

## 10. Test Equipment List

### **Table 10.1 Equipment Specifications**

| Туре                                       | Calibration Due Date | Calibration Done Date | Serial Number   |
|--------------------------------------------|----------------------|-----------------------|-----------------|
| Staubli Robot TX60L                        | N/A                  | N/A                   | F07/55M6A1/A/01 |
| Measurement Controller CS8c                | N/A                  | N/A                   | 1012            |
| ELI4 Flat Phantom                          | N/A                  | N/A                   | 1065            |
| ELI5 Flat Phantom                          | N/A                  | N/A                   | 2037            |
| Device Holder                              | N/A                  | N/A                   | N/A             |
| Data Acquisition Electronics 4             | 02/18/2023           | 02/18/2022            | 1217            |
| Data Acquisition Electronics 4             | 03/24/2023           | 03/24/2022            | 1217            |
| Data Acquisition Electronics 4             | 01/12/2023           | 01/12/2022            | 1321            |
| Data Acquisition Electronics 4             | 04/22/2022           | 04/22/2021            | 1416            |
| SPEAG E-Field Probe EX3DV4                 | 02/16/2023           | 02/16/2022            | 3662            |
| SPEAG E-Field Probe EX3DV4                 | 01/14/2023           | 01/14/2022            | 7530            |
| SPEAG E-Field Probe EX3DV4                 | 04/16/2022           | 04/16/2021            | 7531            |
| Speag Validation Dipole D750V2             | 06/04/2022           | 06/04/2021            | 1053            |
| Speag Validation Dipole D900V2             | 06/04/2022           | 06/04/2021            | 1d128           |
| Speag Validation Dipole D1750V2            | 06/03/2022           | 06/03/2021            | 1061            |
| Speag Validation Dipole D1900V2            | 06/04/2022           | 06/04/2021            | 5d147           |
| Speag Validation Dipole D2550V2            | 06/03/2022           | 06/03/2021            | 1003            |
| Speag Validation Dipole D2450V2            | 06/03/2022           | 06/03/2021            | 881             |
| Speag Validation Dipole D5GHzV2            | 06/08/2022           | 06/08/2021            | 1119            |
| Agilent N1911A Power Meter                 | 03/16/2023           | 03/16/2022            | GB45100254      |
| Agilent N1922A Power Sensor                | 03/17/2023           | 03/17/2022            | MY45240464      |
| Agilent (HP) 8561E Spectrum Analyzer       | 03/17/2023           | 03/17/2022            | 31720068        |
| Agilent (HP) 83752A Synthesized Sweeper    | 03/17/2023           | 03/17/2022            | 3610A01048      |
| Agilent (HP) 8753C Vector Network Analyzer | 03/17/2023           | 03/17/2022            | 3135A01724      |
| Agilent (HP) 85047A S-Parameter Test Set   | 03/16/2023           | 03/16/2022            | 2904A00595      |
| Agilent 778D Dual Directional Coupler      | N/A                  | N/A                   | MY48220184      |
| Anritsu MT8820C                            | 04/23/2022           | 04/23/2021            | 6201381721      |
| Aprel Dielectric Probe Assembly            | N/A                  | N/A                   | 0011            |
| Head Equivalent Matter (750 MHz)           | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (900 MHz)           | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (1750 MHz)          | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (1900 MHz)          | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (2450 MHz)          | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (2550 MHz)          | N/A                  | N/A                   | N/A             |
| Head Equivalent Matter (3-6 GHz)           | N/A                  | N/A                   | N/A             |



### 11. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.



### 12. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996

[2] ANSI/IEEE C95.1 – 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.

[3] ANSI/IEEE C95.3 – 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.

[5] IEEE Standard 1528 – 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.

[6] Industry Canada, RSS – 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.

[7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.



## Appendix A – System Validation Plots and Data

| ***************************************                                                                            |                                                               |                                          |                                  |         |               |               |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|----------------------------------|---------|---------------|---------------|
| Test Result f<br>Fri 01/Apr/20<br>Freq Freque:<br>FCC_eH Limits<br>FCC_SH Limits<br>Test_e Epsilo:<br>Test_s Sigma | or UIM<br>22<br>ncy(GHz<br>for He<br>for He<br>n of<br>of UIM | Dielec<br>)<br>ad Epsi<br>ad Sigm<br>UIM | tric Pa<br>.lon<br>na<br>******* | rameter | * * * * * * * | * * * * * * * |
| Freq                                                                                                               | FCC_eH                                                        | FCC_sH                                   | Test_e                           | Test_s  |               |               |
| 0.6900                                                                                                             | 42.22                                                         | 0.89                                     | 41.92                            | 0.87    |               |               |
| 0.7000                                                                                                             | 42.20                                                         | 0.89                                     | 41.90                            | 0.87    |               |               |
| 0.7040                                                                                                             | 42.18                                                         | 0.89                                     | 41.872                           | 0.874*  |               |               |
| 0.7075                                                                                                             | 42.163                                                        | 0.89                                     | 41.848                           | 0.878*  |               |               |
| 0.7100                                                                                                             | 42.15                                                         | 0.89                                     | 41.83                            | 0.88    |               |               |
| 0.7110                                                                                                             | 42.145                                                        | 0.89                                     | 41.825                           | 0.881*  |               |               |
| 0.7200                                                                                                             | 42.10                                                         | 0.89                                     | 41.78                            | 0.89    |               |               |
| 0.7300                                                                                                             | 42.05                                                         | 0.89                                     | 41.71                            | 0.90    |               |               |
| 0.7400                                                                                                             | 41.99                                                         | 0.89                                     | 41.65                            | 0.90    |               |               |
| 0.7500                                                                                                             | 41.94                                                         | 0.89                                     | 41.60                            | 0.91    |               |               |
| 0.7600                                                                                                             | 41.89                                                         | 0.89                                     | 41.54                            | 0.92    |               |               |
| 0.7700                                                                                                             | 41.84                                                         | 0.89                                     | 41.48                            | 0.93    |               |               |
| 0.7800                                                                                                             | 41.79                                                         | 0.90                                     | 41.42                            | 0.93    |               |               |
| 0.7820                                                                                                             | 41.778                                                        | 0.90                                     | 41.408                           | 0.932*  |               |               |
| 0.7900                                                                                                             | 41.73                                                         | 0.90                                     | 41.36                            | 0.94    |               |               |
| 0.8000                                                                                                             | 41.68                                                         | 0.90                                     | 41.31                            | 0.94    |               |               |



