160-5240	36 to 48	36	OFDM	BPSK	MCS0
А	802.11a	E260 E220	52 to 64	64	OFDM	BPSK	6.0
А	802.11n (20MHz)	5260-5320	52 to 64	64	OFDM	BPSK	MCS0
А	802.11a	EE00 E700	100 to 140	100	OFDM	BPSK	6.0
A	802.11n (20MHz)	5500-5700	100 to 140	100	OFDM	BPSK	MCS0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	FREQ. BAND (MHz)	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
В	802.11a	E190 E240	36 to 48	36, 44, 48	OFDM	BPSK	6.0
В	802.11n (20MHz)	5160-5240	36 to 48	36, 44, 48	OFDM	BPSK	MCS0
В	802.11a	5000 5000	52 to 64	52, 60, 64	OFDM	BPSK	6.0
В	802.11n (20MHz)	5260-5320	52 to 64	52, 60, 64	OFDM	BPSK	MCS0
В	802.11a	EE00 E700	100 to 140	100, 116, 140	OFDM	BPSK	6.0
В	802.11n (20MHz)	5500-5700	100 to 140	100, 116, 140	OFDM	BPSK	MCS0
В	802.11a	E70E E00E	149 to 165	149, 157, 161	OFDM	BPSK	6.0
В	802.11n (20MHz)	0120-0620	149 to 165	149, 157, 161	OFDM	BPSK	MCS0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE<1G	26deg. C, 67%RH	DC 5.0V from Adapter	Sen He
RE≥1G	26deg. C, 67%RH	DC 5.0V from Adapter	Sen He
PLC	20deg. C, 56%RH	DC 5.0V from Adapter	Sen He
APCM	20deg. C, 55%RH	DC 3.8V from Battery	Blue Zheng

3.3 DUTY CYCLE OF TEST SIGNAL

Duty cycle of test signal is < 98%, duty factor shall be considered.

802.11a/ n (20MHz) Duty cycle = 0.965, Duty factor = 10 * log(0.965) = -0.154

802.11a/ n (40MHz) Duty cycle = 0.951, Duty factor = 10 * log(0.951) = -0.217

🗧 Agilent				Marker
ef 20 dBm Peak	Atten 30 dE	3	▲ Mkr2 1.353 ms 1.34 dB	Select Marker
og Ø <mark>γγth∼tµAnn ⊄</mark> B/ iffst	R Kanhyologiningan (hilihaiyahpa	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n hay hay hand a start which have a start which hav	Norma
B				Delta
gAv				Delta Pair (Tracking Ref) Ref
enter 5.180 00 es BW 1 MHz Marker Trac	0 GHz e Type	VBW 3 MHz X Axis	Span 0 Hz Sweep 2 ms (601 pts) Amplitude	Span Pair Span <u>Center</u>
1R (1) 1 ₄ (1) 2R (1) 2 ₄ (1)	Time Time Time Time	266.7 µs 1.287 ms 270 µs 1.353 ms	-1.81 dBm 2.94 dB -1.72 dBm 1.34 dB	Ofi
				More 1 of 2

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	REC	N/A	N/A	N/A

NO.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	AC Line;unshielded, detachable 1.0m.

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407) 789033 D02 General UNII Test Procedures New Rules v01r02

ANSI C63.10-2014

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

APPLICABLE TO	LIMIT							
	FIELD	ο STRENGTH AT 3m (dBμV/m)						
	PK	AV						
	74	54						
	EIRP LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBµV/m)						
\checkmark	PK	РК						
·	-27	68.3						
	-17	78.3						

NOTE: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$

 μ V/m, where P is the eirp (Watts).

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Model No. Last Cal. Next Cal. Equipment Manufacturer Serial No. EMI Test Receiver Rohde&Schwarz ESR7 101494 Apr 26,17 Apr 27,16 Signal and Rohde&Schwarz FSV40 101094 Apr 23,16 Apr 22,17 Spectrum Analyzer CBL 6111D 30643 Jul. 16, 15 Jul. 15, 16 **Bilog Antenna** Teseq Horn Antenna ETS-Lindgren 3117 00062558 May 30,16 May. 29,18 Amplifier SONOMA 310D 186955 Mar. 04,16 Mar. 03, 17 (9kHz-1GHz) Pre-Amplifier SCHWARZBECK BBV 9718 Mar 25,18 9718-266 Mar 26,16 (0.5~18GHz) GPS Generator+ TOJOIN GNSS-5000A E1-010119 Aug. 08, 15 Aug. 07, 16 Antenna 3m Semi-anechoic ETS-LINDGREN 9m*6m*6m NSEMC003 April. 19,16 April. 18,18 Chamber ADT Radiated ADT Test Software N/A N/A N/A V7.6.15.9.2

4.1.3 TEST INSTRUMENTS

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 966 Chamber.
- 3. The FCC Site Registration No. is 502831.

4.1.4 TEST PROCEDURES

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

a) RBW = as specified in Table 1.

b) VBW \geq 3 x RBW.

c) Detector = Peak.

d) Sweep time = auto.

e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

Table 1—RBW as a function of frequency

Frequency RBW

9-150 kHz 200-300 Hz

0.15-30 MHz 9-10 kHz

30-1000 MHz 100-120 kHz

> 1000 MHz 1 MHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle \geq 98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.

c) RBW = 1 MHz (unless otherwise specified).

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous (\geq 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.

Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

4.1.5 DEVIATION FROM TEST STANDARD

No deviation.

