

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

FCC ID.

VSOXR-2400

Yeonhwa M Tech Co., Ltd.

APPLICANT

Equipment Class	:	Digital Transmission System (DTS)
Manufacturing Description	:	Zigbee UHF Transceiver
Manufacturer	:	Yeonhwa M Tech Co., Ltd.
Model name	:	XR-2400
Variant Model name	:	XR-2400D
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C ; ANSI C-63.4-2003
Frequency Range	:	2405MHz ~ 2480MHz
Max. Output Power	:	Max 26.70dBm – Conducted
Data of issue	:	October 27, 2011

This test report is issued under the authority of:

Hyun-Chae You, Manager

The test was supervised by:

Ki-Hun Cho, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	9
3.2.3 POWER SPECTRAL DENSITY	12
3.2.4 BAND – EDGE & SPURIOUS	15
3.2.5 FIELD STRENGTH OF HARMONICS	21
3.2.6 AC CONDUCTED EMISSIONS	24

APPENDIX

APPENDIX	TEST EQUIPMENT USED FOR TESTS	 27

1. General information's

<u>1-1 Test Performed</u>

Company name	LTA Co., Ltd.	
Address	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 44	9-822
Web site	http://www.ltalab.com	
E-mail	<u>chahn@ltalab.com</u>	
Telephone	+82-31-323-6008	
Facsimile	+82-31-323-6010	

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference	
NVLAP	U.S.A	200723-0	2012-09-30	ECT accredited Lab.	
КСС	KOREA	KR0049	2013-04-24	EMC accredited Lab.	
FCC	U.S.A	610755	2014-04-27	FCC filing	
FCC	U.S.A	649054	2013-04-13	FCC CAB	
VCCI	JAPAN	R-2133, C-2307	2014-06-21	VCCI registration	
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration	
IC	CANADA	5799A	2012-05-14	IC filing	

2. Information's about test item

2-1 Client & Manufacturer

Company name	:	Yeonhwa M Tech Co., Ltd.
Address	:	3F, Yukyong B/D, 544-6, Gasan-dong, Geumcheon-gu, Seoul, Korea
Tel / Fax	:	+82-70-7434-7274 / +82-2-3281-7271

<u>2-2 Equipment Under Test (EUT)</u>

Trade name	:	Zigbee UHF Transceiver
FCC ID	:	VSOXR-2400
Model name	:	XR-2400
Variant Model name	:	XR-2400D
Serial number	:	Identical prototype
Date of receipt	:	October 4, 2011
EUT condition	:	Pre-production, not damaged
Antenna type	:	Dipole antenna (M/N: HS11-YH24) Max Gain 1.10 dBi
Frequency Range	:	2405MHz ~ 2480MHz (DSSS)
RF output power	:	Max 26.70dBm - Conducted
Number of channels	:	16
Type of Modulation	:	O-QPSK
Channel spacing	:	5MHz
Power Source	:	3.7Vdc
Firmware Version	:	V0.1.1

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2405	2445	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	
-	-	-	-	

<u>2-5 Model Description</u>

Model No.	Difference	
XR-2400	Same RF Circuit, Graphic LCD, Audio and Data Communication	
XR-2400D	Same RF Circuit, Graphic LCD, Only Data Communication	

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Conditio n	Status (note 1)	
15.247(a)	6 dB Bandwidth	> 500kHz		С	
15.247(b)	Transmitter Peak Output Power	< 1Watt	· Conducted	С	
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz		С	
15.247(d)	Band Edge & Spurious	> 20 dBc		С	
15.209	Field Strength of Harmonics	Emission	Radiated	С	
15.207	AC Conducted Emissions	Emissions	Conducted	С	
15.203	Antenna requirement	-	-	С	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					
<u>Note 2</u> : The data in this test report are traceable to the national or international standards.					

 \rightarrow Antenna Requirement

The Firmtech co., Ltd. FCC ID:VSOXR-2400 unit complies with the requirement of §15.203.

The antenna connector is the reverse SMA connector.