\*\*\*\*\*\*\* Test Result for UIM Dielectric Parameter Tue 29/Mar/2022 Freq Frequency(GHz) eH Limits for Head Epsilon sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM \*\*\*\*\* eH sH Test\_e Test 41.50 0.94 41.37 0.95 41.50 0.95 41.36 0.96 Freq Test\_e Test\_s 0.8700 0.8800 41.50 0.96 41.35 0.97 0.890041.500.9641.350.970.900041.500.9741.340.980.902841.5000.97341.3370.983\*0.910041.500.9841.330.990.914841.4950.9841.3250.99\*0.915041.4950.9841.3250.99\*0.917441.4930.9841.3230.99\*0.917541.4930.9841.3230.99\*0.920041.490.9841.320.99\*0.922241.4860.98241.3160.992\*0.922541.4850.98341.3150.993\*0.927241.4750.98741.3050.997\*0.927341.470.9941.301.00 0.8900 41.47 0.99 41.30 1.00 0.9300 0.9400 41.45 0.99 41.29 1.01 0.9500 41.43 0.99 41.27 1.02 \* value interpolated Test Result for UIM Dielectric Parameter Thu 31/Mar/2022 Freq Frequency(GHz) eH Limits for Head Epsilon sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM eH sH Test\_e Test\_s Freq 

 eH
 sH
 Test\_e Test\_s

 41.68
 0.90
 41.30
 0.93

 41.63
 0.90
 41.25
 0.94

 41.58
 0.90
 41.19
 0.95

 41.573
 0.90
 41.198
 0.95\*

 41.548
 0.90
 41.222
 0.95\*

 41.53
 0.90
 41.24
 0.95

 41.526
 0.902
 41.236
 0.952\*

 41.51
 0.907
 41.22
 0.957\*

 41.50
 0.91
 41.21
 0.96

0.8000 0.8100 0.8200 0.8215 0.8215 0.8264 0.8300 0.8315 0.8366 0.8400 0.8415 41.50 0.912 41.207 0.962\* 

 41.50
 0.917
 41.197
 0.967\*

 41.50
 0.92
 41.19
 0.97

 41.50
 0.93
 41.17
 0.98

 41.50
 0.94
 41.58
 0.96

 41.50
 0.95
 41.57
 0.97

0.8466 0.8500 0.8600 0.8700 0.8800 41.50 0.96 41.56 0.98 41.50 0.97 41.55 0.99 0.8900 0.9000 
 41.50
 0.97
 41.53
 0.97

 41.50
 0.98
 41.54
 1.00

 41.49
 0.98
 41.53
 1.00
 0.9100 0.9200



\*\*\*\*\*\*\* Test Result for UIM Dielectric Parameter Wed 30/Mar/2022 Freq Frequency(GHz) eH Limits for Head Epsilon sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM \*\*\*\*\* eHsHTest\_e Test\_40.161.3439.651.3740.141.3539.631.38 Freq Test\_e Test\_s 1.7000 1.7100 1.7124 40.138 1.35 39.625 1.382\* 1.7200 1.7300 40.13 1.35 39.61 1.39 40.11 1.36 39.59 1.39 1.7325 40.105 1.363 39.585 1.393\* 1.732540.105 1.36339.585 1.393\*1.732640.105 1.36339.585 1.393\*1.740040.09 1.3739.57 1.401.745040.085 1.3739.56 1.405\*1.750040.08 1.3739.55 1.411.752640.075 1.37339.545 1.413\*1.760040.06 1.3839.51 1.421.770040.05 1.3839.51 1.431.780040.02 1.3939.47 1.44 \* value interpolated \*\*\*\* Test Result for UIM Dielectric Parameter Tue 29/Mar/2022 Freq Frequency(GHz) FCC\_eH Limits for Head Epsilon FCC\_sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM \*\*\*\*\* Freq FCC\_eH FCC\_sH Test\_e Test\_s 40.00 1.40 39.85 1.39 40.00 1.40 39.848 1.392\* 1.8500 1.8524 1.8600 40.00 1.40 39.84 1.40 1.8700 40.00 1.40 39.83 1.41 40.00 1.40 39.82 1.42 1.8800 1.8825 40.00 1.40 39.818 1.423\* 40.00 1.40 39.81 1.43 1.8900 40.00 1.40 39.81 1.44 1.9000 40.00 1.40 39.80 1.445\* 1,9050 40.00 1.40 39.795 1.448\* 1.9076 40.00 1.40 39.79 1.45 1.9100 40.00 1.40 39.77 1.45 1.9200 1.9300 40.00 1.40 39.74 1.45