4.1.6 TEST SETUP

Below 30MHz

30MHz~1GHz

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

CONDUCTED TEST

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.7 EUT OPERATING CONDITION

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

4.1.8 TEST RESULTS

Antenna-port Conducted test data

Note: Below the 1GHz, all configurations have been tested, only the worst configuration (Band I

802.11a CH36) show here

 $\mathsf{E} = \mathsf{EIRP} - 20\mathsf{log} \ \mathsf{D} + 104.8$

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

EIRP= Measure Conducted output power Value (dBm) + Maximum transmit antenna gain (dBi)

+ the appropriate maximum ground reflection factor (dB)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the antenna 3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (3th ,4th, 5th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequency (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdic t
0.019238	-100.1 2	6	3	2	QP	3.14	-20.00	-23.14	Note 2	PASS
1.2504	-79.74	6	3	2	QP	23.52	-20.00	-43.52	Note 2	PASS
599.37	-80.02	4.7	3	2	QP	21.94	-20.00	-41.94	Note 2	PASS
833.81	-80.96	4.7	3	2	QP	21.00	-20.00	-41.00	Note 2	PASS

Test Plots

LOW	CH	ANNE	L, SF	PURIC	DUS	9 k⊦	lz ~ 1	50 kH	Z	LOV	V C	HAI	NNEL	_, SP	URIO	JS 1	50 kł	Hz ~ 3	0 MH	z
Spectrun	n	/SA 🔊	Spectrun	12 🛛					Ē	Spect	rum	VS	A X	Spectrur	n 2 🔊					
Ref Level	-9.00 dB	m Offset 1.	00 dB 👄 R	BW 200 Hz					(*	RefLe	vel -9.0	10 dBm	Offset 1	.00 dB 😑 R	BW 10 kHz					(*)
Att	10 d	IB SWT 9	1.5 ms 🖷 V	BW 1 kHz	Mode A	uto FFT				Att		10 dB	SWT :	1.3 ms 😑 🛛	BW 30 kHz	Mode A	uto FFT			
●1Pk Max										😑 1Pk M	ах									
						41[1]		-1	0.2380 kH								43[1]			-92.80 dBm
-20 dBm						42[1]		-1	L03.37 dBn	-20 dBn	n —						1111		18	-79 74 dBm
								7	5.9410 kH:										1	25040 MHz
-30 dBm										-30 dBn	n				-		+	-	1	
-40 dBm										-40 dBn										
										.0 001										
-50 dBm										-50 dBn	n									
-60 dBm										60 ID										
										-60 ash	n									
-70 dBm		-								-70 dBn	n									
-80 dBm										M1										
										-90 den	Sall is	le ra	1.1	M2						
-90 dBm										-90 dBp	A SHARE	(AMA)	MANNA A	WHAT ALL	ahaa ahaa		ма			
Mindue M1	m dank 1	1 Martin	a la l	M2				M2		10 001	·	1.00	1	a section of the sect	MURANIK	MUMMIN	MARY WATER	MANUNALAN	الرياض وبالأعتاقات	a siloutha balain
14- AND AND AND	ahah ka law H	holladeladelihere	eren hand that	stration of the states of	Anvinsuvilly	n haan ahaan	hidip with a dh	NHAN NAMPANY	a particular as	-100 dB	sm					1 1 2		a della se esta a se	and the second second	ded allowed on a 19
Start 9.0	kHz			4001	l pts			Stop	150.0 kHz											
Marker										Start 1	.50.0 k⊦	z			4001	pts			Stop	30.0 MHz
Type Re	ef Trc	X-value	,	Y-value	Fun	ction	F	unction Result	t	Marker						1 -				
M1 M2	1	19.2	38 KHz	-100.12 dB	im Im					M1	Kef I	1	x-value 1.25	e 04 MHz	-79.74 dB	m Fun	ction	Fun	ction Resul	t
M3	1	120.5	21 kHz	-104.02 dB	ŝm					M2		1	10.37	48 MHz	-86.07 dB	m				
	1				I Ma	asuring		III 440	27.10.2015	MЗ		1	18.63	337 MHz	-92.80 dB	m				
																Me	asuring		1,00	27.10.2015
Date: 27.OCT.	2015 19:59	9:48											_							
										Date: 27.0	DCT.2015	20:01:2	5							

LOW CHANNEL, SPURIOUS 30 MHz ~ 1 GHz

Spectrum	VS	A 🛛	Spect	rum 2	×					[₩
Ref Level -	9.00 dBm	Offset 1	.00 dB 📢	RBW	100 kHz					,
Att	10 dB	SWT	9.7 ms (VBW	300 kHz	Mode A	uto Sweep			
∋1Pk Max										
						M	3[1]			-80.96 dBm
									8	33.810 MH:
-20 dBm						M	1[1]			-85.34 dBm
									1	55.890 MH
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm										
						M2			MB	
-80 dBm	المراطل وحاد أأأبلوا		4.4.4.4.8	and the	ويقاور لحار الط	still lead to 1	ليتراجع وفاريا أرد	اس اواطله مي طال ال	and a state of the second s	NI BURNER AND
	any spectrum	p-happing ab	n di di nan	1000000	public films	desides sets.	etter al freedow	a gland and a particular	a to the base of the	And INTRODUCED
-90 dBm	-									
-100 dBm										
Start 30.0 M	IHz				4001	pts			Ste	pp 1.0 GHz
4arker										
Type Ref	Trc	X-valu	в	Ι Y	-value	Func	tion	Fund	tion Resul	
M1	1	165.	89 MHz		-85.34 dB	m				
M2	1	599.	37 MHz		-80.02 dB	m				
M3	1	833.	81 MHz		-80.96 dB	m				
	1							STREET, STREET	1.142	27.10.2015

Date: 27.OCT.2015 20:02:34

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Band 1

802.11a

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8633.1	-49.75	0	3	3.51	PK	49.02	79.66	30.64	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	59.66	N/A	Note 3	PASS
19508.4	-59.55	0	3	3.51	PK	39.22	74.00	34.78		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5184	0.89	0	3	3.51	PK	99.66	N/A	N/A	Note 1	N/A
	0.44	0	3	3.51	AV	74.81	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:08:35

CHANNEL	TX Channel 44	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
9705 1	-45.17	0	3	3.51	PK	53.60	85.48	31.88	Note 2	PASS
6705.1	N/A	0	3	3.51	AV	N/A	65.48	N/A	Note 3	PASS
1702 5	-54.31	0	3	3.51	PK	44.46	74.00	29.54		PASS
1702.5	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5210.0	6.71	0	3	3.51	PK	105.48	N/A	N/A	Noto 1	N/A
5219.9	6.26	0	3	3.51	AV	80.63	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:09:41

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
0744 4	-45.93	0	3	3.51	PK	52.84	84.63	31.79	Note 2	PASS
0/41.1	N/A	0	3	3.51	AV	N/A	64.63	N/A	Note 3	PASS
151171	-51.92	0	3	3.51	PK	46.85	74.00	27.15		PASS
15417.4	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5242.0	5.86	0	3	3.51	PK	104.63	N/A	N/A	Note 1	N/A
5243.9	5.41	U	3	3.51	AV	79.78	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:10:13

