FCC ID: VSOXR-2400 Report No.: DRTFCC1110-0378 Total 26pages # **SAR TEST REPORT** Test item : UHF Transceiver Model No. : XR-2400 Order No. : 1110-01402 Date of receipt : 2011-10-14 Test duration : 2011-10-17 Date of issue : 2011-10-18 Use of report : FCC Original Grant Applicant : Yeonhwa M Tech Co., Ltd. 3F, Yukyong B/D, 544-6, Gasan-dong, Geumcheon-gu, Seoul, Korea Test laboratory : Digital EMC Co., Ltd. 683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea Test specification : §2.1093, FCC/OET Bulletin 65 Supplement C[July 2001] Test environment : See appended test report Test result □ Pass ☐ Fail The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD. Tested by: Witnessed by: Reviewed by: Engineer N.K.Lim Engineer S.K.Ryu Manager W.J. Lee # **CONTENTS** | 1. DESCRIPTION OF DEVICE | 3 | |---|----| | 2. INTROCUCTION | 4 | | 3. DESCRIPTION OF TEST EQUIPMENT | 6 | | 3.1 SAR MEASUREMENT SETUP | 6 | | 3.2 Probe Measurement System | 7 | | 3.3 Probe Calibration Process | 8 | | 3.4 SAM PHANTOM | 10 | | 3.5 Device Holder for Transmitters | 10 | | 3.6 Brain & Muscle Simulating Mixture Characterization | 11 | | 4. SAR MEASUREMENT PROCEDURE | 12 | | 5. DEFINITION OF REFERENCE POINTS | 13 | | 5.1 TEST CONFIGURATION POSITIONS | 14 | | 6. ANSI / IEEE C95.1-2005 RF EXPOSURE LIMITS | 16 | | 7. IEEE P1528 -MEASUREMENT UNCERTAINTIES | 17 | | 8. SYSTEM VERIFICATION | 18 | | 9 Push-to-talk (PTT) devices | 19 | | 10. SAR TEST DATA SUMMARY AND POWER TABLE | 20 | | 10.1 See Measurement Result Data Pages | 20 | | 11. SAR TEST DATA SUMMARY | 21 | | 11.1 Measurement Results | 21 | | 11.2 Measurement Results are scaled for the power drift | 22 | | 12. SAR TEST EQUOPMENT | 23 | | 13. CONCLUSION | 24 | | 14 REFERENCES | 25 | ### 1. DESCRIPTION OF DEVICE Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). ## **General Information** | Equipment type | UHF Transceiver | |--------------------------|--| | FCC ID: | VSOXR-2400 | | Equipment model name | XR-2400 | | Equipment add model name | N/A | | Equipment serial no. | Identical prototype | | Mode(s) of Operation | Zigbee | | TX Frequency Range | 2405 ~ 2480 MHz | | RX Frequency Range | 2405 ~ 2480 MHz | | Max. SAR Measurement | 1.063 mW/g Front SAR(Face Held) 1.034 mW/g Rear SAR(Body-Worn) | | FCC Equipment Class | DTS | | Date(s) of Tests | 2011-10-17 | | Antenna Type | Dipole antenna(External antenna) | Note. This report is re-issued according to request of applicant. ### 2. INTROCUCTION The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### **SAR Definition** Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1) $$S A R = \frac{d}{d t} \left(\frac{d U}{d m} \right) = \frac{d}{d t} \left(\frac{d U}{\rho d v} \right)$$ Figure 2.1 SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg). $$SAR = \frac{\sigma \cdot E^2}{\rho}$$ Where: σ = conductivity of the tissue - simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m3) E = Total RMS electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. ### **Automated TEST SYSTEM SPECIFICATIONS** #### **Positioner** Robot: Stäubli Unimation Corp. Robot Model: RX60L **Repeatability:** 0.02 mm No. of axis: 6 ### **Data Acquisition Electronic (DAE) System** Cell Controller **Processor:** Intel Core i5-2500 Clock Speed: 3.31 GHz Operating System: Windows XP Professional Data Card: DASY4 PC-Board **Data Converter** Features: Signal, multiplexer, A/D converter. & control logic Software: DASY4 **Connecting Lines:** Optical downlink for data and status info Optical uplink for commands and clock **PC Interface Card** **Function:** 24 bit (64 MHz) DSP for real time processing Link to DAE 3 16 bit A/D converter for surface detection system serial link to robot direct emergency stop output for robot E-Field Probes Model: EX3DV4 S/N: 3643 **Construction:** Triangular core fiber optic detection system Frequency: 10 MHz to 6 GHz **Linearity:** ±0.2dB (30MHz to 6GHz) **Phantom** **Phantom:** SAM Twin Phantom (V4.0) **Shell Material:** Composite Thickness: $2.0 \pm 0.2 \text{ mm}$ Figure 2.2 DASY4 Test System ### 3. DESCRIPTION OF TEST EQUIPMENT #### 3.1 SAR MEASUREMENT SETUP #### **Robotic System** These measurements are performed using the DASY4 automated dos imetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1). #### **System Hardware** A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Micron Pentium IV 500 MHz computer with Windows NT system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 3.1 SAR Measurement System Setup #### **System Electronics** The DAE3 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in. ### 3.2 Probe Measurement System The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 3.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle.
