FCC 47 CFR PART 15 SUBPART C & INDUSTRY CANADA RSS-247

TEST REPORT

For

Notebook Computer

FCC Model:

Satellite CL1*******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite L1*******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 CL1******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 L1*******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), dynabook N31, dynabook NB31, dynabook N41, dynabookNB41, dynabook N61, dynabook NB61

> IC Model: Satellite L10W-C

Trade Name: TOSHIBA

Issued to

Pegatron Corporation 5F, NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 112, TAIWAN (R.O.C.)

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: August 13, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	August 13, 2015	Initial Issue	ALL	Becca Chen
01	August 26, 2015	 Added Loop Antenna. Added remarks and narrative. 	P.10, P.76	Becca Chen

TABLE OF CONTENTS

1.	TE	EST RESULT CERTIFICATION	4
2.	Εl	UT DESCRIPTION	5
3.	TE	EST METHODOLOGY	7
3	.1	EUT CONFIGURATION	7
3	.2	EUT EXERCISE	7
3	.3	GENERAL TEST PROCEDURES	7
3	.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	8
3	.5	DESCRIPTION OF TEST MODES	9
4.	IN	ISTRUMENT CALIBRATION	10
4	.1	MEASURING INSTRUMENT CALIBRATION	10
4	.2	MEASUREMENT EQUIPMENT USED	10
4	.3	MEASUREMENT UNCERTAINTY	11
5.	FA	ACILITIES AND ACCREDITATIONS	12
5	.1	FACILITIES	
5	.2	EQUIPMENT	12
5	.3	LABORATORY ACCREDITATIONS AND LISTING	12
5	.4	TABLE OF ACCREDITATIONS AND LISTINGS	13
6.	SE	ETUP OF EQUIPMENT UNDER TEST	14
6	.1	SETUP CONFIGURATION OF EUT	14
6	.2	SUPPORT EQUIPMENT	14
7.	FC	CC PART 15.247 REQUIREMENTS & RSS-247 REQUIREMENTS	15
7	.1	99% BANDWIDTH	15
-		6DB BANDWIDTH	
7	.3	PEAK POWER	39
7	.4	AVERAGE POWER	41
7	.5	BAND EDGES MEASUREMENT	43
7	.6	PEAK POWER SPECTRAL DENSITY	69
7	.7	SPURIOUS EMISSIONS	83
7	.8	RADIATED EMISSIONS	96
7	.9	POWERLINE CONDUCTED EMISSIONS	138
AP	PE	NDIX II PHOTOGRAPHS OF TEST SETUP	141

1. TEST RESULT CERTIFICATION

Date of Test:	July 21 ~ August 9, 2015	
IC Model:	Satellite L10W-C	
FCC Model:	Satellite CL1*******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite L1******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 CL1******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 L1*******-C*****(* means 0-9; a-z; A-Z; / ; - ; or blank), dynabook N31, dynabook NB31, dynabook N41, dynabookNB41, dynabook N61, dynabook NB61	
Trade Name:	TOSHIBA	
Equipment Under Test:	Notebook Computer	
Manufacturer:	Toshiba Corporation 1-1, Shibaura 1-Chome, Minato-Ku, Tokyo, 105-8001, Japan	
Applicant:	Pegatron Corporation 5F, NO. 76, LIGONG ST., BEITOU DISTRICT, TAIPEI CITY 112, TAIWAN (R.O.C.)	

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 15 Subpart C & Industry Canada RSS-247 Issue 1	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 for IC, ANSI C63.10: 2013 for FCC and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247 and Industry Canada RSS-247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Villa Loo

Miller Lee Manager Compliance Certification Services Inc.

Reviewed by:

Angel Cheng Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Notebook Computer				
Trade Name	TOSHIBA				
FCC Model Number	Satellite CL1********-C******(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite L1*******-C******(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 CL1*******-C******(* means 0-9; a-z; A-Z; / ; - ; or blank), Satellite Radius 11 L1********-C******(* means 0-9; a-z; A-Z; / ; - ; or blank), dynabook N31, dynabook NB31, dynabook N41, dynabookNB41, dynabook N61, dynabook NB61				
IC Model Number	Satellite L10W-C				
Model Discrepancy		(* means 0-	ept for the designation of model 9; a-z; A-Z; / ; - ; or blank) on rpose only.		
Received Date	July 8, 2015				
WLAN Manufacturer	Broadcom	Model	BCM943142Y		
EUT Power Rating	1. 19Vdc from Adaptor 2. Powered from Battery Toshiba (LG) / PA5209U-1BRS: 7.2V, 28Wh (3684mAh) Toshiba (PANASONIC) / PA5209U-1BRS: 3.6V, 29Wh (4090mAh)				
Power Adaptor Power Rating / Manufacturer	Toshiba (LG) / PA5209U-1BRS: 7.2V, 28Wh (3684mAh) Toshiba (PANASONIC) / PA5209U-1BRS: 3.6V, 29Wh (4090mAh) Toshiba (Vendor: Liteon) / PA3822U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Liteon) / PA3822E-1AC3 I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Delta) / PA3822U-1ACA I/P: 100-240Vac, 50-60Hz, 1.2A O/P: 19Vdc, 2.37A Toshiba (Vendor: Delta) / PA3822E-1AC3 I/P: 100-240Vac, 50-60Hz, 1.2A O/P: 19Vdc, 2.37A Toshiba (Vendor: Chicony) / PA3822U-1ACA I/P: 100-240Vac, 50-60Hz, 1.2A O/P: 19Vdc, 2.37A Toshiba (Vendor: Chicony) / PA3822U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Chicony) / PA3822E-1AC3 I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Liteon) / PA5177U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Liteon) / PA5177U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Liteon) / PA5177U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A Toshiba (Vendor: Liteon) / PA5177U-1ACA I/P: 100-240Vac, 50-60Hz, 1.3A O/P: 19Vdc, 2.37A				

	I/P: 100-240Vac, 50/60Hz, 1.2A						
	O/P: 19Vdc, 2.37A						
	Toshiba (Vendor: Chicony) / PA5177U-1ACA						
	,	I/P: 100-240Vac, 50-60Hz, 1.3A					
	O/P: 19Vdc, 2.37A						
	Toshiba (Vendor: 0	• •	177E-1AC3				
	I/P: 100-240Vac, 50)-60Hz, 1.3A					
	O/P: 19Vdc, 2.37A						
Frequency Range	2412 ~ 2462 MHz						
	Mode	Frequency Range	Output Power (dBm)	Output Power (W)			
The second second	IEEE 802.11b	2412 - 2462	16.51	0.0448			
Transmit Power	IEEE 802.11g	2412 - 2462	22.11	0.1626			
	IEEE 802.11n HT 20 MHz		22.11	0.1626			
	IEEE 802.11n HT 40 MHz		22.14	0.1637			
	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs)						
	IEEE 802.11g mode	e: OFDM (6, 9, 1	12, 18, 24, 36, 48	and 54 Mpbs)			
	IEEE 802.11n HT 20 MHz mode: OFDM (6.5, 7.2, 13, 14.4, 14.44,						
	19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33 52, 57.78,						
Modulation Technique	57.8, 58.5, 65.0, 72.2, 78, 86.67, 104, 115.56, 117, 130,						
	144.44 Mbps)						
	IEEE 802.11n HT 40 MHz mode: OFDM (13.5, 15, 27, 30, 40.5, 45, 54,						
	60, 81, 90, 108, 120, 121.5, 135, 150, 162, 180, 216,						
	240,	243, 270, 300 N	/lbps)				
	IEEE 802.11b/g mo	de: 11 Channels	S				
Number of Channels	IEEE 802.11n HT 2	0 MHz mode: 1 [,]	1 Channels				
	IEEE 802.11n HT 4	0 MHz mode: 7	Channels				
	PIFA Antenna						
	Yageo / ANTA0TP09161WLAN1(Main) / 1.53 dBi						
	Yageo / ANTA0TP09161WLAN2 (Aux)/ 1.31 dBi						
Antenna Designation	ACON / APP6Y-700149 (Main) / -0.88 dBi						
	ACON / APP6Y-700	(/					
		· · ·					
	INPAQ / WA-P-LB-02-288 (Main) / 0.56 dBi INPAQ / WA-P-LB-01-137(Aux) / 0.09 dBi						

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- This submittal(s) (test report) is intended for FCC&IC ID: <u>VUI-MORPHEUS43142</u> & <u>7582A-MORPHEUS43142</u> filing to comply with FCC Part 15C, Section 15.207, 15.209 and IC RSS-247 & RSS-GEN.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.247.

The tests documented in this report were performed in accordance with IC RSS-247, IC RSS-Gen and ANSI C63.10:2013.

This submittal(s) (test report) is intended for IC Certification with Industry Canada RSS-247.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

The tests documented in this report were performed in accordance with IC RSS-247, IC RSS-Gen, IC RSS-102, and ANSI C63.10: 2013 for IC, ANSI C63.10: 2013 for FCC.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in ANSI C63.10: 2013 for IC, ANSI C63.10: 2013 for FCC Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2013 for IC, ANSI C63.10: 2013 for FCC.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: Satellite L10W-C) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode was programmed.

After verification, all tests carried out are with the worst-case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode and receiving radiated spurious emission above 1GHz, which worst case was in CH Mid mode only.

IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate were chosen for full testing.

IEEE 802.11g mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate were chosen for full testing.

IEEE 802.11n HT 20 MHz mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

IEEE 802.11n HT 40 MHz mode:

Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: The EUT has Notebook mode, Flat mode, and Tent mode, Stand mode, Tablet X, Y and Z axis modes. The worst emission was found in Flat mode and the worst case was recorded.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/23/2015	
Thermostatic/Hrgrosatic Chamber	TAICHY	MHG-150LF	930619	10/07/2015	
AC Power Source	EXTECH	6205	1140845	N.C.R	
DC Power Supply	ABM	8301HD	D011531	N.C.R	
Power Meter	Anritsu	ML2495A	1012009	06/07/2016	
Power Sensor	Anritsu	MA2411A	0917072	06/08/2016	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40	101073	07/19/2016	

Wugu 966 Chamber A					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510268	09/18/2015	
EMI Test Receiver	R&S	ESCI	100064	06/04/2016	
Bilog Antenna	Sunol Sciences	JB3	A030105	08/19/2015	
Horn Antenna	EMCO	3117	00055165	01/26/2016	
Horn Antenna	EMCO	3116	26370	12/25/2015	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	
Pre-Amplifier	MITEQ	1652-3000	1490939	08/09/2016	
Pre-Amplifier	EMC	EMC 01265	4035	06/04/2016	
Pre-Amplifier	MITEQ	AMF-6F-260400- 40-8P	985646	12/25/2015	
Coaxial Cable	Huber+Suhner	102	29212/2	12/25/2015	
Coaxial Cable	Huber+Suhner	102	29406/2	12/25/2015	
Loop Antenna	COM-POWER	AL-130	121051	01/26/2016	
Test S/W	EZ-EMC (CCS-3A1RE)				

Conducted Emission Room #B					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI	101073	09/18/2015	
LISN	R&S	ENV216	101054	06/06/2016	
LISN	SCHWARZBECK	NSLK 8127	8127-541	11/25/2015	
Capacitive Voltage Probe	FCC	F-CVP-1	100185	03/12/2016	
Test S/W	CCS-3A1-CE				

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/-1.2575
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.139, Wugong Rd., Wugu Dist., New Taipei City 24891, Taiwan (R.O.C.)
 Tel: 886-2-2298-4086 / Fax: 886-2-2298-1470

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2013 for IC, ANSI C63.10: 2009 for FCC and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bucolical, log periodic, bi-log, ridged waveguide, horn and/or Loop. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-247, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

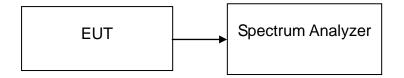
6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						


Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS & RSS-247 REQUIREMENTS

7.1 99% BANDWIDTH

Test Configuration

TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold.

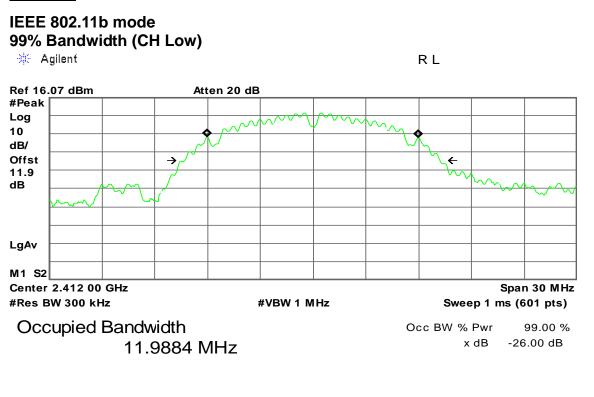
Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	11.9884
Mid	2437	12.0742
High	2462	12.1073

Test mode: IEEE 802.11g mode

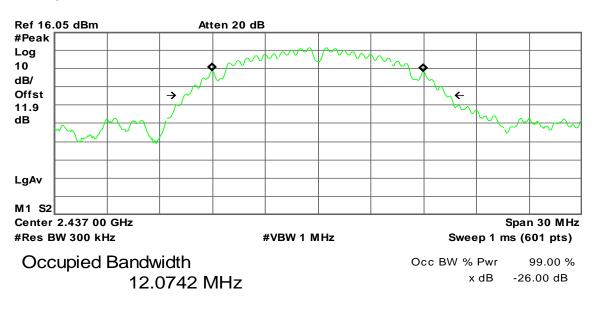
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	16.7177
Mid	2437	16.7044
High	2462	16.7076


Test mode: IEEE 802.11n HT 20 MHz mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)	
Low	2412	17.6042	
Mid	2437	17.6141	
High	2462	17.5919	

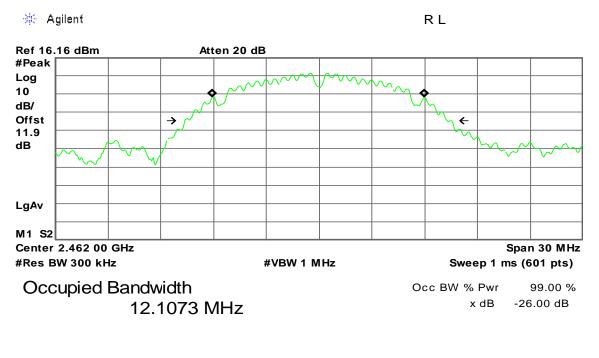
Test mode: 802.11n Standard-40 MHz mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2422	35.8431
Mid	2437	35.9171
High	2452	35.8676

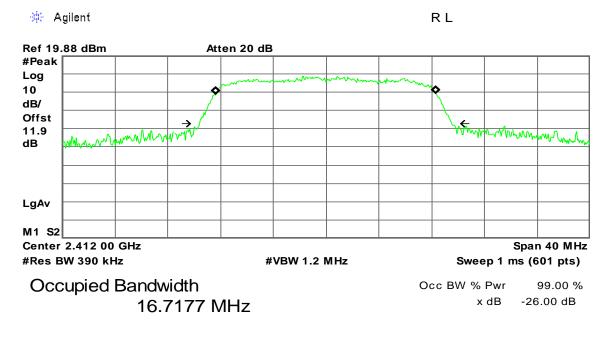

Test Plot

Transmit Freq Error	-23.291 kHz
x dB Bandwidth	14.544 MHz

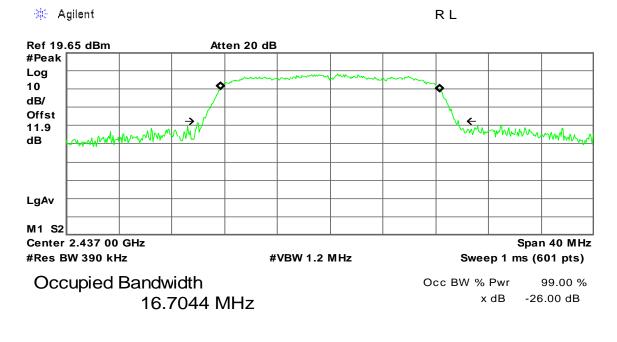
99% Bandwidth (CH Mid)