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

802.11n (20MHz)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.76 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8633.1	-46.42	0	3	3.51	PK	52.35	81.82	29.47	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	61.82	N/A	Note 3	PASS
19160.5	-53.9	0	3	3.51	PK	44.87	74.00	29.13		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5184	3.05	0	3	3.51	PK	101.82	N/A	N/A	Note 1	N/A
	2.60	0	3	3.51	AV	76.97	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:17:04

CHANNEL	TX Channel 44	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8699.1	-45.68	0	3	3.51	PK	53.09	83.79	30.70	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.79	N/A	Note 3	PASS
15825.3	-52.95	0	3	3.51	PK	45.82	83.79	37.97	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.79	N/A	Note 3	PASS
5219.9	5.02	0	3	3.51	PK	103.79	N/A	N/A	Note 1	N/A
	4.57	0	3	3.51	AV	78.94	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:17:43

antenna is

Test Report No.: RF151008N004-3R1

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
0705 1	-44.01	0	3	3.51	PK	54.76	84.40	29.64	Note 2	PASS
0735.1	N/A	0	3	3.51	AV	N/A	64.40	N/A	Note 3	PASS
16202.0	-51.93	3 0	3	3.51	PK	46.84	84.40	37.56	Note 2	PASS
10303.2	N/A		3	3.51	AV	N/A	64.40	N/A	Note 3	PASS
5242.0	5.63	0	3	3.51	PK	104.40	N/A	N/A	Note 1	N/A
5243.9	5.18	U	3	3.51	AV	79.55	N/A	N/A	note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:18:26

ABOVE 1GHz WORST-CASE DATA: Band 2

802.11a

CHANNEL	TX Channel 52	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8771.1	-45.27	0	3	3.51	PK	53.50	89.64	36.14	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	69.64	N/A	Note 3	PASS
19076.5	-54.2	0	3	3.51	PK	44.57	74.00	29.43		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5.2559	4.87	G	3	3.51	PK	109.64	N/A	N/A	Note 1	N/A
	4.42	O	3	3.51	AV	78.79	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:10:49

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

CHANNEL	TX Channel 60	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
0024	-46.83	0	3	3.51	PK	51.94	86.05	34.11	Note 2	PASS
0031	N/A	0	3	3.51	AV	N/A	66.05	N/A	Note 3	PASS
10550 4	-51.49	0	3	3.51	PK	47.28	74.00	26.72		PASS
19550.4	N/A U	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5207.0	7.28	0	3	3.51	PK	106.05	N/A	N/A	Note 1	N/A
5297.9	6.83	0	3	3.51	AV	81.20	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:11:29

CHANNEL	TX Channel 64	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8867	-47.65	0	3	3.51	PK	51.12	85.87	34.75	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	65.87	N/A	Note 3	PASS
15807.3	-53.25	0	3	3.51	PK	45.52	74.00	28.48		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5321.9	7.1	0	3	3.51	PK	105.87	N/A	N/A	Noto 1	N/A
	6.65	U	3	3.51	AV	81.02	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:12:09

802.11n (20MHz)

CHANNEL	TX Channel 52	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8771.1	-45.27	0	3	3.51	PK	53.50	83.64	30.14	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.64	N/A	Note 3	PASS
19076.5	-54.2	0	3	3.51	PK	44.57	74.00	29.43		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5255.9	4.87	0	3	3.51	PK	103.64	N/A	N/A	Note 1	N/A
	4.42	0	3	3.51	AV	78.79	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:18:56

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

CHANNEL	TX Channel 60	DETECTOR	Peak (PK)		
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)		

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8831	-48.34	0	3	3.51	PK	50.43	84.29	33.86	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.29	N/A	Note 3	PASS
19094.5	-54.48	0	3	3.51	PK	44.29	74.00	29.71		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5297.9	5.52	0	3	3.51	PK	104.29	N/A	N/A	Note 1	N/A
	5.07	0	3	3.51	AV	79.44	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:19:39

CHANNEL	TX Channel 64	DETECTOR	Peak (PK)		
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)		

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8861	-49.77	0	3	3.51	PK	49.00	83.33	34.33	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.33	N/A	Note 3	PASS
16377.2	-52.12	0	3	3.51	PK	46.65	83.33	36.68	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.33	N/A	Note 3	PASS
5315.9	4.56	0	3	3.51	PK	103.33	N/A	N/A	Noto 1	N/A
	4.11	U	3	3.51	AV	78.48	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:20:15

ABOVE 1GHz WORST-CASE DATA: Band 3

802.11a

CHANNEL	TX Channel 100	DETECTOR	Peak (PK)		
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)		

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
7943.3	-49.02	0	3	3.51	PK	49.75	84.58	34.83	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.58	N/A	Note 3	PASS
20108.2	-51.59	0	3	3.51	PK	47.18	74.00	26.82		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
5501.9	5.81	0	3	3.51	PK	104.58	N/A	N/A	Note 1	N/A
	5.36	U	3	3.51	AV	79.73	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.0CT.2015 20:12:50

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

CHANNEL	TX Channel 116	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8057.2	-51.6	0	3	3.51	PK	47.17	74.00	26.83		PASS
	N/A	U	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
16299.2	-51	0	3	3.51	PK	47.77	83.90	36.13	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.90	N/A	Note 3	PASS
5579.9	5.13	0	3	3.51	PK	103.90	N/A	N/A	Note 1	N/A
	4.68	U	3	3.51	AV	79.05	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:13:29

CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
11422.4	-54.57	0	3	3.51	PK	44.20	74.00	29.80		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
15885.3	-51.37	0	3	3.51	PK	47.40	83.82	36.42	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.82	N/A	Note 3	PASS
5699.8	5.05	0	3	3.51	PK	103.82	N/A	N/A	Noto 1	N/A
	4.60	0	3	3.51	AV	78.97	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:14:03

802.11n (20MHz)

CHANNEL	TX Channel 100 DETECTOR		Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
7949.3	-50.11	0	3	3.51	PK	48.66	83.59	34.93	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.59	N/A	Note 3	PASS
15903.3	-52.92	0	3	3.51	PK	45.85	83.59	37.74	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	63.59	N/A	Note 3	PASS
5501.9	4.82	0	3	3.51	PK	103.59	N/A	N/A	Note 1	N/A
	4.37	0	3	3.51	AV	78.74	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:20:54