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:				
Center frequency = the highest, middle and the lowest channels				
RBW = 100 kHz	Span = 10 MHz			
$VBW = 100 \text{ kHz} (VBW \geq RBW)$	Sweep = auto			
Trace = max hold	Detector function = peak			

Measurement Data:

Frequency	Test Results			
(MHz)	Measured Bandwidth (MHz)	Result		
2405	1.360	Complies		
2445	1.375	Complies		
2480	1.331	Complies		

- See next pages for actual measured spectrum plots.


Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

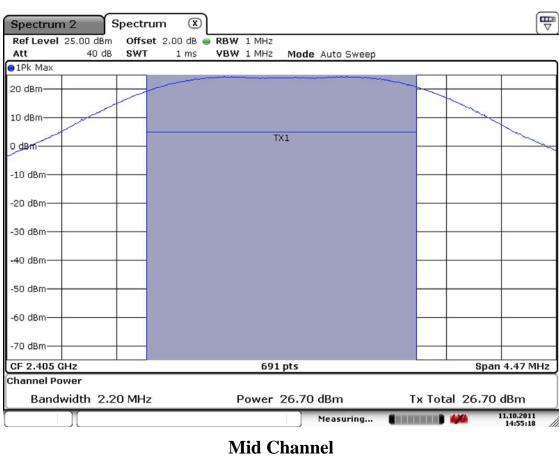
Same as the Chapter 3.2.1 (Figure 1)

High Channel

3.2.2 Peak Output Power Measurement

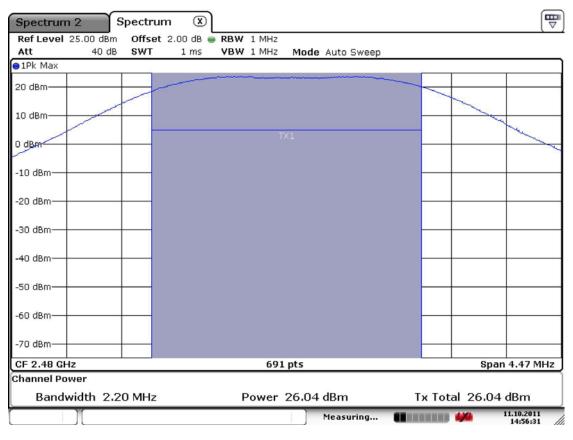
Procedure:

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.


Measurement Data:

Frequency	Test Results				
(MHz)	dBm	mW	Result		
2405	26.70	467.73	Complies		
2445	26.23	419.76	Complies		
2480	26.04	401.79	Complies		

- See next pages for actual measured spectrum plots.


Minimum Standard:

Peak output power	< 1W
-------------------	------

Low Channel

₩ X Spectrum Spectrum 2 Ref Level 25.00 dBm Offset 2.00 dB 🖷 RBW 1 MHz 40 dB SWT VBW 1 MHz Att 1 ms Mode Auto Sweep ●1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-CF 2.445 GHz 691 pts Span 4.47 MHz Channel Power Bandwidth 2.20 MHz Power 26.23 dBm Tx Total 26.23 dBm 1.10.2011 14:55:55 Measuring... 11

High Channel

3.2.3 Power Spectral Density

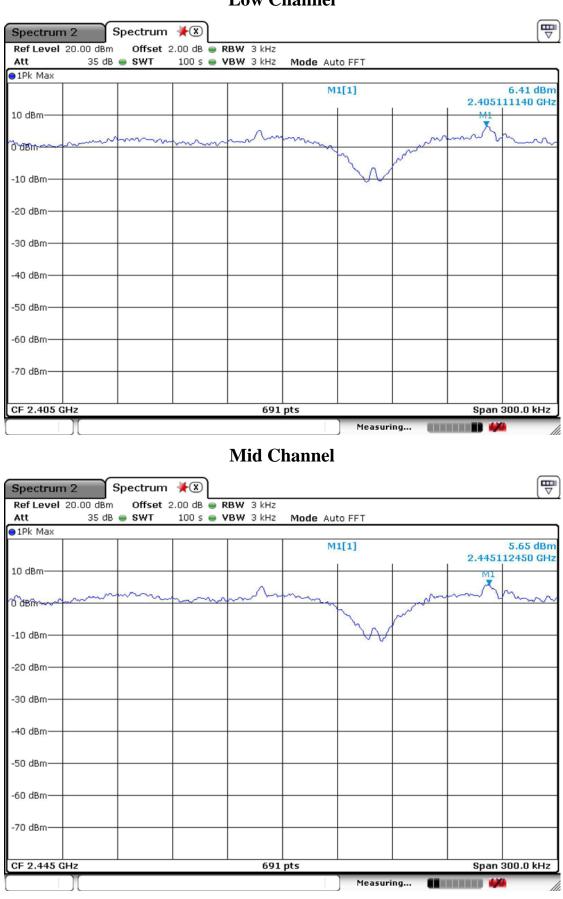
Procedure:

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

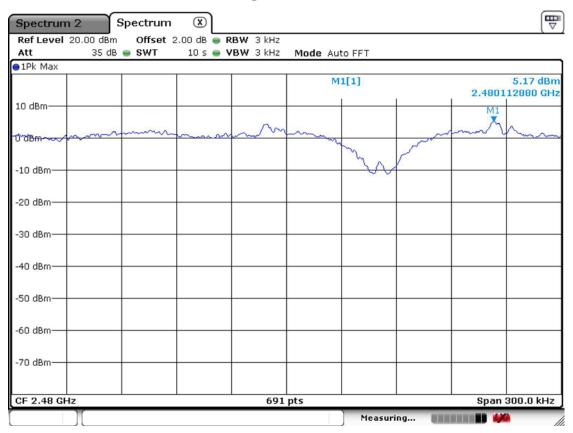
The spectrum analyzer is set to:	
RBW = 3 kHz	Span = 300 kHz
VBW = 10 kHz	Sweep $= 100 \text{ sec}$
Detector function = peak	Trace = max hold

Measurement Data:

Frequency	Test Results			
(MHz)	dBm	Result		
2405	6.41	Complies		
2445	5.65	Complies		
2480	5.17	Complies		


- See next pages for actual measured spectrum plots.

Minimum Standard:


Power Spectral Density	< 8dBm @ 3kHz BW
------------------------	------------------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Power Density Measurement Low Channel

High Channel

3.2.4 Band - edge & Spurious

Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

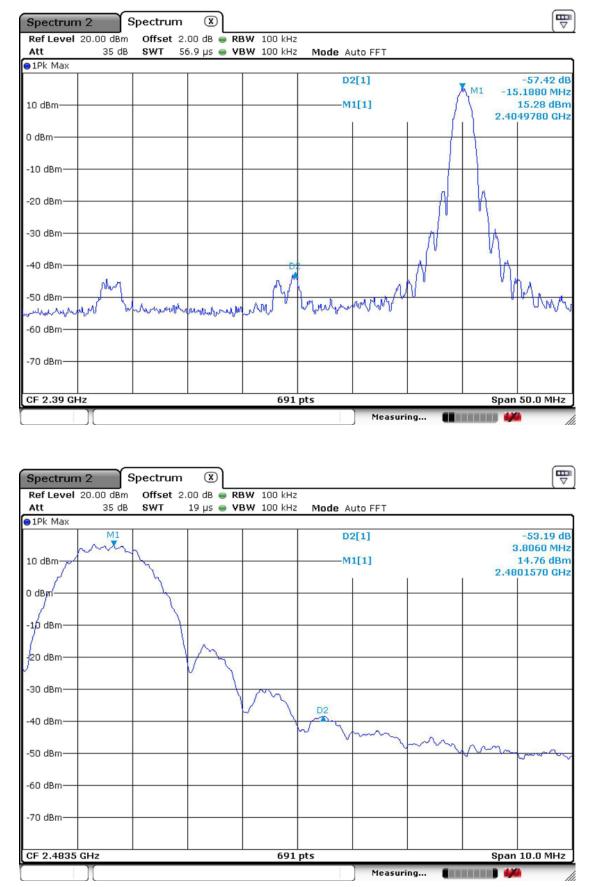
The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels RBW = 100 kHz VBW = 100 kHz

Span = 50 MHz	Detector function = peak
Trace = max hold	Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:


Center frequency = the highest, the lowest channels					
PEAK:	RBW = VBW = 1MHz, Sweep=Auto				
Average:	RBW = 1MHz, VBW=10Hz, Sweep=Auto				
Measurement Distance:	3m				
Polarization:	Horizontal / Vertical				