The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. **DAE System** #### **Probe Specifications** Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz Frequency: 10 MHz to 6 GHz **Linearity**: ±0.2dB (30 MHz to 6 GHz) **Dynamic**: 10 mW/kg to 100 W/kg Range: Linearity: ±0.2dB **Dimensions:** Overall length: 330 mm **Tip length:** 20 mm Body diameter: 12 mm **Tip diameter:** 2.5 mm Distance from probe tip to sensor center: 1 mm **Application:** SAR Dosimetry Testing Compliance tests of mobile phones V-DEWM Figure 3.2 Triangular Probe Configurations Figure 3.3 Probe Thick-Film Technique #### 3.3 Probe Calibration Process #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### **Free Space Assessment** The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². ### Temperature Assessment * E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the rmistor based temperature probe is used in conjunction with the E-field probe $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), σ = simulated tissue conductivity, C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue) ΔT = temperature increase due to RF exposure. SAR is proportional to ΔT / Δt , the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 3.4 E-Field and Temperature Measurements at 900MHz Figure 3.5 E-Field and Temperature Measurements at 1800MHz #### **Data Extrapolation** The DASY4 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below; with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i}$$ $(i=x,y,z)$ $$Cf = \text{crest factor of exciting field}$$ $(DASY parameter)$ $$dcp_i = \text{diode compression point}$$ $(DASY parameter)$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] p = equivalent tissue density in g/cm³ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pue} = \frac{E_{tot}^2}{3770}$$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m #### 3.4 SAM PHANTOM The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6) #### **Phantom Specification** **Phantom:** SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite **Thickness:** 2.0 ± 0.2 mm Figure 3.6 SAM Twin Phantom #### 3.5 Device Holder for Transmitters In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 3.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Figure 3.7 Mounting Device Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. ### 3.6 Brain & Muscle Simulating Mixture Characterization **Simulated Tissue** The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove. **Table 3.1 Composition of the Tissue Equivalent Matter** | INGREDIENTS | 835MHz
Brain | 835MHz
Muscle | 1800MHz
Brain | 1800MHz
Muscle | 1900MHz
Brain | 1900MHz
Muscle | 2450MHz
Brain | 2450MHz
Muscle | |-------------------------------|-----------------|------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------| | WATER | 40.19% | 50.75% | 55.24% | 69.04% | 55.24% | 70.23% | 71.88% | 73.4% | | SUGAR | 57.90% | 48.21% | - | - | - | - | - | - | | SALT | 1.48% | 0.94% | 0.31% | 2.72% | 0.31% | 0.29% | 0.16% | 0.06% | | DGBE | - | - | 44.45% | 28.24% | 44.45% | 29.48% | 7.99% | 26.54% | | Triton X-100 | - | - | - | - | - | - | 19.97% | - | | BACTERIACIDE | 0.18% | 0.10% | - | - | - | - | - | - | | HEC | 0.25% | - | - | - | - | - | - | - | | Dielectric
Constant Target | 41.5 | 55.2 | 40 | 53.3 | 40 | 53.3 | 39.2 | 52.7 | | Conductivity
Target (S/m) | 0.9 | 0.97 | 1.4 | 1.52 | 1.4 | 1.52 | 1.8 | 1.95 | Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl] ### 4. SAR MEASUREMENT PROCEDURE The evaluation was performed using the following procedure: - The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value. - 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the Inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15 mm x 15 mm. Sample SAR Area Scan - 3. Based on the area scan data, the area of the maximum absorption was determined by sp line interpolation. Around this point, a volume of 32 mm x32 mm x 30 mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see Sample SAR Area Scan): - a. The data at the surface was extrapolated, since the center of the dipoles is 2.5 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional sp lines with the "Not a knot" condition (in x, y, and z
directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10x 10) were interpolated to calculate the average. - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 1, was re-measured. If the value changed by more than 5%, the evaluation is repeated. #### Specific Anthropomorphic Mannequin (SAM) Specifications The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. 4.1). The perimeter side walls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface. Figure 4.1 Sam Twin Phantom shell ### 5. DEFINITION OF REFERENCE POINTS #### **EAR Reference Point** Figure 5.1 shows the front, back and side views of the SAM Twin Phantom. The point M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning. Figure 5.1 Front, back and side view of SAM Twin Phantom Figure 5.2 Close-up side view of ERPs ### **Handset Reference Points** Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 5.