CHANNEL	TX Channel 116	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8057.2	-51.16	0	3	3.51	PK	47.61	74.00	26.39		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
16941	-51.28	0	3	3.51	PK	47.49	82.14	34.65	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	62.14	N/A	Note 3	PASS
5579.9	3.37	0	3	3.51	PK	102.14	N/A	N/A	Note 1	N/A
	2.92	0	3	3.51	AV	77.29	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:21:34

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
9167	-54.89	0	3	3.51	PK	43.88	74.00	30.12		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
16371.2	-50.5	0	3	3.51	PK	48.27	81.28	33.01	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	61.28	N/A	Note 3	PASS
5705.8	2.51	0	3	3.51	PK	101.28	N/A	N/A	Note 1	N/A
	2.06	0	3	3.51	AV	76.43	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:22:19

ABOVE 1GHz WORST-CASE DATA: Band 4

802.11a

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8297.2	-50.09	0	3	3.51	PK	48.68	74.00	25.32		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
15867.3	-52.27	0	3	3.51	PK	46.50	84.31	37.81	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.31	N/A	Note 3	PASS
5753.8	5.54	0	3	3.51	PK	104.31	N/A	N/A	Note 1	N/A
	5.09	0	3	3.51	AV	79.46	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:14:52

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8357.2	-50.49	0	3	3.51	PK	48.28	74.00	25.72		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
16389.2	-50.93	0	3	3.51	PK	47.84	85.24	37.40	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	65.24	N/A	Note 3	PASS
5783.8	6.47	0	3	3.51	PK	105.24	N/A	N/A	Note 1	N/A
	6.02	0	3	3.51	AV	80.39	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:15:33

CHANNEL	TX Channel 161	DETECTOR	Peak (PK)	
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)	

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8381.2	-49.86	0	3	3.51	PK	48.91	74.00	25.09		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
20318.2	-52.12	0	3	3.51	PK	46.65	85.17	38.52	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	65.17	N/A	Note 3	PASS
5807.8	6.4	0	3	3.51	PK	105.17	N/A	N/A	Note 1	N/A
	5.95	0	3	3.51	AV	80.32	N/A	N/A	NOLE I	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:16:10

802.11n (20MHz)

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the

antenna is

3.51 dBi

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8297.2	-50.17	0	3	3.51	PK	48.60	74.00	25.40		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
16371.2	-52.08	0	3	3.51	PK	46.69	84.61	37.92	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.61	N/A	Note 3	PASS
5741.8	5.84	0	3	3.51	PK	104.61	N/A	N/A	Note 1	N/A
	5.39	0	3	3.51	AV	79.76	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:22:58

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8351.2	-50.41	0	3	3.51	PK	48.36	74.00	25.64		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
15441.4	-51.77	0	3	3.51	PK	47.00	84.22	37.22	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.22	N/A	Note 3	PASS
5783.8	5.45	0	3	3.51	PK	104.22	N/A	N/A	Note 1	N/A
	5.00	0	3	3.51	AV	79.37	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:23:35

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

CHANNEL	TX Channel 161	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

The EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2dBi, whichever is greater.

And the maximum in-band gain of the 3.51 dBi antenna is

Note 1: The frequency is fundamental signal which can be ignored.

Note 2: Which frequency is not within a restricted band, and its limit line is 20dB below the highest emission level.

Note 3: Average measurement was not performed if peak level went lower than the average limit.

Note 4: The harmonic (2th ,3th, 4th,...etc.) and other spurious are not reported, because those levels are lower than average limit line and background noise

Frequen cy (MHz)	Value (dBm)	Ground Reflection Factor (dB)	D(m)	Max gain(dBi)	Detector	E (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	Verdict
8381.2	-50.16	0	3	3.51	PK	48.61	74.00	25.39		PASS
	N/A	0	3	3.51	AV	N/A	54.00	N/A	Note 3	PASS
20150.2	-52.53	0	3	3.51	PK	46.24	84.16	37.92	Note 2	PASS
	N/A	0	3	3.51	AV	N/A	64.16	N/A	Note 3	PASS
5807.8	5.39	0	3	3.51	PK	104.16	N/A	N/A	Note 1	N/A
	4.94	0	3	3.51	AV	79.31	N/A	N/A	Note 1	N/A

MIDDLE CHANNEL, SPURIOUS 1 GHz ~ 25 GHz

Date: 27.OCT.2015 20:24:08

Cabinet Radiated spurious emission test

Note 1: The symbol of "--" in the table which means not application.

Note 2: For the test data above 1 GHz, according the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.

Note 3: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Note 4: All configurations have been tested, only the worst configuration (Band I 802.11a CH36) show here

802.11a

CHANNEL	Channel 36	DETECTOR	Outori Dack (OD)	
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height (cm)					
1	35.58	26.98	-21.22	40.0	-13.02	Peak	233.20	100					
2	58.85	31.08	-19.94	40.0	-8.92	Peak	0.40	100					
3	108.79	26.31	-20.24	43.5	-17.19	Peak	111.10	100					
4	341.78	31.13	-16.31	46.0	-14.87	Peak	344.40	100					
5	427.36	35.30	-14.62	46.0	-10.70	Peak	38.70	100					
6	512.94	32.32	-13.01	46.0	-13.68	Peak	99.90	100					

REMARKS:

- 1. The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.3. The other emission levels were very low against the limit.
- 2. According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 3. Margin value = Results- Limit.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CHANNEL	Channel 36	DETECTOR FUNCTION	Quesi Desk (QD)
FREQUENCY RANGE	30MHz ~ 1GHz		Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height (cm)		
1	70.49	27.14	-22.93	40.0	-12.86	Peak	42.50	100		
2	108.31	28.11	-20.20	43.5	-15.39	Peak	-0.00	100		
3	170.86	28.10	-22.62	43.5	-15.40	Peak	227.40	100		
4	256.44	40.97	-18.74	46.0	-5.03	Peak	53.60	100		
5	341.78	36.83	-16.31	46.0	-9.17	Peak	155.00	100		
6	427.36	39.90	-14.62	46.0	-6.10	Peak	277.30	100		

REMARKS:

- 1. The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.3. The other emission levels were very low against the limit.
- 2. According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 3. Margin value = Results- Limit.