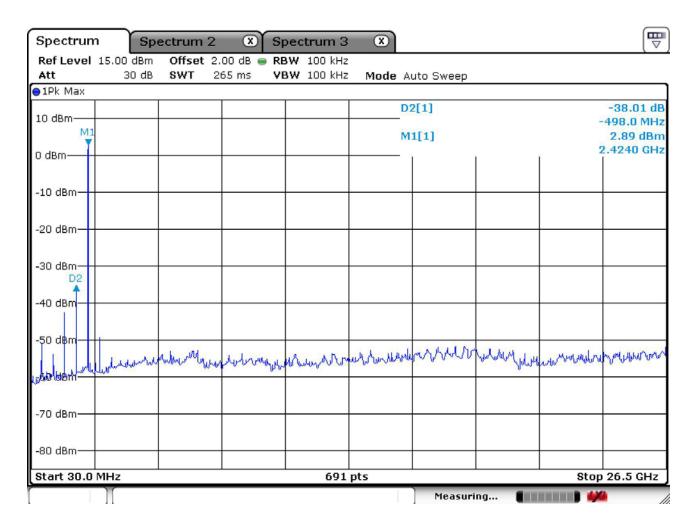
Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

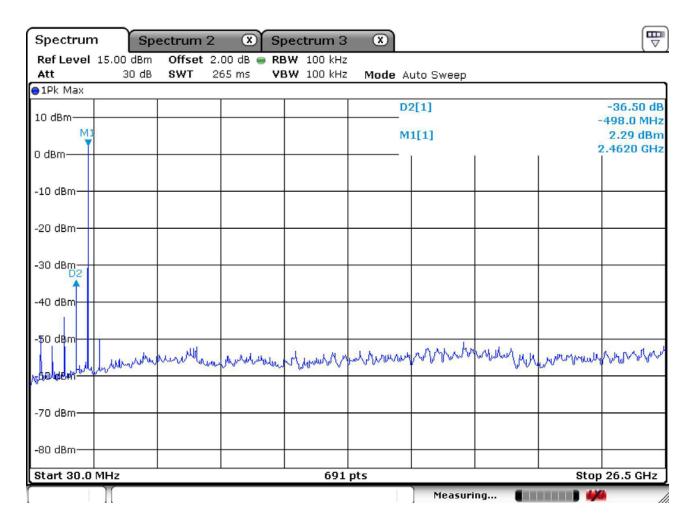
Minimum Standard:	> 20 dBc
-------------------	----------

Band-edge

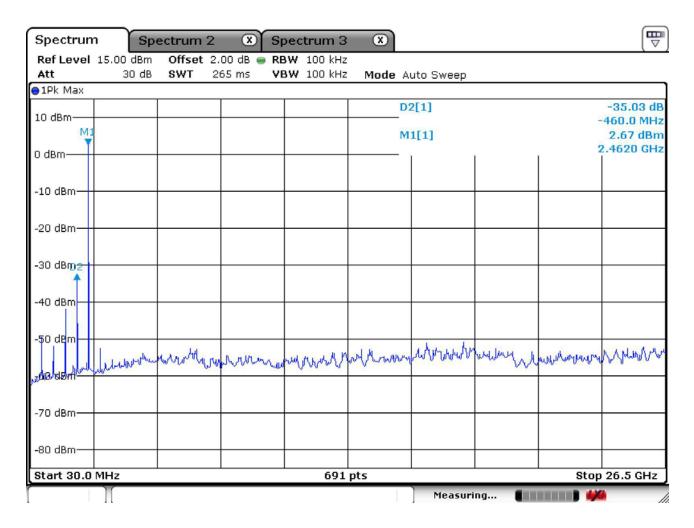
Frequency	Reading		C	Correction		Limits	Result	Margin
Frequency	[dBuV/m] Pol		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak	P01.	Antenna	Amp. Gain	Cable	AV / Peak	AV / Peak	AV / Peak
2390	52.6 66.2	V	25.4	37.1	4.0	54.0 74.0	44.9 58.4	9.2 15.6


Band-edges in the restricted band 2310-2390 MHz measurement

Band-edges in the restricted band 2483.5-2500 MHz measurement


Frequency	Rea	ding		Correction			Limits	Result	Margin
Frequency	[dBuV/m] Pol.		Del	Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV /	' Peak	P01.	Antenna	Amp. Gain	Cable	AV / Peak	AV / Peak	AV / Peak
2483.5	58.8	66.2	V	25.4	37.1	4.0	54.0 74.0	51.0 58.5	3.0 15.5

Note : This EUT was tested in 3 orthogonal positions and the worst-case data was presented.