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point. Figure 5.3 Handset Vertical Center & Horizontal Line Reference Points #### **5.1 TEST CONFIGURATION POSITIONS** ### Positioning for Cheek/Touch 1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5.4), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom. Figure 5.4 Front, Side and Top View of Cheek/Touch Position - 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear. - 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane). - 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF. - 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 5.5) Figure 5.5 Side view w/ relevant markings ### Positioning for Ear / 15 ° Tilt With the test device aligned in the "Cheek/Touch Position": - 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree. - 2. The phone was then rotated around the horizontal line by 15 degree. - 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5.6). Figure 5.6 Front, Side and Top View of Ear/15° Tilt Position ### **Body Holster /Belt Clip Configurations** Body-worn operating configurations are tested with the belt-clips and holsters attacked to 3the device and positioned against a flat phantom in a normal use configuration (see Figure 5.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used. Figure 5.7 Body Belt Clip & Holster Configurations Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distances between the back of the device and the flat phantom is used. All test position spacing is documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration. In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing. In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual. ### 6. ANSI / IEEE C95.1-2005 RF EXPOSURE LIMITS #### **Uncontrolled Environment** UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment** CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, which have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 6.1.SAR Human Exposure Specified in ANSI / IEEE C95.1-2005 | | HUMAN EXPOSURE LIMITS | | | | | |---------------------------------------|---|---|--|--|--| | | General Public Exposure
(W/kg) or (mW/g) | Occupational Exposure
(W/kg) or (mW/g) | | | | | Whole-Body average SAR (W/kg) | 0.08 | 0.40 | | | | | Localized SAR (head and trunk) (W/kg) | 1.60 | 8.00 | | | | | Localized SAR (limbs)
(W/kg) | 4.00 | 20.0 | | | | #### NOTES: - * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. - ** The Spatial Average value of the SAR averaged over the whole-body. - *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled
Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). ## 7. IEEE P1528 - MEASUREMENT UNCERTAINTIES | F Dindian | Uncertaint | Probability | Divisor | (Ci) | Standard | vi 2 or | |---------------------------------|------------|--------------|---------|------|----------|---------| | Error Description | value ±% | Distribution | Divisor | 1g | (1g) | Veff | | Measurement System | | | | | | | | Probe calibration | ± 4.8 | Normal | 1 | 1 | ± 4.8 % | ∞ | | Axial isotropy | ± 4.7 | Rectangular | √3 | 0.7 | ± 1.9 % | ∞ | | Hemispherical isotropy | ± 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | ∞ | | Boundary Effects | ± 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Probe Linearity | ± 4.7 | Rectangular | √3 | 1 | ± 2.7 % | 8 | | Detection limits | ± 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Readout Electronics | ± 1.0 | Normal | 1 | 1 | ± 1.0 % | 8 | | Response time | ± 0.8 | Rectangular | √3 | 1 | ± 0.5 % | 8 | | Integration time | ± 2.6 | Rectangular | √3 | 1 | ± 1.5 % | ∞ | | RF Ambient Conditions | ± 3.0 | Rectangular | √3 | 1 | ± 1.7 % | 8 | | Probe Positioner | ± 0.4 | Rectangular | √3 | 1 | ± 0.2 % | ∞ | | Probe Positioning | ± 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Algorithms for Max. SAR Eval. | ± 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | ± 2.9 | Normal | 1 | 1 | ± 2.9 % | 145 | | Device Holder | ± 3.6 | Normal | 1 | 1 | ± 3.6 % | 5 | | Power Drift | ± 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | Physical Parameters | | | | | | | | Phantom Shell | ± 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid conductivity (Target) | ± 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | Liquid conductivity (Meas.) | ± 2.5 | Normal | 1 | 0.64 | ± 1.6 % | ∞ | | Liquid permittivity (Target) | ± 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | ∞ | | Liquid permittivity (Meas.) | ± 2.5 | Normal | 1 | 0.6 | ± 1.5 % | ∞ | | CombinedStandard
Uncertainty | | | | | ± 10.3 % | 330 | | Expanded Uncertainty (k=2) | | | | | ± 20.6 % | | The above measurement uncertainties are according to IEEE P1528 (2003) ### 8. SYSTEM VERIFICATION ### **Tissue Verification** **Table 8.1 Simulated Tissue Verification** | MEASURED TISSUE PARAMETERS | | | | | | | | | |----------------------------|------------------|--------|------------------------|------------------|--------|-----------------|------------------|--| | Doto(o) | D (() T () T | | Dielectric constant: ε | | | Conductivity: σ | | | | Date(s) | Target Frequency | Target | Measured | Deviation
