TEST REPORT

FCC Part 15 Subpart C

Product : Printer

Model(s): TTP-286M; TTP-384M; T-0812;M8304; DuraLabel PRO 8000; DuraLabel PRO 8500 DuraLabel PRO 8800; DuraLabel PRO 9000

Applicant: TSC Auto ID Technology Co.,Ltd.

Address: No.35, Sec.2, Ligong 1st Rd., Wujie Town, I-Lan Hsien 268, Taiwan

Test Performed by:

International Standards Laboratory <Lung-Tan LAB> *Site Registration No. BSMI: SL2-IN-E-0013; TAF: 0997;IC: IC4067B-1; VCCI: R-1435, C-1440, T-299, R-2598, C-2845; NEMKO: ELA 113B *Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.

Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-08LR027FC Issue Date : 2008/09/03

ISL International Standards Laboratory http://www.isl.com.tw

Contents of Report

1. General	1
1.1 Certification of Accuracy of Test Data	1
1.2 Test Results Summary	
2. Description of Equipment Under Test (EUT)	
3. Description of Support Equipment	
3.1 Description of Support Equipment	
3.1.1 I/O Cable Condition of EUT and Support Units	
4. TEST RESULTS	
4.1 Powerline Conducted Emissions [Section 15.207]	
4.1.1 EUT Configuration	
4.1.2 Test Procedure	
4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
4.1.4 Test Data:	
4.2 Radiated Emission Measurement [Section [15.225(a)(b)(c)(d)]]	8
4.2.1 EUT Configuration	8
4.2.2 Test Procedure	
4.2.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
 4.2.4 Radiated Emission Limit	
4.2.5 Test Data (Radiated of Fundamental Emission)	
4.2.7 Test Data (RADIATED OF SPURIOUS EMISSION)(9KHz – 1GHz):	
4.3 Frequency Stability Measurement	
7.1.1. Limits of Frequency Stability Measurement	
7.1.2. Test Procedure	
7.1.3. Test Setup	
4.3.1 Test Data	16
4.4 Occupied bandwidth measurements [ANSI C63.4 section 13.1.7]	18
4.4.1 Test Procedure	
4.4.2 Test Setup	
4.4.3 Test Data:	
5. Appendix	
5.1 Appendix A: Measurement Procedure for Power line Conducted Emissions	19
5.2 Appendix B: Test Procedure for Radiated Emissions	20
5.3 Appendix C: Test Equipment	21
5.3.1 Test Equipment List	
5.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	
5.4 Appendix D: Layout of EUT and Support Equipment	
5.4.1 General Conducted Test Configuration	
5.4.2 General Radiation Test Configuration	
5.5 Appendix E: Accuracy of Measurement	
5.6 Appendix F: Photographs of EUT Configuration Test Set Up	

-1-

1. General

1.1 Certification of Accuracy of Test Data

Standards:	CFR 47 Part 15 Subpart C (Section 15.225)
Test Procedure:	ANSI C63.4:2003
Equipment Tested:	Thermal Printer
Model:	TTP-286M; TTP-384M; T-0812;M8304; DuraLabel PRO 8000; DuraLabel PRO 8500, DuraLabel PRO 8800; DuraLabel PRO 9000
Applied by:	TSC Auto ID Technology Co.,Ltd.
Sample received Date:	2008/08/21
Final test Date :	2008/08/27-2008/09/01
Test Result	PASS
Test Site:	Chamber 12, Conduction 03
Temperature	Refer to each site test data
Humidity:	Refer to each site test data
Test Engineer:	Jerry Chion

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Roy Hsich

Roy Hsieh / Manager

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 30 pages, including 1 cover page, 1 contents page, and 28 pages for the test description. This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

1.2 Test Results Summary

The RFID functions of EUT has been tested according to the FCC regulations listed below:

Tested Standards: 47 CFR Part 15 Subpart C							
Standard	Test Type	Result	Remarks				
Section							
15.207	AC Power Line	Pass					
	Emissions						
15.225(a)(b)(c)	Peak Output Power	Pass					
15.225(d)	Radiated Emissions	Pass					
15.225(d)	Band Edge	Pass					
	Measurement						
15.225(e)	Frequency Stability	Pass					

