FCC Report

Applicant Name:	:	Yeonhwa M Tech Co.,Ltd
FCC ID	:	VSODX-6400
Equipment Type	:	Digital 5W Portable Radio
Models Name	:	DX-6400, DX-6400R, MDP-6424, MDP-6416, CP398U, CP393U
Report Number	:	HK1907041532E
Date Of Receipt	:	June 10, 2019
Date Of Issue	:	July 15, 2019
Test By	:	Gan Qian
Supervised by	:	(Gary Qian) Eden Hu (Eden Hu)
Approved by:	:	Jason Zhou
		(Jason Zhou)
Tested by	:	Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	July 15, 2019	Valid	Original Report	

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Part 90: PRIVATE LAND MOBILE RADIO SERVICES.

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

2. GENERAL INFORMATION

Models Name	DX-6400, DX-	6400R, MDP-6424, MDP-6416, CP398	U, CP393U				
	The difference	shows in following table,other design a	are identical.				
	Model	Brand name	Function				
	DX-6400	X Radio X Radio	OLED LCD Type				
	DX-6400R	XRadio	16-Channel Rotary Type				
Difference description	MDP-6424	MCI2XOM	OLED LCD Type				
	MDP-6416	MCIZZOM	16-Channel Rotary Type				
	CP398U	6	OLED LCD Type				
	CP393U	6	16-Channel Rotary Type				
Test Model	DX-6400						
Applicant	Yeonhwa M T	ech Co.,Ltd					
Address	36, Jeonpa-ro	, 44beon-gil, Manan-gu, Anyang-si, Gye	eonggi-do, korea 14086				
Manufacturer	Yeonhwa M T	ech Co.,Ltd					
Address	36, Jeonpa-ro	36, Jeonpa-ro, 44beon-gil, Manan-gu, Anyang-si, Gyeonggi-do, korea 14086					
Equipment Type	Digital 5W Por	Digital 5W Portable Radio					
Trade Mark	XRa	dio MCIXOM					
Hardware version:	DX64-R4						
Software version:	V 2.0.0.2						
Extreme Temp. Tolerance	-10℃-+55℃						
EUT Power Rating	DC 7.20 V by	battery					
Operating Frequency	406.1 MHz to	510 MHz					
Channel Spacing	12.5 KHz						
Modulation Type	FM, 4FSK						
Antenna Type:	Detachable Ar	ntenna					
Antenna gain:	0.0 dBi						
Data of receipt	July15, 2019						
Date of test	June 20, 2019	to July10, 2019					
Deviation	None						
Condition of Test Sample	Normal						

2.1. EUT operation mode

Modulation	Channel separation	Frequency (MHz)	Operation Description
	12.5 KHz	406.5000	Op1
FM	12.5 KHz	455.5000	Op2
	12.5 KHz	509.5000	Op3
	12.5 KHz	406.5000	Op4
4FSK	12.5 KHz	455.5000	Op5
	12.5 KHz	509.5000	Op6

2.2. Block Diagram of Test Setup

Fig. 2-1 Configuration of Tested System

2.3. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID:VSODX-6400 filing to comply with FCC Part 2, FCC Part 90 of the FCC CFR 47 Rules.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

Designation Number: CN1229 Test Firm Registration Number: 616276

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Specification clause	Test case	Pass	Fail	NA	NP	Remark
§90.205 §2.1046(a)	RF Power Output	\boxtimes				Pass
§90.205 §2.1046(a)	RF Power Output(Conducted Method)	\boxtimes				Pass
§90.242(b)(8) §90.210 §2.1047	Modulation Characteristic					Pass
§90.209 §2.1049	99% Occupied Bandwidth	\boxtimes				Pass
§90.210 §2.1049	Emission Mask					Pass
§90.213 §2.1055	Frequency Stability					Pass
§2.1051 §2.1053 §90.210	TX spurious emissions					Pass
§90.214	Transient frequency behavior	\square				Pass

Note:

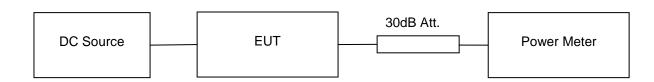
1. NA = Not Applicable; NP = Not Performed;

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the QTC Certification & Testing Co., Ltd. quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for QTC Certification & Testing Co., Ltd. laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.16 dB	(1)
Radiated Emission	1~18GHz	3.56 dB	(1)
Conducted Disturbance	0.15~30MHz	2.44 dB	(1)


(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B	HKE-083	N/A	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 27, 2018	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 27, 2018	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 27, 2018	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year
19	RF communication test set	HP	HP8920B	US36141817	Dec. 27, 2018	1 Year

4. TEST CONDITIONS AND RESULTS

4.1. RF Power Output(Conducted Method) <u>TEST CONFIGURATION</u>

TEST PROCEDURE

- 1) Connect the equipmet as illuastrated.
- 2) Set EUT working in continuous mode in low, middle, high frequency, read and record the peak power value.

TEST RESULTS

Modulation	Channel	Test Frequency	Reading	ng(dBm)		
Modulation	Separation		High Power Level	Low Power Level		
		406.5000	35.91	29.85		
FM	12.5KHz	455.5000	36.89	29.89		
		509.5000	35.92	29.73		
		406.5000	36.57	29.82		
4FSK	12.5KHz	455.5000	36.65	29.88		
		509.5000	36.54	29.73		
	Rated Power		5W(36.99dBm)	1W(30dBm)		
	Result Power		Pass	Pass		

The rated 5W for High Power and 1W for Low power.

4.2. Modulation Characteristics

TEST CONFIGURATION

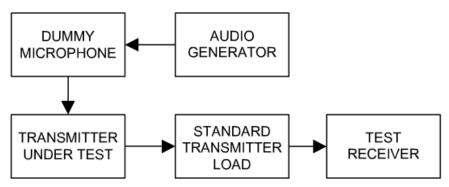


Figure 1: Modulation Limit&Audio Frequency Response

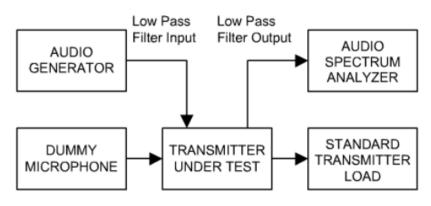


Figure 2: Audio Low Pass Filter Response

TEST PROCEDURE

Modulation limitations

- 1 Connect the equipment as illustrated.
- 2 Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3 Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ${\leqslant}0.25$ Hz to

 \geq 15,000 Hz. Turn the de-emphasis function off.