CHANNEL	Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height (cm)		
1	1215.95	43.63	-5.09	74.0	-30.37	Peak	208.80	100		
2	3263.93	48.67	9.06	74.0	-25.33	Peak	129.20	100		
3	4728.32	51.99	13.62	74.0	-22.01	Peak	178.10	100		
4	8841.51	47.33	16.58	74.0	-26.67	Peak	121.20	100		
5	12042.43	51.83	20.83	74.0	-22.17	Peak	0.30	100		
6	19179.70	49.84	14.04	74.0	-24.16	Peak	66.70	100		

REMARKS:

- 1. According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 2. Margin value = Results- Limit.

CHANNEL	Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Margin (dB)	Detector	Table (o)	Height (cm)		
1	1505.87	43.63	-4.33	74.0	-30.37	Peak	57.80	100		
2	2770.56	48.17	1.53	74.0	-25.83	Peak	10.10	100		
3	4510.87	51.55	12.74	74.0	-22.45	Peak	110.00	100		
4	10009.57	49.46	19.33	74.0	-24.54	Peak	281.00	100		
5	12559.07	50.75	19.96	74.0	-23.25	Peak	157.90	100		
6	19009.98	49.93	13.42	74.0	-24.07	Peak	189.80	100		

REMARKS:

- 1. According the ANSI C63.4, where limits are specified for both average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 2. Margin value = Results- Limit.

Bandage 802.11a

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

802.11n20

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)	
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESU 26	100005	Apr. 25,15	Apr. 24,16
Artificial Mains Network	Rohde&Schwarz	ENV216	101173	Apr. 25,15	Apr. 24,16
Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	100317	Apr. 25,15	Apr. 24,16
Test software	ADT	ADT_Cond_V7.3.7	N/A	N/A	N/A

NOTE:

- 1. The test was performed in shielded room 553.
- 2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA : 802.11a

PHASE	Line	6dB BANDWIDTH	9kHz
CHANNEL	Channel 36		

No	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector
1	0.18	52.1	13.00	65.1	-13.00	Peak
1**	0.18	37.8	13.00	55.1	-17.30	AV
2	2.40	45.5	13.00	56.0	-10.50	Peak
2**	2.40	32.6	13.00	46.0	-13.40	AV
3	3.31	44.4	13.00	56.0	-11.60	Peak
3**	3.31	26.7	13.00	46.0	-19.30	AV
4	4.11	50.6	13.00	56.0	-5.40	Peak
4**	4.11	32.3	13.00	46.0	-13.70	AV
5	13.18	43.3	13.00	60.0	-16.70	Peak
5**	13.18	33.3	13.00	50.0	-16.70	AV
6	15.89	42.0	13.00	60.0	-18.00	Peak
6**	15.89	30.2	13.00	50.0	-19.80	AV

REMARKS:

1. The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors.

2. Margin value = Results - Limit

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

PHASE	Neutral	6dB BANDWIDTH	9kHz
CHANNEL	Channel 36		

No	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector
1	0.18	52.4	13.00	65.2	-12.80	Peak
1**	0.18	32.9	13.00	55.2	-22.30	AV
2	0.25	46.0	13.00	63.2	-17.20	Peak
2**	0.25	36.7	13.00	53.2	-16.50	AV
3	2.99	44.2	13.00	56.0	-11.80	Peak
3**	2.99	29.3	13.00	46.0	-16.70	AV
4	4.09	48.1	13.00	56.0	-7.90	Peak
4**	4.09	30.5	13.00	46.0	-15.50	AV
5	13.23	46.3	13.00	60.0	-13.70	Peak
5**	13.23	33.8	13.00	50.0	-16.20	AV
6	16.08	43.7	13.00	60.0	-16.30	Peak
6**	16.08	33.7	13.00	50.0	-16.30	AV

REMARKS:

1. The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors.

2. Margin value = Results - Limit

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Charger ASSA55e-050200

CONDUCTED WORST-CASE DATA: 802.11a

PHASE	Line	6dB BANDWIDTH	9kHz
CHANNEL	Channel 36		

No	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector
1	0.16	54.0	13.00	65.7	-11.7	Peak
1**	0.16	36.8	13.00	55.7	-18.9	AV
2	0.25	47.2	13.00	63.1	-15.9	Peak
2**	0.25	31.0	13.00	53.1	-22.1	AV
3	0.43	40.9	13.00	58.0	-17.1	Peak
3**	0.43	28.6	13.00	48.0	-19.4	AV
4	1.18	35.6	13.00	56.0	-20.4	Peak
4**	1.18	22.8	13.00	46.0	-23.2	AV
5	3.15	35.2	13.00	56.0	-20.8	Peak
5**	3.15	24.5	13.00	46.0	-21.5	AV
6	8.03	37.3	13.00	60.0	-22.7	Peak
6**	8.03	23.7	13.00	50.0	-26.3	AV

REMARKS:

1. The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors.

2. Margin value = Results - Limit

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

Page 60 of 105

PHASE	Neutral	6dB BANDWIDTH	9kHz
CHANNEL	Channel 36		

No	Frequency (MHz)	Results (dBuV)	Factor (dB)	Limit (dBuV)	Margin (dB)	Detector
1	0.17	51.6	13.00	65.5	-13.9	Peak
1**	0.17	37.5	13.00	55.5	-18.0	AV
2	0.24	46.2	13.00	63.5	-17.3	Peak
2**	0.24	30.7	13.00	53.5	-22.8	AV
3	0.49	40.7	13.00	56.2	-15.5	Peak
3**	0.49	26.1	13.00	46.2	-20.1	AV
4	0.69	39.5	13.00	56.0	-16.5	Peak
4**	0.69	23.3	13.00	46.0	-22.7	AV
5	2.54	37.9	13.00	56.0	-18.1	Peak
5**	2.54	21.9	13.00	46.0	-24.1	AV
6	5.05	38.0	13.00	60.0	-22.0	Peak
6**	5.05	24.2	13.00	50.0	-25.8	AV

REMARKS:

1. The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors.

2. Margin value = Results - Limit

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

4.3 CONDUCTED OUTPUT POWER MEASUREMENT

4.3.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

Operation Band	EUT Category		LIMIT	
		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≦ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)	
U-NII-1	Fixed point-to-point Access Point		1 Watt (30 dBm)	
		Indoor Access Point	1 Watt (30 dBm)	
	\checkmark	Mobile and Portable client device	250mW (24 dBm)	
U-NII-2A	\checkmark		250mW(24dBm) or 11 dBm+10LogB*	
U-NII-2C	\checkmark		250mW(24dBm) or 11 dBm+10LogB*	
U-NII-3			1 Watt (30 dBm)	

NOTE: 1. Where B is the 26dB emission bandwidth in MHz.