2. Description of Equipment Under Test (EUT)

Description: Model No.:	Printer TTP-286M;TTP-384M;T-0812;M8304; DuraLabel PRO 8000;DuraLabel PRO 8500; DuraLabel PRO 8800;DuraLabel PRO 9000
Frequency Range:	13.56 MHz
Support channel:	1 Channel
Modulation Skill:	FSK
Antennas Type:	Loop
Antenna Connected:	Soldered on PCB.
Working Voltage:	120V/60Hz
The channel and the operation freque	ency is listed below:

The channel and the operation frequency is listed below: Channel Frequency(MHz) 01 13.56

Adapter Type:Auto Switching AC Adapter
100-240V,2.5A 50-60Hz
EDAC (Model: EA10953)AC-In:oneUSB2.0 Connector:one 4-pinParallel Port:one 25-pinSerial Port:two 9-pinPower Cord:Non-shielded, Detachable

1. This device is a printer and includes a 13.56MHz RFID.

2. This device is one channel and perform the test, then record on this report.

3. The antenna of EUT is solder on PCB and conform to FCC 15.203.

4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.227.

This device is Thermal Printer included 13.56MHz RFID modular, The RFID is detect tag and determine use correct model of roller in printer, the tag is combined with roller of printer. This device only one channel and operation in 13.56MHz with FSK modulation. Another information please refer to users manual.

-3-

3. Description of Support Equipment

3.1 Description of Support Equipment

Unit	Model Serial No.	Brand	Power Cord	FCC ID
LCD Monitor	2408WFPb	DELL	Non-shielded, Detachable	FCC DOC
USB Mouse	M-SBJ96 S/N: NA	Dell	Non-shielded, Detachable	FCC DOC
Dell USB Keyboard	SK8115 S/N: NA	DELL	NA	FCC DOC
Personal Computer	DC8M S/N: 1DP1L1S	DELL	Non-shielded Detachable	FCC DOC

3.1.1 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to AC Power Cord Inlet (3-pin)	1.8M	Nonshielded, Detachable	Plastic Head
Monitor Data Cable	Monitor D-SUB Port to PC VGA Port	1.6M	Shielded, Detachable (with core)	Metal Head
USB Data Cable	USB KB to EUT USB Port	1.5M	Shielded, Un-detachable	Metal Head
USB Data Cable	USB Mouse to EUT USB Port	1.5M	Shielded, Un-detachable	Metal Head
Serial Cable	EUT Serial Port to PC	1.8M	Non-shielded, Detachable	Metal Head
Parallel Cable	EUT Print Port to PC	1.8M	Non-shielded, Detachable	Metal Head

4. TEST RESULTS

4.1 Powerline Conducted Emissions [Section 15.207]

4.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

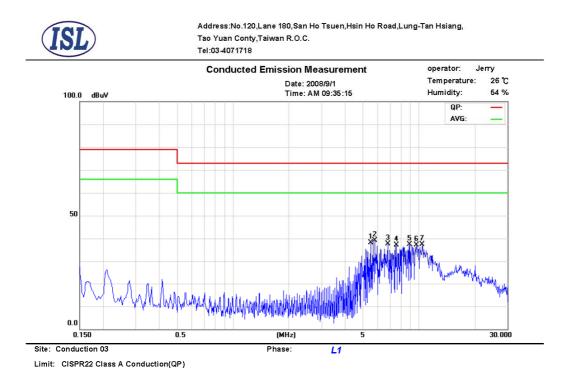
4.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6d β below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6d β below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

Powerline Conducted Emissions Test Mode:


- 1. Transmitter with antenna
- 2. Transmitter with 50ohm dummy load.

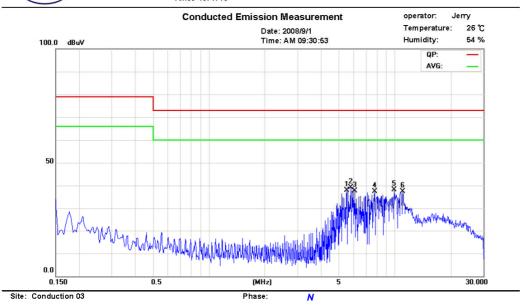
4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Detector Function Bandwidth (RBW) 150 KHz--30MHz Quasi-Peak/Average 9KHz

4.1.4 Test Data: Mode 1: Transmitter with antenna

Power Line Conducted Emissions (Hot)

Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
5.5540	0.21	0.16	37.34	73.0	-35.6	29.54	60.0	-30.4	
5.8300	0.21	0.16	34.51	73.0	-38.4	26.14	60.0	-33.8	
6.8060	0.21	0.17	31.93	73.0	-41.0	23.08	60.0	-36.9	
7.6380	0.21	0.18	35.94	73.0	-37.0	29.72	60.0	-30.2	
8.9540	0.21	0.2	33.68	73.0	-39.3	29.05	60.0	-30.9	
* 9.7180	0.21	0.21	34.98	73.0	-38.0	30.57	60.0	-29.4	
10.4820	0.23	0.22	34.81	73.0	-38.1	30.46	60.0	-29.5	


*:Maximum data x:Over limit

Power Line Conducted Emissions (Neutral)

-7-

Address:No.120,Lane 180,San Ho Tsuen,Hsin Ho Road,Lung-Tan Hsiang, Tao Yuan Conty, Taiwan R.O.C. Tel:03-4071718

Limit: CISPR22 Class A Conduction(QP)

Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
5.5491	0.21	0.16	37.92	73.0	-35.0	30.10	60.0	-29.9	
5.8260	0.21	0.16	36.59	73.0	-36.4	27.95	60.0	-32.0	
6.1061	0.21	0.16	33.51	73.0	-39.4	25.04	60.0	-34.9	
7.8374	0.21	0.18	33.33	73.0	-39.6	25.98	60.0	-34.0	
* 9.9214	0.22	0.21	34.79	73.0	-38.2	30.31	60.0	-29.6	
11.0408	0.24	0.23	25.48	73.0	-47.5	17.32	60.0	-42.6	

*:Maximum data x:O∨er limit

* NOTE: Margin = Amplitude + Insertion Loss- Limit A margin of -8dB means that the emission is 8dB below the limit

4.2 Radiated Emission Measurement [Section [15.225(a)(b)(c)(d)]]

4.2.1 EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 and 10 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

4.2.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

For the test of 2nd to 10th harmonics frequencies, the equipment setup was also refer to EMI Receiver/Spectrum Analyzer Configuration. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.

4.2.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

13.56MHz
Peak Mode
10KHz
100KHz
3m and 10m
13.11 MHz ~14.01MHz
Peak Mode
10KHz
100KHz
3m and 10m
9KHz~30MHz
Peak Mode
10KHz
100KHz
3m and 10m
30MHz~1000MHz
Quasi-Peak Mode
120KHz
360KHz

International Standards Laboratory

Measurement distance

3m

4.2.4 Radiated Emission Limit

FCC 15.225 Fundamental Emission Limits

Frequency	Distance	Field Strength	Field Strength of Fundamental		
MHz	Meter	μV/m	dBµV/m		
13.110 - 13.410	30	106	40.5		
13.410 - 13.553	30	334	50.4		
13.553 - 13.567	30	15848	84		
13.567 - 13.710	30	334	50.4		
13.710 - 14.010	30	106	40.5		

Note: RF Voltage $(dB\mu V/m) = 20 \log RF$ Voltage $(\mu V/m)$

Limit Conversion: FCC section 15.209 Frequency (MHz) Field Strength (microvolts / meter) Measurement Distance (meters) 1.705~30 30 30

Ex: Limit of 13.11 MHz 30(microvolts / meter)= 20*log(30)dBuV/m=29.54 dBuV/m

If D1=30, D2=10 L2=L1(D1/D2) L2=29.54+40log(D1/D2)=48.63 (dBuV/m)

4.2.5 Test Data (Radiated of Fundamental Emission)

3m

Radiated of Fundamental Emission

Measuren	nent Distance	10m				
Mode	Frequency	Rx Amp.	Correction	Correct. Emi.	Limit	Margin
			Factor			
axis	MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Х	13.56	17.06	9.32	26.38	103.08	-76.7
Y	13.56	16.6	9.32	25.92	103.08	-77.16
Z	13.56	15.22	9.32	24.54	103.08	-78.54

Measurement Distance

Mode	Frequency	Rx Amp.	Correction Factor	Correct. Emi.	Limit	Margin
axis	MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Х	13.56	16.35	9.32	25.67	124	-98.33
Y	13.56	16.5	9.32	25.82	124	-98.18
Z	13.56	16.9	9.32	26.22	124	-97.78

10m

Measurement Distance

Frequency	Rx Amp.	Correction Factor	Correct. Emi.	Limit	Margin
MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
13.11	16.06*	9.32	25.38	48.63	-23.25
14.01	16.88*	6.47	23.35	48.63	-25.28

Measurement Distance 3m

Frequency	Rx Amp.	Correction Factor	Correct. Emi.	Limit	Margin
MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
13.11	16.86*	9.32	26.18	69.54	-43.36
14.01	15.58*	6.47	22.05	69.54	-47.49

Note:

Both Horizontal and Vertical polarization have been tested and the worst data is listed above when the loop antenna rotated at Vertical polarization.