\*\*\*\*\*\*\* Test Result for UIM Dielectric Parameter Tue 08/Mar/2022 Freq Frequency(GHz) FCC\_eH Limits for Head Epsilon FCC\_sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM \*\*\*\*\* FCC\_eH FCC\_sH Test\_e Test\_s 39.26 1.76 38.53 1.78 39.258 1.762 38.526 1.782\* Freq 2.4100 2.4120 2.4200 39.25 1.77 38.51 1.79 39.24 1.78 38.49 1.80 2.4300 2.4370 39.226 1.787 38.483 1.814\* 2.4400 39.22 1.79 38.48 1.82 2.4420 2.4500 39.216 1.792 38.47 1.822\* 39.20 1.80 38.43 1.83 39.19 1.81 38.43 1.84 39.186 1.812 38.426 1.842\* 2.4600 2.4620 2.470039.171.8238.411.852.472039.1681.82238.4061.856\*2.480039.161.8338.391.88 \* value interpolated Test Result for UIM Dielectric Parameter Thu 31/Mar/2022 Freq Frequency(GHz) FCC\_eH Limits for Head Epsilon FCC\_sH Limits for Head Sigma Test\_e Epsilon of UIM Test\_s Sigma of UIM Freq FCC\_eH FCC\_sH Test\_e Test\_s 
 39.28
 1.75
 38.33
 1.75

 39.276
 1.752
 38.326
 1.752\*
 2.4000 2.4020 2.4100 39.26 1.76 38.31 1.76 39.25 1.77 38.29 1.77 2.4200 2.4300 39.24 1.78 38.27 1.78 39.22 1.79 38.26 1.80 39.218 1.791 38.255 1.801\* 2.4400 2.4410 38.21 1.81 38.21 1.82 2.4500 39.20 1.80 39.19 1.81 2.4600 39.17 1.82 38.19 1.83 2.4700 2.4800 2.4900 39.16 1.83 38.17 1.84 39.15 1.84 38.16 1.85



| *****                                    |               |               |               |                                         |  |  |
|------------------------------------------|---------------|---------------|---------------|-----------------------------------------|--|--|
| Test Result for UIM Dielectric Parameter |               |               |               |                                         |  |  |
| Tue 29/Mar/2022                          |               |               |               |                                         |  |  |
| Freq Frequency(GHz)                      |               |               |               |                                         |  |  |
| FCC_eH Limits                            | for He        | ad Epsi       | ilon          |                                         |  |  |
| FCC_sH Limits                            | for He        | ad Sigr       | na            |                                         |  |  |
| Test_e Epsilon of UIM                    |               |               |               |                                         |  |  |
| Test_s Sigma                             | of UIM        |               |               |                                         |  |  |
| * * * * * * * * * * * * *                | * * * * * * * | * * * * * * * | * * * * * * * | * * * * * * * * * * * * * * * * * * * * |  |  |
| Freq                                     | FCC_eH        | FCC_sH        | Test_e        | Test_s                                  |  |  |
| 2.4900                                   | 39.15         | 1.84          | 39.09         | 1.86                                    |  |  |
| 2.5000                                   | 39.14         | 1.85          | 39.07         | 1.87                                    |  |  |
| 2.5060                                   | 39.128        | 1.862         | 39.052        | 1.876*                                  |  |  |
| 2.5100                                   | 39.12         | 1.87          | 39.04         | 1.88                                    |  |  |
| 2.5200                                   | 39.11         | 1.88          | 39.02         | 1.90                                    |  |  |
| 2.5300                                   | 39.10         | 1.89          | 39.00         | 1.91                                    |  |  |
| 2.5350                                   | 39.095        | 1.895         | 38.985        | 1.915*                                  |  |  |
| 2.5400                                   | 39.09         | 1.90          | 38.97         | 1.92                                    |  |  |
| 2.5495                                   | 39.071        | 1.91          | 38.951        | 1.939*                                  |  |  |
| 2.5500                                   | 39.07         | 1.91          | 38.95         | 1.94                                    |  |  |
| 2.5600                                   | 39.06         | 1.92          | 38.93         | 1.95                                    |  |  |
| 2.5700                                   | 39.05         | 1.93          | 38.90         | 1.96                                    |  |  |
| 2.5800                                   | 39.03         | 1.94          | 38.88         | 1.98                                    |  |  |
| 2.5900                                   | 39.02         | 1.95          | 38.85         | 1.99                                    |  |  |
| 2.5930                                   | 39.017        | 1.953         | 38.853        | 1.99*                                   |  |  |
| 2.6000                                   | 39.01         | 1.96          | 38.86         | 1.99                                    |  |  |
| 2.6100                                   | 39.00         | 1.97          | 38.84         | 2.00                                    |  |  |
| 2.6200                                   | 38.98         | 1.99          | 38.83         | 2.01                                    |  |  |
| 2.6300                                   | 38.97         | 2.00          | 38.81         | 2.02                                    |  |  |
| 2.6365                                   | 38.964        | 2.007         | 38.797        | 2.027*                                  |  |  |
| 2.6400                                   | 38.96         | 2.01          | 38.79         | 2.03                                    |  |  |
| 2.6500                                   | 38.95         | 2.02          | 38.77         | 2.04                                    |  |  |
| 2.6600                                   | 38.93         | 2.03          | 38.76         | 2.05                                    |  |  |
| 2.6700                                   | 38.92         | 2.04          | 38.74         | 2.06                                    |  |  |
| 2.6800                                   | 38.91         | 2.05          | 38.72         | 2.07                                    |  |  |
| 2.6900                                   | 38.89         | 2.06          | 38.70         | 2.08                                    |  |  |
| 2.7000                                   | 38.88         | 2.07          | 38.69         | 2.09                                    |  |  |