🔆 Agilent

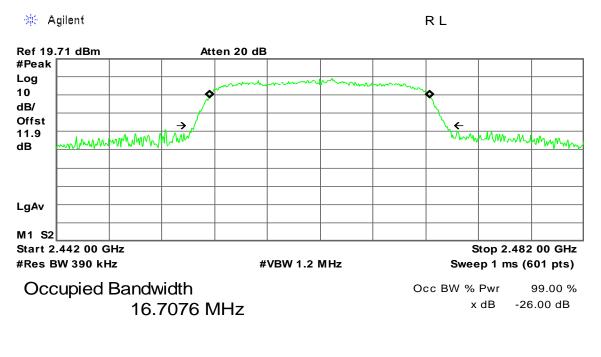
R L


Transmit Freq Error x dB Bandwidth -35.719 kHz 14.901 MHz

99% Bandwidth (CH High)

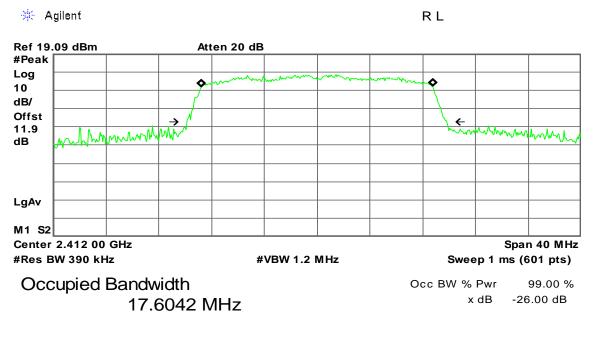

Transmit Freq Error-42.044 kHzx dB Bandwidth15.131 MHz

IEEE 802.11g mode 99% Bandwidth (CH Low)


Transmit Freq Error	-19.331 kHz
x dB Bandwidth	19.152 MHz

99% Bandwidth (CH Mid)

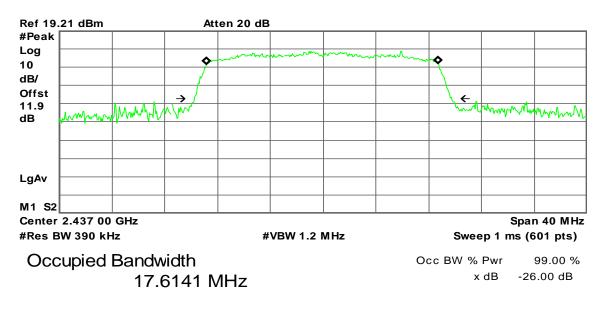
Transmit Freq Error x dB Bandwidth -9.481 kHz 19.388 MHz


99% Bandwidth (CH High)

Transmit Freq Error-37.231 kHzx dB Bandwidth19.073 MHz

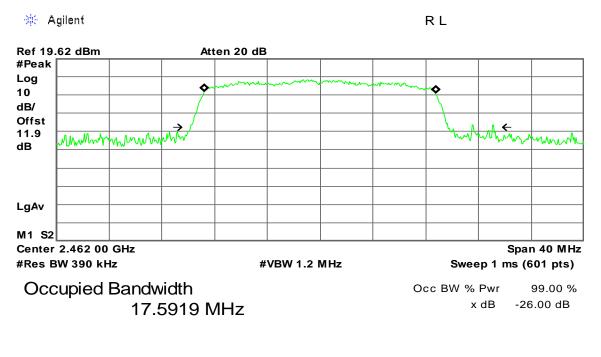
IEEE 802.11n HT 20 MHz mode

99% Bandwidth (CH Low)



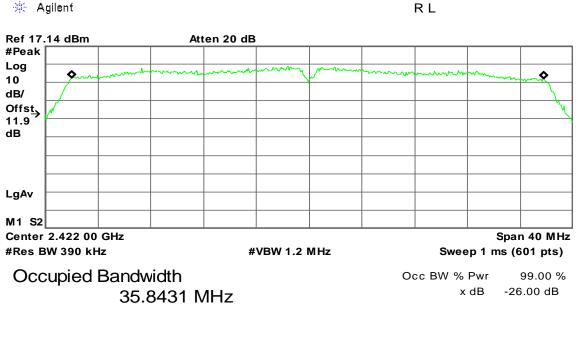
Transmit Freq Error	-13.431 kHz
x dB Bandwidth	19.729 MHz

99% Bandwidth (CH Mid)


🔆 Agilent

R L

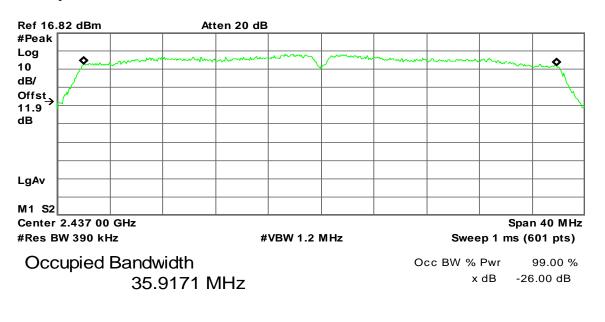
Transmit Freq Error x dB Bandwidth -42.241 kHz 19.546 MHz


99% Bandwidth (CH High)

Transmit Freq Error-22.407 kHzx dB Bandwidth22.990 MHz

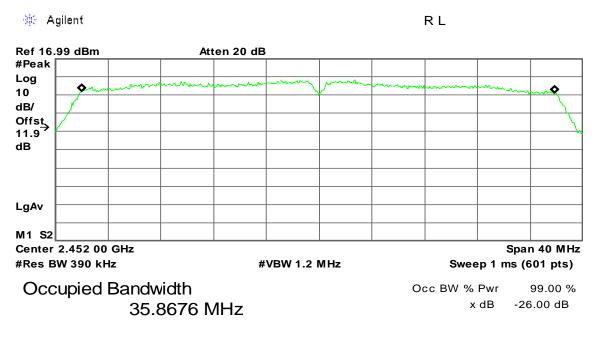
802.11n Standard-40 MHz

99% Bandwidth (CH Low)



Transmit Freq Error	-90.421 kHz
x dB Bandwidth	39.198 MHz

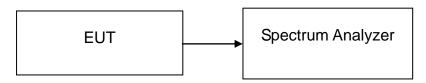
99% Bandwidth (CH Mid)


🔆 Agilent

R L

Transmit Freq Error x dB Bandwidth -72.185 kHz 39.108 MHz

99% Bandwidth (CH High)


Transmit Freq Error-86.723 kHzx dB Bandwidth39.252 MHz

7.2 6DB BANDWIDTH

<u>LIMIT</u>

According to §15.247(a)(2) & RSS-247, systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 50 MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

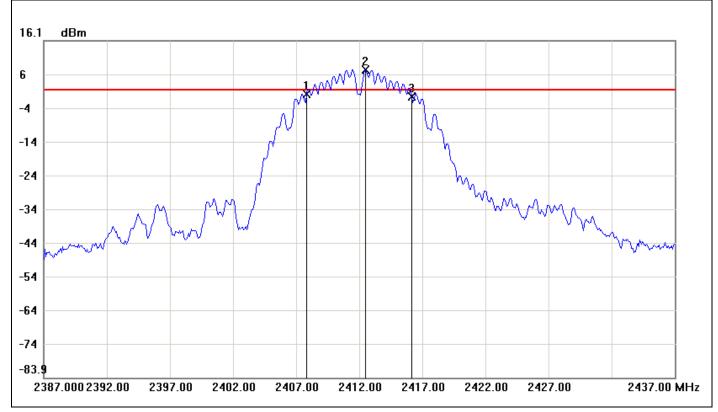
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	8.3334		PASS
Mid	2437	8.3334	>500	PASS
High	2462	8.25		PASS

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.1666	>500	PASS
Mid	2437	16.1667		PASS
High	2462	16.1667		PASS

Test mode: IEEE 802.11n HT 20 MHz mode

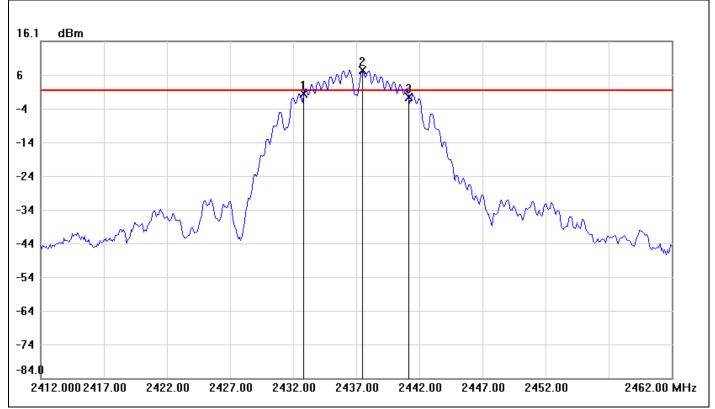
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	17.5	>500	PASS
Mid	2437	17.3334		PASS
High	2462	17.3333		PASS


Test mode: IEEE 802.11n HT 40 MHz mode

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	2422	35		PASS
Mid	2437	34.75	>500	PASS
High	2452	35.3333		PASS

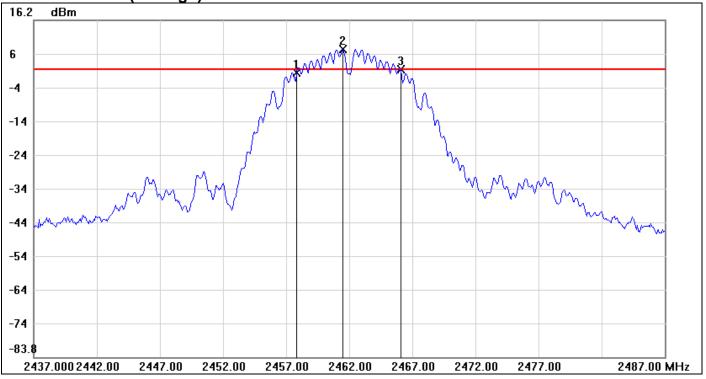
Test Plot

IEEE 802.11b mode


6dB Bandwidth (CH Low)

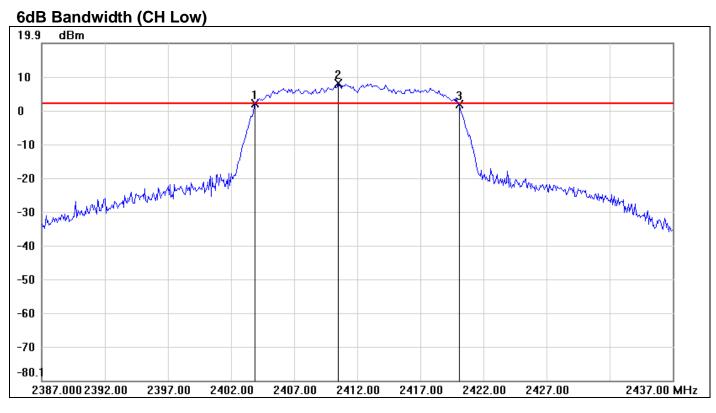
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2407.8333	0.23	1.49	-1.26
2	2412.5000	7.49	1.49	6.00
3	2416.1667	-0.61	1.49	-2.10

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	8.3334	-0.84


6dB Bandwidth (CH Mid)

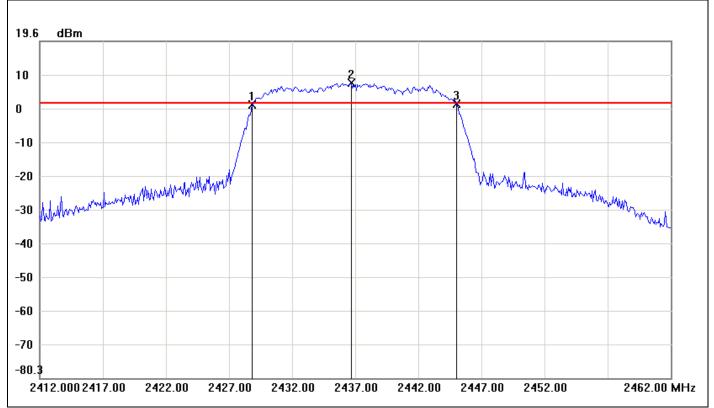
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2432.8333	0.36	1.44	-1.08
2	2437.5000	7.44	1.44	6.00
3	2441.1667	-0.61	1.44	-2.05

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	8.3334	-0.97


6dB Bandwidth (CH High)

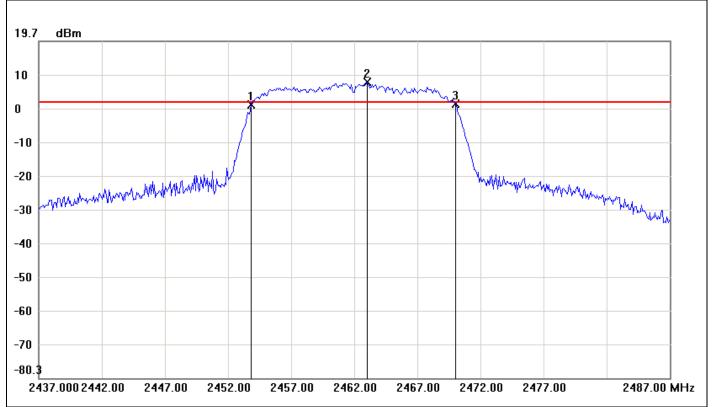
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2457.8333	0.51	1.56	-1.05
2	2461.5000	7.56	1.56	6.00
3	2466.0833	1.47	1.56	-0.09

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	8.25	0.96


IEEE 802.11g mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2403.9167	1.90	1.94	-0.04
2	2410.5000	7.94	1.94	6.00
3	2420.0833	1.65	1.94	-0.29

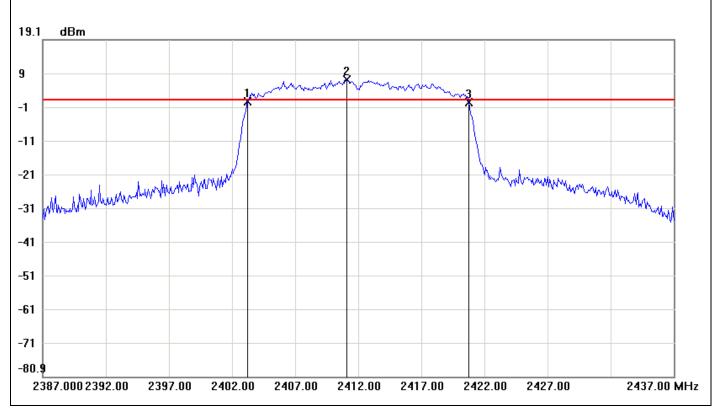
No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	16.1666	-0.25


6dB Bandwidth (CH Mid)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2428.8333	0.70	1.16	-0.46
2	2436.6667	7.16	1.16	6.00
3	2445.0000	1.06	1.16	-0.10

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	16.1667	0.36

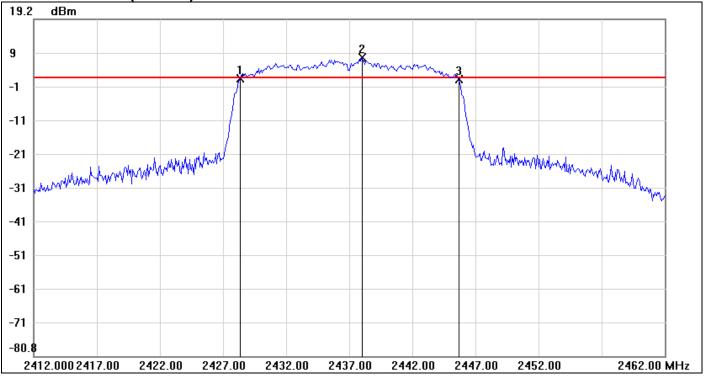
6dB Bandwidth (CH High)



No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2453.8333	0.89	1.67	-0.78
2	2463.0000	7.67	1.67	6.00
3	2470.0000	1.07	1.67	-0.60

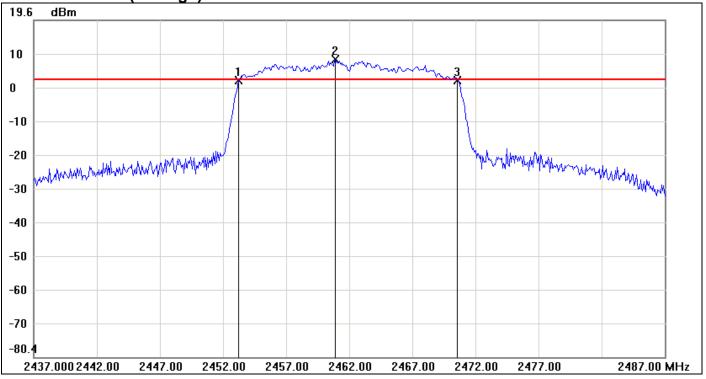
No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	16.1667	0.18