> '*' The value is detect on the Spectrum noise level.

International Standards Laboratory

4.2.7 Test Data (RADIATED OF SPURIOUS EMISSION**)(9KHz – 1GHz):**

9KHz - 30MHz Open Field Radiated Emissions

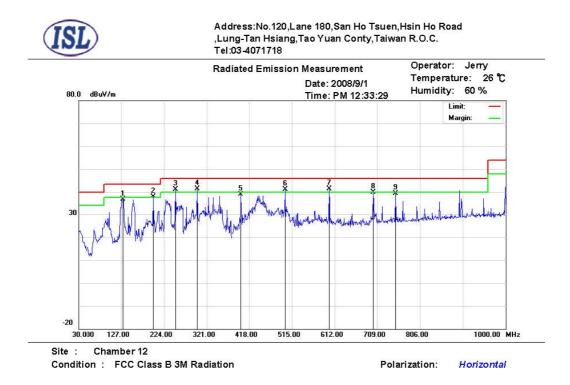
Measurement Distance 10m

Frequency	Rx Amp.	Correction Factor	Correct. Emi.	Limit	Margin
MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
27.12	16.1*	10.09	26.19	48.63	-22.44

Measurement Distance

Frequency	Rx Amp.	Correction Factor	Correct. Emi.	Limit	Margin
MHz	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
27.12	17.11*	10.09	27.2	69.54	-42.34

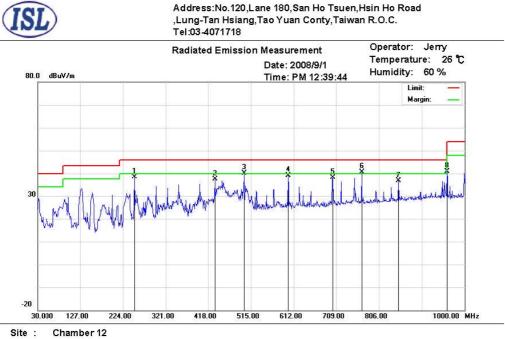
Note:


Both Horizontal and Vertical polarization have been tested and the worst data is listed above when the loop antenna rotated at Vertical polarization.

➤ '*' The value is detect on the Spectrum noise level.

3m

30M – 1GHz Open Field Radiated Emissions (Horizontal)


Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	AntPos (cm)	Tab.Pos (deg.)	Detector
	131.8500	25.70	8.65	2.32	0	36.67	43.50	-6.83	321	34	peak
!	199.7500	28.09	7.1	2.7	0	37.89	43.50	-5.61	397	57	peak
!	250.1900	29.01	9.23	3	0	41.24	46.00	-4.76	117	285	peak
*	299.6600	27.27	10.84	3.3	0	41.41	46.00	-4.59	184	13	peak
	399.5700	21.64	13.41	3.8	0	38.85	46.00	-7.15	100	106	peak
i	499.4800	21.51	15.45	4.2	0	41.16	46.00	-4.84	131	233	peak
i	599.3900	19.78	16.96	4.6	0	41.34	46.00	-4.66	100	308	peak
	699.3000	16.51	18.4	4.9	0	39.81	46.00	-6.19	369	77	peak
	750.7100	15.13	19.07	5.1	0	39.30	46.00	-6.70	160	140	peak

*:Maximum data x:Over limit !:over margin

International Standards Laboratory

30MHz~1 GHz (Vertical)