### Plot 1

### DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN 1053

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 750 MHz;  $\sigma$  = 0.91 S/m;  $\epsilon_r$  = 41.6;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 4/1/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 – SN7530; ConvF(10.44, 10.44, 10.44); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

**750 MHz Head/Verification/Area Scan (41x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (measured) = 1.08 W/kg

750 MHz Head/Verification /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.30 W/kg Pin= 100 mW SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.549 W/kg Maximum value of SAR (measured) = 1.10 W/kg







### Plot 2

#### DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN: 1d128

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used: f = 900 MHz;  $\sigma$  = 0.99 mho/m;  $\epsilon_r$  = 41.55;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(9.98, 9.98, 9.98); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**Verification/900 MHz Head/Area Scan (41x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.29 W/kg

Verification/900 MHz Head/Zoom Scan (5x5x8)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.47 W/kg P<sub>in</sub>= 100 mW SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.722 W/kg

Maximum value of SAR (measured) = 1.29 W/kg









### Plot 3

### DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN: 1061

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used: f = 1750 MHz;  $\sigma$  = 1.41 S/m;  $\epsilon_r$  = 39.55;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/30/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 – SN7530; ConvF(8.42, 8.42, 8.42); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

**1750 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.46 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.568 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.92 W/kg Pin= 100 mW SAR(1 g) = 3.79 W/kg; SAR(10 g) = 1.96 W/kg Maximum value of SAR (measured) = 5.47 W/kg









### Plot 4

### DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN: 5d147

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.44 S/m;  $\epsilon_r$  = 39.81;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 – SN7530; ConvF(8.06, 8.06, 8.06); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

**1900 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.63 W/kg

**1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.68 W/kg P<sub>in</sub>= 100 mW **SAR(1 g) = 4.11 W/kg; SAR(10 g) = 2.12 W/kg** Maximum value of SAR (measured) = 5.63 W/kg









### Plot 5

### DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003

Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: HSL2550; Medium parameters used: f = 2550 MHz;  $\sigma$  = 1.94 S/m;  $\epsilon_r$  = 38.95;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(7.42, 7.42, 7.42); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 4/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**2550 MHz Body/Verification/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.18 W/kg

2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.541 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.5 W/kg Pin= 100 mW SAR(1 g) = 5.71 W/kg; SAR(10 g) = 2.56 W/kg Maximum value of SAR (measured) = 8.98 W/kg









### Plot 6

#### DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN: 1d128

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used: f = 900 MHz;  $\sigma$  = 0.98 mho/m;  $\epsilon_r$  = 41.34;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(8.76, 8.76, 8.76); Calibrated: 2/16/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**Verification/900 MHz Head/Area Scan (41x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.19 W/kg

Verification/900 MHz Head/Zoom Scan (5x5x8)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.687 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.691 mW/g P<sub>in</sub>= 100 mW SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.724 mW/g

Maximum value of SAR (measured) = 1.22 W/kg









### Plot 7

### DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.81 S/m;  $\epsilon_r$  = 38.21;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN3662; ConvF(7.28, 7.28, 7.28); Calibrated: 2/16/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**Head Verification/2450 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.67 W/kg

Head Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.027 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.04 W/kg Pin= 100 mW SAR(1 g) = 5.21 W/kg; SAR(10 g) = 2.49 W/kg

Maximum value of SAR (measured) = 8.95 W/kg









### Plot 8

### DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.83 S/m;  $\epsilon_r$  = 38.43;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Jate: 3/8/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN3662; ConvF(7.28, 7.28, 7.28); Calibrated: 2/16/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**Head Verification/2450 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.41 W/kg

Head Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.112 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 11.06 W/kg Pin= 100 mW SAR(1 g) = 5.42 W/kg; SAR(10 g) = 2.53 W/kg

Maximum value of SAR (measured) = 8.94 W/kg









### Plot 9

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used (interpolated): f = 5250 MHz;  $\sigma$  = 4.735 S/m;  $\epsilon_r$  = 35.185;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN3662; ConvF(4.95, 4.95, 4.95); Calibrated: 2/16/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

Head Verification/5250 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.57 W/kg

Head Verification/5250 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 13.822 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.21 W/kg Pin=10 mW SAR(1 g) = 0.803 W/kg; SAR(10 g) = 0.231 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.89 W/kg









### Plot 10

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used: f = 5600 MHz;  $\sigma$  = 5.11 S/m;  $\epsilon_r$  = 34.35;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(4.65, 4.65, 4.65); Calibrated: 4/16/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/18/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

**Head Verification/5600 MHz/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.72 W/kg

Head Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 15.398 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.59 W/kg Pin=10 mW SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 2.01 W/kg









### Plot 11

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used (interpolated): f = 5750 MHz;  $\sigma$  = 5.28 S/m;  $\epsilon_r$  = 34.18;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Jate: 3/7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7531; ConvF(4.75, 4.75, 4.75); Calibrated: 4/16/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/18/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

Head Verification/5750 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.61 W/kg

Head Verification/5750 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 14.521 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.34 W/kg Pin=10 mW SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.233 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.78 W/kg









Report Number: SAR.20220401

### Appendix B – SAR Test Data Plots



### Plot 1

### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 711 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 711 MHz;  $\sigma$  = 0.881 S/m;  $\epsilon_r$  = 41.825;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 4/1/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(10.44, 10.44, 10.44); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

B12 LTE/Right High 1 RB 24 Offset/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.32 W/kg

B12 LTE/Right High 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.87 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.91 W/kg SAR(1 g) = 1 W/kg; SAR(10 g) = 0.599 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.35 W/kg





### Plot 2

### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 782 MHz;  $\sigma$  = 0.932 S/m;  $\epsilon_r$  = 41.408;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 4/1/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(10.44, 10.44, 10.44); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

B13 LTE/Right Mid 1RB 24 Offset/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.52 W/kg

B13 LTE/Right Mid 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.05 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.08 W/kg SAR(1 g) = 1.2 W/kg; SAR(10 g) = 0.722 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.62 W/kg





### Plot 3

### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: UMTS (WCDMA); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma$  = 0.967 S/m;  $\epsilon_r$  = 41.197;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(9.98, 9.98, 9.98); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

### **Procedure Notes:**

B5 WCDMA/Right High/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg

B5 WCDMA/Right High/Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.43 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.24 W/kg SAR(1 g) = 1.28 W/kg; SAR(10 g) = 0.743 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.76 W/kg




#### Plot 4

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 15 MHz, QPSK); Frequency: 841.5 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used (interpolated): f = 841.5 MHz;  $\sigma$  = 0.962 S/m;  $\epsilon_r$  = 41.207;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(9.98, 9.98, 9.98); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B26 LTE/Right High 1 RB 24 Offset/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.58 W/kg

**B26 LTE/Right High 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.05 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.21 W/kg **SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.730 W/kg** 

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg





#### Plot 5

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: UMTS (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used (interpolated): f = 1712.4 MHz;  $\sigma$  = 1.382 S/m;  $\epsilon_r$  = 39.625;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/30/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(8.42, 8.42, 8.42); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B4 WCDMA/Right Low/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.41 W/kg

**B4 WCDMA/Right Low/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 36.45 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.01 W/kg **SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.718 W/kg** 

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.71 W/kg





#### Plot 6

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used (interpolated): f = 1745 MHz;  $\sigma$  = 1.405 S/m;  $\epsilon_r$  = 39.56;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/30/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(8.42, 8.42, 8.42); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B4 LTE/Right High 1 RB 49 Offset/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.31 W/kg

**B4 LTE/Right High 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.97 W/kg **SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.688 W/kg** 

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.54 W/kg





#### Plot 7

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: UMTS (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used (interpolated): f = 1852.4 MHz;  $\sigma$  = 1.392 S/m;  $\epsilon_r$  = 39.848;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(8.06, 8.06, 8.06); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B2 WCDMA/Right Low/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.47 W/kg

B2 WCDMA/Right Low/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 38.20 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.71 W/kg SAR(1 g) = 1.32 W/kg; SAR(10 g) = 0.854 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.96 W/kg





#### Plot 8

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used (interpolated): f = 1882.5 MHz;  $\sigma$  = 1.423 S/m;  $\epsilon_r$  = 39.818;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(8.06, 8.06, 8.06); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B25 LTE/Right Mid 1 RB 49 Offset/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.53 W/kg

B25 LTE/Right Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.98 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.24 W/kg SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.644 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.74 W/kg





#### Plot 9

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2510 MHz; Duty Cycle: 1:1 Medium: HSL2550; Medium parameters used: f = 2510 MHz;  $\sigma$  = 1.88 S/m;  $\epsilon_r$  = 39.04;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7530; ConvF(7.42, 7.42, 7.42); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**B7 LTE/Right 1 RB 49 Offset Low/Area Scan (7x10x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.64 W/kg

**B7 LTE/Right 1 RB 49 Offset Low/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.07 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.67 W/kg **SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.737 W/kg** Maximum value of SAR (measured) = 1.84 W/kg





#### Plot 10

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 3

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:1 Medium: HSL2550; Medium parameters used (interpolated): f = 2593 MHz;  $\sigma$  = 1.99 S/m;  $\epsilon_r$  = 38.853;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: J29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(7.42, 7.42, 7.42); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 3/16/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

B41 LTE/Right 1 RB 49 Offset Mid/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.726 W/kg

B41 LTE/Right 1 RB 49 Offset Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.99 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.480 W/kg; SAR(10 g) = 0.221 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.773 W/kg

**B41 LTE/Right 1 RB 49 Offset Mid/Zoom Scan (5x5x7)/Cube 1:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.99 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.941 W/kg

SAR(1 g) = 0.496 W/kg; SAR(10 g) = 0.250 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.710 W/kg

**B41 LTE/Right 1 RB 49 Offset Mid/Zoom Scan (5x5x7)/Cube 2:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.99 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.771 W/kg

SAR(1 g) = 0.351 W/kg; SAR(10 g) = 0.165 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.559 W/kg





#### Plot 11

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 4

Communication System: FM; Frequency: 920 MHz; Duty Cycle: 1:1.99986 Medium: HSL900; Medium parameters used: f = 920 MHz;  $\sigma$  = 0.99 S/m;  $\epsilon_r$  = 41.32;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(8.76, 8.76, 8.76); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**900 MHz Micro RFID/Back Mid/Area Scan (7x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.74 W/kg

900 MHz Micro RFID/Back Mid/Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.803 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 4.19 W/kg SAR(1 g) = 1.93 W/kg; SAR(10 g) = 1.06 W/kg Maximum value of SAR (measured) = 3.26 W/kg

900 MHz Micro RFID/Back Mid/Zoom Scan (5x6x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.803 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 4.03 W/kg SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.613 W/kg

Maximum value of SAR (measured) = 3.08 W/kg





#### Plot 12

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 5

Communication System: FM; Frequency: 922.2 MHz; Duty Cycle: 1:1.99986 Medium: HSL900; Medium parameters used (interpolated): f = 922.2 MHz;  $\sigma$  = 0.992 S/m;  $\epsilon_r$  = 41.316;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/29/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(8.76, 8.76, 8.76); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

900 MHz Nano RFID/Back Mid/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 3.01 W/kg

900 MHz Nano RFID/Back Mid/Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.32 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.08 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.01 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 4.12 W/kg





#### Plot 13

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 6

Communication System: FM; Frequency: 914.75 MHz; Duty Cycle: 1:1.99986 Medium: HSL900; Medium parameters used (interpolated): f = 914.75 MHz;  $\sigma$  = 0.99 S/m;  $\epsilon_r$  = 41.325;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/30/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(8.76, 8.76, 8.76); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

900 MHz Transcore RFID/Back Mid/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.69 W/kg

900 MHz Transcore RFID/Back Mid/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.657 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 0.895 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 4.01 W/kg





#### Plot 14

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 7

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used (interpolated): f = 2441 MHz;  $\sigma$  = 1.801 S/m;  $\epsilon_r$  = 38.255;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.28, 7.28, 7.28); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 3/24/2022 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

2450 MHz BT/Top Mid/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.249 W/kg

2450 MHz BT/Top Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.547 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.336 W/kg SAR(1 g) = 0.169 W/kg; SAR(10 g) = 0.085 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.251 W/kg





#### Plot 15

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 2

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2442 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used (interpolated): f = 2442 MHz;  $\sigma$  = 1.822 S/m;  $\epsilon_r$  = 38.47;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/8/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.28, 7.28, 7.28); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

2.4 GHz/Primary Top 7/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.520 W/kg

2.4 GHz/Primary Top 7/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.43 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.706 W/kg SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.193 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.538 W/kg





#### Plot 16

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 2

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used: f = 5280 MHz;  $\sigma$  = 4.77 S/m;  $\epsilon_r$  = 35.14;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.95, 4.95, 4.95); Calibrated: 2/16/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**5.2 GHz/Primary Left 56/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.32 W/kg

5.2 GHz/Primary Left 56/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm Reference Value = 2.142 V/m; Power Drift = 0.61 dB Peak SAR (extrapolated) = 3.02 W/kg SAR(1 g) = 0.795 W/kg; SAR(10 g) = 0.257 W/kg Maximum value of SAR (measured) = 1.55 W/kg





#### Plot 17

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used: f = 5620 MHz;  $\sigma$  = 5.13 S/m;  $\epsilon_r$  = 34.32;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(4.65, 4.65, 4.65); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/18/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

**5.6 GHz/Primary Left 124/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.51 W/kg

5.6 GHz/Primary Left 124/Zoom Scan (9x9x14)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.145 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 0.872 W/kg; SAR(10 g) = 0.269 W/kg Maximum value of SAR (measured) = 1.75 W/kg





#### Plot 18

#### DUT: MS3; Type: Tablet Computer; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used (interpolated): f = 5825 MHz;  $\sigma$  = 5.375 S/m;  $\epsilon_r$  = 34.505;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Test Date: Date: 3/7/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN7531; ConvF(4.75, 4.75, 4.75); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/18/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

#### **Procedure Notes:**

5.8 GHz/Primary Left 165/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 W/kg

5.8 GHz/Primary Left 165/Zoom Scan (9x9x14)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 4.08 W/kg SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.255 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.90 W/kg





### Appendix C – SAR Test Setup Photos



### **Test Position Back 0 mm Gap**

#### Report Number: SAR.20220401



**Test Position Left 0 mm Gap** 



#### Report Number: SAR.20220401



**Test Position Top 0 mm Gap** 





**Test Position Right 0 mm Gap** 

#### Report Number: SAR.20220401





Test Position Back Transcore RFID 0 mm Gap

#### Report Number: SAR.20220401



**Test Position Right Transcore RFID 0 mm Gap** 





**Test Position Top Transcore RFID 0 mm Gap** 

#### Report Number: SAR.20220401

### **RF Exposure Lab**



**Front of Device** 

Report Number: SAR.20220401



**Back of Device** 





Front of Device Transcore RFID



#### Report Number: SAR.20220401



**Back of Device Transcore RFID** 



### Appendix D – Probe Calibration Data Sheets

#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Certificate No: EX3-3662\_Feb22

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client **RF Exposure Lab** 

| CALIBRATION                       | CERTIFICATE                                                                                                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Object                            | EX3DV4 - SN:3662                                                                                                               |
| Calibration procedure(s)          | QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,<br>QA CAL-25.v7<br>Calibration procedure for dosimetric E-field probes |
| Calibration date:                 | February 16, 2022                                                                                                              |
| This calibration certificate docu | ments the traceability to national standards, which realize the physical units of measurements (SI).                           |

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Duine and Observation      |                  |                                   |                        |
|----------------------------|------------------|-----------------------------------|------------------------|
| Primary Standards          |                  | Cal Date (Certificate No.)        | Scheduled Calibration  |
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 13-Oct-21 (No. DAE4-660_Oct21)    | Oct-22                 |
| Reference Probe ES3DV2     | SN: 3013         | 27-Dec-21 (No. ES3-3013_Dec21)    | Dec-22                 |
|                            |                  |                                   |                        |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 |

|                              | Name                                | Function                                  | Signature                 |
|------------------------------|-------------------------------------|-------------------------------------------|---------------------------|
| Calibrated by:               | Jeton Kastrati                      | Laboratory Technician                     | et le                     |
| Approved by:                 | Sved Kildin                         | Deputy Manager                            | S. 6                      |
|                              |                                     |                                           | Issued: February 18, 2022 |
| This calibration certificate | e shall not be reproduced except in | full without written approval of the labo | pratory.                  |

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

#### Glossary:

| TSL             | tissue simulating liquid                                                                                                                                |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| NORMx,y,z       | sensitivity in free space                                                                                                                               |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                                                                                          |
| DCP             | diode compression point                                                                                                                                 |
| CF              | crest factor (1/duty_cycle) of the RF signal                                                                                                            |
| A, B, C, D      | modulation dependent linearization parameters                                                                                                           |
| Polarization φ  | $\varphi$ rotation around probe axis                                                                                                                    |
| Polarization &  | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center),<br>i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system                                                                  |

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*,*z*: Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, v, z = NORMx, v, z \* frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800$  MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

|                               | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|-------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m)²) <sup>A</sup> | 0.42     | 0.49     | 0.48     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>         | 99.8     | 99.6     | 98.2     |           |

#### **Calibration Results for Modulation Response**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 147.3    | ±2.7 %      | ± 4.7 %                   |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 161.3    |             |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 168.0    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -94.7      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 52.3                                  | 0.76                               | 11.58   | 11.58   | 11.58   | 0.00               | 1.00                       | ± 13.3 %     |
| 220                  | 49.0                                  | 0.81                               | 11.43   | 11.43   | 11.43   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 45.3                                  | 0.87                               | 11.15   | 11.15   | 11.15   | 0.09               | 1.00                       | ± 13.3 %     |
| 450                  | 43.5                                  | 0.87                               | 10.72   | 10.72   | 10.72   | 0.16               | 1.30                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 9.23    | 9.23    | 9.23    | 0.52               | 0.80                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 8.76    | 8.76    | 8.76    | 0.44               | 0.80                       | ± 12.0 %     |
| 1450                 | 40.5                                  | 1.20                               | 8.18    | 8.18    | 8.18    | 0.37               | 0.80                       | ± 12.0 %     |
| 1640                 | 40.2                                  | 1.31                               | 8.03    | 8.03    | 8.03    | 0.35               | 0.86                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 7.87    | 7.87    | 7.87    | 0.32               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 7.66    | 7.66    | 7.66    | 0.27               | 0.86                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.54    | 7.54    | 7.54    | 0.34               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.28    | 7.28    | 7.28    | 0.38               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.10    | 7.10    | 7.10    | 0.38               | 0.90                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                               | 6.73    | 6.73    | 6.73    | 0.35               | 1.30                       | ± 13.1 %     |
| 3700                 | 37.7                                  | 3.12                               | 6.53    | 6.53    | 6.53    | 0.35               | 1.30                       | ± 13.1 %     |
| 5250                 | 35.9                                  | 4.71                               | 4.95    | 4.95    | 4.95    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.66    | 4.66    | 4.66    | 0.40               | 1.80                       | ± 13.1 %     |
| 5750                 | 35.4                                  | 5.22                               | 4.80    | 4.80    | 4.80    | 0.40               | 1.80                       | ± 13.1 %     |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 6500                 | 34.5                                  | 6.07                               | 5.50    | 5.50    | 5.50    | 0.20               | 2.00                       | ± 18.6 %     |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>F</sup> At frequencies 6-10 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz; below  $\pm$  2% for frequencies between 3-6 GHz; and below  $\pm$  4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.



### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



### Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



### Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


## **Conversion Factor Assessment**





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

| Client                  | RF Exposure L                                        | ab                                                                                                                     | Centificate No: EX3-7530_Jan22                                                           |
|-------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| CALI                    | BRATION C                                            | ERTIFICATE                                                                                                             |                                                                                          |
| Object                  |                                                      | EX3DV4 - SN:7530                                                                                                       |                                                                                          |
| Calibration             | n procedure(s)                                       | QA CAL-01.v9, QA CAL-12.v9, QA CA<br>QA CAL-25.v7<br>Calibration procedure for dosimetric E                            | AL-14.v6, QA CAL-23.v5.<br>-field probes                                                 |
| Calibration             | n date:                                              | January 14, 2022                                                                                                       |                                                                                          |
| This calibr<br>The meas | ation certificate documen<br>urements and the uncert | nts the traceability to national standards, which realize<br>ainties with confidence probability are given on the foll | the physical units of measurements (SI).<br>owing pages and are part of the certificate. |
| All calibrat            | tions have been conducte                             | ed in the closed laboratory facility: environment temper                                                               | rature (22 ± 3)°C and humidity < 70%.                                                    |

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 13-Oct-21 (No. DAE4-660 Oct21)    | Oct-22                 |
| Reference Probe ES3DV2     | SN: 3013         | 27-Dec-21 (No. ES3-3013_Dec21)    | Dec-22                 |
|                            |                  |                                   |                        |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 |

| _                            | Name                              | Function                                    | Signature                |
|------------------------------|-----------------------------------|---------------------------------------------|--------------------------|
| Calibrated by:               | Leif Klysner                      | Laboratory Technician                       | Seif Ily-                |
| Approved by:                 | Sven Kühn                         | Deputy Manager                              | S.K                      |
| This calibration certificate | shall not be reproduced except in | i full without written approval of the labo | Issued: January 19, 2022 |



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - S Servizio svizzero di taratura
  - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL             | tissue simulating liquid                                                                               |
|-----------------|--------------------------------------------------------------------------------------------------------|
| NORMx,y,z       | sensitivity in free space                                                                              |
| ConvF           | sensitivity in TSL / NORMx,y,z                                                                         |
| DCP             | diode compression point                                                                                |
| CF              | crest factor (1/duty cycle) of the RF signal                                                           |
| A, B, C, D      | modulation dependent linearization parameters                                                          |
| Polarization φ  | φ rotation around probe axis                                                                           |
| Polarization 9  | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), |
| Connector Angle | information used in DASY system to align probe sensor X to the robot coordinate system                 |