(%) | Target | Measured | Deviation
(%) | | | Oct. 17, 2011 | 2450 MHz Head | 39.2 | 40.1 | 2.30 | 1.800 | 1.800 | 0.00 | | | Oct. 17, 2011 | 2450 MHz Body | 52.7 | 52.2 | -0.95 | 1.950 | 2.000 | 2.56 | | ### **Test System Validation** Prior to assessment, the system is verified to the ±10% of the specifications at 2450 MHz by using the system validation kit(s). (Graphic Plots Attached) **Table 8.2 System Validation** | SYSTEM DIPOLE VALIDATION TARGET & MEASURED (2450 MHz values are normalized to a forward power of 1/4 W) | | | | | | | | | | |---|--------------------|---------------|-------|-------|-------|--|--|--|--| | Date(s) System Validation Kit: Target Frequency Targeted SAR _{1g} Measured SAR _{1g} Deviate (mW/g) (mW/g) (%) | | | | | | | | | | | Oct. 17, 2011 | D-2450V2, S/N: 726 | 2450 MHz Head | 13.08 | 12.70 | -2.91 | | | | | | Oct. 17, 2011 | D-2450V2, S/N: 726 | 2450 MHz Body | 12.83 | 13.60 | 6.00 | | | | | Figure 8.1 Dipole Validation Test Setup ### Justification for Extended SAR Dipole Calibrations #### **About KDB Publication 450824-2** The following are the recommended FCC procedures for SAR dipole calibration. 1) The phantom configuration, tissue dielectric parameters, dipole positioning requirements, dielectric spacer and other electrical and mechanical details should be clearly specified in the dipole calibration report. Dipoles must be recalibrated at least once every three years; however, immediate re-calibration is required for the following conditions. The test laboratory must ensure that the required supporting information and documentation have been included in the SAR report to qualify for the extended 3-year calibration interval; otherwise, the IEEE Standard 1528-2003 recommended annual calibration is expected. When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification #### **Antenna Parameters** | Date(s) | Frequency | Return loss
(Head) | Impedance
(Ω) | Return loss (Body) | Impedance
(Ω) | |------------------|-----------|-----------------------|------------------|--------------------|------------------| | March
17.2011 | 2450 MHz | -27.3 dB | 53.9 | -28.1 dB | 50.0 | ### 9 Push-to-talk (PTT) devices a) RF exposure is evaluated with a duty factor of 50 % when the actual operating duty factor is ≤ 50 %. Devices supporting higher duty factors shall be evaluated at the maximum duty factor; for example, devices supporting operator-assisted PSTN calls. Contact the FCC Laboratory when unable to test a device at the required duty factor due to hardware limitations or other reasons. #### b) Portable PTT devices i. The power thresholds and operating conditions in Table 1 are used to determine SAR test requirements for PTT radios required to comply with the general population exposure limit. When the occupational exposure limit applies, these power thresholds are increased by a factor of five (5) to determine the test requirements. SAR is required for PTT devices with maximum output power greater than these thresholds. SAR evaluation is also required for separation distances smaller than those in Table 1. Contact the FCC Laboratory to determine if SAR evaluation is necessary for other frequencies or when the SAR is very low. | Table 1 - SAR Evaluation Power Thresholds for PTT devices, f ≤ 0.5 GHz Exposure Conditions | mW | |--|-----| | Held to face ≥ 2.5 cm | 250 | | Body-worn ≥ 1.5 cm | 200 | | Body-worn ≥ 1.0 cm | 150 | #### Notes: ii. Additional SAR evaluation with a SAM phantom is required for PTT devices with held-to-ear operating mode.30 Contact the FCC Laboratory for device operating and test configurations. ^{1.} The time-averaged output power, corresponding to the required PTT duty factor, is compared with these thresholds. ^{2.} The closest distance between the user and the device or its antenna is used to determine the power thresholds. ### 10. SAR TEST DATA SUMMARY AND POWER TABLE ### 10.1 See Measurement Result Data Pages ### **Procedures Used To Establish Test Signal** The EUT was placed into simulated call mode (Zigbee) using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a EUT, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement. #### **Device Test Conditions** The EUT is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and offer off before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated. #### Max. Power Output Table for XR-2400 | | Frequ | iency | Test Result | | | |--------|-------|---------|-------------|--------|--| | Band | MHz | Channel | dBm | mW | | | | 2405 | 1 | 26.70 | 467.73 | | | Zigbee | 2445 | 9 | 26.23 | 419.76 | | | | 2480 | 16 | 26.04 | 401.79 | | ### 11. SAR TEST DATA SUMMARY #### 11.1 Measurement Results | | | | | Mode: Zigbee, F | ace Held | | | |-------|---|----------------|---------------------------|---|--------------------------|---|--------------------------------| | FREQU | IENCY | Begin
Power | Drift
Power | Test Position | Antenna Position | (W/ | lesults
(kg) | | MHz | Ch | (dBm) | (dB) | rest i osition | Antenna i Osition | 100 % | Cycle