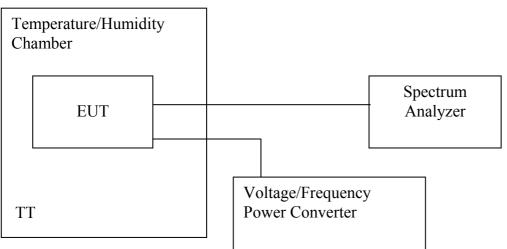
Condition : FCC Class B 3M Radiation

Polarization: Vertical

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	AntPos (cm)	Tab.Pos (deg.)	Detector
	250.1900	26.15	9.23	3	0	38.38	46.00	-7.62	196	114	peak
	433.5200	19.26	14.11	3.93	0	37.30	46.00	-8.70	330	272	peak
!	499.4800	20.42	15.45	4.2	0	40.07	46.00	-5.93	137	73	peak
	599.3900	17.52	16.96	4.6	0	39.08	46.00	-6.92	334	176	peak
	700.2700	14.88	18.42	4.9	0	38.20	46.00	-7.80	293	343	peak
*	767.2000	16.46	19.12	5.17	0	40.75	46.00	-5.25	179	36	peak
	850.6200	11.27	19.98	5.5	0	36.75	46.00	-9.25	231	189	peak
	960.2300	14.07	21	5.82	0	40.89	54.00	-13.11	245	23	peak

*:Maximum data x:Over limit !:over margin

4.3 Frequency Stability Measurement


7.1.1. Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 0 C to +50 0 C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 0 C. For battery operated equipment, the equipment tests shall be performed using a new battery. The emission limit is base on measurement instrumentation employing an average detector.

7.1.2. Test Procedure

- 1. The EUT was placed in the Temperature/Humidity Chamber and powered by a Voltage/Frequency Power converter.
- 2. Connect the RF output of EUT to Spectrum.
- 3. Set the temperature of chamber to 20° C.
- 4. While maintaining a constant temperature inside the Temperature/Humidity Chamber, turn the EUT on and record the operating frequency at startup and two, five, and ten minutes after the EUT is energized.
- 5. Turn the EUT off and set the chamber to the highest temperature specified.
- 6. Reduce 10 °C and repeat step 4, 5, 6 until the temperature of chamber set to the lowest temperature.
- 7. Set the temperature of chamber to 20^oC and the Voltage/Frequency Power Converter to 85% and 115% of supply voltage, then repeat step 4.

4.3.1 Test Data

Frequency Stability

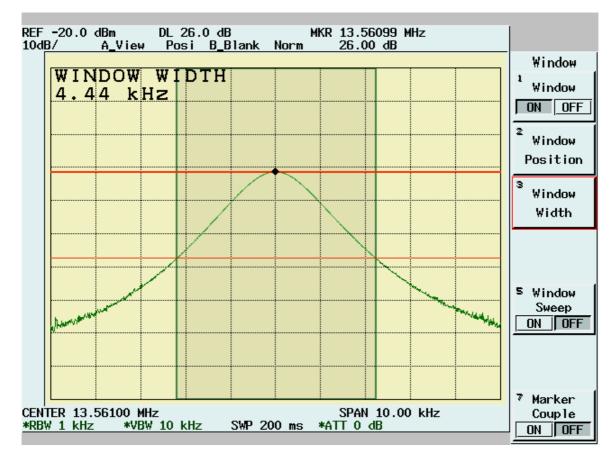
Temp.	Power Supply	Observe Time	Read Frequency	Tolerance	Pass or Fail
(⁰ C)	(VAC)		(MHz)	(%)	Limit: +/- 0.01%
		Start	13.56099	N/A	
20	120	2mins	13.56098	N/A	
20	120	5mins	13.56099	N/A	
		10mins	13.56099	N/A	
		Start	13.56095	-0.000295	PASS
50	120	2mins	13.56094	-0.000295	PASS
30	120	5mins	13.56093	-0.000442	PASS
		10mins	13.56092	-0.000516	PASS
		Start	13.56095	-0.000295	PASS
40	120	2mins	13.56094	-0.000295	PASS
40	120	5mins	13.56094	-0.000369	PASS
		10mins	13.56093	-0.000442	PASS
		Start	13.56096	-0.000221	PASS
30	120	2mins	13.56095	-0.000221	PASS
50	120	5mins	13.56095	-0.000295	PASS
		10mins	13.56095	-0.000295	PASS
		Start	13.561	0.000074	PASS
10	120	2mins	13.561	0.000147	PASS
10	120	5mins	13.56101	0.000147	PASS
		10mins	13.56101	0.000147	PASS
		Start	13.56104	0.000369	PASS
0	120	2mins	13.56104	0.000442	PASS
0	120	5mins	13.56104	0.000369	PASS
		10mins	13.56104	0.000369	PASS
		Start	13.56106	0.000516	PASS
10	120	2mins	13.56105	0.000516	PASS
-10	120	5mins	13.56105	0.000442	PASS
		10mins	13.56105	0.000442	PASS