4.3.2 TEST SETUP

FOR POWER OUTPUT MEASUREMENT

FOR 6/26dB BANDWIDTH

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.3 to get information of above instrument.

4.3.4 TEST PROCEDURE

FOR AVERAGE POWER MEASUREMENT

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

FOR 26dB BANDWIDTH

- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.
- 3) Detector = RMS.
- 4) Trace mode = max hold.
- 5) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

FOR 6dB BANDWIDTH

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \geq 3 RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.3.7 TEST RESULTS

OUTPUT POWER:

Band I

Mode	CHANNEL	CHANNEL FREQUENCY (MHz)	MAX. OUTPUT POWER (mW)	MAX. OUTPUT POWER (dBm)	POWER LIMIT (dBm)	PASS/FAIL
11a	36	5180	5.1286	7.10	24	PASS
11a	44	5220	7.0469	8.48	24	PASS
11a	48	5240	7.5509	8.78	24	PASS
11n (HT20)	36	5180	4.9545	6.95	24	PASS
11n (HT20)	44	5220	5.5719	7.46	24	PASS
11n (HT20)	48	5240	5.3088	7.25	24	PASS

Band II

Mode	CHANNEL	CHANNEL FREQUENCY (MHz)	MAX. OUTPUT POWER (mW)	MAX. OUTPUT POWER (dBm)	POWER LIMIT (dBm)	PASS/FAIL
11a	52	5260	7.8886	8.97	24	PASS
11a	60	5300	7.9616	9.01	24	PASS
11a	64	5320	7.8886	8.97	24	PASS
11n (HT20)	52	5260	5.0699	7.05	24	PASS
11n (HT20)	60	5280	6.4863	8.12	24	PASS
11n (HT20)	64	5320	6.0814	7.84	24	PASS

Band III

Mode	CHANNEL	CHANNEL FREQUENCY (MHz)	MAX. OUTPUT POWER (mW)	MAX. OUTPUT POWER (dBm)	POWER LIMIT (dBm)	PASS/FAIL
11a	100	5500	6.9024	8.39	24	PASS
11a	116	5580	5.4576	7.37	24	PASS
11a	140	5700	5.1050	7.08	24	PASS
11n (HT20)	100	5500	4.6881	6.71	24	PASS
11n (HT20)	116	5580	4.4157	6.45	24	PASS
11n (HT20)	140	5700	4.5290	6.56	24	PASS

Band IV

Mode	CHANNEL	CHANNEL FREQUENCY (MHz)	MAX. OUTPUT POWER (mW)	MAX. OUTPUT POWER (dBm)	POWER LIMIT (dBm)	PASS/FAIL
11a	149	5745	7.5509	8.78	24	PASS
11a	157	5785	7.6913	8.86	24	PASS
11a	161	5805	7.6033	8.81	24	PASS
11n (HT20)	149	5745	6.6988	8.26	24	PASS
11n (HT20)	157	5785	5.6885	7.55	24	PASS
11n (HT20)	161	5805	5.4828	7.39	24	PASS

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

26dB BANDWIDTH & 6dB BANDWIDTH:

802.11a

CHANNEL	CHANNEL FREQUENCY (MHz)	26dBc BANDWIDTH (MHz)	PASS / FAIL
36	5180	19.04	PASS
44	5220	19.16	PASS
48	5240	19.62	PASS
52	5260	19.00	PASS
60	5300	19.56	PASS
64	5320	19.07	PASS
100	5500	19.11	PASS
116	5580	19.05	PASS
140	5700	19.23	PASS
CHANNEL	CHANNEL FREQUENCY (MHz)	6dBc BANDWIDTH (MHz)	PASS / FAIL
149	5745	15.16	PASS
157	5785	15.15	PASS
161	5805	15.16	PASS

802.11n (20MHz)

CHANNEL	CHANNEL FREQUENCY (MHz)	26dBc BANDWIDTH (MHz)	PASS / FAIL
36	5180	19.26	PASS
44	5220	19.37	PASS
48	5240	19.39	PASS
52	5260	19.36	PASS
60	5300	19.35	PASS
64	5320	19.36	PASS
100	5500	19.35	PASS
116	5580	19.38	PASS
140	5700	19.33	PASS
CHANNEL	CHANNEL FREQUENCY (MHz)	6dBc BANDWIDTH (MHz)	PASS / FAIL
149	5745	15.98	PASS
157	5785	15.16	PASS
161	5805	15.13	PASS

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

26dB bandwidth Test Plot

802.11a

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CH48 🔆 Agilent Sweep Sweep Time Ch Freq 5.24 GHz Trig Free 1.000 ms Man <u>Auto</u> Occupied Bandwidth Т Sweep Single <u>Cont</u> Ref 20 dBm #Peak Atten 30 dB Auto Sweep Time Log Norm Accy 10 dB/ Offst dB Center 5.240 00 GHz #Res BW 270 kHz Span 50 MHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 16.5361 MHz Transmit Freq Error x dB Bandwidth 38.597 kHz 19.622 MHz Copyright 2000-2012 Agilent Technologies CH52 Sweep 🔆 Agilent Sweep Time 5.26 GHz 1.000 ms Man Ch Freq Trig Free <u>Auto</u> Occupied Bandwidth Sweep Single Cont Ref 20 dBm Atten 30 dB Auto Sweep #Peak Time Log <u>Norm</u> Accy 10 dB/ ÷ Offst đΒ Center 5.260 00 GHz Span 50 MHz #Res BW 270 kHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 16.5516 MHz **Transmit Freq Error** 27.392 kHz x dB Bandwidth .997 MHz File Operation Status, C:/TMPIMAGE.GIF file saved