50 % | | 2405 | 1 | 26.70 | -0.018 | 15 mm [Front] | External | 2.120 | 1.060 | | 2445 | 9 | 26.23 | -0.003 | 15 mm [Front] | External | 1.830 | 0.915 | | 2480 | 16 | 26.04 | 0.026 | 15 mm [Front] | External | 1.820 | 0.910 | | | C | | Spatial P
sposure/ Occ | i – SAFETY LIMIT
eak
cupational Exposu
Zigbee, Body-Wo | | Head
8.0 W/kg (mW/g)
averaged over 1 gram | | | FREQU | FREQUENCY Begin | | Drift | T 15 ''' | A / B ''' | | lesults
/kg) | | - | | Power
(dBm) | Power
(dB) | Test Position | osition Antenna Position | Duty Cycle | | | MHz | Ch | (aDiii) | (45) | | | 100 % | 50 % | | 2405 | 1 | 26.70 | -0.042 | 0 mm [Rear] | External | 2.060 | 1.030 | | 2445 | 9 | 26.23 | -0.025 | 0 mm [Rear] | External | 1.920 | 0.960 | | 2480 | 16 | 26.04 | 0.055 | 0 mm [Rear] | External | 1.350 | 0.675 | | | ANSI / IEEE C95.1 2005 – SAFETY LIMIT
Spatial Peak
Controlled Exposure/ Occupational Exposure | | | | | | ody
g (mW/g)
over 1 gram | ### NOTE: - 1. The test data reported are the worst-case SAR value with the antenna-body position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001]. - 2. All modes of operation were investigated, and worst-case results are reported. - 3. Prior
to testing the conducted output power was measured. - 4. The EUT is tested 2nd hot-spot peak, if it is less than 2dB below the highest peak. - 5. Battery is fully charged for all readings. - 6. Test Signal Call Mode - ■Continuous Tx On - □Manu.Test Codes - □Base Station Simulator - 7. Tissue parameters and temperatures are listed on the SAR plots. - 8. Liquid tissue depth is 15.0cm.±0.1 ## 11.2 Measurement Results are scaled for the power drift | | | | | Mode: Zigbee, F | ace Held | | | | |-------|--|----------------|-----------------|-----------------|------------------|--------------|---|--| | FREQU | IENCY | Drift
Power | +Drift
Power | Test Position | Antenna Position | (Include + I | AR(W/kg)
Drift Power)
Cycle | | | MHz | Ch | (dB) | 10^(dB/10) | | | 100 % | 50 % | | | 2405 | 1 | -0.018 | 1.004 | 15 mm [Front] | External | 2.126 | 1.063 | | | 2445 | 9 | -0.003 | 1.001 | 15 mm [Front] | External | 1.830 | 0.915 | | | 2480 | 16 | 0.026 | 1.006 | 15 mm [Front] | External | 1.836 | 0.918 | | | | ANSI / IEEE C95.1 2005 – SAFETY LIMIT Spatial Peak Controlled Exposure/ Occupational Exposure Mode: Zigbee, Body-Worn, With Belt Clip | | | | | | Head
8.0 W/kg (mW/g)
averaged over 1 gram | | | FREQU | IENCY | Drift
Power | +Drift
Power | Test Position | Antenna Position | | W/kg)
Drift Power) | | | | | (dB) | 10^(dB/10) | Test Position | Antenna Position | Duty Cycle | | | | MHz | Ch | 0.040 | 4.040 | 0 | Fortennal | 100 % | 50 % | | | 2405 | 1 | -0.042 | 1.010 | 0 mm [Rear] | External | 2.068 | 1.034 | | | 2445 | 9 | -0.025 | 1.006 | 0 mm [Rear] | External | 1.945 | 0.972 | | | 2480 | 16 | 0.055 | 1.013 | 0 mm [Rear] | External | 1.364 | 0.682 | | | | ANSI / IEEE C95.1 2005 – SAFETY LIMIT
Spatial Peak
Controlled Exposure/ Occupational Exposure | | | | | 8.0 W/kg | dy
J (mW/g)
ver 1 gram | | ## 12. SAR TEST EQUOPMENT **Table 13.1 Test Equipment Calibration** | | Table 13.1 Test Equipment Calibration | | | | | | | |-------------|--|--------------|-----------|------------------------|-----------------------------|-----------------|--| | | Туре | Manufacturer | Model | Cal.Date
(dd/mm/yy) | Next.Cal.Date
(dd/mm/yy) | S/N | | | \boxtimes | SEMITEC Engineering | SEMITEC | N/A | N/A | N/A | Shield Room | | | \boxtimes | Robot | SCHMID | RX90BL | N/A | N/A | F02/5Q85A1/A/01 | | | | Robot Controller | SCHMID | CS7MB | N/A | N/A | F02/5Q85A1/C/01 | | | | Joystick | SCHMID | N/A | N/A | N/A | D221340031 | | | | Intel Core i5-2500 3.31 GHz
Windows XP Professional | N/A | N/A | N/A | N/A | N/A | | | \boxtimes | Probe Alignment Unit LB | N/A | N/A | N/A | N/A | 321 | | | \boxtimes | Mounting Device | SCHMID | Holder | N/A | N/A | N/A | | | \boxtimes | Sam Phantom | SCHMID | TP1223 | N/A | N/A | N/A | | | | Sam Phantom | SCHMID | TP1224 | N/A | N/A | N/A | | | | Head/Body Equivalent
Matter(450MHz) | N/A | N/A | 01/01/11 | 01/01/12 | N/A | | | | Head/Body Equivalent
Matter(835MHz) | N/A | N/A | 01/01/11 | 01/01/12 | N/A | | | | Head/Body Equivalent
Matter(1800MHz) | N/A | N/A | 01/01/11 | 01/01/12 | N/A | | | | Head/Body Equivalent
Matter(1900MHz) | N/A | N/A | 01/01/11 | 01/01/12 | N/A | | | | Head/Body Equivalent
Matter(2450MHz) | N/A | N/A | 01/01/11 | 01/01/12 | N/A | | | \boxtimes | Data Acquisition Electronics | SCHMID | DAE3V1 | 28/01/11 | 28/01/12 | 519 | | | | Data Acquisition Electronics | SCHMID | DAE3V1 | 23/11/10 | 23/11/11 | 520 | | | \boxtimes | Dosimetric E-Field Probe | SCHMID | EX3DV4 | 24/01/11 | 24/01/12 | 3643 | | | | Dummy Probe | N/A | N/A | N/A | N/A | N/A | | | | 450MHz System Validation Dipole | SCHMID | D450V2 | 24/01/11 | 24/01/13 | 1011 | | | | 835MHz System Validation Dipole | SCHMID | D835V2 | 22/03/10 | 22/03/12 | 464 | | | | 1800MHz System Validation Dipole | SCHMID | D1800V2 | 16/07/10 | 16/07/12 | 2d047 | | | | 1900MHz System Validation Dipole | SCHMID | D1900V2 | 23/03/10 | 23/03/12 | 5d029 | | | | 2450MHz System Validation Dipole | SCHMID | D2450V2 | 18/03/10 | 18/03/12 | 