FCC TEST REPORT

For

Juniper Systems, Inc.

Smartphone

Test Model: CT5

Prepared for Address	Juniper Systems, Inc.1132 W 1700 N, Logan, Utah 84321, United States
Prepared by	 Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
Address	Bao'an District, Shenzhen, Guangdong, China
Tel	: (+86)755-82591330
Fax	: (+86)755-82591332
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample Number of tested samples Serial number Date of Test	 Oct 11, 2016 1 R4NRSK9T85HYGU9H Oct 11, 2016~Nov 02, 2016

: Nov 02, 2016

Date of Report

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 53

	FCC TEST REPORT	
]	FCC CFR 47 PART 15 E(15.407): 2015	
Report Reference No	: LCS1610110474E	
Date of Issue	: Nov 02, 2016	
Testing Laboratory Name	: Shenzhen LCS Compliance Tes	sting Laboratory Ltd.
Address	: 1/F., Xingyuan Industrial Park, T Bao'an District, Shenzhen, Guang	-
Testing Location/ Procedure	: Full application of Harmonised s Partial application of Harmonised Other standard testing method	d standards \Box
Applicant's Name	: Juniper Systems, Inc.	
Address	: 1132 W 1700 N, Logan, Utah 84	321, United States
Test Specification		
Standard	: FCC CFR 47 PART 15 E(15.407): 2015 / ANSI C63.10: 2013
Test Report Form No	: LCSEMC-1.0	
TRF Originator	: Shenzhen LCS Compliance Testi	ng Laboratory Ltd.
Master TRF	: Dated 2011-03	
This publication may be reproduced Shenzhen LCS Compliance Testi of the material. Shenzhen LCS C	sting Laboratory Ltd. All rights resceed in whole or in part for non-comming Laboratory Ltd. is acknowledged compliance Testing Laboratory Ltd. ta ages resulting from the reader's interpart context.	ercial purposes as long as the as copyright owner and source akes no responsibility for and
Test Item Description	: Smartphone	
Trade Mark	: Blackview	
Test Model	: CT5	
Ratings	: DC 3.8V by Li-ion Battery(4200	mAh)
	Recharge Voltage: DC 9V/2A	
Result	: Positive	
Compiled by:	Supervised by:	Approved by:

Calvin Weng

Calvin Weng/ Administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 53

FCC -- TEST REPORT

Test Report No. : LCS1610110474E

Nov 02, 2016

Date of issue

Test Model	: CT5
EUT	: Smartphone
Applicant	: Juniper Systems, Inc.
Address	: 1132 W 1700 N, Logan, Utah 84321, United States
Telephone	: /
Fax	:/
Manufacturer	: Shenzhen JEKO Technology Co.,LTD
Manufacturer	: Shenzhen JEKO Technology Co.,LTD: No.194 Mei Long Avenue, Long Hua New District, Shenzhen, China
Address	: No.194 Mei Long Avenue, Long Hua New District, Shenzhen, China
Address Telephone	 No.194 Mei Long Avenue, Long Hua New District, Shenzhen, China /
Address Telephone Fax	 No.194 Mei Long Avenue, Long Hua New District, Shenzhen, China / /
Address Telephone Fax Factory	 No.194 Mei Long Avenue, Long Hua New District, Shenzhen, China / / Shenzhen JEKO Technology Co.,LTD

	Test Result Positive
--	----------------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-11-02	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5 Repo	ort No.: LCS1610110474E
SHENZHEN LCS COMI LIANCE LESTING LABORATORI LID. FCC ID. VSFC15 Repor	M M 0 LC S 10 10 110 474 L

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. SUPPORT EQUIPMENT LIST	
1.3. External I/O	7
1.4. DESCRIPTION OF TEST FACILITY	
1.5. LIST OF MEASURING EQUIPMENT	8
1.6. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
1.7. MEASUREMENT UNCERTAINTY	
1.8. DESCRIPTION OF TEST MODES	9
2. TEST METHODOLOGY	11
2.1. EUT CONFIGURATION	11
2.2. EUT Exercise	
2.3. GENERAL TEST PROCEDURES	11
3. SYSTEM TEST CONFIGURATION	12
3.1. Justification	12
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. Equipment Modifications	
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	13
5. TEST RESULT	14
5.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	14
5.2. Power Spectral Density Measurement	
5.3. 6DB & 26DB BANDWIDTH MEASUREMENT	
5.4. RADIATED EMISSIONS MEASUREMENT	
5.5. Undesirable Emissions Measurement	
5.6. POWER LINE CONDUCTED EMISSIONS	
5.7. ANTENNA REQUIREMENTS	52

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: VSFCT5 Report No.: LCS1610110474E

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: Smartphone
Test Model	: CT5
Hardware Version	: V1.11
Software Version	: CT5_Blackview_V01_20160824
Power Supply	: DC 3.8V by Li-ion Battery(4200mAh)
	Recharge Voltage: DC 9V/2A
EUT Supports	2.4GHz WIFI/5G WIFI/Bluetooth/GSM/GPRS/EDGE/
Radios Application	WCDMA/LTE/GPS(RX)/NFC (RX)
Bluetooth	:
Operating Frequency	: 2.402-2.480GHz
Channel Number	: 79 channels for Bluetooth V3.0 (DSS)
	40 channels for Bluetooth V4.1 (DTS)
Channel Spacing	: 1MHz for Bluetooth V3.0 (DSS)
	2MHz for Bluetooth V4.1 (DTS)
Modulation Type	: GFSK, Pi/4-DQPSK, 8-DPSK for Bluetooth V3.0 (DSS)
	GFSK for Bluetooth V4.1 (DTS)
Bluetooth Version	: V4.1
Antenna Description	: PIFA Antenna, 1.8dBi (Max.)
WIFI(2.4GHz Band)	:
Operating Frequency	: 2412-2462MHz
Channel Spacing	: 5MHz
Channel Number	: 11 Channel for 20MHz bandwidth(2412~2462MHz)
	7 channels for 40MHz bandwidth(2422~2452MHz)
Modulation Type	: 802.11b: DSSS; 802.11g/n: OFDM
Antenna Description	: PIFA Antenna, 1.8dBi (Max.)
WIFI(5GHz Band)	:
Operating Frequency	: 5180.00-5240.00MHz / 5745.00-5825.00MHz
Channel Number	: 9 Channel for 20MHz Bandwidth

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 53

4 channels for 40MHz Bandwidth

Modulation Type : 802.11a/n: OFDM

Antenna Description

: PIFA Antenna, 1.5dBi(Max.) for 5.2G band 1.8dBi(Max.) for 5.8G band

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Shen Zhen Hua Jin Electronics Co,Ltd	Power Adapter	CT5		FCC VoC

1.3. External I/O

I/O Port Description	Quantity	Cable
Earphone Port	1	1.5m
USB Port	1	1m unshielded cable 0.1m OTG cable

1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

There is one 3m semi-anechoic chamber and one line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4: 2014, CISPR 22/EN 55022 and CISPR16-1-4 SVSWR requirements.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: VSFCT5 Report No.: LCS1610110474E

1.5. List Of Measuring Equipment

Instrument	Manufacture	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Jun 18, 2016	Jun 17, 2017
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	Jul 16, 2016	Jul 15, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
LISN	EMCO	3819/2NM	9703-1839	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	Jun 18, 2016	Jun 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz	Jun 18, 2016	Jun 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	Apr 18, 2016	Apr 17, 2017
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	Apr 18, 2016	Apr 17, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	Apr 18, 2016	Apr 17, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	Apr 18, 2016	Apr 17, 2017
By-log Antenna	SCHWARZBE	VULB9163	9163-470	30MHz-1GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	Apr 18, 2016	Apr 17, 2017
Horn Antenna	SCHWARZBE	BBHA9170	BBHA9170154	15GHz-40GHz	Apr 18, 2016	Apr 17, 2017
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	Jun 18, 2016	Jun 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	Jun 18, 2016	Jun 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	Jun 18, 2016	Jun 17, 2017
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	Jun 18, 2016	Jun 17, 2017
DC power Sourer	GW	GPC-6030D	C671845	DC 1V-60V	Jun 18, 2016	Jun 17, 2017
Temp. and Humidify Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	Jun 18, 2016	Jun 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	Jun 18, 2016	Jun 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	Jun 18, 2016	Jun 17, 2017
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	Jul 16, 2016	Jul 15, 2017
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	Oct 27, 2016	Oct 26, 2017
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	N/A	Nov 19, 2015	Nov 18, 2016
MXA Signal Analyzer	Agilent	N9020A	MY50510140	10Hz~26.5GHz	Oct 27, 2016	Oct 26, 2017
DC Power Supply	Agilent	E3642A	1	0-8V,5A/0-20V,2.5A	May 20, 2016	May 19, 2017
RF Control Unit	Tonscend	JS0806-1	1	1	Nov 19, 2015	Nov 18, 2016
LTE Test Software	Tonscend	JS1120-1	/	Version: 2.5.7.0	N/A	N/A
X-series USB Peak and Av erage Power Sensor Agilent	Agilent	U2021XA	MY54080022	/	Oct 27, 2016	Oct 26, 2017
4 Ch.Simultaneous Samplin g 14 Bits 2 MS/s	Agilent	U2531A	MY54080016	1	Oct 27, 2016	Oct 26, 2017
Test Software	Ascentest	AT890-SW	20141230	Version: 20160630	N/A	N/A
EMC Test Software	Audix	E3	1	1	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	1	Oct 27, 2016	Oct 26, 2017
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	/	Oct 27, 2016	Oct 26, 2017
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	1	Oct 27, 2016	Oct 26, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 53

1.6. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	••	150kHz~30MHz	1.63dB	(1)
Power disturbance	••	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description Of Test Modes

The EUT has been tested under operating condition.

The EUT was set to transmit at 100% duty cycle. This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in Y position.

For pre-testing, when performed power line conducted emission measurement, the input Voltage/Frequency AC 120V/60Hz and AC 240V/60Hz were used. Only recorded the worst case in this report.

Pre-test AC conducted emission at both power adapter and charge from PC mode, recorded worst case.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was determined to be 802.11a mode (High Channel, 5745-5825MHz Band).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was determined to be 802.11a mode(High Channel, 5745-5825MHz Band).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11a Mode: 6 Mbps, OFDM. IEEE 802.11n HT20 Mode: MCS0, OFDM. IEEE 802.11n HT40 Mode: MCS0, OFDM.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 9 of 53

Support Bandwidth For 5G WIFI Part:

Bandwidth Mode	20MHz	40MHz	80MHz
IEEE 802.11a	\mathbf{N}		
IEEE 802.11n HT20	$\overline{\mathbf{A}}$		
IEEE 802.11n HT40		N	

Channel & Frequency:

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	36	5180	44	5220
5190 5240MIL	38	5190	46	5230
5180~5240MHz	44	5220	48	5240
	42	5210	/	/
For 802.11a/n(HT	20), Channel 36,	40 and 48 were teste	ed.	
For 802.11n(HT4	0), Channel 38 and	d 46 were tested.		
	149	5745	155	5775
5745~5825MHz	151	5755	159	5795
3/43~3823IVITIZ	153	5765	161	5805
	157	5785	165	5825
For 802.11a/n(HT	20), Channel 149	, 157 and 165 were 1	tested.	
For 802.11n(HT40	0), Channel 151 an	nd 159 were tested.		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure 789033 D02 General UNII Test Procedures New Rules v01 is required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart E								
FCC Rules	Description of Test	Result						
§15.407(a)	Maximum Conducted Output Power	Compliant						
§15.407(a)	Power Spectral Density	Compliant						
§15.407(e)	6dB & 26dB Bandwidth	Compliant						
§15.205, §15.407(b)	Radiated Spurious Emissions and Band Edge	Compliant						
§15.407(g)	Frequency Stability	N/A						
§15.407(h)	Transmit Power Control (TPC)	N/A						
§15.207(a)	Line Conducted Emissions	Compliant						
§15.203	Antenna Requirements	Compliant						

Note: The customer declared frequency stability is better than 20ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

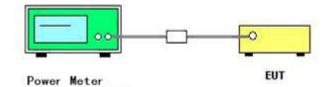
5. TEST RESULT

5.1. Maximum Conducted Output Power Measurement

5.1.1. Standard Applicable

According to §15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.


According to §15.407(a)(1)(iv), For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

According to §15.407(a)(3), For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

5.1.2. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

5.1.3. Test Setup Layout

5.1.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.5. Test Result of Maximum	Conducted Output Power
-------------------------------	------------------------

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	802.11a/n

Maximum Conducted Output Power Measurement Result for 5180~5240MHz Band

Mode	Channel	Frequency (MHz)	Conducted Power (dBm, Average)	Max. Limit (dBm)	Result
	36	5180	14.73	24	Complies
802.11a	44	5220	14.88	24	Complies
	48	5240	14.60	24	Complies
	36	5180	14.26	24	Complies
802.11n(HT20)	44	5220	14.55	24	Complies
	48	5240	14.38	24	Complies
902 11c(UT40)	38	5190	14.68	24	Complies
802.11n(HT40)	46	5230	14.59	24	Complies

Maximum Conducted Output Power Measurement Result for 5745~5825MHz Band

Mode	Channel	Frequency (MHz)	Conducted Power (dBm, Average)	Max. Limit (dBm)	Result
	149	5745	14.80	30	Complies
802.11a	157	5785	14.75	30	Complies
	165	5825	15.14	30	Complies
	149	5745	14.72	30	Complies
802.11n(HT20)	157	5785	14.68	30	Complies
	165	5825	15.02	30	Complies
902 11p(UT40)	151	5755	14.06	30	Complies
802.11n(HT40)	159	5795	13.73	30	Complies

5.2. Power Spectral Density Measurement

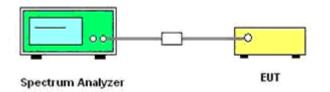
5.2.1. Standard Applicable

According to \$15.407(a)(1)(i), For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

According to §15.407(a)(1)(ii), For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

According to §15.407(a)(1)(iv), For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

According to §15.407(a)(3), For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.


5.2.2. Test Procedures

- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

3) Set the RBW/VBW = 1MHz/3MHz For the 5.15-5.25GHz band;

Set the RBW/VBW = 100 KHz/300 KHz For the 5.725-5.85GHz band.

- 4) Set the span to encompass the entire emission bandwidth of the signal.
- 5) Detector = RMS.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.
- 5.2.3. Test Setup Layout

5.2.4. EUT Operation during Test

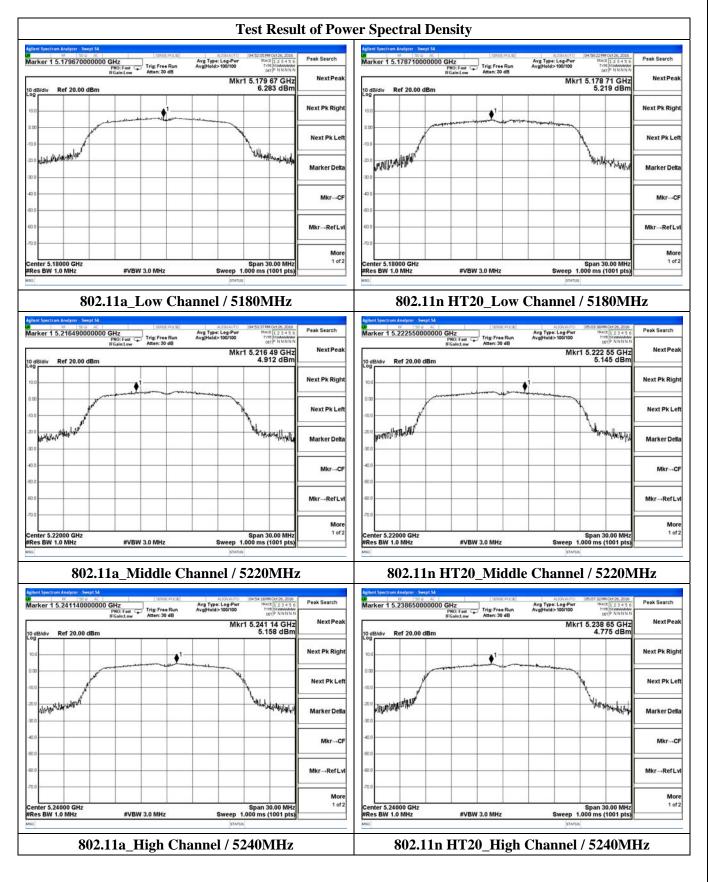
The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 53

5.2.5. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	802.11a/n

Power Spectral Density Measurement Result for 5180~5240MHz Band

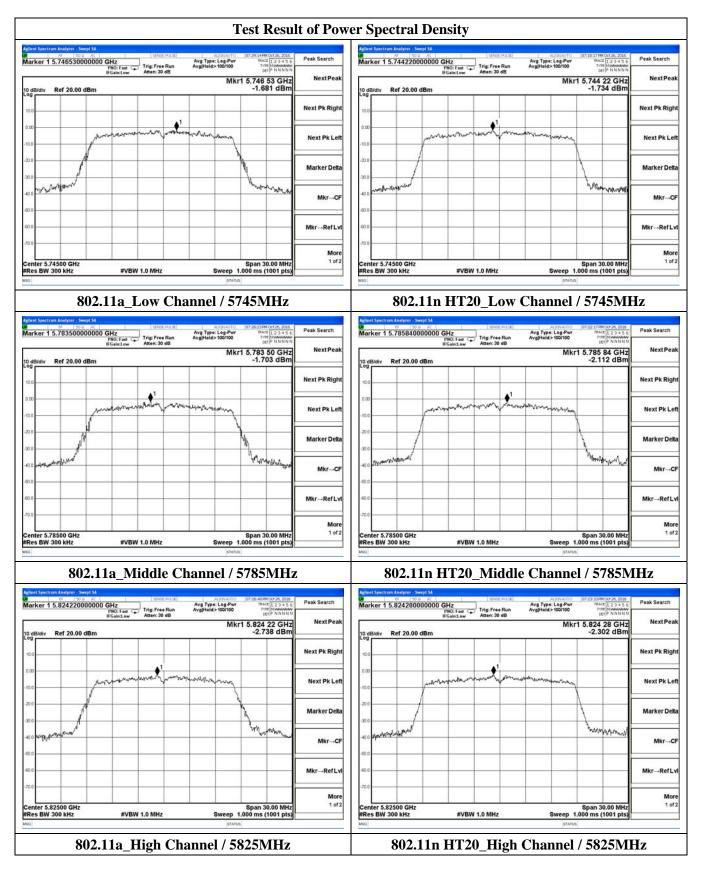

Mode	Channel	Frequency (MHz)	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
	36	5180	6.283	11	Complies
802.11a	44	5220	4.912	11	Complies
	48	5240	5.158	11	Complies
	36	5180	5.219	11	Complies
802.11n(HT20)	44	5220	5.145	11	Complies
	48	5240	4.775	11	Complies
902 11p(UT40)	38	5190	2.823	11	Complies
802.11n(HT40)	46	5230	2.393	11	Complies

Power Spectral Density Measurement Result for 5745~5825MHz Band

Mode	Channel	Frequency (MHz)	Power Density (dBm/300KHz)	BW correction factor	Power Density (dBm/500KHz)	Max. Limit (dBm/500KHz)	Result
	149	5745	-1.681	2.218	0.537	30	Complies
802.11a	157	5785	-1.703	2.218	0.515	30	Complies
	165	5825	-2.738	2.218	-0.520	30	Complies
	149	5745	-1.734	2.218	0.484	30	Complies
802.11n(HT20)	157	5785	-2.112	2.218	0.106	30	Complies
	165	5825	-2.302	2.218	-0.084	30	Complies
902 11 ₂ (UT40)	151	5755	-4.788	2.218	-2.570	30	Complies
802.11n(HT40)	159	5795	-5.642	2.218	-3.424	30	Complies

Note: BW correction factor = $10\log (500 \text{ kHz/RBW}) = 10 \log (500 \text{ kHz/300KHz})$ The measured power density (dBm) has the offset with cable loss already. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5

Report No.: LCS1610110474E



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 53

				ty				lt of Pow	kesul	est l	Ĩ					
Peak Search	05:19:11PM Oct 26, 2016 TRACE 1 2 3 4 5 6 TYPE NUMMENT	ype: Log-Pwr eld> 100/100	Avg T Run Avg He	Trig: Free	0000 GHz PNO: Fai	1 5.22508000		Peak Search	T 2 3 4 5 6	TYPE	vg Type: Log-Pwr rg[Hold>100/100	e Run		PNO: Fast	50 € AC 34200000000	
NextP	1 5.225 08 GHz 2.393 dBm	Mkr1	65	ow Atten: 30	IFGain:Lo Bm	Ref 20.00 d	10 dB/div	Next Peak		1 5.193	Mkr) es	Atten: 3	IFGain:Low	20.00 dBm	Bídiv F
Next Pk R				▲1			10.0	Next Pk Right				•1				
Next Pk I		a men bakenti kut	1 promiser of the second	Manuel anno A		Ĵ	-10.0	Next Pk Left			and the second	wil.	armission		1	
Marker D	have the man					niplimical NYANA	-20.0	Marker Delta	h-mani	herein					per/	1 46 170955
Mkr-							-40.0	Mkr→CF								
Mkr→Ref				_		_	-60.0	Mkr→RefLvl			_			_		
M 1	Span 60.00 MHz 000 ms (1001 pts)	Sweep 1(IVBW 3.0 MHz		.23000 GHz		More 1 of 2	0.00 MHz	Span 60 .000 ms (1	Sween 1		3W 3.0 MHz	#VB		ter 5.19
	ood his (1001 prs)	Sweep 1.		VBW 5.0 MHz		1.0 Minz	MSG		loor prs)		SWEEP		544 3.0 MHZ		nz.	5 DW 1.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5

Report No.: LCS1610110474E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 53

ent Spectrum Analyzer - Swept SA	GH2	Automauto Avg Type: Log-Pwr	07:10-40 PM Oct.26, 2016 TRACE 1 2 3 4 5 6	Peak Search	Agilent Spectrum Analyzer - Swept S 30 R 50 0 A Marker 1 5.7876800000	C 189456.5	Avg Type: Log-Pwr	07:16:36 PM Oct 26, 2016 TRACE 1 2 3 4 5 6	Peak Search
dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB	Avg Held>100/100	r1 5.760 88 GHz -4.788 dBm	NextPeak	10 dB/div Ref 20.00 dBr	PNO: Fast Trig: Free I IFGain:Low Atten: 30 d	Run AvgjHeid>100/100 iB	r1 5.787 68 GHz -5.642 dBm	NextPe
0				Next Pk Right	10.0				Next Pk Rig
0		1 mmmanne		Next Pk Left	-10.0	manshimmer	montententente		Next Pk L
0				Marker Delta	-20.0				Marker D
o non non non			horamerica	Mkr→CF	40.0 putter monthesit			Justice March	Mkr-
0				Mkr→RefLvl	-60.0				Mkr→Ref
onter 5.75500 GHz es BW 300 kHz	#VBW 1.0 MHz	Sweep	Span 60.00 MHz 1.000 ms (1001 pts)	More 1 of 2	Center 5.79500 GHz #Res BW 300 kHz	#VBW 1.0 MHz	Sweep	Span 60.00 MHz 1.000 ms (1001 pts)	M 1
		STATU			MSG		STATU		-

5.3. 6dB & 26dB Bandwidth Measurement

5.3.1. Standard Applicable

According to §15.407(e): Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

There is no restriction limits for 26dB & 99% occupied bandwidth, report only for reference.

5.3.2. Instruments Setting

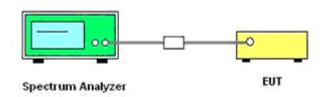
The following table is the setting of the Spectrum Analyzer.

6dB Bandwidth Measurement (Only For 5745~5825MHz Band)			
Spectrum Parameter	Setting		
Attenuation	Auto		
RBW	100KHz		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

26dB & 99%Bandwidth Measurement (Only For 5180~5240MHz Band)			
Spectrum Parameter	Setting		
Attenuation	Auto		
RBW	approximately 1% of the emission bandwidth		
VBW	≥ RBW		
Detector	Peak		
Trace	Max Hold		

5

5.3.3. Test Procedures

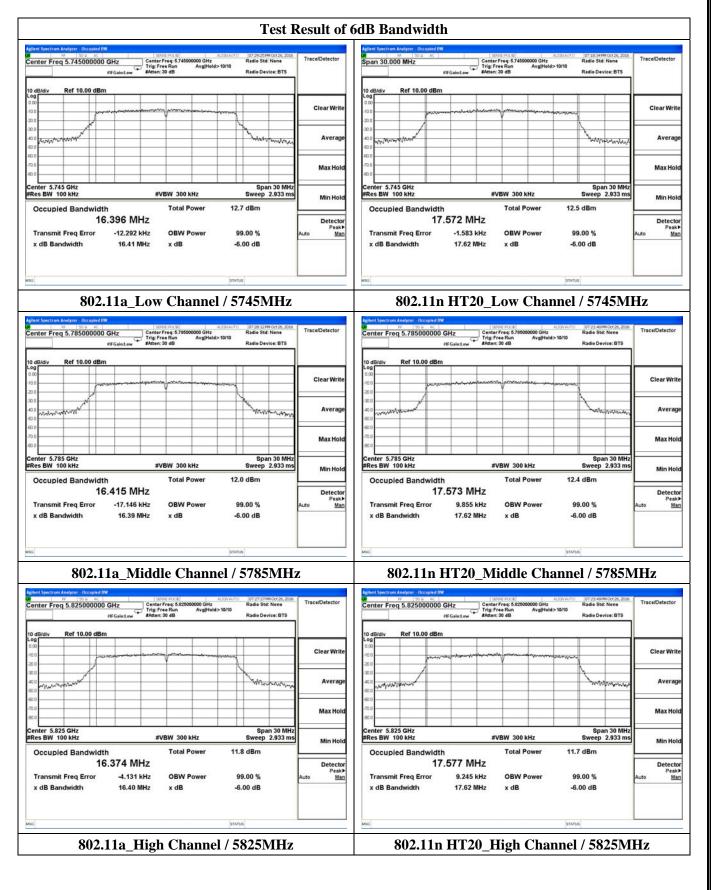

1) The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.

2) The resolution bandwidth and the video bandwidth were set according to KDB 789033 D02 General UNII Test Procedures New Rules v01

3) For 5745~5825MHz Band, Measured the maximum width of the emission that is 6dB down from the peak of the emission.

4) For 5180~5240MHz Band, Measured the maximum width of the emission that is 26dB down from the peak of the emission. Record the 26dB & 99% Bandwidth.

5.3.4. Test Setup Layout


5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Chaz	Configurations	802.11a/n

Mode	Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
	149	5745	16.41	500	Complies
802.11a	157	5785	16.39	500	Complies
	165	5825	16.40	500	Complies
	149	5745	17.62	500	Complies
802.11n(HT20)	157	5785	17.62	500	Complies
	165	5825	17.62	500	Complies
902 11p/UT40)	151	5755	36.38	500	Complies
802.11n(HT40)	159	5795	36.39	500	Complies

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 53

Agilent Spectrum Analyzer - Occupied B		o oraș al al			ult of (Agient Spectrum Analyzer - Occupied BW		80.000 AL		1997) 1997	
VBW 300.00 kHz	PIFGain:Low SAtten:		dis 10/10 Radio Std: None d> 10/10 Radio Device: BTS	Trace	Detector	Center Freq 5.795000000 G	Iz Cente Trig:F	r Freq: 5.795000000 GHz ree Run Avg Held: : 30 dB	ALEXANDO 07:16:32PM oct 26, 2016 Radio Std: None >10/10 Radio Device: BTS	Trace/Det	ector
0.00				•	Clear Write	0.00				Clea	r Writ
30.0 40.0 50.0			An and a second second		Average	30.0 40.0 50.0				A	verag
60.0 -70.0 					Max Hold	-60.0				Ma	ax Hol
Center 5.755 GHz Res BW 100 kHz	#\	/BW 300 kHz	Span 60 MHz Sweep 5.8 ms		Min Hold	Center 5.795 GHz #Res BW 100 kHz		VBW 300 kHz	Span 60 MHz Sweep 5.8 ms	M	in Hol
Occupied Bandwidt	h	Total Power	13.1 dBm	-	38-494.00348	Occupied Bandwidth		Total Power	12.4 dBm		ountrs
35 Transmit Freq Error	5.897 MHz -13.242 kHz	OBW Power	99.00 %	Auto	Detector Peak⊁ Man	35.8 Transmit Freq Error	7.052 kHz	OBW Power	99.00 %		etecto Peak <u>Ma</u>
x dB Bandwidth	36.38 MHz	x dB	-6.00 dB			x dB Bandwidth	36.39 MHz	x dB	-6.00 dB		
460			STATUS	L		MSO			STATUS		
802.111	n HT40_L	low Cha	nnel / 5755M	Hz		802.11n	HT40_H	ligh Cha	nnel / 5795M	Hz	

Mode	Channel	Frequency (MHz)	26dB BW (MHz)	99% BW (MHz)	Limit
	36	5180	22.27	16.85	
802.11a	44	5220	22.57	16.87	
	48	5240	22.19	16.79	
	36	5180	26.98	17.79	Non analified
802.11n(HT20)	44	5220	26.01	17.73	Non-specified
	48	5240	25.79	17.76	
902 11p/UT40)	38	5190	55.16	36.11	
802.11n(HT40)	46	5230	50.24	36.13	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 53

	Hz Cente	ree Run Avg Hold:	ALIONAUTO 05:17:25 PM Oct 26, 2016 Radie Std: None > 10/10 Radie Device: BTS	Tra	ace/Detector	evice: BTS	ace/Detecto
dB/div Ref 10.00 dBm	manne				Clear Write	c	ClearW
0 provence no			makene		Average	Josho Salaria	Aver
0					Max Hold		Max H
enter 5.19 GHz Res BW 430 kHz		VBW 1.5 MHz	Span 60 MHz Sweep 1 ms	F	Min Hold	an 60 MHz veep 1 ms	Min H
Occupied Bandwidth		Total Power	14.9 dBm		2010/01/2010		356501.53
Transmit Freq Error	6.417 kHz	OBW Power	99.00 %	Auto	Detector Peak► <u>Man</u>	Auto	Detec Pe
x dB Bandwidth	55.16 MHz	x dB	-26.00 dB				
			STATUS	-			

5.4. Radiated Emissions Measurement

5.4.1. Standard Applicable

According to §15.407 (b)(1) to (6):

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz (68.3dBuV/m at 3m).

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz (68.3dBuV/m at 3m).

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.4.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

5.4.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz $\,$

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

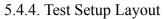
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

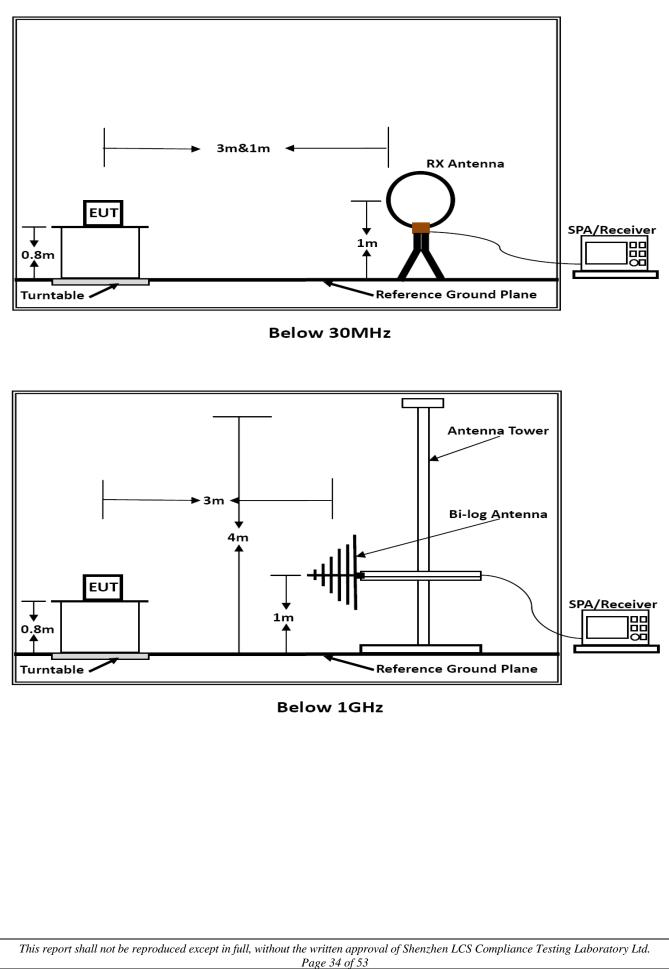
--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

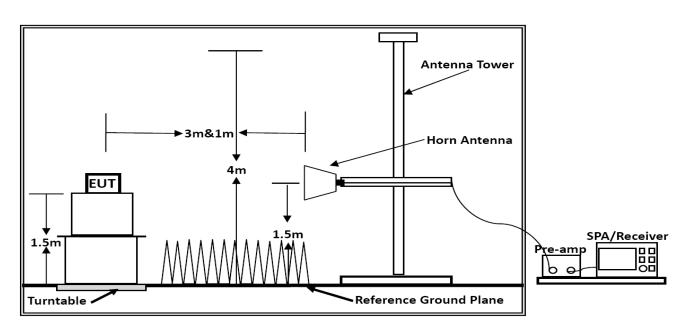
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.


Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

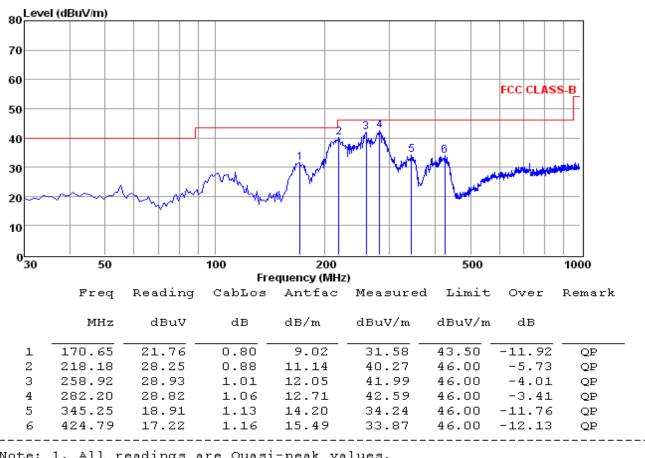
Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.0. Results of Radiated Emissions (7 RTZ 500012)					
Temperature	25°C	Humidity	60%		
Test Engineer	Chaz	Configurations	802.11a/n		

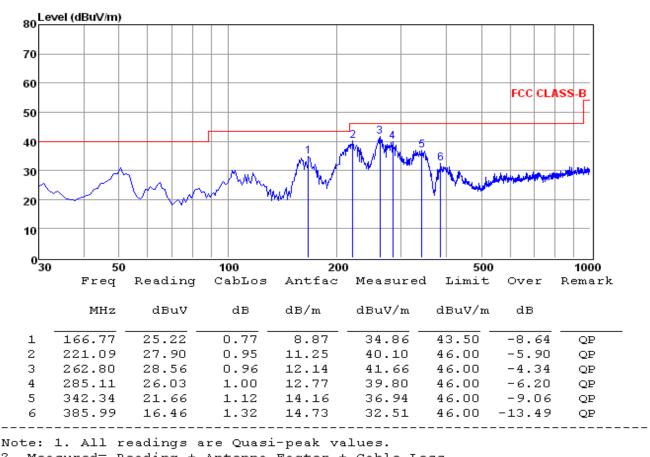

5.4.6. Results of Radiated Emissions	(9 kHz~30MHz)
--------------------------------------	---------------

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The radiated emissions from 9 kHz to 30MHz are at least 20dB below the official limit and no need to report.

5.4.7. Results of Radiated Emissions (30MHz~1GHz) Note: Only record the worst test result in this report.


Note: 1. All readings are Quasi-peak values.

Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 53

SFCT5 Report No.: LCS1610110474E

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

***Note:

Pre-scan all modes and recorded the worst case results in this report (802.11a mode (High Channel, 5745-5825MHz Band)).

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Only recorded the worst test case in this report. 5.4.8. Results for Radiated Emissions (Above 1GHz)

Note: Only recorded the worst test result in this report.

The Worst Test Result For 5180~5240MHz Band.

802.11a / Channel 36

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.53	33.21	35.82	9.52	52.44	74	-21.56	Peak	Horizontal
10.36	34.86	33.21	35.82	9.52	41.77	54	-12.23	Average	Horizontal
10.36	46.79	32.82	35.82	9.52	53.31	74	-20.69	Peak	Vertical
10.36	35.10	32.82	35.82	9.52	41.62	54	-12.38	Average	Vertical

802.11a / Channel 44

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.97	33.21	35.82	9.52	52.88	74	-21.12	Peak	Horizontal
10.44	35.19	33.21	35.82	9.52	42.10	54	-11.90	Average	Horizontal
10.44	46.97	32.82	35.82	9.52	53.49	74	-20.51	Peak	Vertical
10.44	35.74	32.82	35.82	9.52	42.26	54	-11.74	Average	Vertical

802.11a / Channel 48

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.69	33.21	35.82	9.52	53.60	74	-20.40	Peak	Horizontal
10.48	35.90	33.21	35.82	9.52	42.81	54	-11.19	Average	Horizontal
10.48	47.82	32.82	35.82	9.52	54.34	74	-19.66	Peak	Vertical
10.48	36.20	32.82	35.82	9.52	42.72	54	-11.28	Average	Vertical

FCC ID: VSFCT5 Report No.: LCS1610110474E

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.36	45.31	33.21	35.82	9.52	52.22	74	-21.78	Peak	Horizontal
10.36	34.34	33.21	35.82	9.52	41.25	54	-12.75	Average	Horizontal
10.36	46.47	32.82	35.82	9.52	52.99	74	-21.01	Peak	Vertical
10.36	34.83	32.82	35.82	9.52	41.35	54	-12.65	Average	Vertical

802.11n (HT20) / Channel 36

802.11n (HT20) / Channel 44

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.44	45.86	33.21	35.82	9.52	52.77	74	-21.23	Peak	Horizontal
10.44	34.75	33.21	35.82	9.52	41.66	54	-12.34	Average	Horizontal
10.44	46.87	32.82	35.82	9.52	53.39	74	-20.61	Peak	Vertical
10.44	35.30	32.82	35.82	9.52	41.82	54	-12.18	Average	Vertical

802.11n (HT20) / Channel 48

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.48	46.37	33.21	35.82	9.52	53.28	74	-20.72	Peak	Horizontal
10.48	35.52	33.21	35.82	9.52	42.43	54	-11.57	Average	Horizontal
10.48	47.46	32.82	35.82	9.52	53.98	74	-20.02	Peak	Vertical
10.48	35.92	32.82	35.82	9.52	42.44	54	-11.56	Average	Vertical

FCC ID: VSFCT5 Report No.: LCS1610110474E

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.38	45.87	33.21	35.82	9.52	52.78	74	-21.22	Peak	Horizontal
10.38	35.12	33.21	35.82	9.52	42.03	54	-11.97	Average	Horizontal
10.38	47.25	32.82	35.82	9.52	53.77	74	-20.23	Peak	Vertical
10.38	35.64	32.82	35.82	9.52	42.16	54	-11.84	Average	Vertical

802.11n (HT40) / Channel 38

802.11n (HT40) / Channel 46

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
10.46	46.10	33.21	35.82	9.52	53.01	74	-20.99	Peak	Horizontal
10.46	35.52	33.21	35.82	9.52	42.43	54	-11.57	Average	Horizontal
10.46	47.19	32.82	35.82	9.52	53.71	74	-20.29	Peak	Vertical
10.46	35.67	32.82	35.82	9.52	42.19	54	-11.81	Average	Vertical

Notes:

- 1. Measuring frequencies from 9k~40GHz, No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 30MHz~40GHz were made with an instrument using Peak detector mode.
- 3. The radiated emissions from 18GHz to 40GHz are at least 20dB below the official limit and no need to report.

The Worst Test Result For 5745~5825MHz Band.

802.11a / Channel 149

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	47.05	33.92	36.09	10.26	55.14	74	-18.86	Peak	Horizontal
11.49	36.43	33.92	36.09	10.26	44.52	54	-9.48	Average	Horizontal
11.49	48.03	33.99	35.99	10.26	56.29	74	-17.71	Peak	Vertical
11.49	36.82	33.99	35.99	10.26	45.08	54	-8.92	Average	Vertical

802.11a / Channel 157

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	46.55	33.92	36.09	10.26	54.64	74	-19.36	Peak	Horizontal
11.57	35.85	33.92	36.09	10.26	43.94	54	-10.06	Average	Horizontal
11.57	47.68	33.99	35.99	10.26	55.94	74	-18.06	Peak	Vertical
11.57	36.28	33.99	35.99	10.26	44.54	54	-9.46	Average	Vertical

802.11a / Channel 165

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	46.40	33.92	36.09	10.26	54.49	74	-19.51	Peak	Horizontal
11.65	35.85	33.92	36.09	10.26	43.94	54	-10.06	Average	Horizontal
11.65	47.51	33.99	35.99	10.26	55.77	74	-18.23	Peak	Vertical
11.65	36.01	33.99	35.99	10.26	44.27	54	-9.73	Average	Vertical

FCC ID: VSFCT5 Report No.: LCS1610110474E

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.49	46.78	33.92	36.09	10.26	54.87	74	-19.13	Peak	Horizontal
11.49	35.97	33.92	36.09	10.26	44.06	54	-9.94	Average	Horizontal
11.49	48.07	33.99	35.99	10.26	56.33	74	-17.67	Peak	Vertical
11.49	36.88	33.99	35.99	10.26	45.14	54	-8.86	Average	Vertical

802.11n (HT20) / Channel 149

802.11n (HT20) / Channel 157

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.57	46.85	33.92	36.09	10.26	54.94	74	-19.06	Peak	Horizontal
11.57	36.44	33.92	36.09	10.26	44.53	54	-9.47	Average	Horizontal
11.57	48.15	33.99	35.99	10.26	56.41	74	-17.59	Peak	Vertical
11.57	36.80	33.99	35.99	10.26	45.06	54	-8.94	Average	Vertical

802.11n (HT20) / Channel 165

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.65	46.44	33.92	36.09	10.26	54.53	74	-19.47	Peak	Horizontal
11.65	35.94	33.92	36.09	10.26	44.03	54	-9.97	Average	Horizontal
11.65	47.58	33.99	35.99	10.26	55.84	74	-18.16	Peak	Vertical
11.65	36.36	33.99	35.99	10.26	44.62	54	-9.38	Average	Vertical

FCC ID: VSFCT5 Report No.: LCS1610110474E

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.51	50.09	33.92	36.09	10.26	58.18	74	-15.82	Peak	Horizontal
11.51	39.04	33.92	36.09	10.26	47.13	54	-6.87	Average	Horizontal
11.51	50.91	33.99	35.99	10.26	59.17	74	-14.83	Peak	Vertical
11.51	39.45	33.99	35.99	10.26	47.71	54	-6.29	Average	Vertical

802.11n (HT40) / Channel 151

802.11n (HT40) / Channel 159

Freq. GHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
11.59	49.51	33.92	36.09	10.26	57.60	74	-16.40	Peak	Horizontal
11.59	38.75	33.92	36.09	10.26	46.84	54	-7.16	Average	Horizontal
11.59	50.63	33.99	35.99	10.26	58.89	74	-15.11	Peak	Vertical
11.59	39.22	33.99	35.99	10.26	47.48	54	-6.52	Average	Vertical

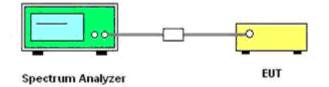
Notes:

- 1. Measuring frequencies from 9k~40GHz, No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 30MHz~40GHz were made with an instrument using Peak detector mode.
- 3. The radiated emissions from 18GHz to 40GHz are at least 20dB below the official limit and no need to report.

5.5. Undesirable Emissions Measurement

5.5.1 Test Requirements

According to ξ 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:


- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018.

- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

5.5.2 Test Configuration

5.5.3 Test Procedure

According to KDB789033 D02 General UNII Test Procedures New Rules v01 Section G: Unwanted Emission Measurement

- 1. Unwanted Emissions in the Restricted Bands
 - a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
 - b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
 - c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5 Report No.: LCS1610110474E

average limit, then average measurements are not required.

- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
 - (i) E[dBµV/m] = EIRP[dBm] 20 log (d[meters]) + 104.77, where E = field strength and d = distance at which field strength limit is specified in the rules;
 - (ii) $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.
- 2. Unwanted Emissions that fall Outside of the Restricted Bands
 - a) For all measurements, follow the requirements in section II.G.3. "General Requirements for Unwanted Emissions Measurements."
 - b) At frequencies below 1000 MHz, use the procedure described in section II.G.4. "Procedure for Unwanted Emissions Measurements below 1000 MHz."
 - c) At frequencies above 1000 MHz, use the procedure for maximum emissions described in section II.G.5., "Procedure for Unwanted Maximum Unwanted Emissions Measurements Above 1000 MHz."
 - (i) Section 15.407(b) (1-3) specifies the unwanted emissions limit for the U-NII-1 and 2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz. However, an out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz dBm/MHz peak emission limit.
 - (ii) Section 15.407(b) (4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b) (4) (i). An alternative to the band emissions mask is specified in Section 15.407(b) (4) (ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the alternative limit.
 - d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
 - (i) $EIRP = ((E \times d)^{2}) / 30$

Where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotopically radiated power in watts;
- (ii) Working in dB units, the above equation is equivalent to:

EIRP [dBm] = E [dB μ V/m] + 20 log (d [meters]) - 104.77

(iii) Or, if d is 3 meters:

 $EIRP [dBm] = E [dB\mu V/m] - 95.23$

5.5.4. Test Results

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5 Report No.: LCS1610110474E

	IEEE 802.11a							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
4500.000	-53.748	1.50	42.98	Peak	74.00	PASS		
5150.000	-46.328	1.50	50.40	Peak	74.00	PASS		
5350.000	-50.331	1.50	46.40	Peak	74.00	PASS		
5460.000	-51.824	1.50	44.91	Peak	74.00	PASS		

	IEEE 802.11n HT20								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
4500.000	-53.119	1.50	43.61	Peak	74.00	PASS			
5150.000	-45.827	1.50	50.90	Peak	74.00	PASS			
5350.000	-52.977	1.50	43.75	Peak	74.00	PASS			
5460.000	-51.175	1.50	45.56	Peak	74.00	PASS			

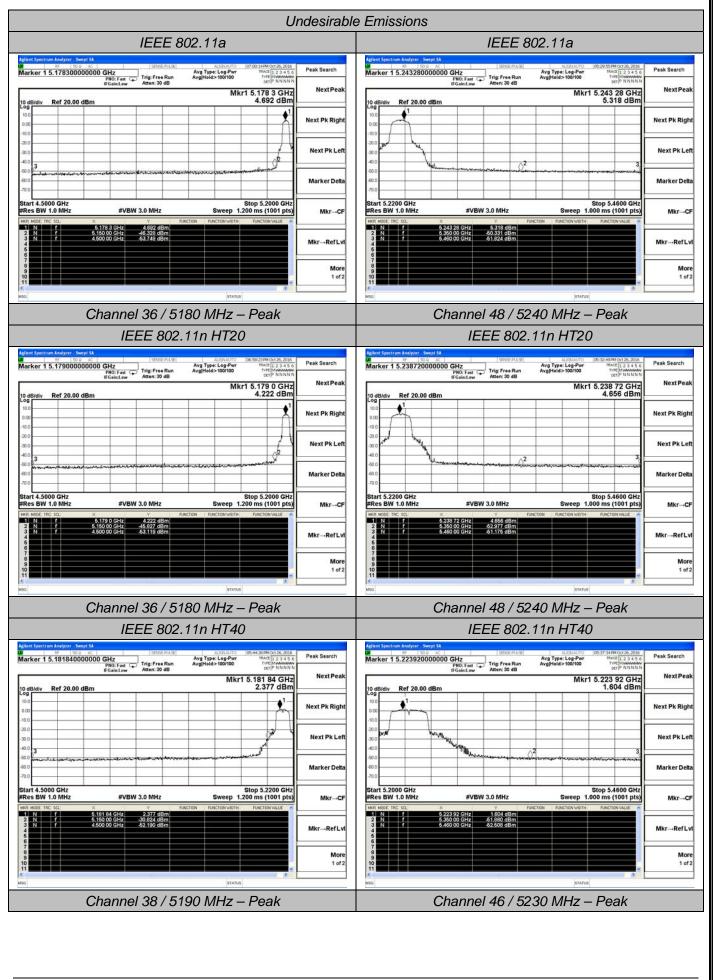
	IEEE 802.11n HT40								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
4500.000	-52.190	1.50	44.54	Peak	74.00	PASS			
5150.000	-30.824	1.50	65.91	Peak	74.00	PASS			
5350.000	-51.880	1.50	44.85	Peak	74.00	PASS			
5460.000	-52.508	1.50	44.22	Peak	74.00	PASS			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 46 of 53

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: VSFCT5 Report No.: LCS1610110474E

	IEEE 802.11a							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Verdict		
5650.000	-48.991	1.80	-47.191	Peak	-27.000	PASS		
5700.000	-46.307	1.80	-44.507	Peak	-37.000	PASS		
5720.000	-37.958	1.80	-36.158	Peak	15.600	PASS		
5725.000	-35.891	1.80	-34.091	Peak	27.000	PASS		
5850.000	-43.917	1.80	-42.117	Peak	27.000	PASS		
5855.000	-45.725	1.80	-43.925	Peak	15.600	PASS		
5875.000	-48.332	1.80	-46.532	Peak	-37.000	PASS		
5925.000	-50.833	1.80	-49.033	Peak	-27.000	PASS		

	IEEE 802.11n HT20							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Verdict		
5650.000	-49.701	1.80	-47.901	Peak	-27.000	PASS		
5700.000	-46.008	1.80	-44.208	Peak	-37.000	PASS		
5720.000	-41.994	1.80	-40.194	Peak	15.600	PASS		
5725.000	-32.695	1.80	-30.895	Peak	27.000	PASS		
5850.000	-40.591	1.80	-38.791	Peak	27.000	PASS		
5855.000	-46.082	1.80	-44.282	Peak	15.600	PASS		
5875.000	-46.660	1.80	-44.860	Peak	-37.000	PASS		
5925.000	-49.489	1.80	-47.689	Peak	-27.000	PASS		


	IEEE 802.11n HT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Verdict		
5650.000	-51.307	1.80	-49.507	Peak	-27.000	PASS		
5700.000	-44.756	1.80	-42.956	Peak	-37.000	PASS		
5720.000	-34.873	1.80	-33.073	Peak	15.600	PASS		
5725.000	-32.853	1.80	-31.053	Peak	27.000	PASS		
5850.000	-44.332	1.80	-42.532	Peak	27.000	PASS		
5855.000	-46.961	1.80	-45.161	Peak	15.600	PASS		
5875.000	-48.880	1.80	-47.080	Peak	-37.000	PASS		
5925.000	-49.743	1.80	-47.943	Peak	-27.000	PASS		

Remark:

- 1. Measured undesirable emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11a; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40, please refer to following plots;
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.

FCC ID: VSFCT5 Rep

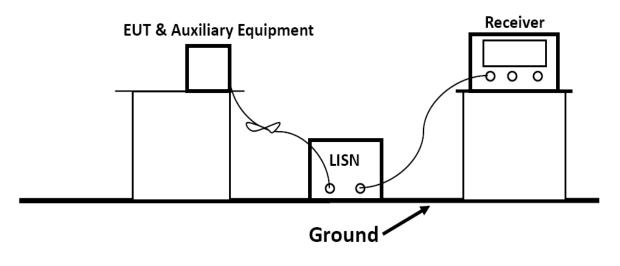
Report No.: LCS1610110474E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 53

FCC ID: VSFCT5 Report No.: LCS1610110474E

Undesirable Emissions IEEE 802.11a IEEE 802.11a Address Statute Marker 1 5.746250000000 GHz PR0:fset iFGainLew Atten: 30 dB Peak Search Avg Type: Log-Pe Avg[Hold>100/100 Peak Search Avg Type: Log-Pw Avg[Hold>100/100 NextPea NextPeal Mkr1 5.746 25 GHz 4.397 dBm Mkr1 5.826 45 GHz 3.466 dBm Ref 20.00 dB 20.00 dBn Ref Next Pk Righ Next Pk Rig Next Pk Le Next Pk Le NO2 03 A4 04 Marker Del Marker Delt Start 5.81000 GHz #Res BW 1.0 MHz rt 5.65000 GHz es BW 1.0 MHz Stop 5.76000 GHz Sweep 1.000 ms (1001 pts) Stop 5.92500 GHz Sweep 1.000 ms (1001 pts VBW 3.0 MHz #VBW 3.0 MHz Mkr---Cl Mkr-+CF Mkr-RefLv Mkr-RefLv More 1 of 2 More 1 of 2 Channel 149 / 5745 MHz - Peak Channel 165 / 5825 MHz - Peak IEEE 802.11n HT20 IEEE 802.11n HT20 All Carlos Anno 2000 Contract arker 1 5.743720000000 GHz PN0: Fast FGain:Lew Trig: Free Run Atten: 30 dB Peak Search Peak Search Avg Type: Log-Pwr Avg[Hold>100/100 Avg Type: Log-Pwr Avg[Hold>100/100 TYPE MWWW NextPea NextPea Mkr1 5.743 72 GHz 4.180 dBm Mkr1 5.826 33 GHz 3.418 dBm Ref 20.00 d Ref 20.00 dBn *****¹ ↓¹ Next Pk Righ Next Pk Righ Next Pk Let Next Pk Lef 2 403 A4 A4 Marker Delt Marker Delt Start 5.65000 GHz Res BW 1.0 MHz Start 5.81000 GHz #Res BW 1.0 MHz Stop 5.76000 GHz Sweep 1.000 ms (1001 pts) Stop 5.92500 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz #VBW 3.0 MHz Mkr-CF Mkr-CF Mkr-RefLy Mkr-RefLv More 1 of 2 More 1 of 2 Channel 149 / 5745 MHz – Peak Channel 165 / 5825 MHz - Peak IEEE 802.11n HT40 IEEE 802.11n HT40 ABUE 1252 AC 100 ≠F 500 AC Marker 1 5.748125000000 GHz FR0: Fast → Trig: Free Run FR0: Fast → Trig: Free Run Atten: 30 dB Marker 1 5.792550000000 GHz Marker 1 5.792550000000 GHz Ficalict.ew Trig: Free Run Atten: 30 dB Peak Search Peak Search Avg Type: Log-Pwr Avg|Hold>100/100 Avg Type: Log-Pwi Avg|Hold>100/100 DET P NNN DET P NNNN **NextPea** Mkr1 5.748 125 GHz 0.865 dBm Mkr1 5.792 55 GHz 0.478 dBm NextPea Ref 20.00 dB Next Pk Righ Next Pk Righ 13 Next Pk Lef Next Pk Lef 2 3 Marker Delt Marker Del 5.65000 GH Stop 5.77500 GHz Sweep 1.000 ms (1001 pts) Stop 5.92500 GHz Sweep 1.000 ms (1001 pts 5.77500 GH VBW 3.0 MHz Mkr→CF #VBW 3.0 MHz Mkr-+C →RefLv RefLv More 1 of 2 More 1 of 2 Channel 151 / 5755 MHz - Peak Channel 159 / 5795 MHz - Peak

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 53

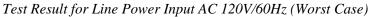

5.6. Power line conducted emissions

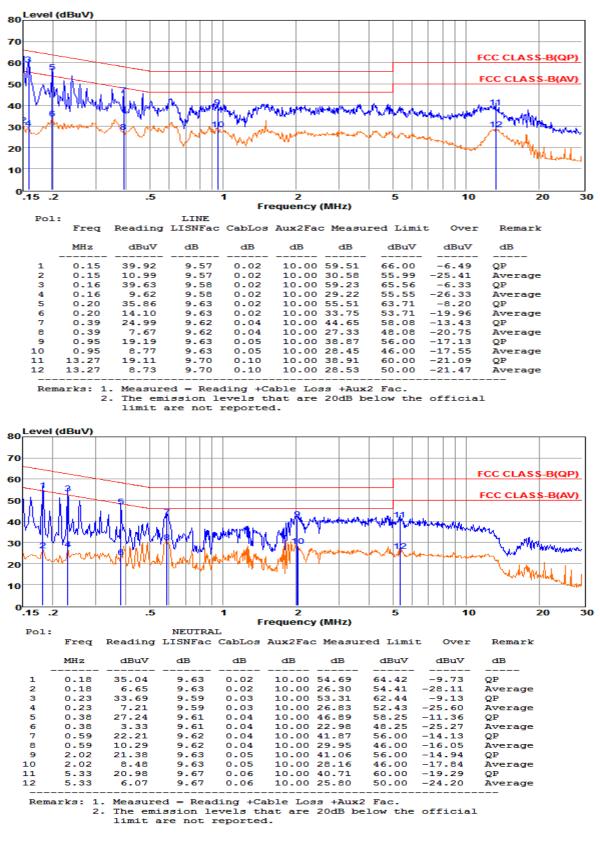
5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

5.6.2 Block Diagram of Test Setup




5.6.3 Test Results

PASS.

Only recorded the worst test case in this report.

The test data please refer to following page.

Note: Pre-scan all modes and recorded the worst case results in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 53

FCC ID: VSFCT5 Report No.: LCS1610110474E

5.7. Antenna Requirements

5.7.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.7.2. Antenna Connector Construction

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

The BT and WLAN share same PIFA antenna, the maximum gain is 1.5dBi for 5.2G WLAN, 1.8dBi for 5.8G WLAN; more information as follows.

The WLAN and Bluetooth share same antenna.

5.7.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for U-NII devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement	Measurement parameter							
Detector:	Peak							
Sweep Time:	Auto							
Resolution bandwidth:	1MHz							
Video bandwidth:	3MHz							
Trace-Mode:	Max hold							

Limits

FCC	IC				
Antenna Gain					
6 dBi					

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For 5G WLAN devices, the 802.11a mode is used.

T _{nom}	V _{nom}	Lowest Channel 5180 MHz	Middle Channel 5200 MHz	Highest Channel 5240 MHz
Conducted power [dBm] Measured with 802.11a modulation		9.881	9.815	9.566
Radiated power [dBm] Measured with 802.11a modulation		10.906	11.084	10.910
Gain [dBi] Calculated		1.025	1.269	1.344
Measurement uncertainty		$\pm~$ 1.6 dB (cond.) / ± 3.8 dB (rad.)		

T _{nom}	V _{nom}	Lowest Channel 5745 MHz	Middle Channel 5785 MHz	Highest Channel 5825 MHz
Conducted power [dBm] Measured with 802.11a modulation		10.126	10.377	10.649
Radiated power [dBm] Measured with 802.11a modulation		11.540	12.054	12.068
Gain [dBi] Calculated		1.414	1.677	1.419
Measurement uncertainty		± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

Result: -/-

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 53