IEEE 802.11n HT 20 MHz mode


6dB Bandwidth (CH Low)

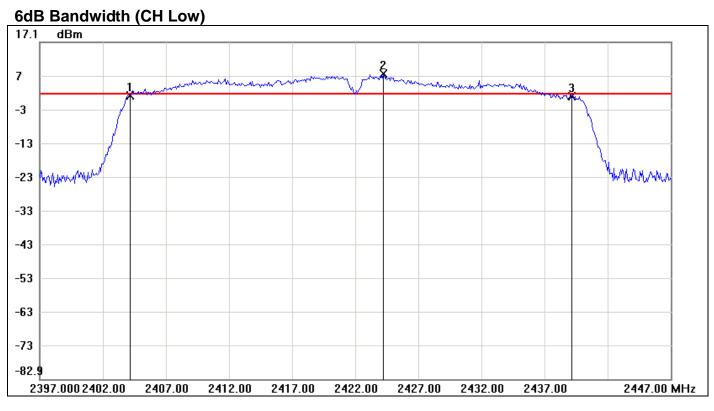
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2403.2500	0.83	1.29	-0.46
2	2411.0833	7.29	1.29	6.00
3	2420.7500	0.47	1.29	-0.82

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	17.5	-0.36


6dB Bandwidth (CH Mid)

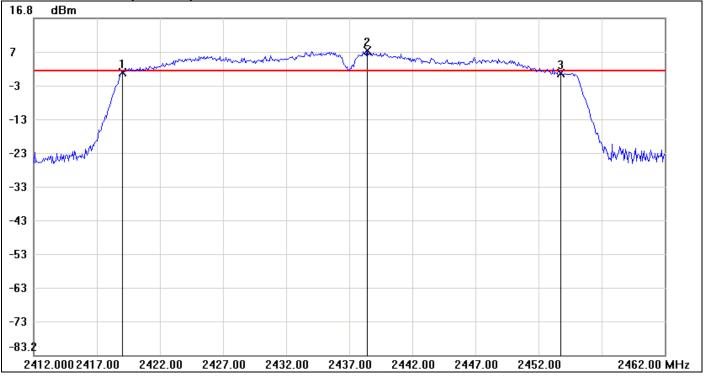
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2428.3333	1.70	1.87	-0.17
2	2438.0000	7.87	1.87	6.00
3	2445.6667	1.43	1.87	-0.44

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	17.3334	-0.27


6dB Bandwidth (CH High)

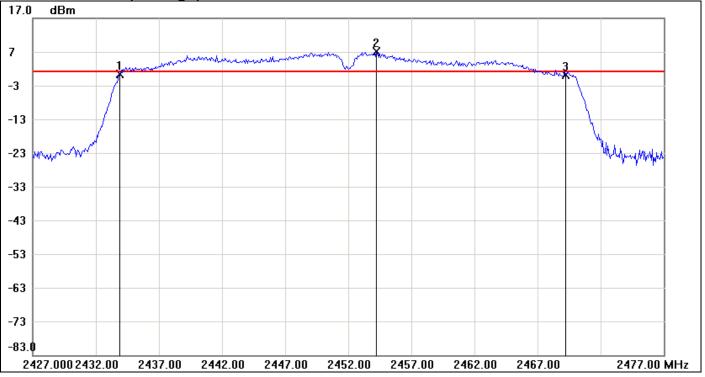
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2453.2500	1.63	1.91	-0.28
2	2460.9167	7.91	1.91	6.00
3	2470.5833	1.84	1.91	-0.07

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	17.3333	0.21


IEEE 802.11n HT 40 MHz mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2404.1667	1.25	1.73	-0.48
2	2424.2500	7.73	1.73	6.00
3	2439.1667	0.91	1.73	-0.82

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	35	-0.34


6dB Bandwidth (CH Mid)

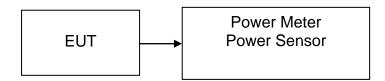
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2419.0000	0.70	1.10	-0.40
2	2438.4167	7.10	1.10	6.00
3	2453.7500	0.41	1.10	-0.69

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	34.75	-0.29

6dB Bandwidth (CH High)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2433.9167	0.29	1.19	-0.90
2	2454.2500	7.19	1.19	6.00
3	2469.2500	0.11	1.19	-1.08

No.		∆Frequency(MHz)	∆Level(dB)
1	mk3-mk1	35.3333	-0.18


7.3 PEAK POWER

<u>LIMIT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. According to RSS-247, for systems employing digital modulation techniques operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	16.28	0.0425		PASS
Mid	2437	*16.51	0.0448	1.00	PASS
High	2462	16.33	0.0430		PASS

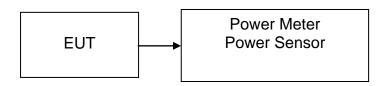
Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	21.85	0.1531		PASS
Mid	2437	22.07	0.1611	1.00	PASS
High	2462	*22.11	0.1626		PASS

Test mode: IEEE 802.11n HT 20 MHz mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	21.71	0.1483		PASS
Mid	2437	22.02	0.1592	1.00	PASS
High	2462	*22.11	0.1626		PASS

Test mode: IEEE 802.11n HT 40 MHz mode


Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2422	22.03	0.1596		PASS
Mid	2437	22.01	0.1589	1.00	PASS
High	2452	*22.14	0.1637		PASS

7.4 AVERAGE POWER

<u>LIMIT</u>

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2412	13.42	0.0220
Mid	2437	13.34	0.0216
High	2462	*13.47	0.0222

Test mode: IEEE 802.11g mode

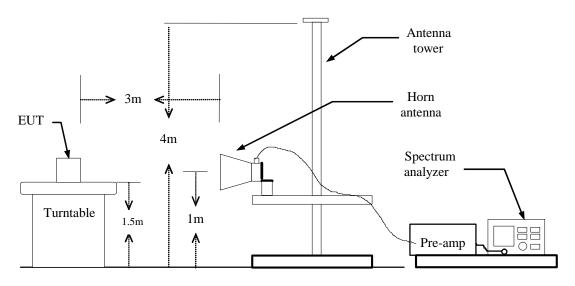
Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2412	13.37	0.0217
Mid	2437	13.33	0.0215
High	2462	*13.43	0.0220

Test mode: IEEE 802.11n HT 20 MHz mode

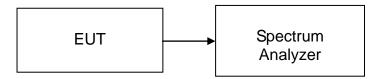
Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2412	13.08	0.0203
Mid	2437	*13.27	0.0212
High	2462	13.17	0.0207

Test mode: IEEE 802.11n HT 40 MHz mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2422	12.52	0.0179
Mid	2437	12.45	0.0176
High	2452	*12.57	0.0181


7.5 BAND EDGES MEASUREMENT

<u>LIMIT</u>


According to §15.247(d) & RSS-247, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

For Radiated

For Conducted

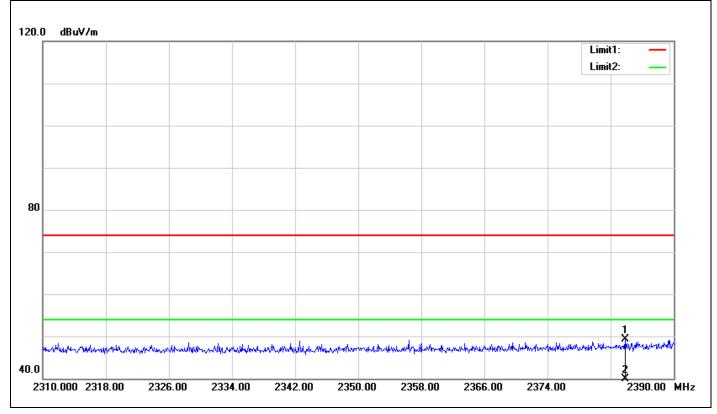
TEST PROCEDURE

For Radiated

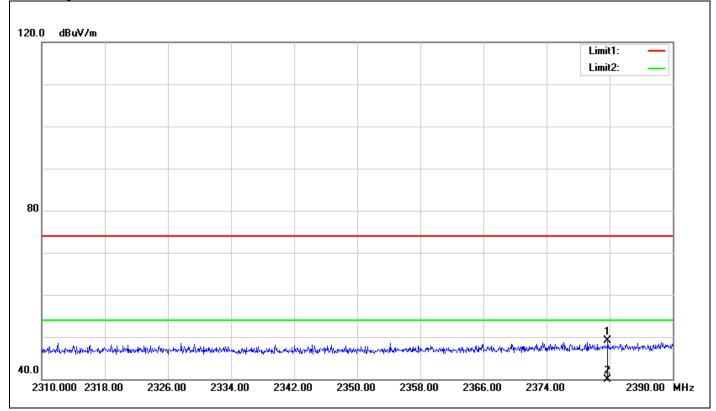
- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T.
 IEEE 802.11b mode: = 95%, VBW=82Hz
 IEEE 802.11g mode: = 95%, VBW=510Hz
 IEEE 802.11n HT 20 MHz mode: = 95%, VBW=560Hz
 IEEE 802.11n HT 40 MHz mode: = 91%, VBW=1.1KHz
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

For Conducted

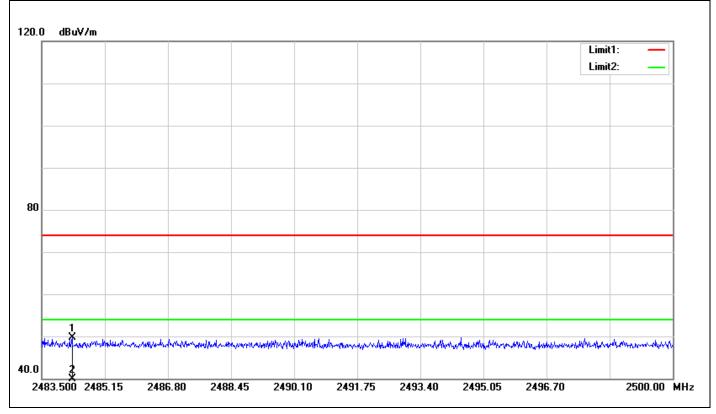
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

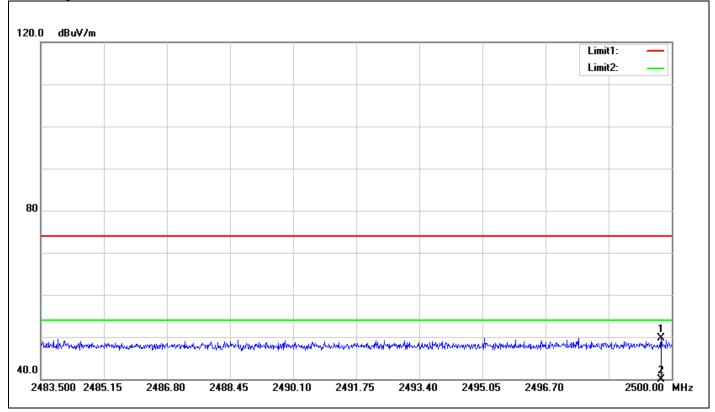

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

TEST RESULTS

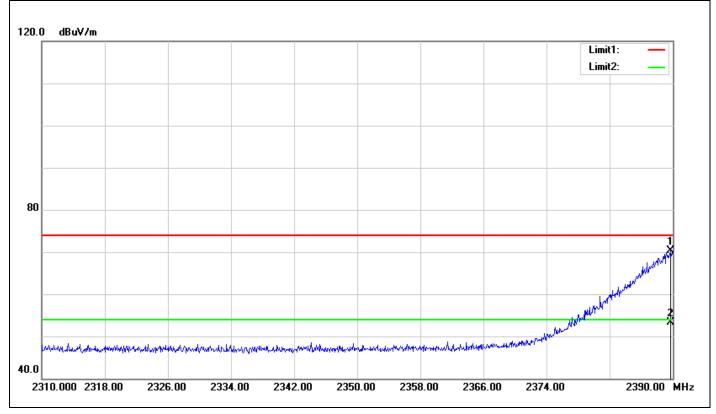

Refer to attach spectrum analyzer data chart.

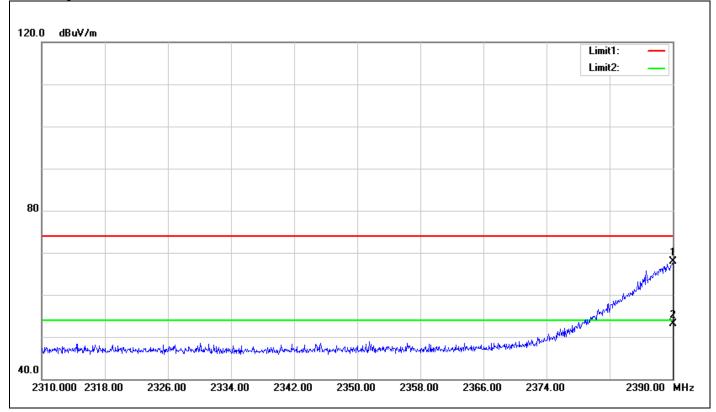
Band Edges (IEEE 802.11b mode / CH Low)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2383.840	51.82	-2.55	49.27	74.00	-24.73	100	147	peak
2	2383.840	38.43	-2.55	35.88	54.00	-18.12	100	147	AVG

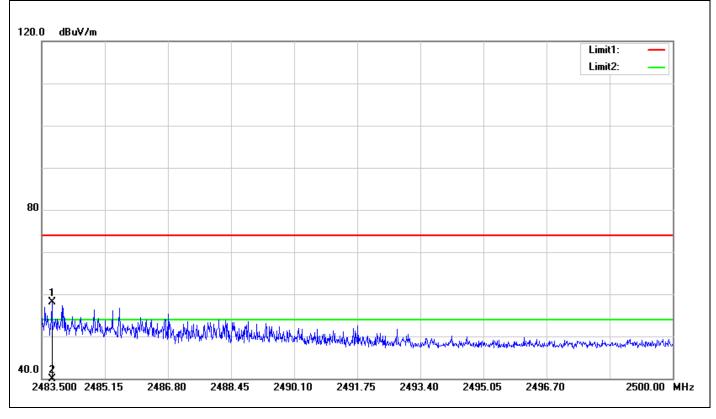

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2381.760	51.68	-2.56	49.12	74.00	-24.88	100	308	peak
2	2381.760	38.44	-2.56	35.88	54.00	-18.12	100	308	AVG

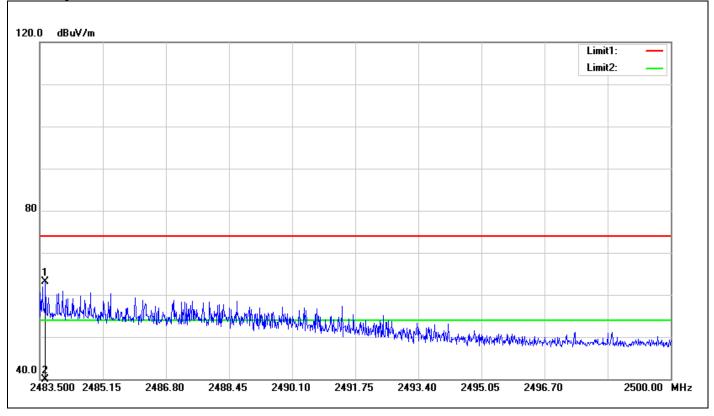
Band Edges (IEEE 802.11b mode / CH High)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2484.292	51.69	-1.99	49.70	74.00	-24.30	100	179	peak
2	2484.292	38.02	-1.99	36.03	54.00	-17.97	100	179	AVG