726 | | | | 2600MHz System Validation Dipole | SCHMID | D2600V2 | 27/05/10 | 27/05/12 | 1016 | | | | 3500MHz System Validation Dipole | SCHMID | D3500V2 | 27/05/10 | 27/05/12 | 1018 | | | | Network Analyzer | HP | 8753D | 08/03/11 | 08/03/12 | 3410J01204 | | | | Signal Generator | HP | ESG-3000A | 01/07/11 | 01/07/12 | US37230529 | | | | Amplifier | EMPOWER | BBS3Q7ELU | 30/09/11 | 30/09/12 | 1020 | | | | Power Meter | HP | EPM-442A | 07/03/11 | 07/03/12 | GB37170267 | | | | Power Sensor | HP | 8481A | 07/03/11 | 07/03/12 | 3318A96566 | | | | Power Sensor | HP | 8481A | 07/03/11 | 07/03/12 | 3318A90918 | | | | Dual Directional Coupler | Agilent | 778D-012 | 11/01/11 | 11/01/12 | 50228 | | | | Directional Coupler | HP | 773D | 01/07/11 | 01/07/12 | 2389A00640 | | | | Low Pass Filter 1.5GHz | Micro LAB | LA-15N | 11/01/11 | 11/01/12 | N/A | | | | Low Pass Filter 3.0GHz | Micro LAB | LA-30N | 30/09/11 | 30/09/12 | N/A | | | | Attenuators(3dB) | Agilent | 8491B | 02/07/11 | 02/07/12 | MY39260700 | | | | Attenuators(10dB) | WEINSCHEL | 23-10-34 | 11/01/11 | 11/01/12 | BP4387 | | | | Step Attenuator | HP | 8494A | 30/09/11 | 30/09/12 | 3308A33341 | | | | Dielectric Probe kit | Agilent | 85070D | N/A | N/A | US01440118 | | | | 8960 Series 10
Wireless Comms. Test Set | Agilent | E5515C | 07/03/11 | 07/03/12 | GB43461134 | | **NOTE:** The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by Digital EMC before each test. The brain simulating material is calibrated by Digital EMC using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. ### 13. CONCLUSION #### **Measurement Conclusion** The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ### 14. REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1 1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, April 2006. - [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001. - [5] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb., 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124. - [9] K. Polovċ, T.Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids. Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10,Oct. 1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated
Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. TRF-RF-303(03)100616 Page25 / 26 - [17] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997. - [18] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [19] CENELEC CLC/SC111B, European Pre standard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995. - [20] Prof. Dr. Niels Kuster ,ETH,EidgenŐssischeTechnischeTechnischeHoschschuleZűrich,Dosimetric Evaluation of the Cellular Phone. - [21] FCC SAR Measurement Procedures for 3G Devices v02, October 2007 - [22] SAR Measurement procedures for IEEE 802.11 a/b/g KDB Publication 248227 - [23] Guidance PBA for 3GPP R6 HSPA v02r01, December 2009 - [24]SAR Test Reduction GSM GPRS EDGE vo1, December 2008 - [25]SAR for GSM E GPRS Dual Xfer Mode v01, January 2010 - [26]SAR for LTE Devices v01, December 2010 - [27] Hot Spot SAR v01, April 2011 - [28] UMPC Mini Tablet Devices v01, April 2011 - [29] FCC SAR Considerations for Cell Phones with Multiple Transmitters v01r02 #648474, April 2008 - [30] 447498 D01 Mobile Portable RF Exposure v04, Published on: Nov 13 2009 - [31] 447498 D02 SAR Procedures for Dongle Xmtr v02, Published on: Nov 13 2009 ### **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.4, 7.4, 7.4); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### **Dipole Validation** Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Power Drift = 0.034 dB Peak SAR (extrapolated) = 27.3 W/kg ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.03, 7.03, 7.03); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### **Dipole Validation** Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Power Drift = 0.035 dB Peak SAR (extrapolated) = 29.5 W/kg ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2405 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2405 MHz; $\sigma = 1.73$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.4, 7.4, 7.4); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### 1.5cm space from Body, Front, PTT Ch. 1(2405 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.018 dB Peak SAR (extrapolated) = 4.13 W/kg ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2445 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2445 MHz; $\sigma = 1.78$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.4, 7.4, 7.4); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### 1.5cm space from Body, Front, PTT Ch. 9(2445 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.003 dB Peak SAR (extrapolated) = 3.60 W/kg ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.4, 7.4, 7.4); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### 1.5cm space from Body, Front, PTT Ch. 16(2480 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = 0.026 dB Peak SAR (extrapolated) = 3.66 W/kg SAR(1 g) = 1.82 mW/g; SAR(10 g) = 0.919 mW/g -4.34 -8.68 -13.0 -17.4 0 dB = 2.49 mW/g ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2405 