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CH100 🔆 Agilent Sweep Sweep Time Ch Freq 5.5 GHz Trig Free 1.000 ms Man <u>Auto</u> Occupied Bandwidth Т Sweep Single <u>Cont</u> Ref 20 dBm #Peak Atten 30 dB Auto Sweep Time Log Norm Accy 10 dB/ Offst dB Center 5.500 00 GHz #Res BW 270 kHz Span 50 MHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 16.5890 MHz Transmit Freq Error x dB Bandwidth 30.891 kHz 19.110 MHz File Operation Status, C:/TMPIMAGE.GIF file saved CH116 Sweep 🔆 Agilent Sweep Time 5.58 GHz 1.000 ms Man Ch Freq Trig Free <u>Auto</u> Occupied Bandwidth Sweep Single Cont Ref 20 dBm Atten 30 dB Auto Sweep #Peak Time Log <u>Norm</u> Accy 10 dB/ Offst đΒ Center 5.580 00 GHz Span 50 MHz #Res BW 270 kHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 16.5598 MHz 35.615 kHz **Transmit Freq Error** x dB Bandwidth 19.053 MHz Copyright 2000–2012 Agilent Technologies

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

26dB bandwidth Test Plot

802.11n(20MHz)

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CH48 🔆 Agilent Sweep Sweep Time Ch Freq 5.24 GHz Trig Free 1.000 ms Man <u>Auto</u> Occupied Bandwidth Т Sweep Single <u>Cont</u> Ref 20 dBm #Peak Atten 30 dB Auto Sweep Time Log Norm Ассу Ô 10 dB/ ÷ Offst dB Center 5.240 00 GHz #Res BW 270 kHz Span 50 MHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 17.4979 MHz Transmit Freq Error x dB Bandwidth 21.946 kHz 19.388 MHz Copyright 2000-2012 Agilent Technologies CH52 Sweep 🔆 Agilent Sweep Time 5.26 GHz 1.000 ms Man Ch Freq Trig Free <u>Auto</u> Occupied Bandwidth Sweep Single Cont Ref 20 dBm Atten 30 dB Auto Sweep #Peak Time Log <u>Norm</u> Accy Ô 10 dB/ ÷ Offst đΒ Center 5.260 00 GHz Span 50 MHz #Res BW 270 kHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 17.4900 MHz 16.639 kHz **Transmit Freq Error** x dB Bandwidth 19.355 MHz Copyright 2000–2012 Agilent Technologies

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

CH100 🔆 Agilent Sweep Sweep Time Ch Freq 5.5 GHz Trig Free 1.000 ms Man <u>Auto</u> Occupied Bandwidth Т Sweep Single <u>Cont</u> Ref 20 dBm #Peak Atten 30 dB Auto Sweep Time Log Norm Accy ٥ 10 dB/ ← Offst dB Center 5.500 00 GHz #Res BW 270 kHz Span 50 MHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 17.4859 MHz Transmit Freq Error x dB Bandwidth 26.196 kHz 19.352 MHz File Operation Status, C:/TMPIMAGE.GIF file saved CH116 Sweep 🔆 Agilent Sweep Time 5.58 GHz 1.000 ms Man Ch Freq Trig Free <u>Auto</u> Occupied Bandwidth Sweep Single Cont Ref 20 dBm Atten 30 dB Auto Sweep #Peak Time Log <u>Norm</u> Accy ۵ 10 dB/ ÷ ÷ Offst đΒ Center 5.580 00 GHz Span 50 MHz #Res BW 270 kHz ₩VBW 1 MHz Sweep 1 ms (601 pts) Points Occupied Bandwidth Occ BW % Pwr 99.00 % 601 x dB -26.00 dB 17.5080 MHz 16.141 kHz **Transmit Freq Error** x dB Bandwidth 19.377 MHz File Operation Status, C:/TMPIMAGE.GIF file saved

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

6dB bandwidth Test Plot

802.11a

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

6dB bandwidth Test Plot

802.11n(20MHz)

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

4.4 PEAK POWER SPECTRAL DENSITY MEASUREMENT

4.4.1 LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT

Operation Band	EUT Category		LIMIT
		Outdoor Access Point	
	Fixed point-to-point Access Point		17dBm/ MHz
U-NII-1		Indoor Access Point	
	Mobile and Portable client device		11dBm/ MHz
U-NII-2A		\checkmark	11dBm/ 500kHz
U-NII-2C	\checkmark		11dBm/ 500kHz
U-NII-3			30dBm/ 500kHz

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.3 to get information of above instrument.

4.4.4 TEST PROCEDURES

Using method SA-1

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 30 KHz, Set VBW ≥ 1 MHz, Detector = RMS for U-NII-1

Set RBW = 1MHz, Set VBW \ge 3 MHz, Detector = RMS for U-NII-3

- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Record the max value

4.4.5 DEVIATION FROM TEST STANDARD No deviation.

4.4.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

4.4.7 TEST RESULTS

For U-NII-1, U-NII-2A & U-NII-2C: 802.11a

ouz.11a

CHANNEL	FREQUENCY (MHz)	PSD (dBm/MHz)	MAXIMUM LIMIT (dBm/MHz)	PASS/FAIL
36	5180	7.40	11	PASS
44	5220	9.22	11	PASS
48	5240	9.81	11	PASS
52	5260	10.47	11	PASS
60	5300	10.48	11	PASS
64	5320	9.79	11	PASS
100	5500	8.35	11	PASS
116	5580	8.14	11	PASS
140	5700	8.57	11	PASS

802.11n (20MHz)

CHANNEL	FREQUENCY (MHz)	PSD with Duty Factor (dBm/MHz)	MAXIMUM LIMIT (dBm/MHz)	PASS/FAIL
36	5180	5.70	11	PASS
44	5220	7.45	11	PASS
48	5240	7.26	11	PASS
52	5260	7.57	11	PASS
60	5300	7.83	11	PASS
64	5320	7.87	11	PASS
100	5500	6.66	11	PASS
116	5580	6.51	11	PASS
140	5700	6.64	11	PASS

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Page 83 of 105

For U-NII-3:

802.11a

CHANNEL	FREQUENCY (MHz)	PSD with (dBm/500kHz)	LIMIT (dBm/500kHz)	PASS /FAIL
149	5745	10.51	30	PASS
157	5785	9.59	30	PASS
161	5805	9.28	30	PASS

802.11n (20M)

CHANNEL	FREQUENCY (MHz)	PSD with (dBm/500kHz)	LIMIT (dBm/500kHz)	PASS /FAIL
149	5745	8.39	30	PASS
157	5785	7.79	30	PASS
161	5805	7.51	30	PASS

PSD Test Plot

802.11a

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

802.11n(20MHz)

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

For U-NII-3: **802.11a**

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

802.11n(20MHz)

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

4.5 FREQUENCY STABILITY

4.5.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency of the carrier signal shall be maintained within band of operation

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.1.3 to get information of above instrument.