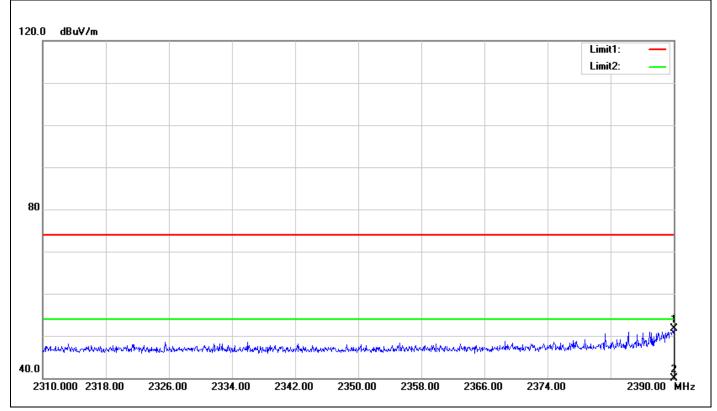

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2499.720	51.66	-1.86	49.80	74.00	-24.20	100	351	peak
2	2499.720	37.54	-1.86	35.68	54.00	-18.32	100	351	AVG

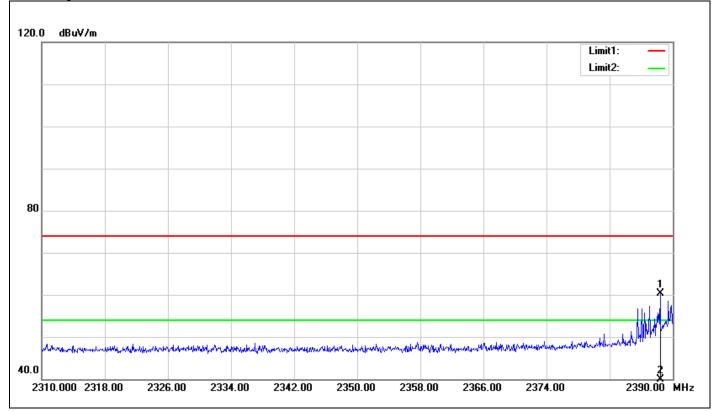
Band Edges (IEEE 802.11g mode / CH Low)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2389.760	72.70	-2.49	70.21	74.00	-3.79	100	282	peak
2	2389.760	55.73	-2.49	53.24	54.00	-0.76	100	282	AVG

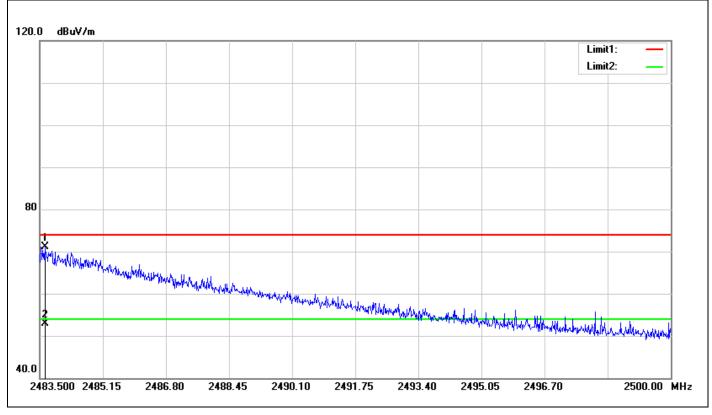

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2390.000	70.33	-2.49	67.84	74.00	-6.16	100	355	peak
2	2390.000	55.59	-2.49	53.10	54.00	-0.90	100	355	AVG

Band Edges (IEEE 802.11g mode / CH High)

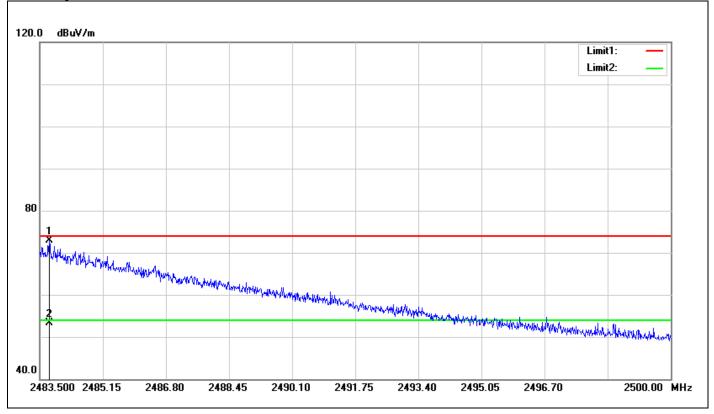

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.764	60.03	-1.99	58.04	74.00	-15.96	100	197	peak
2	2483.764	40.83	-1.99	38.84	54.00	-15.16	100	197	AVG


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.648	65.09	-1.99	63.10	74.00	-10.90	100	91	peak
2	2483.648	40.89	-1.99	38.90	54.00	-15.10	100	91	AVG

Band Edges (IEEE 802.11n HT 20 MHz mode / CH Low)

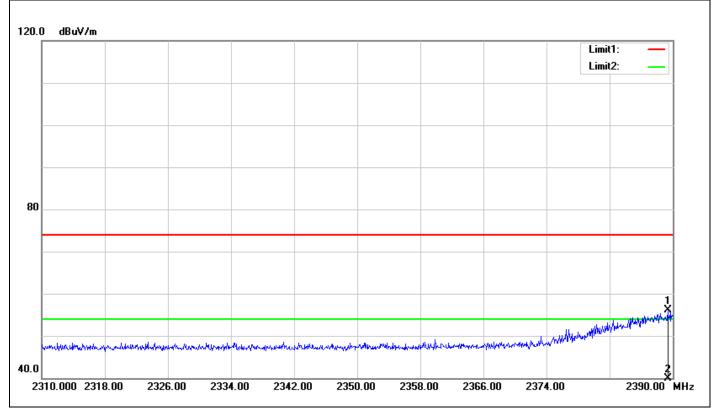


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2390.000	54.15	-2.49	51.66	74.00	-22.34	100	17	peak
2	2390.000	38.92	-2.49	36.43	54.00	-17.57	100	17	AVG

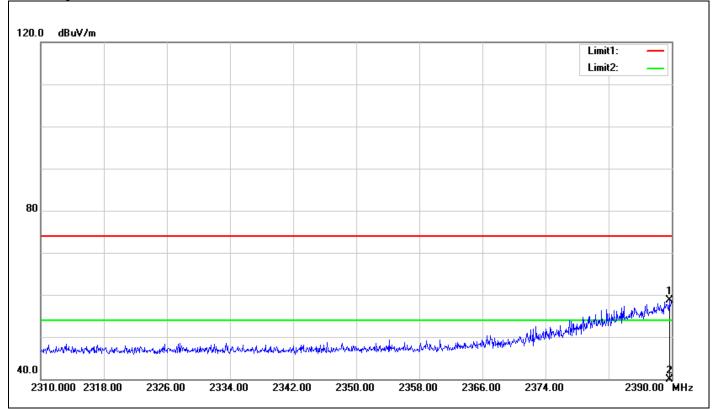


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2388.400	62.77	-2.50	60.27	74.00	-13.73	100	175	peak
2	2388.400	40.04	-2.50	37.54	54.00	-16.46	100	175	AVG

Band Edges (IEEE 802.11n HT 20 MHz mode / CH High)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.632	73.03	-1.99	71.04	74.00	-2.96	100	18	peak
2	2483.632	54.96	-1.99	52.97	54.00	-1.03	100	18	AVG

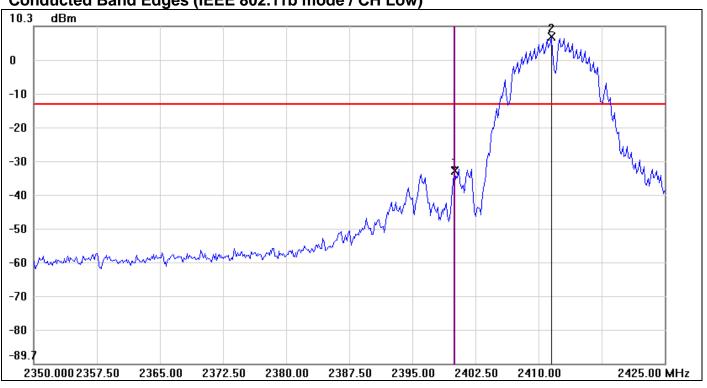
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.747	74.83	-1.99	72.84	74.00	-1.16	100	186	peak
2	2483.747	55.32	-1.99	53.33	54.00	-0.67	100	186	AVG



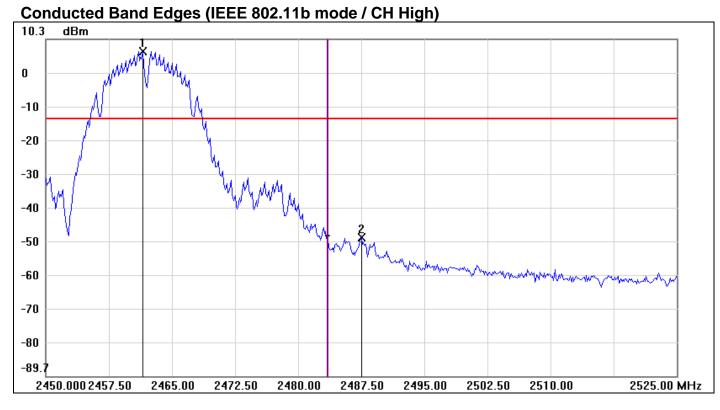
Band Edges (IEEE 802.11n HT 40 MHz mode / CH Low)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2389.360	58.57	-2.50	56.07	74.00	-17.93	100	298	peak
2	2389.360	40.37	-2.50	37.87	54.00	-16.13	100	298	AVG

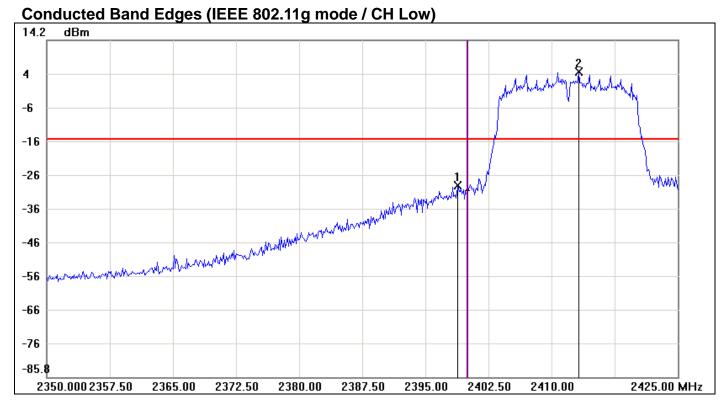
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2389.680	61.14	-2.49	58.65	74.00	-15.35	100	124	peak
2	2389.680	41.92	-2.49	39.43	54.00	-14.57	100	124	AVG


Band Edges (IEEE 802.11n HT 40 MHz mode / CH High)

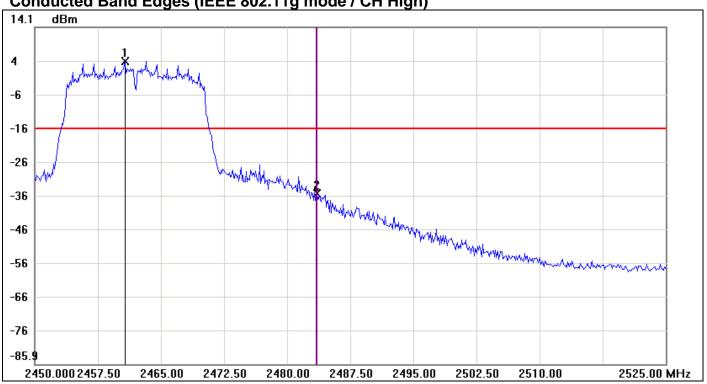
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2484.985	62.88	-1.98	60.90	74.00	-13.10	100	307	peak
2	2484.985	50.78	-1.98	48.80	54.00	-5.20	100	307	AVG


									Lim	
									Lim	
╟										
┝		t X								
144	Made Antoma Marka Marka	all water manue	nhumment half be	Whitenduring wife of	Man Man Manual Man Manual Manual Ma	matelliter the the termine		Marchan		and the second
						o taraf a takana	anna Mhiteithiae VB		MANAMAN MANA	and the second
╞										
┝	į	2								
-										
Ľ		.15 2486	6.80	B.45 2490).10 24 91	1.75 2493	3.40 249	5.05 2496		2500.00 M

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2485.315	73.75	-1.98	71.77	74.00	-2.23	100	98	peak
2	2485.315	55.19	-1.98	53.21	54.00	-0.79	100	98	AVG


Test Plot Conducted Band Edges (IEEE 802.11b mode / CH Low) 10.3 dBm

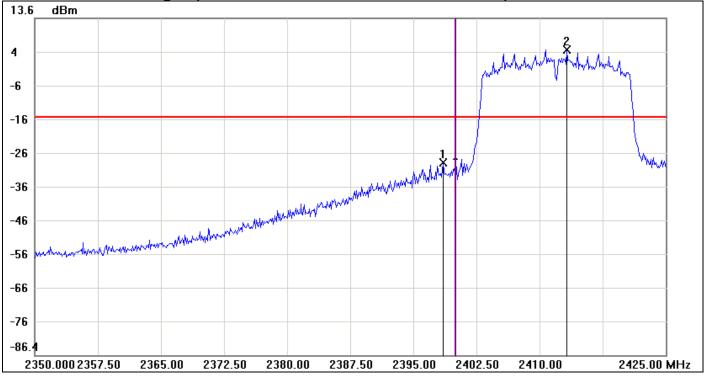
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2400.0000	-32.69	-12.89	-19.80
2	2411.5000	7.11	-12.89	20.00



No.Frequency(MHz)Result(dBm)Limit(dBm)Margin(dBm)12461.50006.79-13.2120.0022487.5000-48.55-13.21-35.34

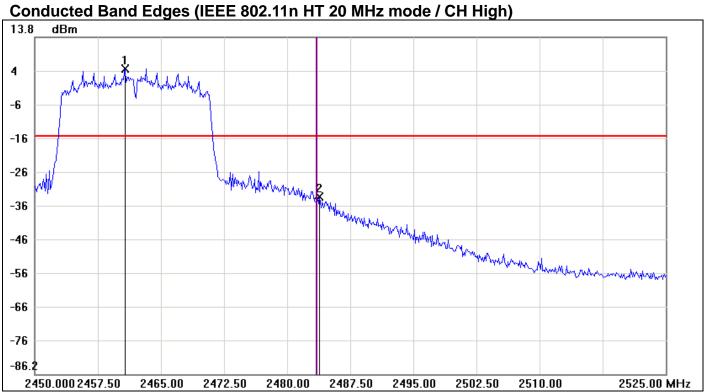
Page 62

No.Frequency(MHz)Result(dBm)Limit(dBm)Margin(dBm)12398.8750-28.97-15.26-13.7122413.25004.74-15.2620.00



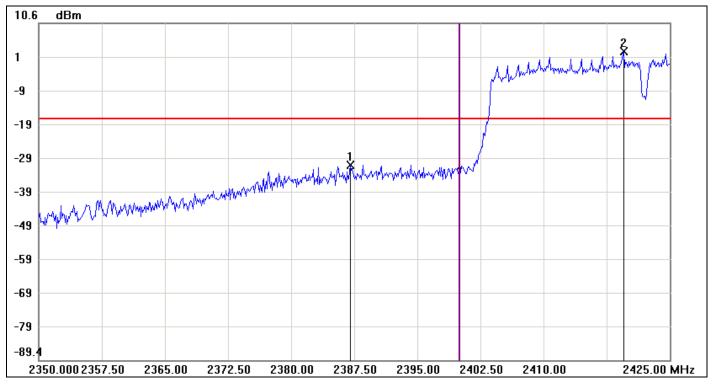
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2460.7500	4.11	-15.89	20.00
2	2483.5000	-35.23	-15.89	-19.34

Conducted Band Edges (IEEE 802.11g mode / CH High)

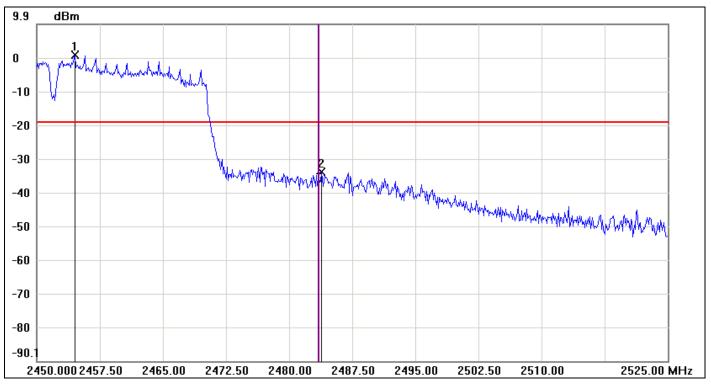


Conducted Band Edges (IEEE 802.11n HT 20 MHz mode / CH Low)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2398.5000	-29.27	-15.81	-13.46
2	2413.2500	4.19	-15.81	20.00