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2405 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.03, 7.03, 7.03); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### Touch from Body, Rear + Belt Clip, PTT Ch. 1(2405 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.042 dB Peak SAR (extrapolated) = 3.97 W/kg SAR(1 g) = 2.06 mW/g; SAR(10 g) = 1.09 mW/g ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2445 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2445 MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.03, 7.03, 7.03); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### Touch from Body, Rear + Belt Clip, PTT Ch. 9(2445 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.025 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.01 mW/g ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2480 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.03, 7.03, 7.03); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### Touch from Body, Rear + Belt Clip, PTT Ch. 16(2480 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = 0.055 dB Peak SAR (extrapolated) = 2.60 W/kg SAR(1 g) = 1.35 mW/g; SAR(10 g) = 0.727 mW/g -4.10 -8.20 -12.3 -16.4 -20.5 0 dB = 1.80mW/g ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2405 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2405 MHz; $\sigma = 1.73$ mho/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.4, 7.4, 7.4); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### 1.5cm space from Body, Front, PTT Ch. 1(2405 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.018 dB Peak SAR (extrapolated) = 4.13 W/kg SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.1 mW/g ### DUT: XR-2400; Type: UHF Transceiver Communication System: PTT; Frequency: 2405 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2405 MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ### **DASY4 Configuration:** Probe: EX3DV4 - SN3643; ConvF(7.03, 7.03, 7.03); Calibrated: 2011-01-24; Electronics: DAE3 Sn519 Phantom: SAM 1800/1900 MHz; Type: SAM; Serial: TP-1224 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Date: 2011-10-17; Ambient Temp: 22.0; Tissue Temp: 22.3 ### Touch from Body, Rear + Belt Clip, PTT Ch. 1(2405 MHz), Ant External Area Scan (81x161x1): Measurement grid: dx=15mm,
dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Power Drift = -0.042 dB Peak SAR (extrapolated) = 3.97 W/kg SAR(1 g) = 2.06 mW/g; SAR(10 g) = 1.09 mW/g Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Digital EMC (Dymstec) Accreditation No.: SCS 108 Certificate No: D2450V2-726_Mar10 #### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 726 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: March 18, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Power sensor HP 8481A | US37292783 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 31-Mar-09 (No. 217-01025) | Mar-10 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029) | Mar-10 | | Reference Probe ES3DV3 | SN: 3205 | 26-Jun-09 (No. ES3-3205_Jun09) | Jun-10 | | DAE4 | SN: 601 | 02-Mar-10 (No. DAE4-601_Mar10) | Mar-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-09) | In house check: Oct-10 | | 1 1 | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | J-Cc | | | | | | | Approved by: | Katja Pokovic | Technical Manager | St. Ill | Issued: March 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-726_Mar10 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-726_Mar10 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.80 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR normalized | normalized to 1W | 52.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 mW/g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.13 mW / g | | SAR normalized | normalized to 1W | 24.5 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 mW /g ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature during test | (21.4 ± 0.2) °C | | **** | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR normalized | normalized to 1W | 51.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.00 mW / g | | SAR normalized | normalized to 1W | 24.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 mW / g ± 16.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.7 \Omega + 2.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.8 Ω + 4.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.160 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|------------------|--| | Manufactured on | January 09, 2003 | | Certificate No: D2450V2-726_Mar10 #### **DASY5 Validation Report for Head TSL** Date/Time: 18.03.2010 10:06:22 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.03.2010