- 4 Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, this level is as a reference (0dB) and vary the input level from –20 to +20dB.
- 5 Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6 Repeat step 4-5 with input frequency changing to 300Hz, 500Hz, 1000Hz, 1500Hz, 2000Hz, 2500Hz and 3000Hz in sequence.

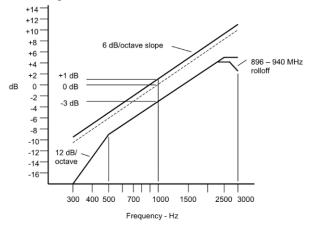
Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference.
- 3 Vary the Audio frequency from 300Hz to 3 KHz. and record the frequency deviation.
- 4 Audio FrequencyResponse =20log₁₀ (Deviation of test frequency/Deviation of 1 KHz reference).

Audio Low Pass Filter Frequency Response

- 1 Configure the EUT as shown in figure 2.
- 2 Connect the audio frequency generator as close as possible the input of the post litniter low pass filter within the transmitter under test.
- 3 Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.

- 4 Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- 5 Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as LEV_{REF.}
- 6 Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- 7 Record audio spectrum analyzer levels, at the test frequency in step 6).
- 8 Record the dB level on the audio spectrum analyzer as LEV_{RREQ}.
- 9 Calculate the audio frequency response at the test frequency as:
- 10 low pass filter response = $LEV_{FREQ} LEV_{REF}$
- 11 Repeat steps 6) through 10) for all the desired test frequencies.


LIMIT

Modulation limitations

According to TIA/EIA 603 D, For FM transmitters, the sum of the highest modulating frequency in Hertz and the amount of the frequency deviation or swing in Hertz may not exceed 2800 Hz and the maximum deviation may not exceed 2.5 kHz.

Audio Frequency Response

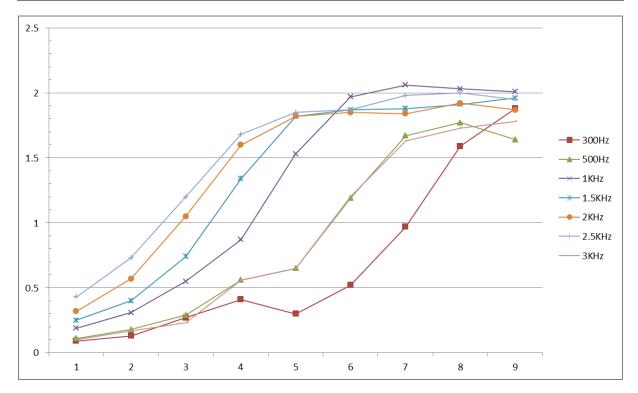
According to TIA/EIA 603 D,

The audio frequency response from 300 Hz to 3000 Hz shall not vary more than+ 1 dB or -3 dB from a true 6 dB per octave pre-emphasis characteristic as referenced to the 1000 Hz level. The exception is from 500 Hz to 3000 Hz, where an additional 6 dB per octave rol loff is allowed.

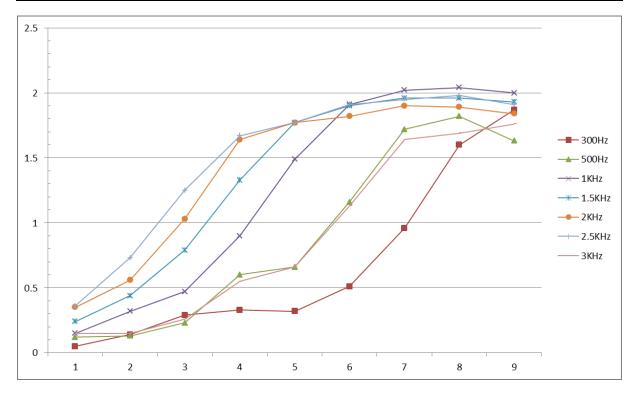
The following exceptions are also permissible:

a) An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

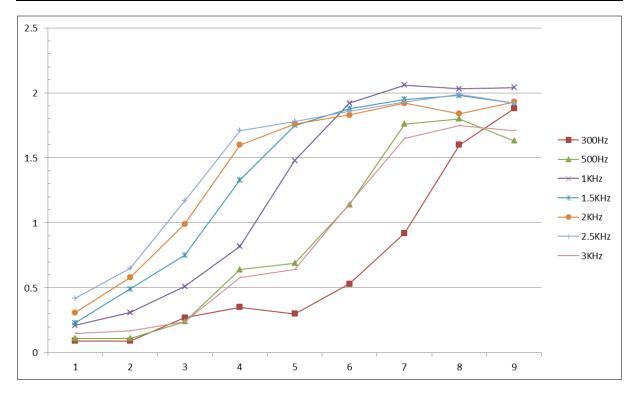
b) An additional 6 dB per octave rolloff is allowed from 2300 Hz to 2700 Hz, and an additional 12 dB per octave is allowed from 2700 Hz to 3000 Hz, in equipment operating in the 896 MHz to 940 MHz range, and all narrowband (12.5 kHz and 15 kHz channelization) equipment.


Audio Low Pass Filter Frequency Response

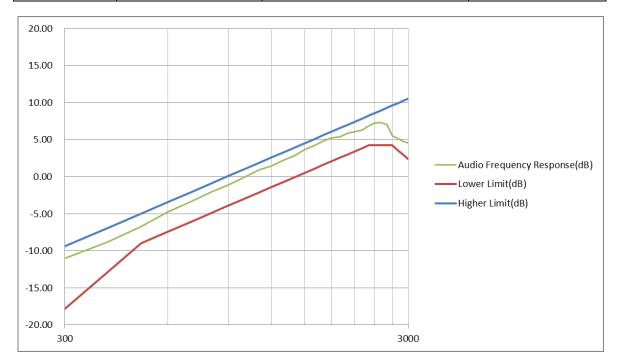
According to TIA/EIA 603 D,	
Audio band	Minimum Attenuation Rel. to 1KHz Attenuation
3-20KHz	100* log10 (f/3) decibels
20-30KHz	82.5dB


TEST RESULTS

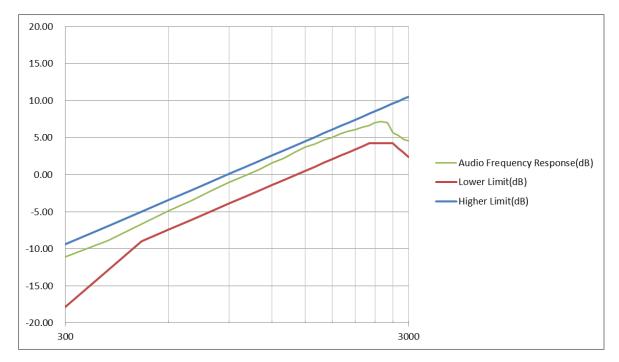
4.2.1.1 Modulation Characteristics


	406.5000MHz @ 12.5 KHz Channel Separation									
Modulation		Pea	ak Frequ	ency Devi	ation (Kl	Hz)				
Input(dBC)	300Hz	500Hz	1KHz	1.5KHz	2KHz	2.5KHz	3KHz	Limit(KHz)	Result	
-20	0.09	0.11	0.19	0.25	0.32	0.43	0.1	2.5	Pass	
-15	0.13	0.18	0.31	0.4	0.57	0.73	0.17	2.5	Pass	
-10	0.27	0.29	0.55	0.74	1.05	1.2	0.23	2.5	Pass	
-5	0.41	0.56	0.87	1.34	1.6	1.68	0.56	2.5	Pass	
0	0.3	0.65	1.53	1.82	1.82	1.85	0.65	2.5	Pass	
5	0.52	1.19	1.97	1.87	1.85	1.87	1.2	2.5	Pass	
10	0.97	1.67	2.06	1.88	1.84	1.98	1.63	2.5	Pass	
15	1.59	1.77	2.03	1.91	1.92	2	1.73	2.5	Pass	
20	1.88	1.64	2.01	1.96	1.87	1.95	1.78	2.5	Pass	

	455.5000MHz @ 12.5 KHz Channel Separation									
Modulation		Pea	ak Frequ	ency Devi	ation (Kl	Hz)				
Input(dBC)	300Hz	500Hz	1KHz	1.5KHz	2KHz	2.5KHz	3KHz	Limit(KHz)	Result	
-20	0.05	0.12	0.15	0.24	0.35	0.36	0.15	2.5	Pass	
-15	0.14	0.13	0.32	0.44	0.56	0.73	0.15	2.5	Pass	
-10	0.29	0.23	0.47	0.79	1.03	1.25	0.26	2.5	Pass	
-5	0.33	0.6	0.9	1.33	1.64	1.67	0.55	2.5	Pass	
0	0.32	0.66	1.49	1.77	1.77	1.77	0.66	2.5	Pass	
5	0.51	1.16	1.91	1.9	1.82	1.91	1.13	2.5	Pass	
10	0.96	1.72	2.02	1.96	1.9	1.95	1.64	2.5	Pass	
15	1.6	1.82	2.04	1.96	1.89	1.98	1.69	2.5	Pass	
20	1.87	1.63	2	1.93	1.84	1.91	1.76	2.5	Pass	

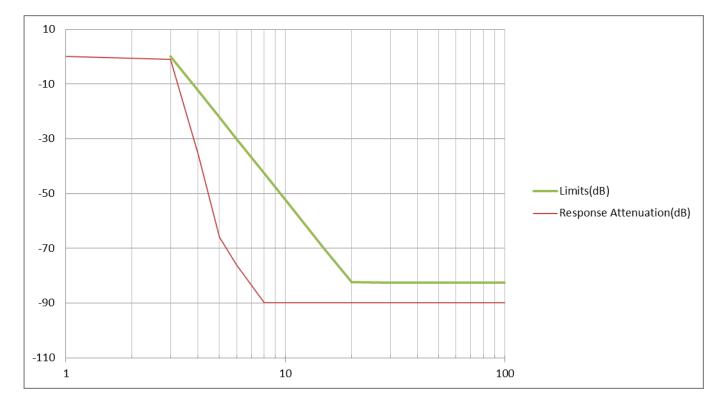


	509.5000MHz @ 12.5 KHz Channel Separation										
Modulation	Peak Frequency Deviation (KHz)										
Input(dBC)	300Hz	500Hz	500Hz 1KHz 1.5KHz 2KHz 2.5KHz		2.5KHz	3KHz	Limit(KHz)	Result			
-20	0.09	0.11	0.21	0.23	0.31	0.42	0.15	2.5	Pass		
-15	0.09	0.11	0.31	0.49	0.58	0.65	0.17	2.5	Pass		
-10	0.27	0.24	0.51	0.75	0.99	1.17	0.24	2.5	Pass		
-5	0.35	0.64	0.82	1.33	1.6	1.71	0.58	2.5	Pass		
0	0.3	0.69	1.48	1.75	1.76	1.78	0.64	2.5	Pass		
5	0.53	1.14	1.92	1.88	1.83	1.86	1.15	2.5	Pass		
10	0.92	1.76	2.06	1.95	1.92	1.93	1.65	2.5	Pass		
15	1.6	1.8	2.03	1.98	1.84	1.99	1.75	2.5	Pass		
20	1.88	1.63	2.04	1.92	1.93	1.92	1.71	2.5	Pass		

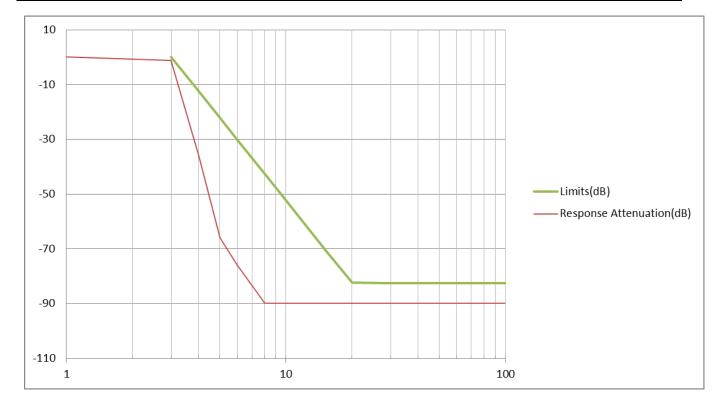


4.5.3 Audio Frequency Response

406.5000MHz@ 12.5 KHz Channel Separation							
Frequency(Hz)	Lower Limit(dB)	Audio Frequency Response(dB)	Higher Limit(dB)				
300	-17.84	-11.03	-9.42				
400	-12.86	-8.81	-6.93				
500	-9.00	-6.75	-5.00				
600	-7.42	-4.75	-3.42				
700	-6.09	-3.39	-2.09				
800	-4.93	-2.03	-0.93				
900	-3.91	-1.13	0.09				
1000	-3	-0.06	1.00				
1100	-2.17	0.92	1.83				
1200	-1.42	1.43	2.58				
1300	-0.73	2.20	3.27				
1400	-0.09	2.85	3.91				
1500	0.51	3.65	4.51				
1600	1.07	4.18	5.07				
1700	1.59	4.82	5.59				
1800	2.09	5.25	6.09				
1900	2.56	5.35	6.56				
2000	3.00	5.84	7.00				
2100	3.42	6.06	7.42				
2200	3.83	6.24	7.83				
2300	4.21	6.79	8.21				
2400	4.21	7.23	8.58				
2500	4.21	7.28	8.93				
2600	4.21	7.04	9.27				
2700	4.21	5.50	9.60				
2800	3.58	5.14	9.91				
2900	2.97	4.72	10.22				
3000	2.39	4.54	10.51				

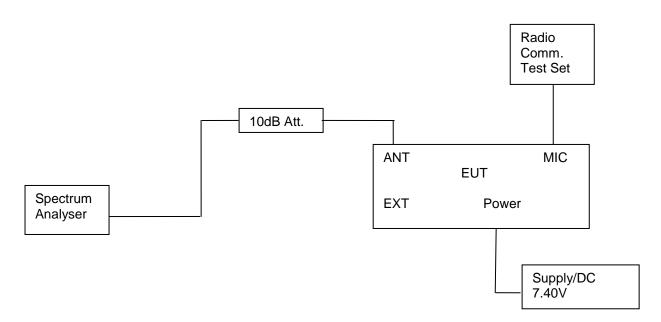


509.5000MHz@ 12.5 KHz Channel Separation							
Frequency(Hz)	Lower Limit(dB)	Audio Frequency Response(dB)	Higher Limit(dB)				
300	-17.84	-11.11	-9.42				
400	-12.86	-8.88	-6.93				
500	-9.00	-6.68	-5.00				
600	-7.42	-4.88	-3.42				
700	-6.09	-3.49	-2.09				
800	-4.93	-2.16	-0.93				
900	-3.91	-1.02	0.09				
1000	-3	-0.11	1.00				
1100	-2.17	0.71	1.83				
1200	-1.42	1.61	2.58				
1300	-0.73	2.18	3.27				
1400	-0.09	3.02	3.91				
1500	0.51	3.69	4.51				
1600	1.07	4.17	5.07				
1700	1.59	4.66	5.59				
1800	2.09	5.03	6.09				
1900	2.56	5.52	6.56				
2000	3.00	5.88	7.00				
2100	3.42	6.07	7.42				
2200	3.83	6.38	7.83				
2300	4.21	6.62	8.21				
2400	4.21	7.06	8.58				
2500	4.21	7.19	8.93				
2600	4.21	7.01	9.27				
2700	4.21	5.68	9.60				
2800	3.58	5.27	9.91				
2900	2.97	4.77	10.22				
3000	2.39	4.52	10.51				



4.5.3 Audio Low Pass Filter Frequency Response

406.5	406.5000MHz@ 12.5 KHz Channel Separation							
Audio Frequency (KHz)	dB relative to 1 KHz	Limits						
1	0	0						
3	-1.0	0						
4	-35.6	-12.5						
5	-65.9	-22.2						
6	-76.0	-30.1						
8	-89.9	-42.6						
10	-89.9	-52.3						
15	-89.9	-69.9						
20	-89.9	-82.4						
30	-89.9	-82.5						
40	-89.9	-82.5						
50	-89.9	-82.5						
60	-89.9	-82.5						
70	-89.9	-82.5						
80	-89.9	-82.5						
90	-89.9	-82.5						
100	-89.9	-82.5						



509.50	509.5000MHz@ 12.5 KHz Channel Separation								
Audio Frequency (KHz)	dB relative to 1 KHz	Limits							
1	0	0							
3	-1.2	0							
4	-35.9	-12.5							
5	-65.9	-22.2							
6	-75.8	-30.1							
8	-89.9	-42.6							
10	-89.9	-52.3							
15	-89.9	-69.9							
20	-89.9	-82.4							
30	-89.9	-82.5							
40	-89.9	-82.5							
50	-89.9	-82.5							
60	-89.9	-82.5							
70	-89.9	-82.5							
80	-89.9	-82.5							
90	-89.9	-82.5							
100	-89.9	-82.5							

4.3. Occupied Bandwidth and Emission Mask

TEST CONFIGURATION

TEST PROCEDURE

- 1 The EUT was modulated by 2.5 KHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation.
- 2 Set EUT work at continuous transmitting.
- 3 Set SPA Centre Frequency = fundamental frequency, RBW=300Hz, VBW= 1 KHz, span =100 KHz.
- 4 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.

<u>LIMIT</u>

Standard Channel Spacing/Bandwidth

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25 ²		
25-50	20	20
72-76	20	20
150-174	17.5	^{1 3} 20/11.25/6
216-220 ⁵	6.25	20/11.25/6
220-222	5	
406-512 ²	¹ 6.25	¹³⁶ 20/11.25/6
806-809/851-854	12.5	20
809-824/854-869	25	6 ₂₀
896-901/935-940	12.5	
902-928 ⁴		
929-930	25	20
1427-1432 ⁵	12.5	12.5
³ 2450-2483.5 ²		
Above 2500 ²		

¹For stations authorized on or after August 18, 1995.

²Bandwidths for radiolocation stations in the 420-450 MHz band and for stations operating in bands subject to this footnote will be reviewed and authorized on a case-by-case basis.

³Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be

authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013, unless the operations meet the efficiency standard of §90.203(j)(3).

⁴The maximum authorized bandwidth shall be 12 MHz for non-multilateration LMS operations in the band 909.75-921.75 MHz and 2 MHz in the band 902.00-904.00 MHz. The maximum authorized bandwidth for multilateration LMS operations shall be 5.75 MHz in the 904.00-909.75 MHz band; 2 MHz in the 919.75-921.75 MHz band; 5.75 MHz in the 921.75-927.25 MHz band and its associated 927.25-927.50 MHz narrowband forward link; and 8.00 MHz if the 919.75-921.75 MHz and 921.75-927.25 MHz bands and their associated 927.25-927.50 MHz and 927.50-927.75 MHz narrowband forward links are aggregated.

⁵See §90.259.

⁶Operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the Adjacent Channel Power limits of §90.221.

(6)(i) Beginning January 1, 2011, no new applications for the 150-174 MHz and/or 421-512 MHz bands will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3).

(ii) Beginning January 1, 2011, no modification applications for stations in the 150-174 MHz and/or 421-512 MHz bands that increase the station's authorized interference contour, will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3). See §90.187(b)(2)(iii) and (iv) for interference contour designations and calculations. Applications submitted pursuant to this paragraph must comply with frequency coordination requirements of §90.175.

(7) Economic Area (EA)-based licensees in frequencies 817-824/862-869 MHz (813.5-824/858.5-869 MHz in the counties listed in §90.614(c)) may exceed the standard channel spacing and authorized bandwidth listed in paragraph (b)(5) of this section in any National Public Safety Planning Advisory Committee Region when all 800 MHz public safety licensees in the Region have completed band reconfiguration consistent with this part. In any National Public Safety Planning Advisory Committee Region where the 800 MHz band reconfiguration is incomplete, EA-based licensees in frequencies 817-821/862-866 MHz (813.5-821/858.5-866 MHz in the counties listed in §90.614(c)) may exceed the standard channel spacing and authorized bandwidth listed in paragraph (b)(5) of this section. Upon all 800 MHz public safety licensees in a National Public Safety Planning Advisory Committee Region completing band reconfiguration, EA-based 800 MHz SMR licensees in the 821-824/866-869 MHz band may exceed the channel spacing and authorized bandwidth in paragraph (b)(5) of this section. Licensees authorized to exceed the standard channel spacing and authorized bandwidth under this paragraph must provide at least 30 days written notice prior to initiating such service in the bands listed herein to every 800 MHz public safety licensee with a base station in an affected National Public Safety Planning Advisory Committee Region, and every 800 MHz public safety licensee with a base station within 113 kilometers (70 miles) of an affected National Public Safety Planning Advisory Committee Region. Such notice shall include the estimated date upon which the EA-based 800 MHz SMR licensee intends to begin operations that exceed the channel spacing and authorized bandwidth in paragraph (b)(5) of this section.

Applicable Emission Masks

	Mask for equipment with audio low	Mask for equipment without audio low
Frequency band (MHz)	pass filter	pass filter
Below 25 ¹	A or B	A or C
25-50	В	С
72-76	В	С
150-174 ²	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854 ⁶	В	Н
809-824/854-869 ^{3 5}	В	G
896-901/935-940	1	J
902-928	к	к
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-5925 ⁴		
All other bands	В	С

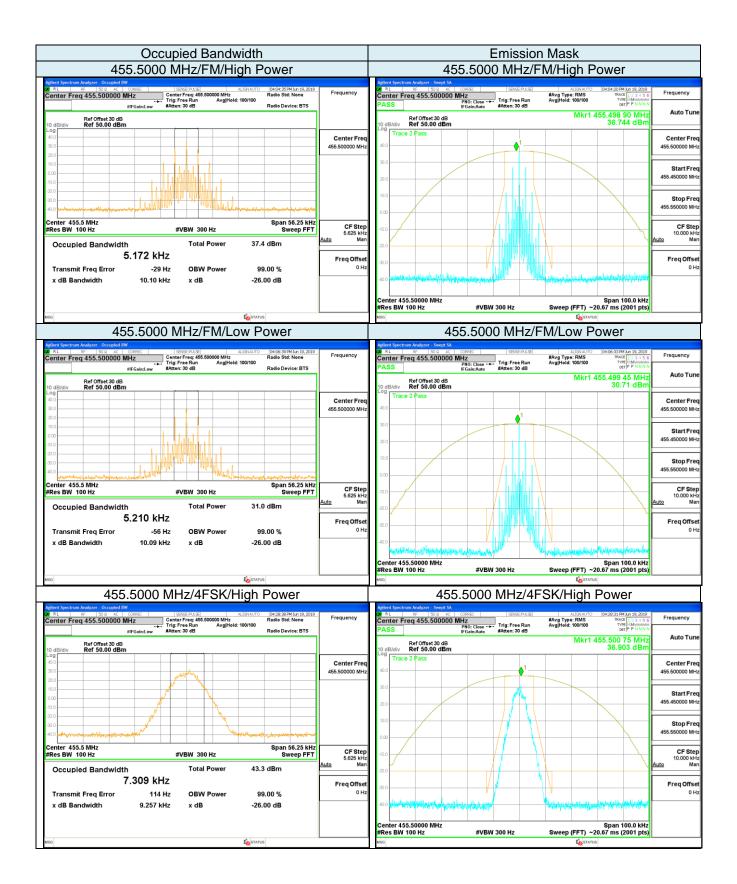
¹Equipment using single sideband J3E emission must meet the requirements of Emission Mask A. Equipment using other emissions must meet the requirements of Emission Mask B or C, as applicable.

²Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

³Equipment used in this licensed to EA or non-EA systems shall comply with the emission mask provisions of §90.691 of this chapter.

⁴DSRCS Roadside Units equipment in the 5850-5925 MHz band is governed under subpart M of this part.

⁵Equipment may alternatively meet the Adjacent Channel Power limits of §90.221


TEST RESULTS

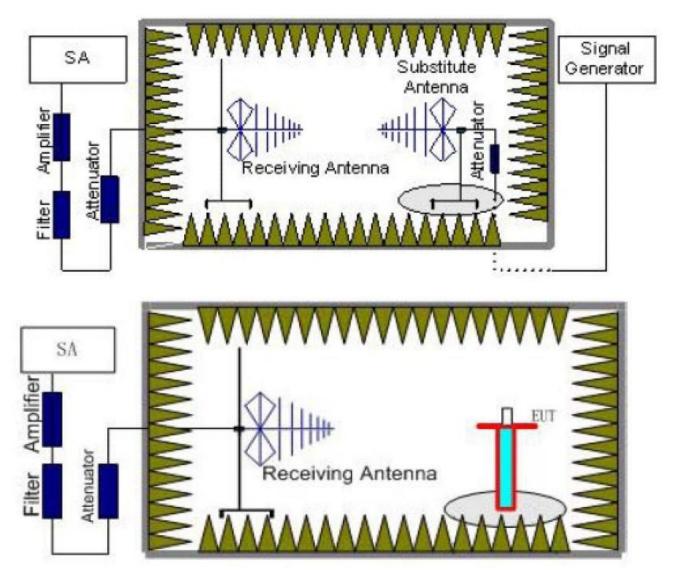
	Channel	Test	Reading(KHz)						
Modulation	Channel	Frequency	Frequency High Power Level			er Level			
Separation		(MHz)	99% OBW	-26dB EBW	99% OBW	-26dB EBW			
FM	12.5KHz	455.5000	5.17	10.10	5.21	10.09			
4FSK	12.5KHz	455.5000	7.31	9.26	7.44	9.20			
Limitation			11.2	25KHz	11.25KHz				
Result			F	ass	Pass				

Modulation	Channel Test Frequency Separation (MHz)		Reading	g(KHz)
Modulation			High Power Level	Low Power Level
FM	12.5KHz	455.5000	Pass	Pass
4FSK	12.5KHz	455.5000	Pass	Pass
	Limitation		Mask D	Mask D

Note:

- 1. All measured including cable loss and atten.
- 2. Please refer to following test plots;

Agilent Spectrum Analyzer - Occupied I	W				Agiler		Analyzer - Swept	SA	Hz/4F			h Power	-
RL RF 50 Q AC Center Freq 455.500000	MHz Cente Trig:	ENSE-PULSE er Freq: 455.500000 MHz Free Run Avg Holo h: 30 dB	ALIGNAUTO 04:29:09 PM3un 19, 2019 Radio Std: None d: 100/100 Radio Device: BTS	Frequency	PAS		RF 50Ω A	PNO: Close IFGain:Auto		#A un Av	ALIGNAUTO vg Type: RMS g Hold: 100/100	04:40:09 PM Jun 20, 2019 TRACE 1 2 3 4 5 TYPE MMWWW DET P P N N N 155.501 50 MH2	RF Input
10 dB/div Ref 50.00 dB	n				10 dl	Relia D	ef Offset 30 dB ef 50.00 dB				WIKE 1 4	30.76 dBm	
40.0 30.0		A		Center Freq 455.500000 MHz	40.0	Trace 2	Pass			1			
20.0					30.0					, 			
-10.0					20.0				A				RF Calibrato
40.0	and a second		and the second second second		0.00								0
Center 455.5 MHz #Res BW 100 Hz	#	VBW 300 Hz	Span 56.25 kHz Sweep FFT	CF Step 5.625 kHz	-10.0				H				External Gair Preamp Gair
Occupied Bandwid		Total Power	36.8 dBm	<u>Auto</u> Man	-20.0					\rightarrow		\	0.00 dE
Transmit Freg Error	7.444 kHz 101 Hz	OBW Power	99.00 %	Freq Offset 0 Hz	-30.0			/		-			Resto Input/Outp Defaul
x dB Bandwidth	9.204 kHz	x dB	-26.00 dB		-40.0			V			t w		
						ter 455.5 s BW 10	0000 MHz	#VBW	300 Hz	S	weep (FFT) ~2	Span 100.0 kHz 0.67 ms (2001 pts	
ASG			K STATUS		MSG						statu:		L


4.4. Field Strength Spurious Emissions

TEST APPLICABLE

According to the TIA/EIA 603D test method, and according to §95.635, the power of each unwanted emission shall be less than TransmittedPower as specified below:

- 1 At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- 2 At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- 3. At least $43 + 10 \log_{10} (T) dB$ on any frequency removed from the center of the authorized bandwidth by more than 250%.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyser or receiver. The level of the spurious emissions can be calculated

through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyser or receiver.

- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100KHz,VBW=300KHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=
$$P_{Mea}$$
- P_{Ag} - P_{cl} + G_a

It can omit power amplifier if signal generator level meets requirement;

This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

Subrar (GH	-	RBW	VBW	Sweep time (s)
0.00009/	-0.15	1KHz	3KHz	30
0.00015	-0.03	10KHz	30KHz	10
0.03~	·1 ·1	100KHz	300KHz	10
1~5		1 MHz	3 MHz	5

6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

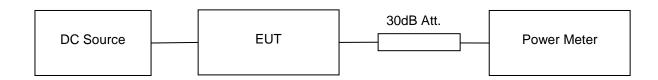
TEST LIMIT

According to §90.210 d) (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST RESULTS

Note : only the high power mode result in test report.

Note:


- 1. In general, the worst case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 9KHz to 5 GHz.
- 3. EIRP for measure frequency above 1 GHz and ERP for below 1 GHz.
- 4. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

Test Frequency: 406.5000MHz				Channel Separation:12.5KHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
813.00	-48.51	0.61	7.31	2.15	-43.96	-20.00	Н	
1219.50	-46.12	0.88	7.73	0.00	-39.27	-20.00	Н	
1626.00	-50.10	1.2	8.16	0.00	-43.14	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
813.00	-40.67	0.61	7.31	2.15	-36.12	-20.00	V	
1219.50	-41.40	0.88	7.73	0.00	-34.55	-20.00	V	
1626.00	-52.59	1.2	8.16	0.00	-45.63	-20.00	V	
•••	•••	•••	•••	•••	•••	•••	V	

Те	st Frequency	/: 455.5000M	Hz	Channel Separation:12.5KHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
901.00	-48.81	0.65	7.4	2.15	-44.21	-20.00	Н	
1351.50	-45.72	0.98	7.87	0.00	-38.83	-20.00	Н	
1802.00	-53.16	1.34	8.35	0.00	-46.15	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
901.00	-41.95	0.65	7.4	2.15	-37.35	-20.00	V	
1351.50	-41.39	0.98	7.87	0.00	-34.50	-20.00	V	
1802.00	-52.63	1.34	8.35	0.00	-45.62	-20.00	V	
•••	•••	•••	•••	•••	•••	•••	V	

Те	st Frequency	/: 509.5000M	Hz	Channel Separation:12.5KHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correction (dB)	Values (dBm)	Limit (dBm)	Polarization	
1019.00	-51.98	0.72	7.52	0.00	-45.18	-20.00	Н	
1528.50	-45.64	1.12	8.06	0.00	-38.70	-20.00	Н	
2038.00	-53.22	1.55	8.6	0.00	-46.17	-20.00	Н	
•••	•••	•••	•••	•••	•••	•••	Н	
1019.00	-44.72	0.72	7.52	0.00	-37.92	-20.00	V	
1528.50	-42.16	1.12	8.06	0.00	-35.22	-20.00	V	
2038.00	-51.64	1.55	8.6	0.00	-44.59	-20.00	V	
	•••	•••	•••	•••	•••	•••	V	

4.5. Conducted sprious emission result(at antenna terminal): <u>TEST CONFIGURATION</u>

TEST PROCEDURE

- 3) Connect the equipmet as illuastrated.
- 4) Set EUT working in continuous mode in low, middle, high frequency, read and record the peak power value.

TEST LIMIT

According to §90.210 d) (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST RESULTS

nt Spectru	um Analyzer - S	wept SA					
RL Fr			SENSE:P		ALIGNAUTO	04:01:25 PM Jun 19, 2019 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fa IFGain:L		un Avg H	old: 100/100	TYPE MWWWWWW DET PNNNN	Auto Turo
B/div						-29.626 dBm	
0			- X1				Center Freq
0							515.000000 MHz
·							
							Start Freq
						-20.00 dBm	30.000000 MHz
		141 1. 1		at the state of the	ويتعارفه والمحاد والمراجع		
							Stop Freq 1.000000000 GHz
		#	VBW 1.0 MHz		Sweep 1.3	Stop 1.0000 GHz 333 ms (20001 pts)	
		Х	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
N 1 N 1	f						Freq Offset
							0 Hz
						v	
					r 1		
	IB/div	Ref Offset 50 B/div Ref 40.00 Ref 2000 Ref 40.00 Ref 40.00 Ref 40.00	Ref Offset 30 dB B/div Ref 40.00 dBm Image: Second	Ref 50 Ω AC CORREC SENSE PR PN0: Fast	RF 50 Ω AC CORREC SENSE-PULSE PN0: Fast PN0: Fast Trig: Free Run Atten: 20 dB #AvgH4 Ref 00ffset 30 dB Ref 40.00 dBm I I I Ref 40.00 dBm I I I I I Image: Sense Pulse Image: SensePulse </td <td>RF 50 Q AC CORREC SENSE-PULSE ALIGNAUTO Date PN0: Fast +++ Trig: Free Run Atten: 20 dB #Avg Type: Log-Pwr Avg Hold: 100/100 Ref Offset 30 dB MI B/div Ref 40.00 dBm MI Image: Set in the set in the</td> <td>L RF SD Q AC CORREC SENSE PULSE ALIGNAUTO D4:01:25 PM:3un 19, 2019 Itter Freq 515.000000 MHz PNO: Fast Trig: Free Run HGain:Low Trig: Free Run Atten: 20 dB Mkr2 814.15 MHz Trig: 7:00 000 Mkr2 814.15 MHz -29, 626 dBm Ref 000 dBm 1 1 1 1 1 1 2 -20,00 dBm Ref 0.00 dBm 1</td>	RF 50 Q AC CORREC SENSE-PULSE ALIGNAUTO Date PN0: Fast +++ Trig: Free Run Atten: 20 dB #Avg Type: Log-Pwr Avg Hold: 100/100 Ref Offset 30 dB MI B/div Ref 40.00 dBm MI Image: Set in the	L RF SD Q AC CORREC SENSE PULSE ALIGNAUTO D4:01:25 PM:3un 19, 2019 Itter Freq 515.000000 MHz PNO: Fast Trig: Free Run HGain:Low Trig: Free Run Atten: 20 dB Mkr2 814.15 MHz Trig: 7:00 000 Mkr2 814.15 MHz -29, 626 dBm Ref 000 dBm 1 1 1 1 1 1 2 -20,00 dBm Ref 0.00 dBm 1

406.5000 MHz- 12.5KHz@30 MHz - 1000 MHz@Pass

406.5000 MHz- 12.5KHz@1000 MHz - 6000 MHz@Pass

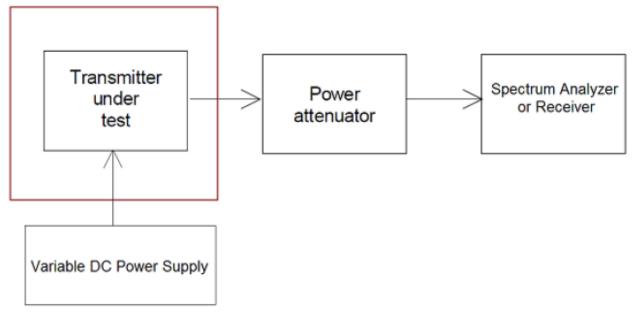
	Agilent	t Spect	rum An	alyzer - Sw	ept SA									
	LXI RL		RF			ORREC		SENSE	PULSE	40	ALIGN AUTO		PM Jun 19, 2019	Frequency
	Cent	ter F	req	515.000	0000 MI	HZ PNO: Fast	ны т	rig: Free	Run		Type: Log-Pwr Iold: 100/100	T	ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N N	
Fundamental						IFGain:Low		tten: 20	dB				DET P N N N N N	
Fundamentai			Bat	Offset 30	dD						M	kr2 914	.59 MHz	Auto Tune
	10 dE	3/div	Re	40.00	Bm							-30.7	786 dBm	
	Log						-	¥1						
	30.0													Center Freq
	20.0													515.000000 MHz
	10.0	<u> </u>												
	0.00	<u> </u>												Otherst Frank
	-10.0													Start Freq
	-20.0												20.00 dBm	30.000000 MHz
													\diamond^2	
	-30.0	-	منار وروالله	Augula and the	والمعاد والمعا	alla sullas sala	والإسلام الم		de la la la la com	a de la collecte de la falle d	a de la companya de l	and a little side and		Stop Freq
	-40.0	(a) of law							4 4 4 4 4					1.000000000 GHz
	-50.0													
	Stor	+ 20 (0 MH									Oton 4	.0000 GHz	
			1.0			#V	BW 1.0) MHz			Sween 1		20001 pts)	CF Step 97.000000 MHz
								0 IIII IL			-			Auto Man
		NODE T	RC SCL 1 f		× 456	.27 MHz	36	Y 6.655 dE		JNCTION	FUNCTION WIDTH	FUNC	TION VALUE	
	2	N ·	1 f			.59 MHz		.786 dE						
	3													Freq Offset
	5													0 Hz
	6													
	8													
	9 10													
	11												~	
	<										• 1		>	
	MSG											s		

455.5000 MHz- 12.5KHz@30 MHz - 1000 MHz@Pass

455.5000 MHz- 12.5KHz@1000 MHz - 6000 MHz@Pass

	Agilent Spectr	um Analyzer - Swe	ept SA				
	Center F	RF 50 Ω req 515.000	AC CORREC	SENSE:PULSE	ALIGN AUT #Avg Type: Log-Pv	Vr TRACE 1 2 3 4 5 6	Frequency
		•	PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold: 100/100	TYPE MWWWW DET P N N N N N	Auto Tune
Fundamental	10 dB/div	Ref Offset 30 Ref 40.00 c				-27.851 dBm	
	Log 30.0			¹			Center Freq
	20.0						515.000000 MHz
	10.0						
	0.00						Start Freq
	-10.0		A2			-20.00 dBm	30.000000 MHz
	-30.0	Restance of Landstein Million		and address to a solution form. Actors	المرابعة بعريد ليرتب والمرابع والمرابع	dente en internation de la contractione activa	
	-40.0			and a product product and a first second second		ad bin one of the expectation of the first one of a	Stop Freq 1.00000000 GHz
	-50.0						
	Start 30.0 #Res BW		#VE	SW 1.0 MHz	Sweep	Stop 1.0000 GHz 1.333 ms (20001 pts)	CF Step 97.000000 MHz
	MKR MODE TH	RC SCL	X	Y	FUNCTION FUNCTION WID		<u>Auto</u> Man
	1 N 1 2 N 1	f f	510.30 MHz 255.28 MHz	36.465 dBm -27.851 dBm			
	3 4						Freq Offset 0 Hz
	5 6 7						
	8 9						
	10						
	MSG						
	WibG					103	

509.5000 MHz- 12.5KHz@30 MHz - 1000 MHz@Pass


509.5000 MHz- 12.5KHz@1000 MHz - 6000 MHz@Pass

4.6. Frequency Stability

TEST CONFIGURATION

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to frequency meter. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

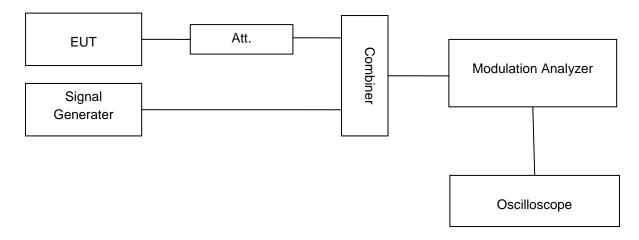
TEST APPLICABLE

- 1 According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +60°C centigrade.
- 2 According to FCC Part 2 Section 2.1055 (a) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3 Vary primary supply voltage from 85 to 115 percent of the nominal value; if manufacturer declares extreme voltage within 85 to 115 percent of the nominal value, measured at extreme voltage declared by manufacturer.

<u>LIMIT</u>

According to §95.621, Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%. Each GMRS transmitter for base station (except small base), mobile relay station or fixed station operation must be maintained within a frequency tolerance of 0.00025%.

According to §95.625, Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

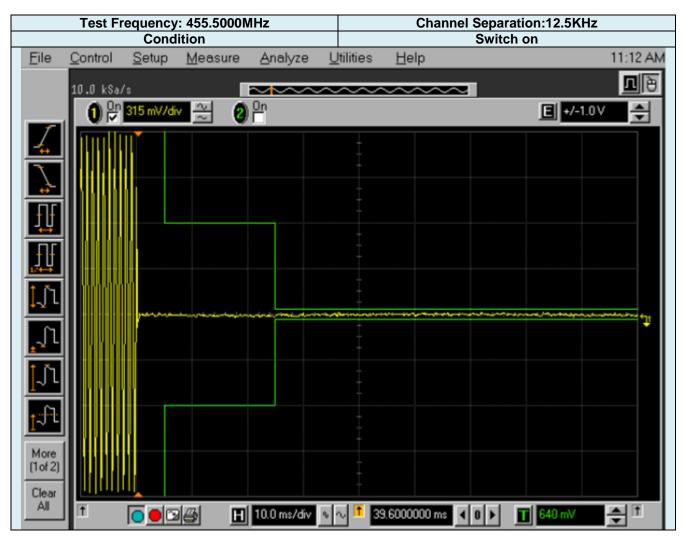

TEST RESULTS

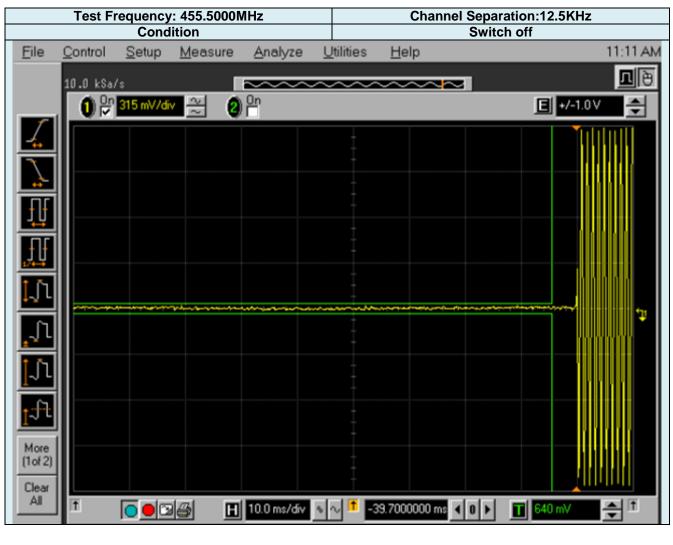
Test conditions		Frequency error (ppm)					
Voltage Condition	Temp(℃)	406.15 MHz	455.5000MHz	469.95MHz			
	-20	1.43	0.27	1.20			
	-10	1.04	0.79	0.99			
	0	0.42	1.19	1.20			
NV	10	1.28	0.52	1.22			
IN V	20	1.46	0.63	0.81			
	30	0.41	1.10	0.97			
	40	0.81	0.51	0.49			
	50	0.07	0.50	0.96			
LV	20	0.39	1.14	0.45			
HV	HV 20		0.84	0.67			
Limit(ppm)	Limit(ppm)			2.50			
Result		PASS	PASS	PASS			

NV: Normal Voltage 7.2V LV: Low Voltage 6.9V HV: High Voltage 8.4V

4.7. Transient Frequency Behavior

TEST CONFIGURATION


TEST PROCEDURE


- 1. Connect the EUT and test equipment as shown on the following block diagram.
- 2. Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- 3. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at \pm 12.5 kHz deviation and set its output level to -100dBm.
- 4. Turn on the transmitter.
- 5. Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P0.
- 6. Turn off the transmitter.
- 7. Adjust the RF level of the signal generator to provide RF power equal to P0. This signal generator RF level shall be maintained throughout the rest of the measurement.
- 8. Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- 9. Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions
- 10. vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- 11. Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be ton. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 12. Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

L	IM	IT

Time intervals	Maximum fraguanay difference	Requirement
	Maximum frequency difference	421 to 512 MHz
t1	±25.0KHz	5.0 ms
t2	±12.5KHz	20.0 ms
t3	±25.0KHz	5.0 ms

TEST RESULTS

.....End of Report.....