Report No.: T150708W05-RP1

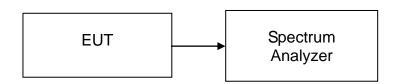
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2460.7500	4.38	-15.62	20.00
2	2483.8750	-33.51	-15.62	-17.89


Page 66

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH Low)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2387.0000	-31.48	-17.90	-13.58
2	2419.5000	2.10	-17.90	20.00

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH High)


No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2454.5000	0.77	-19.23	20.00
2	2483.8750	-33.94	-19.23	-14.71

7.6 PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

- 1. According to §15.247(e) & RSS-247, for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f) & RSS-247, the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3 kHz, VBW = 10 kHz, Span = 300 kHz, Sweep time = 100 s
- 3. Record the max reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

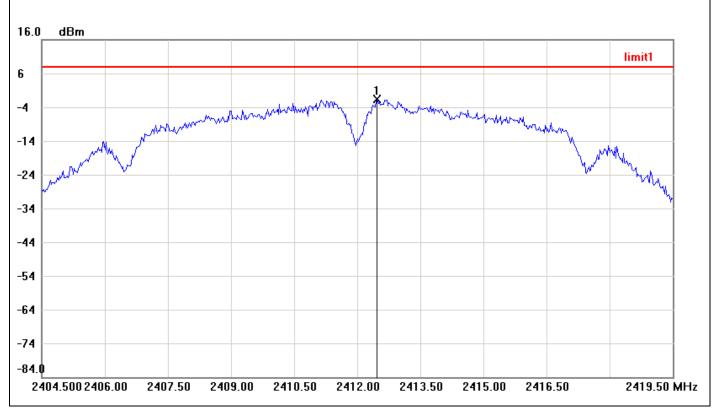
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-1.70		PASS
Mid	2437	-1.22	8.00	PASS
High	2462	-0.68		PASS

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-2.78		PASS
Mid	2437	-2.82	8.00	PASS
High	2462	-3.22		PASS

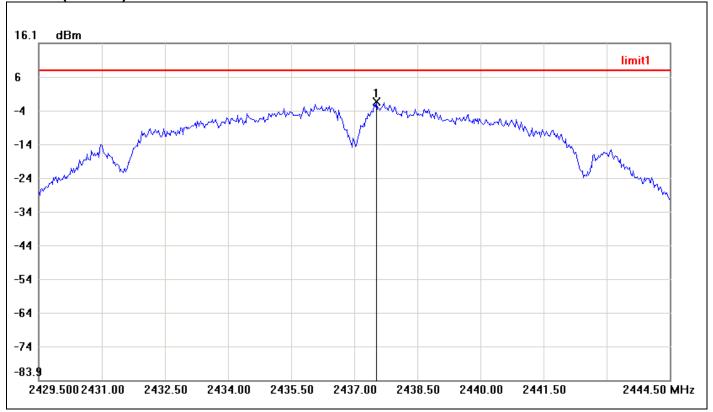
Test mode: IEEE 802.11n HT 20 MHz mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-3.77		PASS
Mid	2437	-3.71	8.00	PASS
High	2462	-3.00		PASS

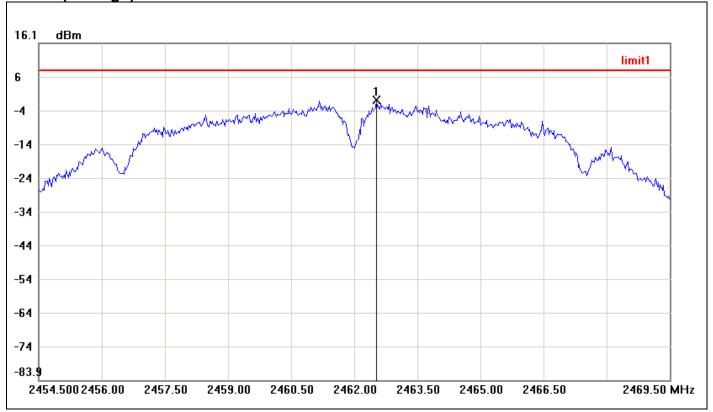

Test mode: IEEE 802.11n HT 40 MHz mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2422	-5.37		PASS
Mid	2437	-7.10	8.00	PASS
High	2452	-7.12		PASS

Test Plot

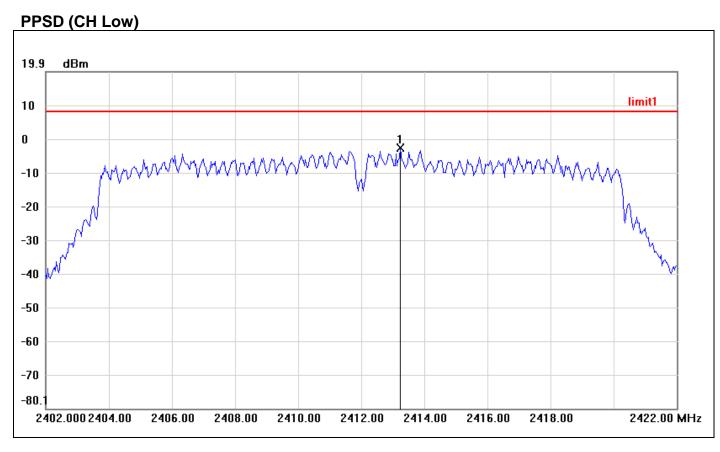

IEEE 802.11b mode

PPSD (CH Low)

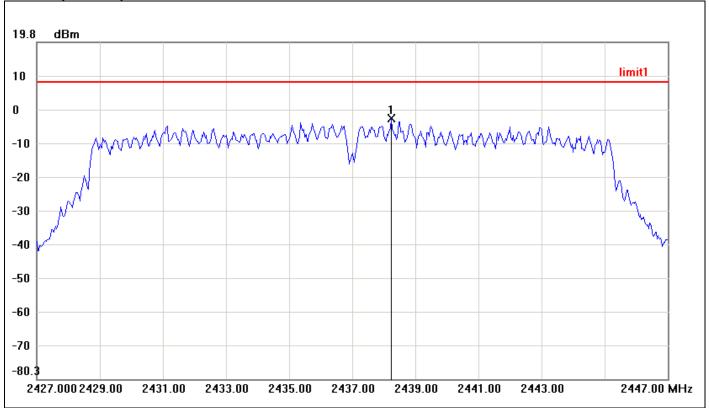

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2412.4750	-1.70	8.00	-9.70

PPSD (CH Mid)

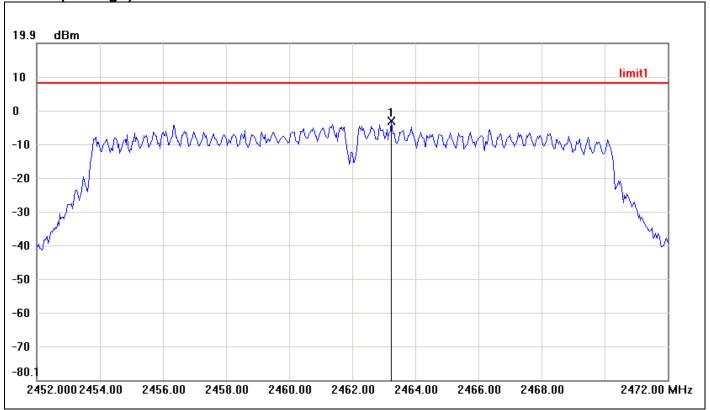
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2437.5250	-1.22	8.00	-9.22


PPSD (CH High)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2462.5250	-0.68	8.00	-8.68

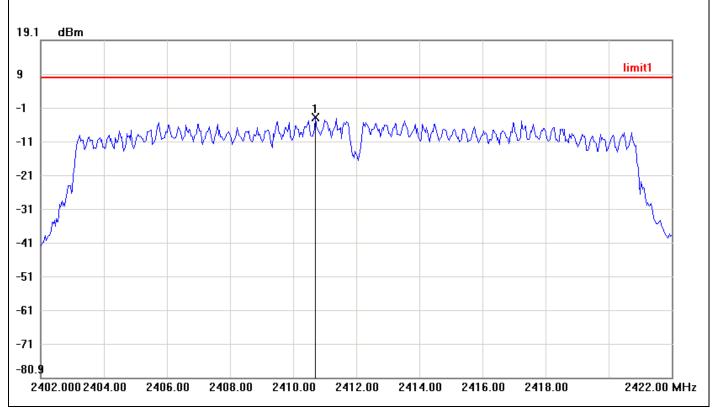

Compliance Certification Services Inc. FCC ID: VUI-MORPHEUS43142 IC: 7582A-MORPHEUS43142

IEEE 802.11g mode

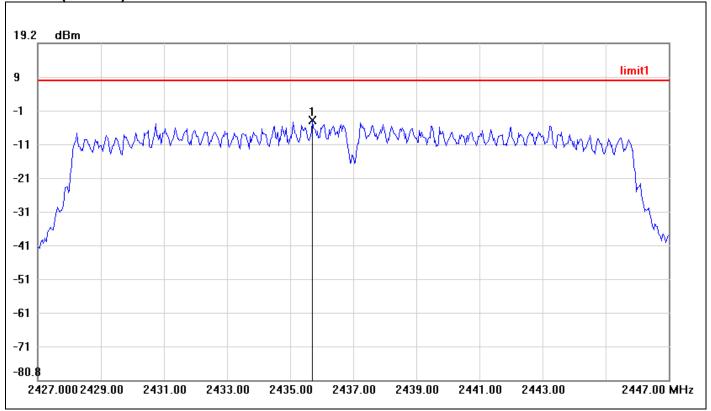

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2413.2333	-2.78	8.00	-10.78

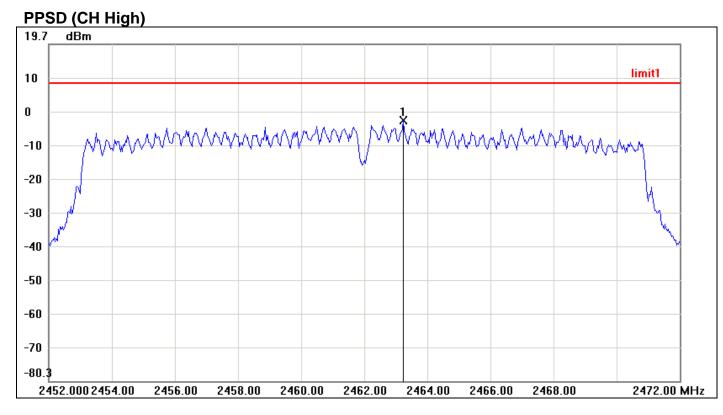
PPSD (CH Mid)

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2438.2333	-2.82	8.00	-10.82


PPSD (CH High)

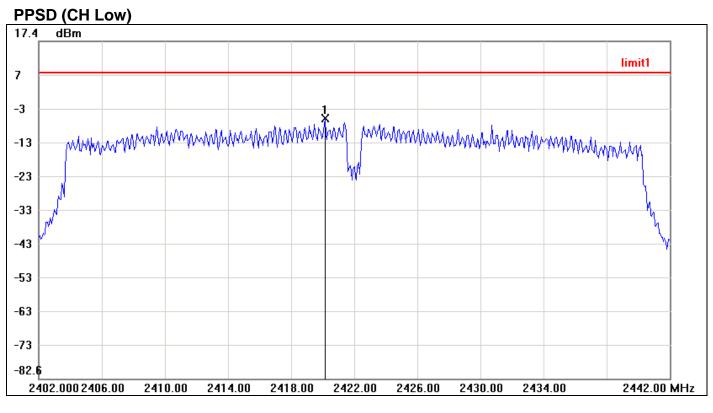
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2463.2333	-3.22	8.00	-11.22


IEEE 802.11n HT 20 MHz mode



No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2410.7000	-3.77	8.00	-11.77

PPSD (CH Mid)



No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2435.7000	-3.71	8.00	-11.71

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2463.2333	-3.00	8.00	-11.00

IEEE 802.11n HT 40 MHz mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2420.1333	-5.37	8.00	-13.37

PPSD (CH Mid) 16.8 dBm limit1 7 -3 winnut war will work and a second and a second and the second and -13 W -23 -33 -43 -53 -63 -73 -83.2 2417.0002421.00 2425.00 2429.00 2433.00 2437.00 2441.00 2445.00 2449.00 2457.00 MHz

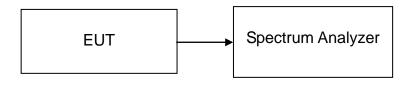
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2436.0000	-7.10	8.00	-15.10

Page 81

PPSD (CH High) 17.0 dBm limit1 7 -3 Marken and a second and a secon month management and the management of the second s -13 -23 -33 h -43 -53 -63 -73 -83.0 2456.00 2432.0002436.00 2440.00 2444.00 2448.00 2452.00 2460.00 2464.00 2472.00 MHz

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2448.8667	-7.12	8.00	-15.12

Page 82


7.7 SPURIOUS EMISSIONS

7.7.1 Conducted Measurement

<u>LIMIT</u>

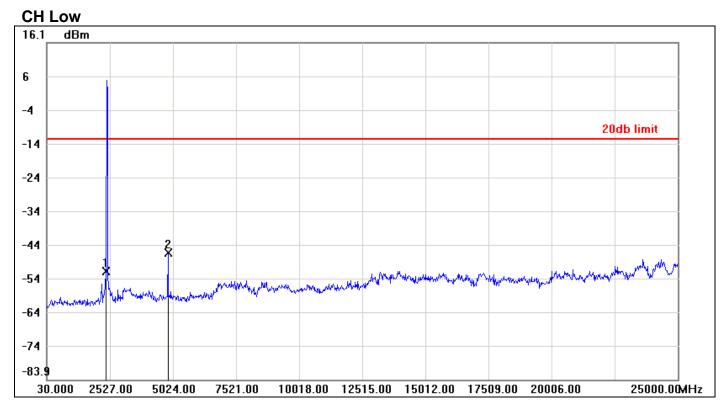
According to §15.247(d) & RSS-247, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

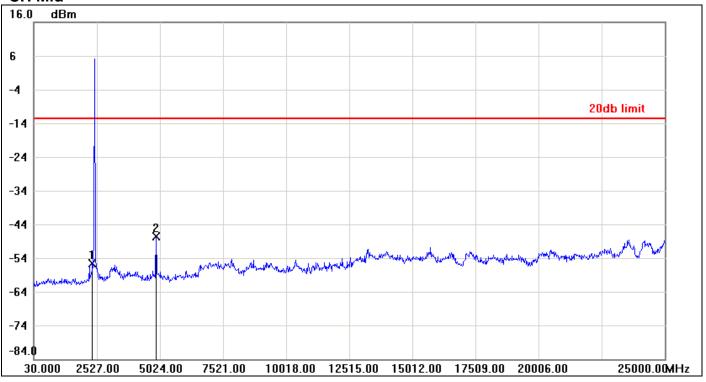
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.


Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted


Test Plot

IEEE 802.11b mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-51.73	-12.62	-39.11
2	4824.2400	-46.31	-12.62	-33.69

CH Mid

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2352.2100	-55.66	-12.68	-42.98
2	4874.1800	-47.55	-12.68	-34.87

Report No.: T150708W05-RP1

CH High

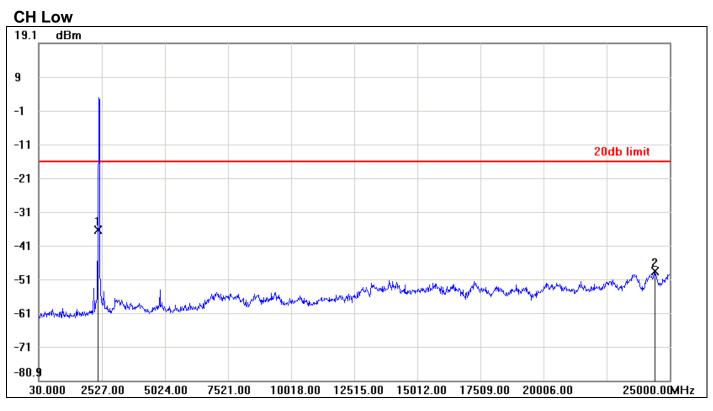
No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2252.3300	-54.62	-12.61	-42.01
2	4924.1200	-47.92	-12.61	-35.31

IEEE 802.11g mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-40.31	-14.78	-25.53
2	23601.6800	-48.55	-14.78	-33.77

Report No.: T150708W05-RP1

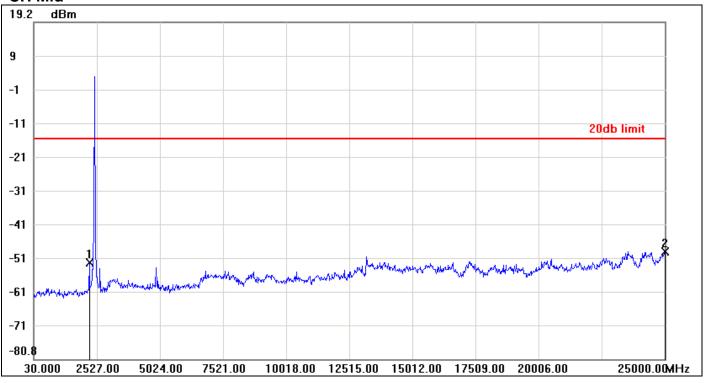
CH Mid



No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2227.3600	-52.49	-15.32	-37.17
2	23501.8000	-47.94	-15.32	-32.62

CH High

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2252.3300	-50.35	-15.40	-34.95
2	2502.0300	-45.52	-15.40	-30.12



IEEE 802.11n HT 20 MHz mode

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-36.23	-15.91	-20.32
2	24425.6900	-48.65	-15.91	-32.74

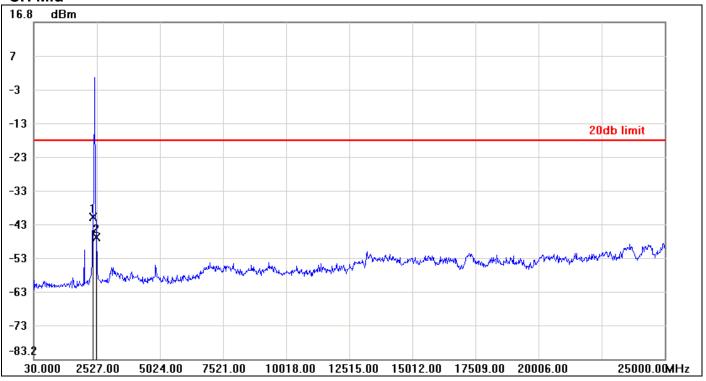

Report No.: T150708W05-RP1

CH Mid

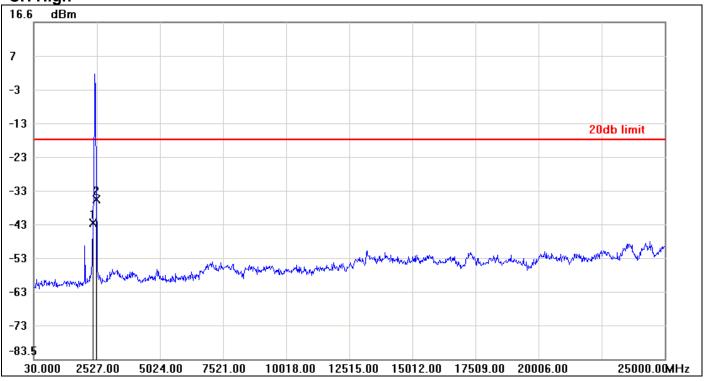


No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2227.3600	-52.17	-15.37	-36.80
2	25000.0000	-48.83	-15.37	-33.46

CH High


No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2252.3300	-49.49	-15.53	-33.96
2	2502.0300	-41.13	-15.53	-25.60

IEEE 802.11n HT 40 MHz mode


No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-34.63	-17.80	-16.83
2	2502.0300	-48.05	-17.80	-30.25

CH Mid

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-41.10	-18.39	-22.71
2	2502.0300	-47.06	-18.39	-28.67

CH High

No.	Frequency(MHz)	Result(dBm)	Limit(dBm)	Margin(dBm)
1	2377.1800	-42.95	-18.34	-24.61
2	2502.0300	-36.18	-18.34	-17.84

7.8 RADIATED EMISSIONS

LIMIT

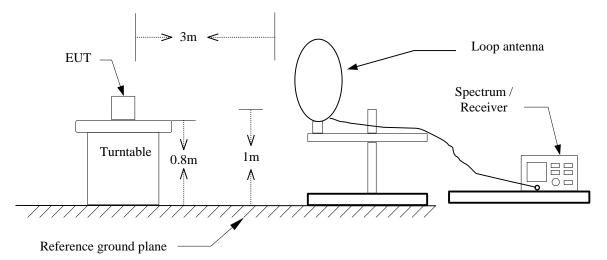
All spurious emissions shall comply with the limits of §15.209(a) and RSS-Gen Table 2 & Table 5.

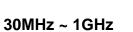
<u>RSS-Gen Table 2 & Table 5: General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> ^(Note)

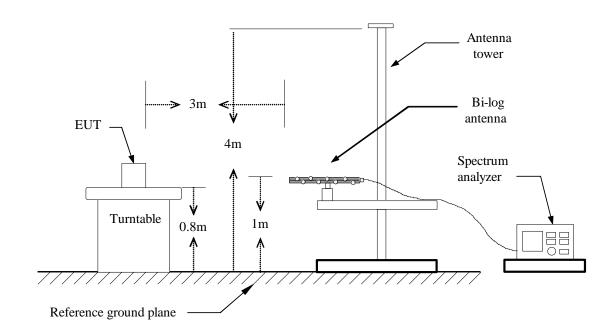
Frequency			
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

Note: *Measurements for compliance with limits in the above table may be performed at distances other than 3 metres, in accordance with Section 7.2.7.

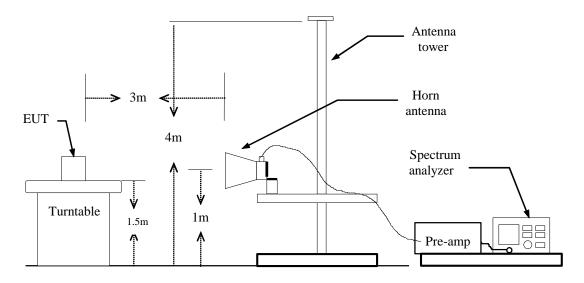
Transmitting devices are not permitted in Table 1 bands or, unless stated otherwise, in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz).


RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)


Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	3000
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30


Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

Test Configuration


9kHz ~ 30MHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

```
RBW=100kHz / VBW=300kHz / Sweep=AUTO
```

Above 1GHz:

(a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO (b) AVERAGE: RBW=1MHz, if duty cycle \geq 98%, VBW=10Hz. if duty cycle<98% VBW=1/T. IEEE 802.11b mode: = 95%, VBW=82Hz IEEE 802.11g mode: = 95%, VBW=510Hz IEEE 802.11n HT 20 MHz mode: = 95%, VBW=560Hz IEEE 802.11n HT 40 MHz mode: = 91%, VBW=1.1KHz

7. Repeat above procedures until the measurements for all frequencies are complete.

Below 30MHz

No emissions to be recorded.

(Since no specific emission noted beyond the background noise floor.)

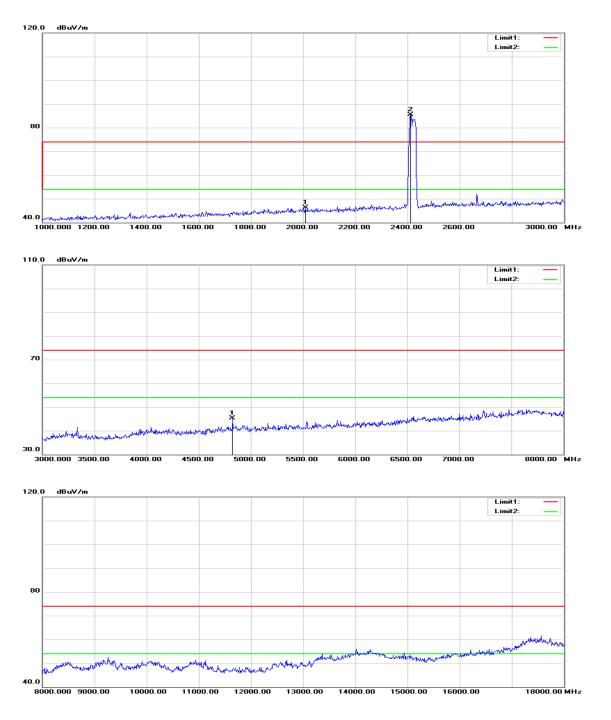
Remark: 1. The measurement below 30MHz is tested with a loop antenna per KDB460108. 2. For 15.31(o) for the reporting of emissions that are more than 20dB below the limit.

Below 1GHz

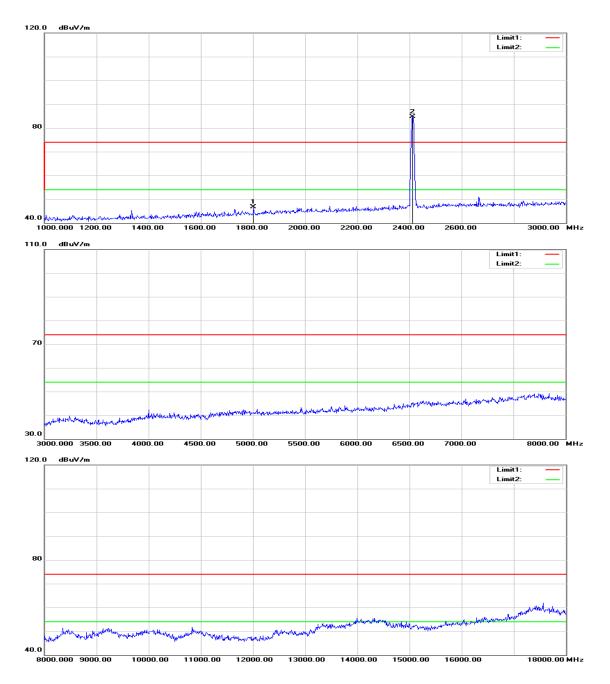
Operation Mode: Normal Link						Test Date: July 21, 2015			
Temperature: 27°C						Tested by: Jason Lu			
Humidity: 53% RH					Polarity: Ver.				
80.0 dBu	N								
						Limit1: Margin:	_		
40									
	* Mmmmmm	nMuhumu	* * www.lulululululululululululululululululu	\$ International	dylun hanna	Montenant	Nursh		
0.0 30.000	127.00 224.0	00 321.00	418.00 515.0	0 612.00	709.00 806.0	00 100	0.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)		
31.6167	52.81	-21.64	31.17	40.00	-8.83	Peak	V		
102.7500	53.29	-31.23	22.06	43.50	-21.44	Peak	V		
299.9833	44.19	-27.73	16.46	46.00	-29.54	Peak	V		
448.7167	44.97	-24.24	20.73	46.00	-25.27	Peak	V		
477.8167	44.68	-23.78	20.90	46.00	-25.10	Peak	V		
545.7167	45.12	-22.84	22.28	46.00	-23.72	Peak	V		

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).


Operation Mode: Normal Link Test Date: July 21, 2015 27°C **Temperature:** Tested by: Jason Lu **Humidity:** 53% RH **Polarity:** Hor. 80.0 dBuV Limit1: Margin: 40 3 0.0 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Correction Frequency Reading Margin Ant. Pol. Result Limit Remark Factor (MHz) (dBuV) (dBuV/m) (dBuV/m) (H/V) (dB) (dB/m) 31.6167 42.24 -21.64 20.60 40.00 -19.40н peak 118.9167 42.78 -28.44 14.34 -29.16 Н 43.50 peak -29.01 Н 204.6000 45.18 16.17 43.50 -27.33 peak 272.5000 47.53 -28.16 19.37 46.00 -26.63 Н peak 647.5667 40.09 -20.79 19.30 46.00 -26.70н peak 818.9333 41.74 -18.71 23.03 46.00 -22.97 Н peak

Remark:


- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

<u>Above 1 GHz</u> <u>TX / IEEE 802.11b / CH Low</u>

Polarity: Vertical

Polarity: Horizontal

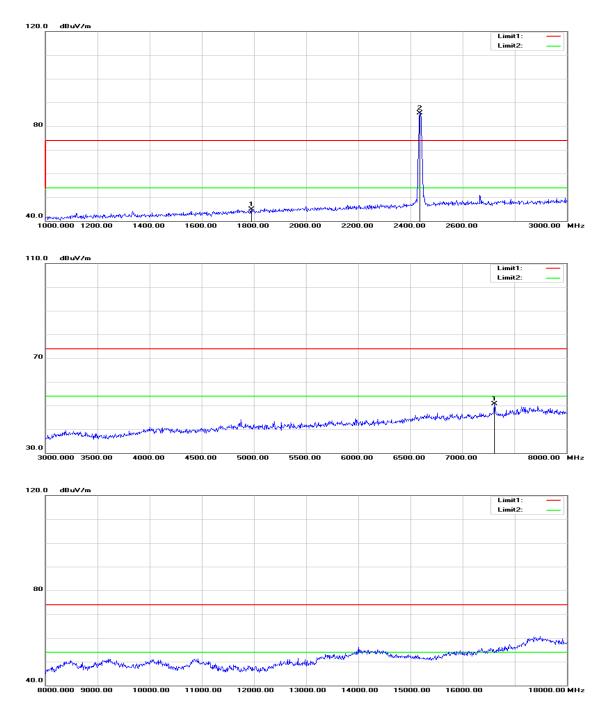
Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low

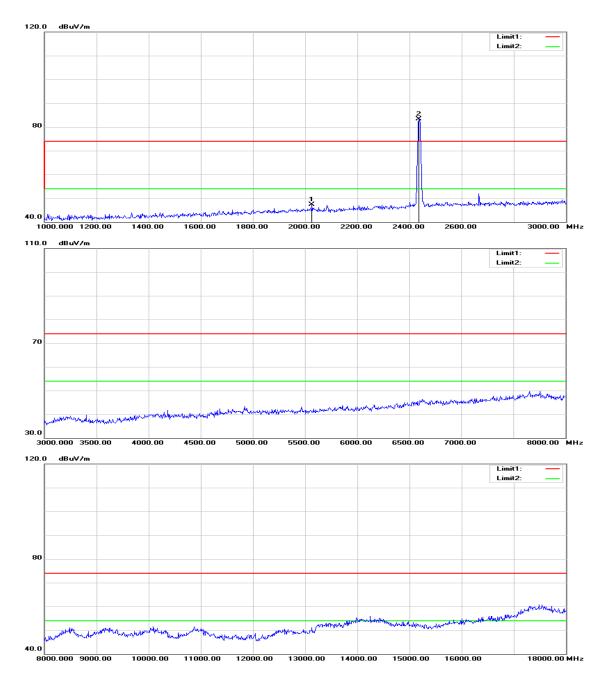
Temperature: 27°C

Humidity: 53% RH

Test Date: August 9, 2015 Tested by:Jason Lu Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
2008.000	50.00	-3.61	46.39	74.00	-27.61	peak	V
4825.000	40.21	5.10	45.31	74.00	-28.69	peak	V
N/A							
1802.000	51.25	-4.63	46.62	74.00	-27.38	peak	Н
N/A							