Temp.	Power Supply	Observe Time	Read Frequency	Tolerance	Pass or Fail
(⁰ C)	(VAC)	Time	(MHz)	(%)	Limit: +/- 0.01%
		Start	13.56104	0.000369	PASS
20	120	2mins	13.56104	0.000442	PASS
-20	120	5mins	13.56104	0.000369	PASS
		10mins	13.56104	0.000369	PASS
		Start	13.56099	0.000000	PASS
20	138	2mins	13.56098	0.000000	PASS
20	138	5mins	13.56098	-0.000074	PASS
		10mins	13.56098	-0.000074	PASS
		Start	13.56098	-0.000074	PASS
20	102	2mins	13.56098	0.000000	PASS
20	102	5mins	13.56098	-0.000074	PASS
		10mins	13.56098	-0.000074	PASS

4.4.1 Test Procedure

The Transmitter output of EUT was connected to the spectrum analyzer. The 26 dB bandwidth of the fundamental frequency was measured. The setting of spectrum analyzer is as follows

Equipment mode Detector function RBW VBW


Spectrum analyzer Peak mode 1KHz 10KHz

4.4.2 Test Setup

	Spectrum
EUT	Analyzer

4.4.3 Test Data:

Frequency	26dB Bandwidth
(MHz)	(KHz)
13.56	4.44

5. Appendix

5.1 Appendix A: Measurement Procedure for Power line Conducted Emissions

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction $1.0m \times 1.5m$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the required standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum emission. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

5.2 Appendix B: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

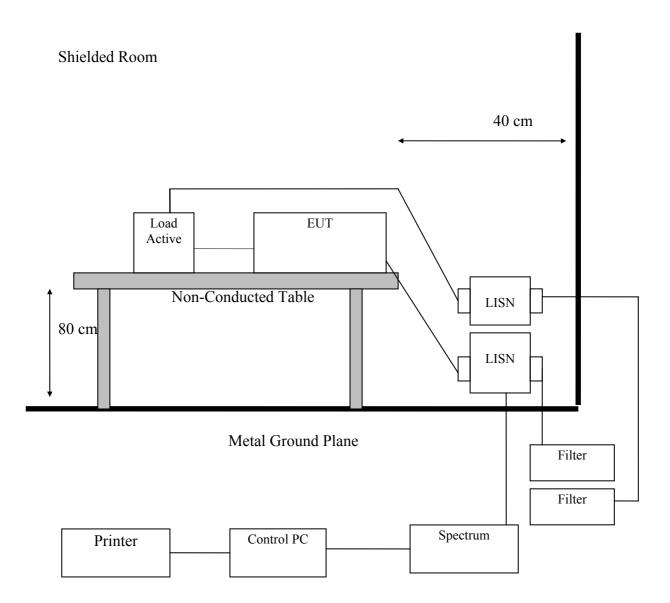
At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum emission. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

5.3 Appendix C: Test Equipment

5.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation	BILOG Antenna 11	ROHDE &	HL562	100356	05/15/2008	05/15/2009
(Chamber12)		SCHWARZ				
Radiation	Coaxial Cable Chmb	HARBOUR	CFD400-NL	Chmb	07/11/2008	07/11/2009
(Chamber12)	12-10M-01			12-10M-01		
Radiation	EMI Receiver 10	ROHDE &	ESCI	100568	05/24/2008	05/24/2009
(Chamber12)		SCHWARZ				
Radiation	Loop Antenna 03	Com-Power	AL-130	17101	05/10/2008	05/10/2009

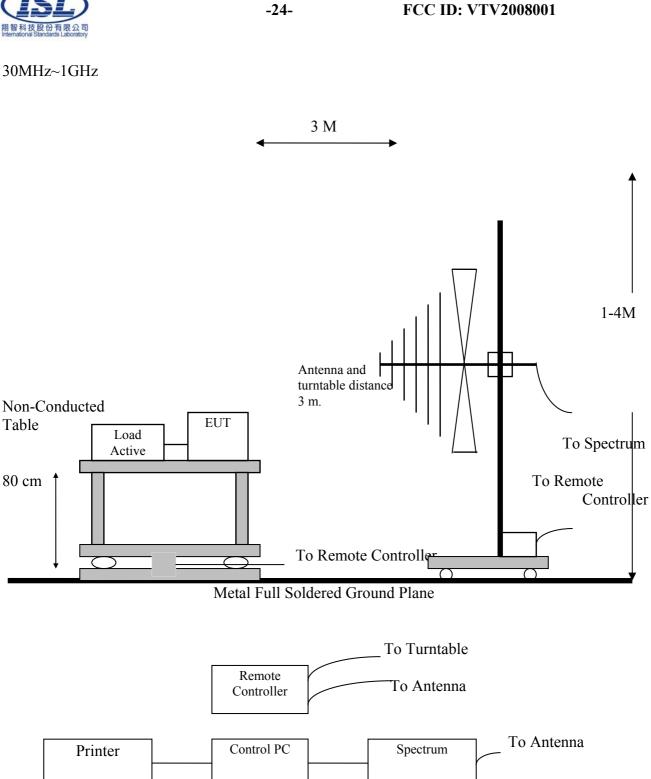
Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 03	Coaxial Cable 1F-C2-02	JYE	RG400	1F-C2-02	02/26/2008	02/25/2009
Conduction 03	EMI Receiver 11	ROHDE & SCHWARZ	ESCI	100567	06/03/2008	06/03/2009
Conduction 03	ISNT2-02	FCC	FCC-TLISN-T 2-02	20413	05/05/2008	05/05/2009
Conduction 03	ISNT4-02	FCC	FCC-TLISN-T 4-02	20575	04/23/2008	04/23/2009
Conduction 03	IISNT8-02	FCC	FCC-TLISN-T 8-02	20476	05/05/2008	05/05/2009
Conduction 03	LISN 07	FCC Inc.	FCC-LISN-50- 100-4-02	07040	05/08/2008	05/08/2009
Conduction 03	LISN 08	FCC Inc.	FCC-LISN-50- 25-2-01	07039	06/02/2008	06/02/2009


Note: Calibration is traceable to NIST or national or international standards.

5.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date
Lung_Tan Conduction	EZ EMC	1.1.4.2	2/10/2007
Lung_Tan Radiation	EZ EMC	1.1.4.2	1/24/2007

5.4 Appendix D: Layout of EUT and Support Equipment


5.4.1 General Conducted Test Configuration

9KHz~30MHz 3m/10m EUT Load Active Antenna and Non-Conducted turntable distance Table 3m/10 M 1m 80cm To Spectrum Metal Full Soldered Ground Plane To Turntable Remote To Antenna Controller To Antenna Printer Control PC Spectrum

5.4.2 General Radiation Test Configuration

5.5 Appendix E: Accuracy of Measurement

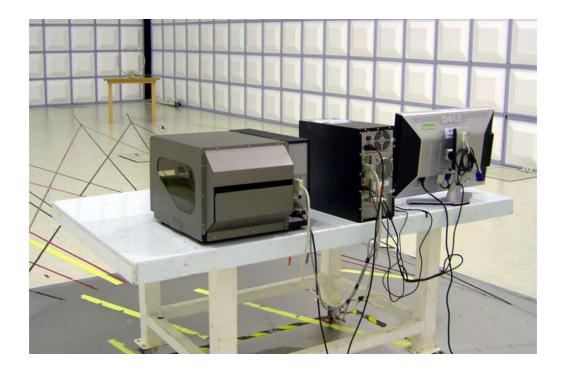
The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 03>: ±0.88dB

<Chamber 12 (3M)> 30MHz~1GHz: ±3.306 dB 1GHz~18GHz: ±2.62 dB 18GHz~26GHz: ±3.609 dB 26GHz~40GHz: ±2.702 dB


5.6 Appendix F: Photographs of EUT Configuration Test Set Up

The Front View of Highest Conducted Set-up For EUT



The Front View of Highest Radiated Set-up For EUT (9KHz~30MHz)



The Back View of Highest Radiated Set-up For EUT (9KHz~30MHz)

The Front View of Highest Radiated Set-up For EUT (30MHz~1GHz)

The Back View of Highest Radiated Set-up For EUT (30MHz~1GHz)