Low channel Frequency Range = 30 MHz ~ 10th harmonic.

Mid channel
Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

High channel Frequency Range = $30 \text{ MHz} \sim 10^{\text{th}}$ harmonic.

3.2.5 Field Strength of Harmonics

Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

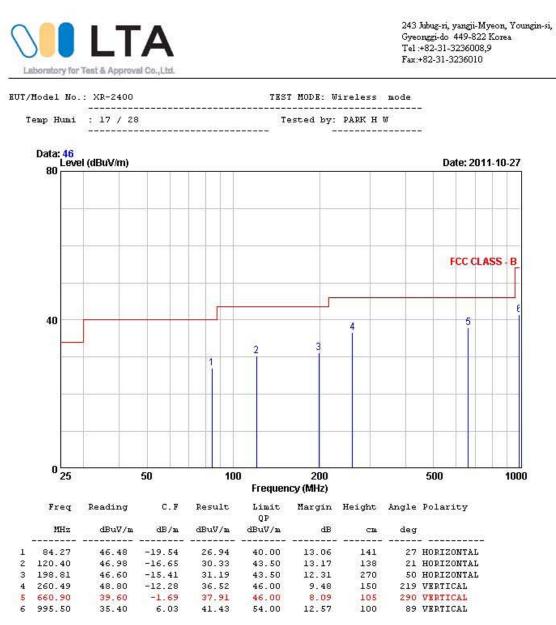
The spectrum analyzer is set to:Center frequency = the worst channelFrequency Range = 30 MHz ~ 10^{th} harmonic.RBW = 100 kHz (30MHz ~ 1 GHz)VBW \geq RBW= 1 MHz(1 GHz ~ 10^{th} harmonic)Span = 100 MHzDetector function = peakTrace = max holdSweep = auto

Measurement Data: Complies

- See next pages for actual measured data.

Frequency (MHz)	Limit (uV/m) @ 3m				
0.009 ~ 0.490	2400/F(kHz) (@ 300m)				
0.490 ~ 1.705	24000/F(kHz) (@ 30m)				
1.705 ~ 30	30(@ 30m)				
30 ~ 88	100 **				
88 ~ 216	150 **				
216 ~ 960	200 **				
Above 960	500				

Minimum Standard: FCC Part 15.209(a)


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Frequency	Reading [dBuV/m]			Correction Factor			Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]			Pol.	Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak	
4810.0	48.2	58.2	V	31.4	36.5	5.7	54.0	74.0	48.9	58.9	5.1	15.1
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Frequency Reading [dBuV/m] [MHz] AV / Peak			Correction			Limits		Result		Margin	
			Pol.	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]				Antenna	Amp. Gain	Cable	AV / Peak		AV / Peak		AV / Peak	
4890.0	46.8	57.2	V	31.4	36.5	5.7	54.0	74.0	47.5	54.9	6.5	16.1
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Reading [dBuV/m] AV / Peak			Correction			Limits		Result		Margin	
Frequency			Del	Factor			[dBuV/m]		[dBuV/m]		[dB]	
[MHz]			POI.	Amp. Antenna Gain		Cable	AV / Peak		AV / Peak		AV / Peak	
4960.00	46.1	57.3	V	31.4	36.5	5.7	54.0	74.0	46.8	58.0	7.2	16.0
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-

Measurement Data:

No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – Zigbee

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

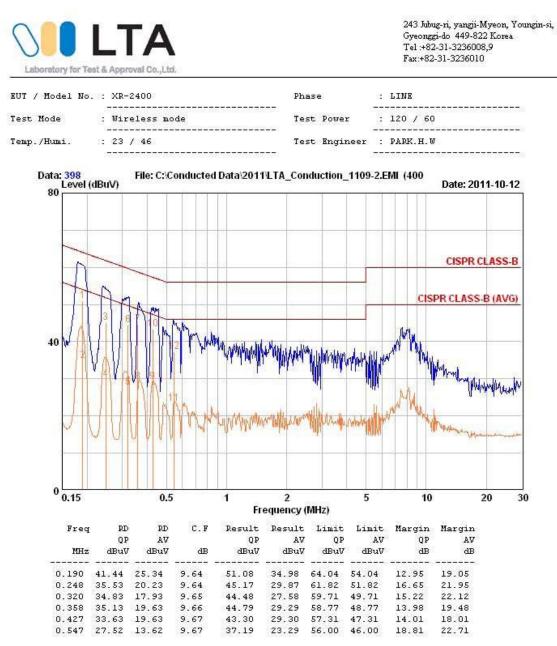
3.2.6 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

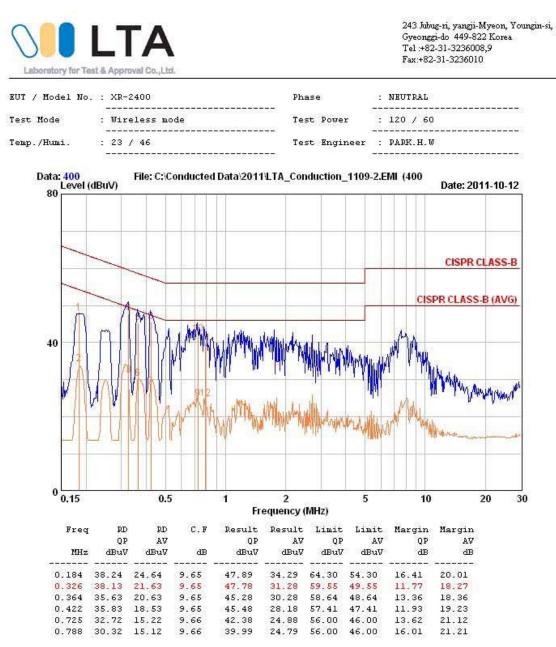
Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.


Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		


* Decreases with the logarithm of the frequency

AC Conducted Emissions – Zigbee – Line

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – Zigbee – Neutral

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2011-01-24
2	Signal Generator (~3.2GHz)	8648C	3623A02597	HP	1 year	2011-03-30
3	Signal Generator (1~20GHz)	83711B	US34490456	HP	1 year	2011-03-30
4	Attenuator (3dB)	8491A	37822	HP	2 year	2010-10-08
5	Attenuator (10dB)	8491A	63196	HP	2 year	2010-10-08
6	Attenuator (30dB)	8498A	3318A10929	HP	2 year	2011-01-05
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2011-03-30
8	EMI Test Receiver (~1GHz)	ESCI7	100722	R&S	1 year	2011-10-07
9	RF Amplifier (~1.3GHz)	8447D	2439A09058	HP	2 year	2010-10-08
10	RF Amplifier (1~18GHz)	8449B	3008A02126	HP	2 year	2010-03-29
11	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
12	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
13	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
14	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2010-10-07
15	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
16	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
19	Hygro-Thermograph	THB-36	0041557-01	ISUZU	2 year	2010-04-12
20	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
21	Power Divider	11636A	6243	HP	2 year	2010-10-08
22	DC Power Supply	6622A	3448A03079	HP	-	-
23	Frequency Counter	5342A	2826A12411	HP	1 year	2011-03-30
24	Power Meter	EPM-441A	GB32481702	HP	1 year	2011-03-30
25	Power Sensor	8481A	US41030291	HP	1 year	2011-10-07
26	Audio Analyzer	8903B	3729A18901	HP	1 year	2011-10-07
27	Modulation Analyzer	8901B	3749A05878	HP	1 year	2011-10-07
28	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2011-10-07
29	Stop Watch	HS-3	601Q09R	CASIO	2 year	2010-03-31
30	LISN	ENV216	100408	R&S	1 year	2011-10-07
31	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2010-05-13
32	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
33	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-