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11b / CH Mid

Polarity: Vertical

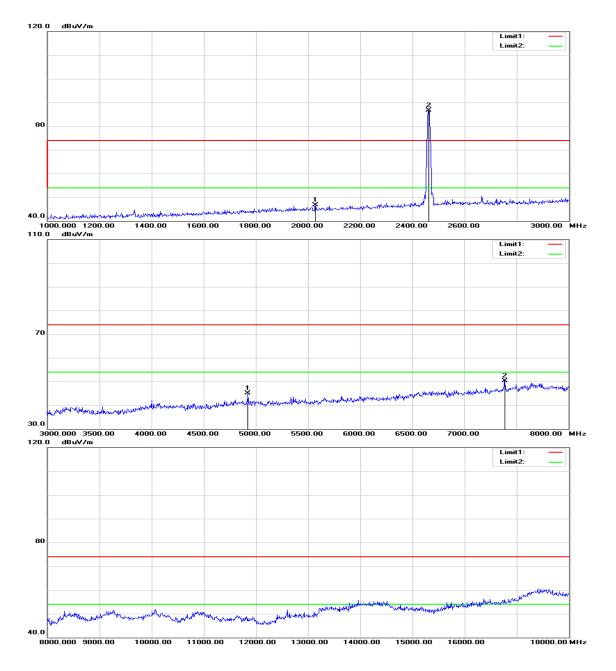
Polarity: Horizontal

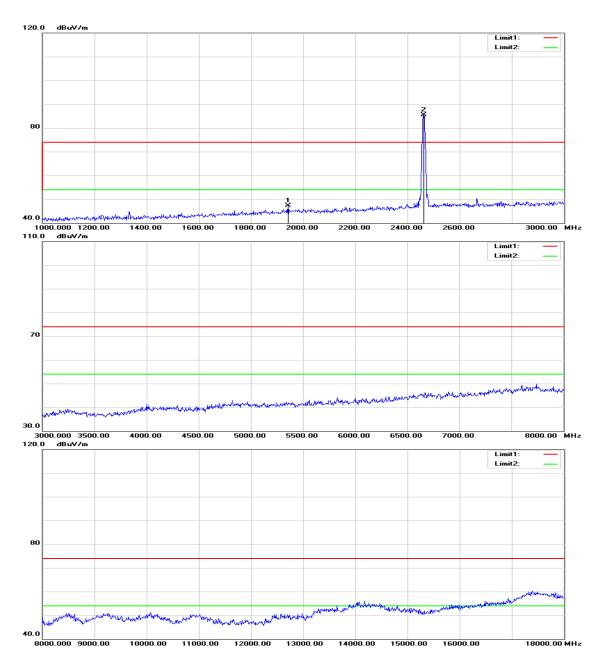
Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 27°C

Humidity: 53% RH

Test Date: August 9, 2015 Tested by:Jason Lu Polarity: Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1790.000	49.54	-4.69	44.85	74.00	-29.15	peak	V
7310.000	37.80	12.94	50.74	74.00	-23.26	peak	V
N/A							
2026.000	50.97	-3.63	47.34	74.00	-26.66	peak	Н
N/A							


Remark:

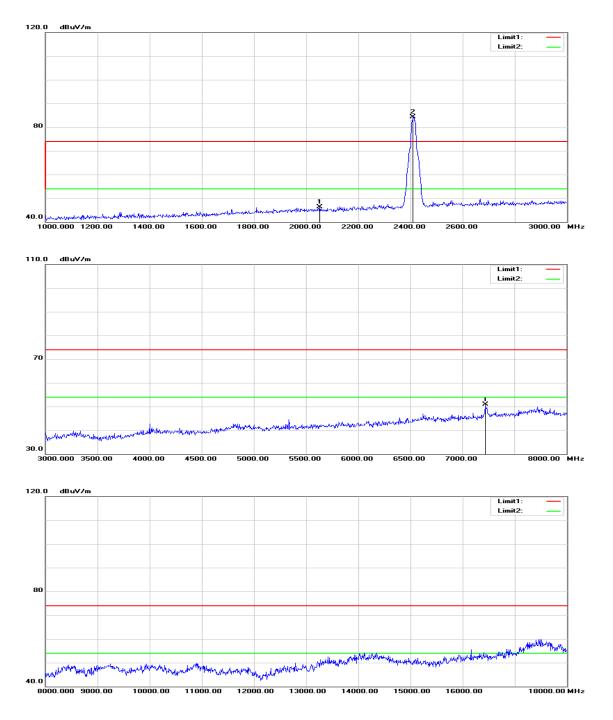
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

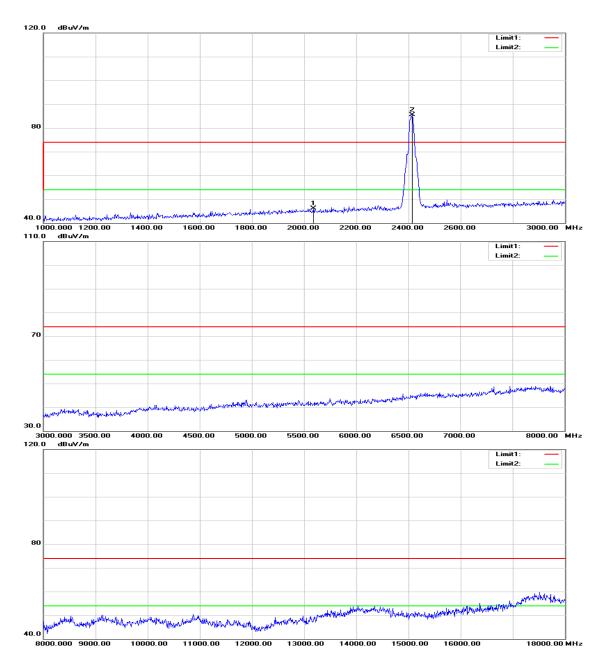
TX / IEEE 802.11b / CH High

Polarity: Vertical

Operation Mode: TX / IEEE 802.11b / CH High

Temperature: 27°C


Humidity: 53% RH


Test Date: August 9, 2015 Tested by:Jason Lu Polarity: Ver. / Hor.

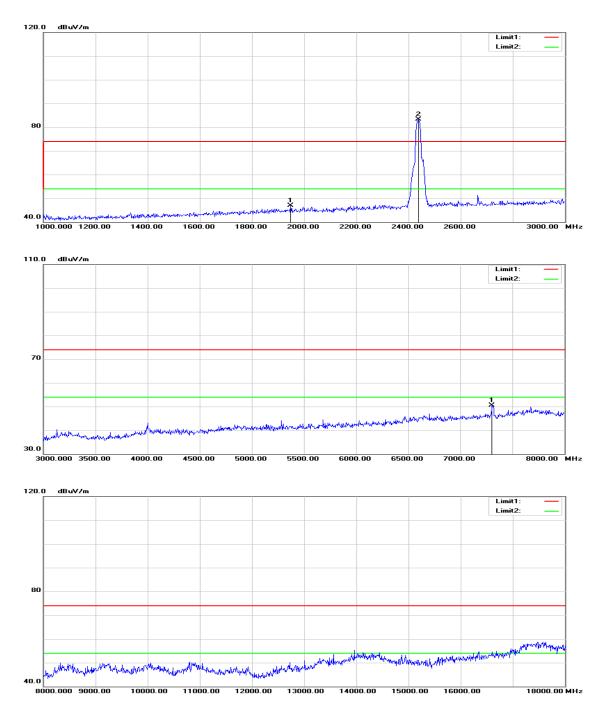
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
2028.000	50.25	-3.63	46.62	74.00	-27.38	peak	V
4925.000	39.70	5.37	45.07	74.00	-28.93	peak	V
7390.000	37.15	13.18	50.33	74.00	-23.67	peak	V
N/A							
1942.000	51.29	-3.90	47.39	74.00	-26.61	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11g / CH Low

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 27°C


Humidity: 53% RH


Test Date: August 9, 2015 Tested by:Jason Lu Polarity: Ver. / Hor.

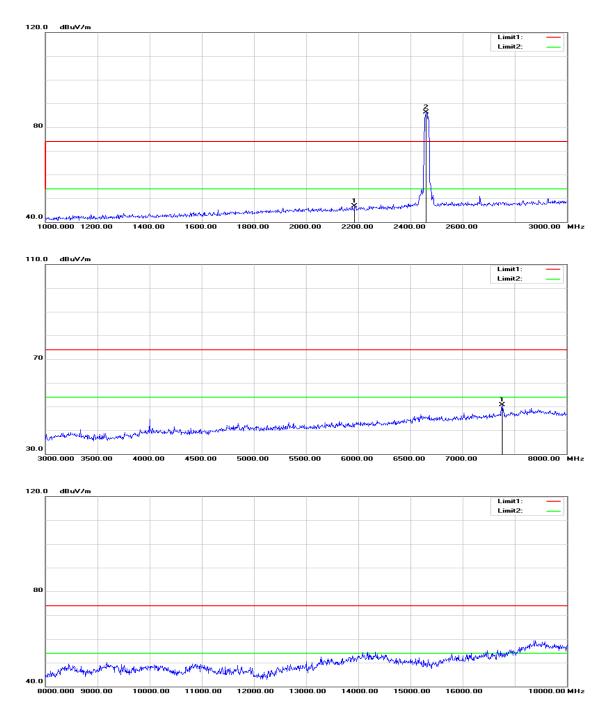
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
2052.000	49.92	-3.65	46.27	74.00	-27.73	peak	V
7220.000	38.21	12.66	50.87	74.00	-23.13	peak	V
N/A							
2036.000	49.67	-3.64	46.03	74.00	-27.97	peak	н
N/A							

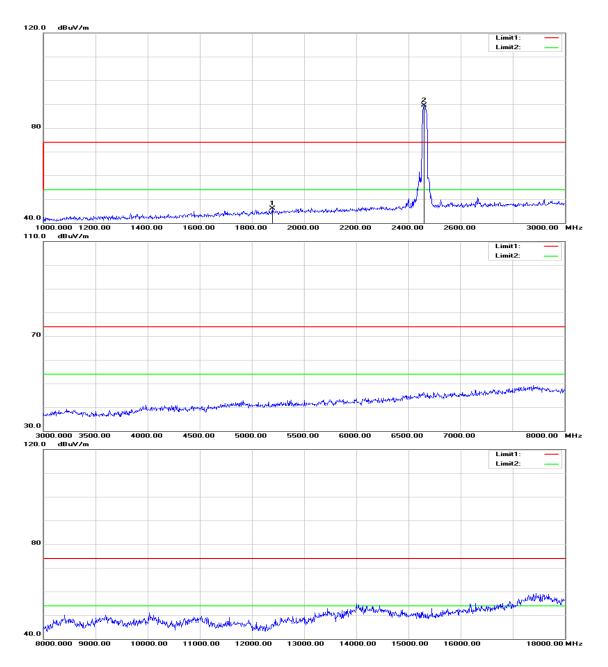
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11g / CH Mid

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 27°C


Humidity: 53% RH


Test Date: June 6, 2015 Tested by:Andy Shi Polarity: Ver. / Hor.

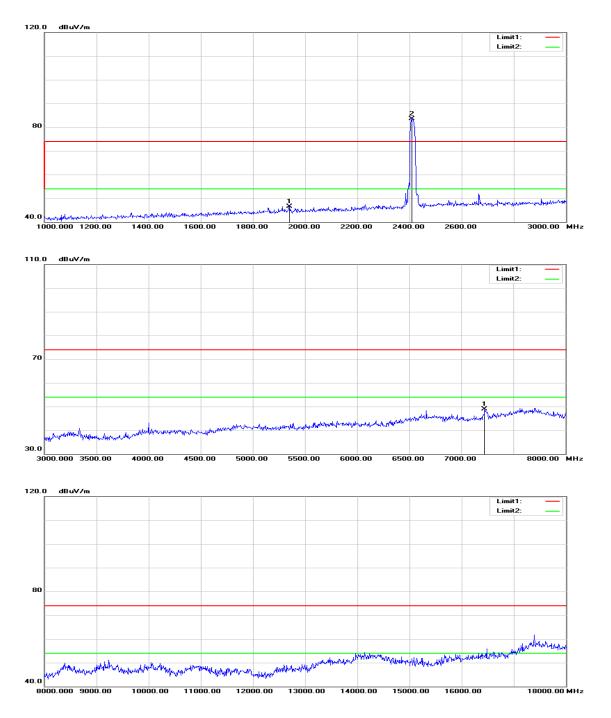
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1948.000	50.84	-3.87	46.97	74.00	-27.03	peak	V
7305.000	37.49	12.92	50.41	74.00	-23.59	peak	V
N/A							
1936.000	52.16	-3.93	48.23	74.00	-25.77	peak	Н
N/A							
Domo <i>rla</i>							

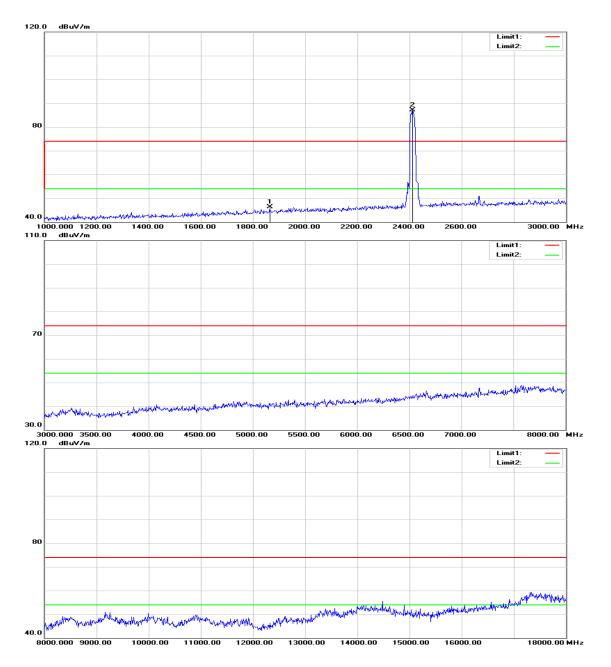
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11g / CH High

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 27°C


Humidity: 53% RH


Test Date: August 9, 2015 Tested by:Jason Lu Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
2186.000	50.02	-3.23	46.79	74.00	-27.21	peak	V
7385.000	37.62	13.16	50.78	74.00	-23.22	peak	V
N/A							
1878.000	50.27	-4.23	46.04	74.00	-27.96	peak	Н
N/A							

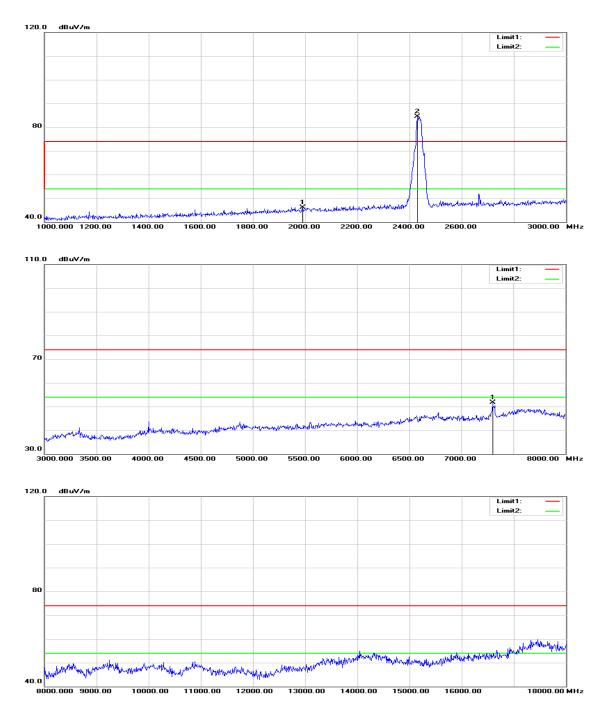
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

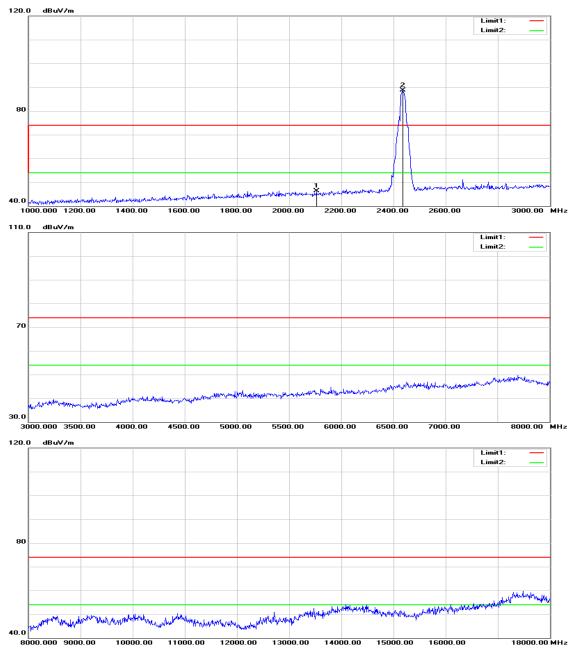
TX / IEEE 802.11n HT 20 MHz mode / CH Low

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH Low Test Date: August 9, 2015

Temperature: 27°C

Tested by: Jason Lu


Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1940.000	50.47	-3.91	46.56	74.00	-27.44	peak	V
7225.000	36.23	12.68	48.91	74.00	-25.09	peak	V
N/A							
1864.000	50.60	-4.30	46.30	74.00	-27.70	peak	Н
N/A							

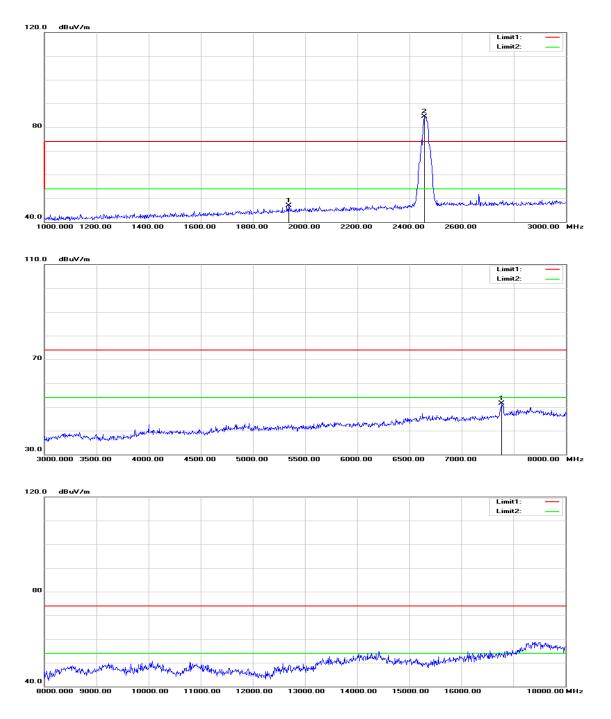
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

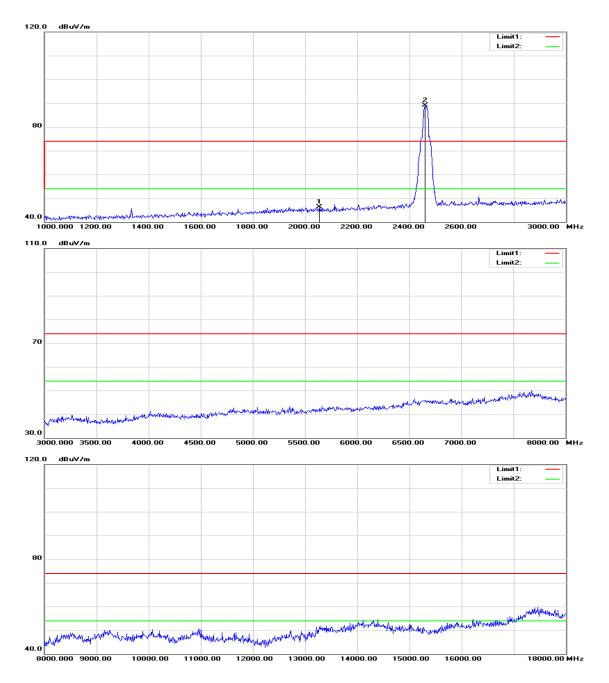
TX / IEEE 802.11n HT 20 MHz mode / CH Mid

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH Mid Test Date: August 9, 2015

Temperature: 27°C

Tested by: Jason Lu


Humidity: 53% RH


Polarity: Ver. / Hor.

Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
49.84	-3.65	46.19	74.00	-27.81	peak	V
38.88	12.91	51.79	74.00	-22.21	peak	V
50.05	2.69	46.27	74.00	27.62	nook	Н
50.05	-3.00	40.37	74.00	-27.03	реак	П
	(dBuV) 49.84	Reading (dBuV) Factor (dB/m) 49.84 -3.65 38.88 12.91	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 49.84 -3.65 46.19 38.88 12.91 51.79 1 1 1 1 1 1 1 1 1	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 49.84 -3.65 46.19 74.00 38.88 12.91 51.79 74.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) 49.84 -3.65 46.19 74.00 -27.81 38.88 12.91 51.79 74.00 -22.21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Margin (dB) Remark 49.84 -3.65 46.19 74.00 -27.81 peak 38.88 12.91 51.79 74.00 -22.21 peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11n HT 20 MHz mode / CH High

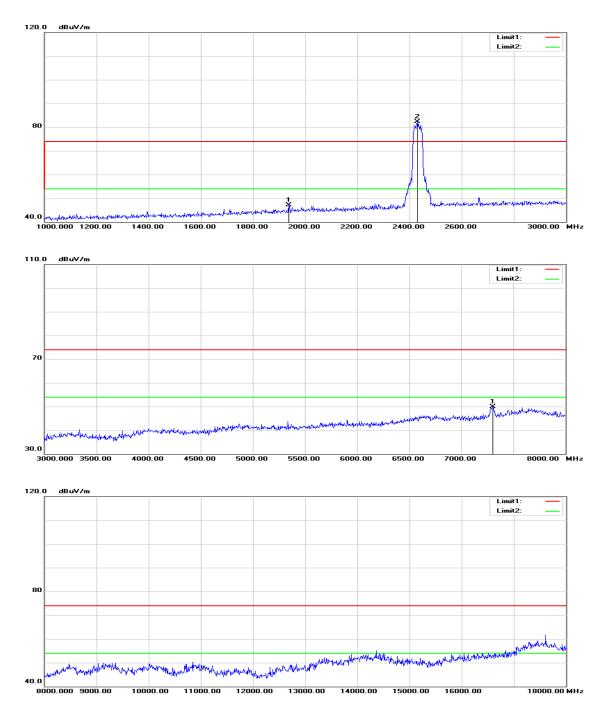
Ver. / Hor.

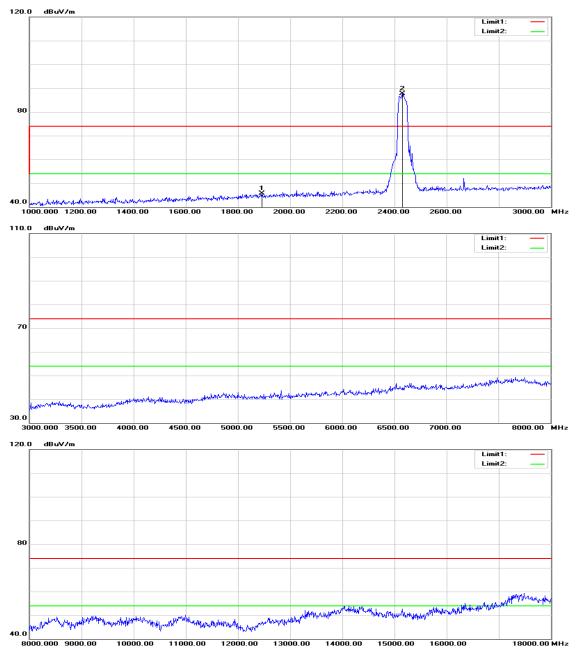
Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH High Test Date: August 9, 2015

High lest Date: August 9, Tested by: Jason Lu

Temperature: 27°C

53% RH


Humidity:


Polarity:

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1938.000	50.87	-3.92	46.95	74.00	-27.05	peak	V
7385.000	38.31	13.16	51.47	74.00	-22.53	peak	V
N/A							
2054.000	49.88	-3.65	46.23	74.00	-27.77	peak	н
N/A							

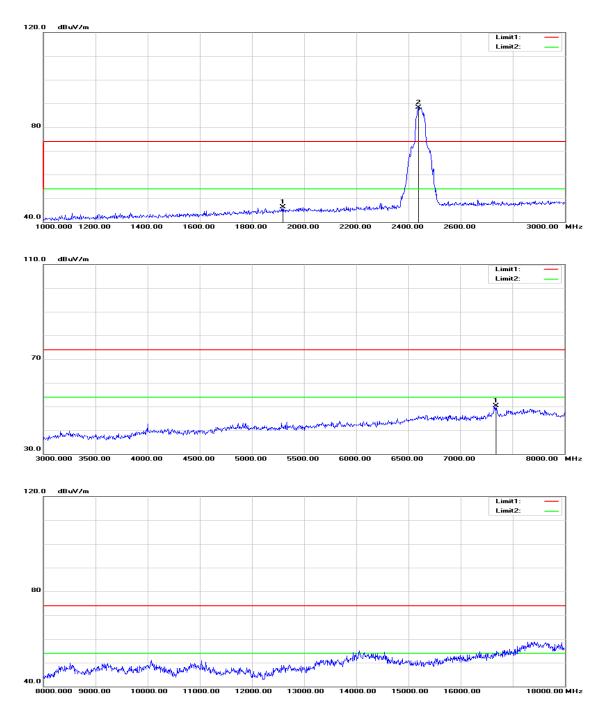
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

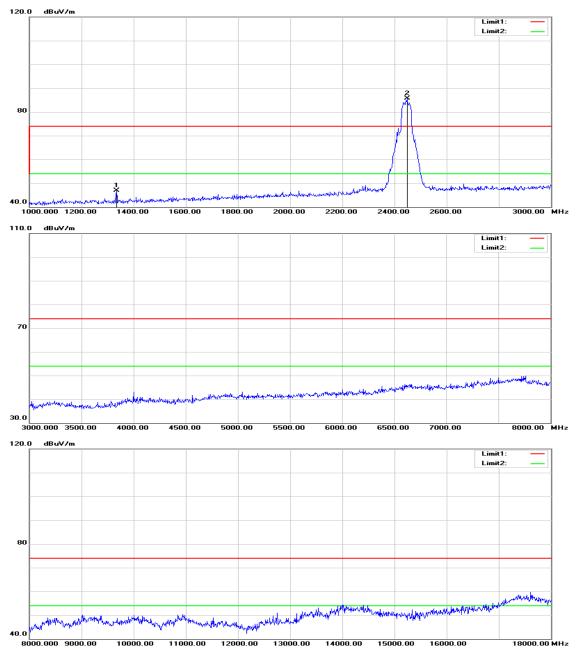
TX / IEEE 802.11n HT 40 MHz mode / CH Low

Operation Mode: TX / IEEE 802.11n HT 40 MHz mode / CH Low Test Date: August 9, 2015

Temperature: 27°C

Tested by: Jason Lu


Humidity: 53% RH


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1936.000	50.94	-3.93	47.01	74.00	-26.99	peak	V
7305.000	36.99	12.92	49.91	74.00	-24.09	peak	V
N/A							
1892.000	49.93	-4.16	45.77	74.00	-28.23	peak	Н
N/A							

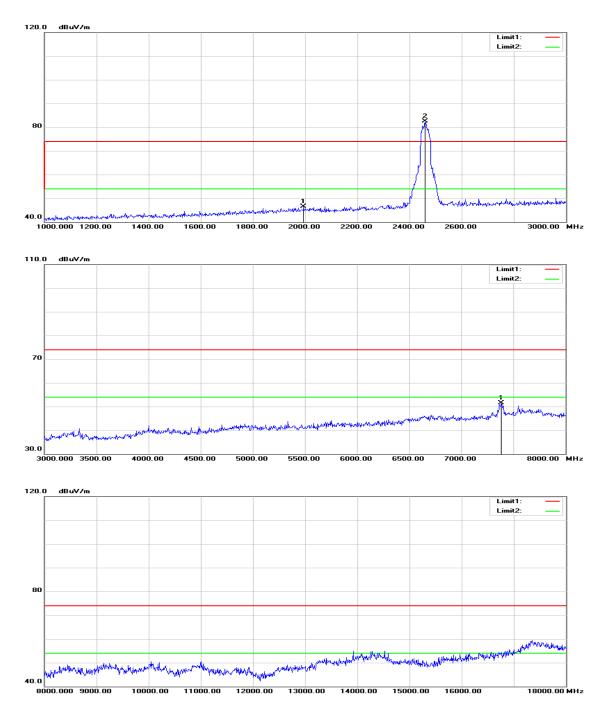
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

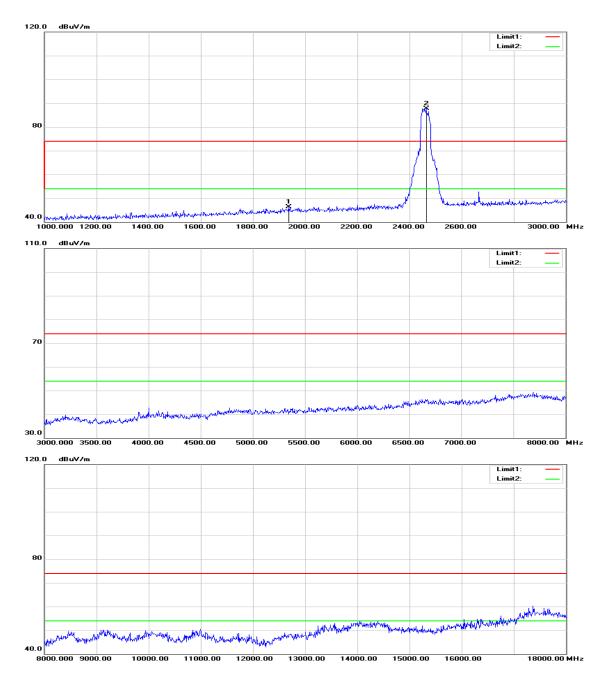
TX / IEEE 802.11n HT 40 MHz mode / CH Mid

Operation Mode:TX / IEEE 802.11n HT 40 MHz mode
/ CH MidTest DTemperature:27°CTested

Humidity: 53% RH

Test Date: August 9, 2015


Tested by: Jason Lu


Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1918.000	50.27	-4.02	46.25	74.00	-27.75	peak	V
7340.000	37.23	13.03	50.26	74.00	-23.74	peak	V
N/A							
1334.000	53.62	-6.77	46.85	74.00	-27.15	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

TX / IEEE 802.11n HT 40 MHz mode / CH High

Operation Mode: TX / IEEE 802.11n HT 40 MHz mode / CH High Test Date: August 9, 2015

Temperature: 27°C

Tested by: Jason Lu

Humidity: 53% RH

Polarity: Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
1994.000	50.13	-3.63	46.50	74.00	-27.50	peak	V
7385.000	38.30	13.16	51.46	74.00	-22.54	peak	V
N/A							
1936.000	50.16	-3.93	46.23	74.00	-27.77	peak	Н
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

7.9 POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

According to §15.207(a) & RSS-Gen §7.2.4, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Operation Mode:	Normal Link	Test Date:	August 5, 2015
Temperature:	26°C	Tested by:	David Shu
Humidity:	60% RH		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB/m)	QP Result (dBuV/m)	AV Result (dBuV/m)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.1527	56.41	50.68	0.09	56.50	50.77	65.85	55.85	-9.35	-5.08	L1
0.1780	51.22	44.62	0.09	51.31	44.71	64.58	54.58	-13.27	-9.87	L1
0.2009	49.77	43.96	0.09	49.86	44.05	63.57	53.57	-13.71	-9.52	L1
0.2732	36.86	27.35	0.09	36.95	27.44	61.02	51.02	-24.07	-23.58	L1
0.3050	41.12	35.97	0.10	41.22	36.07	60.11	50.11	-18.89	-14.04	L1
0.4398	44.75	31.69	0.10	44.85	31.79	57.07	47.07	-12.22	-15.28	L1
0.1601	52.59	44.32	0.09	52.68	44.41	65.46	55.46	-12.78	-11.05	L2
0.1826	50.30	42.42	0.09	50.39	42.51	64.37	54.37	-13.98	-11.86	L2
0.1964	48.75	41.69	0.09	48.84	41.78	63.76	53.76	-14.92	-11.98	L2
0.2350	39.73	30.27	0.09	39.82	30.36	62.27	52.27	-22.45	-21.91	L2
0.4402	44.67	31.78	0.09	44.76	31.87	57.06	47.06	-12.30	-15.19	L2
0.7541	35.27	28.02	0.10	35.37	28.12	56.00	46.00	-20.63	-17.88	L2

Remark:

1. Measuring frequencies from 0.15 MHz to 30MHz.

2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.

3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10 kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz;

4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

80.0 dBuV