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.8 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g Maximum value of SAR (measured) = 16.8 mW/g 0 dB = 16.8 mW/g #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body** Date/Time: 18.03.2010 12:27:16 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:726 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.03.2010 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.9 V/m; Power Drift = 0.073 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6 mW/g Maximum value of SAR (measured) = 16.9 mW/g 0 dB = 16.9 mW/g ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Digital EMC (Dymstec) Accreditation No.: SCS 108 Certificate No: EX3-3643 Jan11 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3643 Calibration procedure(s) QA CAL-01.v7, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v4 and QA CAL-25.v3 Calibration procedure for dosimetric E-field probes Calibration date: January 24, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |----------------------------|---|----------------------------------|------------------------|--| | Power meter E4419B | GB41293874 | 1-Apr-10 (No. 217-01136) | Apr-11 | | | Power sensor E4412A | MY41495277 | 1-Apr-10 (No. 217-01136) | Apr-11 | | | Power sensor E4412A | MY41498087 | 1-Apr-10 (No. 217-01136) | Apr-11 | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 30-Mar-10 (No. 217-01159) | Mar-11 | | | Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161) | Mar-11 | | | Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160) | Mar-11 | | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-10 (No. ES3-3013 Dec10) | Dec-11 | | | DAE4 | SN: 660 | 20-Apr-10 (No: DAE4-660_Apr10) | Apr-11 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | | Network Analyzer HP 8753E | etwork Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) | | In house check: Oct-11 | | | | Name | Function | Signature | | | Calibrated by | Katja Pokovic | Technical Manager | 28kg | | | Approved by | Fin Bornholt | R&D Director | F. Bmitalf | | Issued: January 25, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3643 Jan11 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3643 Jan11 # Probe EX3DV4 SN:3643 Manufactured: January 8, 2008 Last calibrated: January 26, 2010 Recalibrated: January 24, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 SN:3643 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------------|----------|----------|----------|-----------| | Norm (µV/(V/m)²) ^A | 0.39 | 0.42 | 0.46 | ± 10.1% | | DCP (mV) ^B | 96.6 | 95.4 | 95.0 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dBuV | С | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------| | 10000 | cw | 0.00 | X | 0.00 | 0.00 | 1.00 | 134.8 | ± 2.4 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 128.8 | | | | | | Z | 0.00 | 0.00 | 1.00 | 145.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. The uncertainties of NormX.Y.Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6). ⁸ Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value ## DASY/EASY - Parameters of Probe: EX3DV4 SN:3643 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] | Validity [MHz] ^C | Permittivity | Conductivity | ConvF X Co | nvFY C | onvF Z | Alpha | Depth Unc (k=2) | |---------|-----------------------------|--------------|----------------|------------|--------|--------|-------|-----------------| | 450 | ± 50 / ± 100 | 43.5 ± 5% | $0.87 \pm 5\%$ | 9.69 | 9.69 | 9.69 | 0.12 | 1.00 ± 13.3% | | 835 | ± 50 / ± 100 | 41.5 ± 5% | $0.90 \pm 5\%$ | 8.96 | 8.96 | 8.96 | 0.69 | 0.64 ± 11.0% | | 1750 | ± 50 / ± 100 | 40.1 ± 5% | $1.37 \pm 5\%$ | 8.58 | 8.58 | 8.58 | 0.63 | 0.72 ± 11.0% | | 1900 | ±50/±100 | 40.0 ± 5% | $1.40 \pm 5\%$ | 8.26 | 8.26 | 8.26 | 0.64 | 0.72 ± 11.0% | | 2450 |
±50/±100 | 39.2 ± 5% | $1.80 \pm 5\%$ | 7.40 | 7.40 | 7.40 | 0.52 | 0.77 ± 11.0% | The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ## DASY/EASY - Parameters of Probe: EX3DV4 SN:3643 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] | Validity [MHz] ^C | Permittivity | Conductivity | ConvF X | ConvF Y | ConvF Z | Alpha | Depth Unc (k=2) | |---------|-----------------------------|----------------|----------------|---------|---------|---------|-------|-----------------| | 450 | ±50/±100 | 56.7 ± 5% | 0.94 ± 5% | 10.31 | 10.31 | 10.31 | 0.05 | 1.05 ± 13.3% | | 835 | ±50/±100 | 55.2 ± 5% | 0.97 ± 5% | 8.97 | 8.97 | 8.97 | 0.52 | 0.77 ± 11.0% | | 1750 | ± 50 / ± 100 | 53.4 ± 5% | 1.49 ± 5% | 7.48 | 7.48 | 7.48 | 0.69 | 0.65 ± 11.0% | | 1900 | ± 50 / ± 100 | 53.3 ± 5% | 1.52 ± 5% | 7.19 | 7.19 | 7.19 | 0.44 | 0.83 ± 11.0% | | 2450 | ± 50 / ± 100 | 52.7 ± 5% | 1.95 ± 5% | 7.03 | 7.03 | 7.03 | 0.51 | 0.74 ± 11.0% | | 2600 | ± 50 / ± 100 | 52.5 ± 5% | 2.16 ± 5% | 6.96 | 6.96 | 6.96 | 0.26 | 1.07 ± 11.0% | | 3500 | ±50/±100 | 51.3 ± 5% | 3.31 ± 5% | 6.15 | 6.15 | 6.15 | 0.33 | 1.30 ± 13.1% | | 5200 | ±50/±100 | 49.0 ± 5% | $5.30 \pm 5\%$ | 4.32 | 4.32 | 4.32 | 0.45 | 1.90 ± 13.1% | | 5300 | ±50/±100 | $48.9 \pm 5\%$ | 5.42 ± 5% | 4,15 | 4.15 | 4.15 | 0.50 | 1.90 ± 13.1% | | 5600 | ± 50 / ± 100 | $48.5\pm5\%$ | 5.77 ± 5% | 3.72 | 3.72 | 3.72 | 0.50 | 1.90 ± 13.1% | | 5800 | ± 50 / ± 100 | 48.2 ± 5% | 6.00 ± 5% | 3.86 | 3.86 | 3.86 | 0.60 | 1.90 ± 13.1% | The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ### Conversion Factor Assessment ## Deviation from Isotropy in HSL Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (°) | Not applicable | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |