Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$
 Equipment Laser Printer CM-600d Konicaminolta Sensing Inc.

where: S = power density

P = power input to the antenna

- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	<u>2.85</u> (dBm)
Maximum peak output power at antenna input terminal:	1.93E+00 (mW)
Antenna gain(typical):	2.14 (dBi)
Maximum antenna gain:	1.636816521 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	2440 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1.00245043 (mW/cm^2)
Power density at prediction frequency:	6.277E-04 (mW/cm^2)
Maximum allowable antenna gain:	34.17332762 (dBi)
Margin of Compliance:	32.03332762