4.5.4 TEST PROCEDURE

The EUT is installed in an environment test chamber with external power source.

Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.

A sufficient stabilization period at each temperatures is used prior to each frequency measurement.

When temperature is stabled, measure the frequency stability.

The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage.

Change setting of chamber and external power source to complete all conditions.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

Set the EUT transmit at un-modulation mode to test frequency stability.

4.5.7 TEST RESULTS

Band I:

Voltage vs. Frequency Stability (11a CH44)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5220	5219.978633	-4.093295019
20	3.8	5220	5219.978455	-4.127394636
	3.4	5220	5219.978128	-4.190038314

Temperature vs. Frequency Stability (11a CH44)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5220	5219.978145	-4.186781609
	10	5220	5219.978745	-4.07183908
	15	5220	5219.978463	-4.125862069
3.8	20	5220	5219.978477	-4.123180077
	25	5220	5219.978536	-4.111877395
	30	5220	5219.978498	-4.119157088
	35	5220	5219.978475	-4.123563218

Voltage vs. Frequency Stability (11a CH44)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5220	5219.978482	-4.122222222
20	3.8	5220	5219.978756	-4.069731801
	3.4	5220	5219.978389	-4.140038314

Temperature vs. Frequency Stability (11a(HT20) CH44)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5220	5219.978489	-4.120881226
3.8	10	5220	5219.978567	-4.105938697
	15	5220	5219.978351	-4.147318008
	20	5220	5219.978462	-4.12605364
	25	5220	5219.978736	-4.073563218
	30	5220	5219.978447	-4.128927203
	35	5220	5219.978768	-4.06743295

Band II:

Voltage vs. Frequency Stability (11a CH60)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5300	5299.986745	-2.500943396
20	3.8	5300	5299.986396	-2.566792453
	3.4	5300	5299.986416	-2.563018868

Temperature vs. Frequency Stability (11a CH60)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5300	5299.986865	-2.478301887
	10	5300	5299.986795	-2.491509434
	15	5300	5299.986258	-2.592830189
3.8	20	5300	5299.986489	-2.549245283
	25	5300	5299.986632	-2.522264151
	30	5300	5299.986726	-2.504528302
	35	5300	5299.986463	-2.554150943

Voltage vs. Frequency Stability (11a(HT20) CH60)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5300	5299.986896	-2.47245283
20	3.8	5300	5299.986269	-2.590754717
	3.4	5300	5299.986681	-2.513018868

Temperature vs. Frequency Stability (11a(HT20) CH60)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5300	5299.986389	-2.568113208
	10	5300	5299.986419	-2.56245283
	15	5300	5299.986596	-2.529056604
3.8	20	5300	5299.986387	-2.568490566
	25	5300	5299.986569	-2.534150943
	30	5300	5299.986476	-2.551698113
	35	5300	5299.986759	-2.498301887

Band III:

Voltage vs. Frequency Stability (11a CH116)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5580	5579.988729	-2.019892473
20	3.8	5580	5579.988469	-2.066487455
	3.4	5580	5579.988598	-2.043369176

Temperature vs. Frequency Stability (11a CH116)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5580	5579.988389	-2.080824373
	10	5580	5579.988781	-2.010573477
	15	5580	5579.988569	-2.048566308
3.8	20	5580	5579.988697	-2.02562724
	25	5580	5579.988369	-2.084408602
	30	5580	5579.988746	-2.016845878
	35	5580	5579.988643	-2.03530466

Voltage vs. Frequency Stability (11a(HT20) CH116)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5580	5579.988685	-2.027777778
20	3.8	5580	5579.988542	-2.053405018
	3.4	5580	5579.988396	-2.079569893

Temperature vs. Frequency Stability (11a(HT20) CH116)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5580	5579.988791	-2.008781362
	10	5580	5579.988469	-2.066487455
	15	5580	5579.988387	-2.081182796
3.8	20	5580	5579.988591	-2.044623656
	25	5580	5579.988543	-2.053225806
	30	5580	5579.988759	-2.014516129
	35	5580	5579.988618	-2.039784946

Band IV:

Voltage vs. Frequency Stability (11a CH157)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5785	5784.988492	-1.989282627
20	3.8	5785	5784.988567	-1.976318064
	3.4	5785	5784.988746	-1.945375972

Temperature vs. Frequency Stability (11a CH157)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5785	5784.988385	-2.007778738
	10	5785	5784.988429	-2.000172861
	15	5785	5784.988651	-1.961797753
3.8	20	5785	5784.988742	-1.946067416
	25	5785	5784.988359	-2.01227312
	30	5785	5784.988651	-1.961797753
	35	5785	5784.988459	-1.994987035

Voltage vs. Frequency Stability (11a(HT20) CH157)

Test Conditions		Test Frequency	Measurement	Max Deviation
Temperature (℃)	Voltage (VDC)	(MHz)	Frequency (MHz)	(ppm)
	4.2	5785	5784.988554	-1.978565255
20	3.8	5785	5784.988386	-2.007605877
	3.4	5785	5784.988476	-1.992048401

Temperature vs. Frequency Stability (11a(HT20) CH157)

Test Conditions		Test Frequency	Measurement	Max Deviation
Voltage (VDC)	Temperature (℃)	(MHz)	Frequency (MHz)	(ppm)
	5	5785	5784.988582	-1.973725151
	10	5785	5784.988394	-2.00622299
	15	5785	5784.988741	-1.946240277
3.8	20	5785	5784.988634	-1.964736387
	25	5785	5784.988941	-1.911668107
	30	5785	5784.988726	-1.948833189
	35	5785	5784.988449	-1.996715644

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

6. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END----

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China