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Accreditation No.: SCS 0108

#### **Basic Calibration Parameters**

|                               | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|-------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m)²) <sup>A</sup> | 0.42     | 0.48     | 0.43     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>         | 99.3     | 99.7     | 98.7     |           |

#### **Calibration Results for Modulation Response**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Max<br>dev. | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 159.3    | ±2.2 %      | ± 4.7 %                   |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 142.4    |             |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 141.6    |             |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -141.7     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 13                   | 55.0                                  | 0.75                               | 19.61   | 19.61   | 19.61   | 0.00               | 1.00                       | ± 13.3 %     |
| 30                   | 55.0                                  | 0.75                               | 17.99   | 17.99   | 17.99   | 0.00               | 1.00                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 10.44   | 10.44   | 10.44   | 0.56               | 0.80                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 9.98    | 9.98    | 9.98    | 0.48               | 0.80                       | ± 12.0 %     |
| 1300                 | 40.8                                  | 1.14                               | 9.27    | 9.27    | 9.27    | 0.40               | 0.95                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.42    | 8.42    | 8.42    | 0.30               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.06    | 8.06    | 8.06    | 0.30               | 0.86                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.85    | 7.85    | 7.85    | 0.34               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.65    | 7.65    | 7.65    | 0.33               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.42    | 7.42    | 7.42    | 0.35               | 0.90                       | ± 12.0 %     |
| 3300                 | 38.2                                  | 2.71                               | 7.12    | 7.12    | 7.12    | 0.35               | 1.30                       | + 13 1 %     |
| 3500                 | 37.9                                  | 2.91                               | 7.10    | 7.10    | 7.10    | 0.35               | 1.30                       | + 13 1 %     |
| 3700                 | 37.7                                  | 3.12                               | 6.90    | 6.90    | 6.90    | 0.35               | 1.30                       | + 13 1 %     |
| 3900                 | 37.5                                  | 3.32                               | 6.83    | 6.83    | 6.83    | 0.40               | 1.60                       | + 13 1 %     |
| 4200                 | 37.1                                  | 3.63                               | 6.38    | 6.38    | 6.38    | 0 40               | 1 70                       | + 13 1 %     |
| 5250                 | 35.9                                  | 4.71                               | 5.45    | 5.45    | 5.45    | 0.40               | 1.80                       | + 13 1 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.80    | 4.80    | 4.80    | 0.40               | 1.80                       | + 13 1 %     |
| 5750                 | 35.4                                  | 5.22                               | 4.98    | 4.98    | 4.98    | 0.40               | 1.80                       | ± 13.1 %     |

## Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 6500                 | 34.5                                  | 6.07                               | 5.60    | 5.60    | 5.60    | 0.20               | 2.50                       | ± 18.6 %     |

## Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>F</sup> At frequencies 6-10 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz; below  $\pm$  2% for frequencies between 3-6 GHz; and below  $\pm$  4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

2500 MHz



# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



600 MHz

Roll [°]

\_\_\_\_\_ 1800 MHz

100 MHz

January 14, 2022



## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , feval= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



## **Conversion Factor Assessment**





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

#### Multilateral Agreement for the recognition of calibration certificates

| Client                 | RF Exposure L             | ab .                                            | L. L. Constanting                                   |                                  | Certificate N             | o: EX3-75      | 31_Apr2     | M        |
|------------------------|---------------------------|-------------------------------------------------|-----------------------------------------------------|----------------------------------|---------------------------|----------------|-------------|----------|
| CAL                    | BRATION C                 | ERIFIC                                          | <b>NTE</b>                                          |                                  |                           |                |             |          |
| Object                 |                           | EX3DV4 - SI                                     | <b>N</b> :7531                                      |                                  |                           |                |             |          |
| Calibratio             | n procedure(s)            | QA CAL-01.1<br>QA CAL-25.1<br>Calibration p     | /9, QA CAL-12.v<br>/7<br>rocedure for dos           | /9. OA CA<br>simetric E-         | L-14.v6, C<br>field probe | A CAL-23.<br>S | v6.         |          |
| Calibratio             | n date:                   | April 16, 202                                   | 1                                                   |                                  |                           |                |             |          |
| This calib<br>The meas | ration certificate docume | nts the traceability to<br>ainties with confide | o national standards, v<br>nce probability are give | which realize<br>en on the follo | the physical un           | its of measure | ments (SI). | <b>_</b> |

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103244       | 09-Apr-21 (No. 217-03291)         | Apr-22                 |
| Power sensor NRP-Z91       | SN: 103245       | 09-Apr-21 (No. 217-03292)         | Apr-22                 |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343)         | Apr-22                 |
| DAE4                       | SN: 660          | 23-Dec-20 (No. DAE4-660_Dec20)    | Dec-21                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-20 (No. ES3-3013_Dec20)    | Dec-21                 |
|                            |                  |                                   |                        |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 |

|                              | Name                                | Function                                | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibrated by:               | Jeton Kastrati                      | Laboratory Technician                   | d = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                                     |                                         | -la let.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Approved hu                  |                                     | <u></u>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | Katja Poković                       | Technical Manager                       | RAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              |                                     |                                         | n se 🖉 🖓 de la compañía 🖌 de la compañía de |
|                              |                                     |                                         | Issued: April 20, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| This calibration certificate | shall not be reproduced except in f | ull without written approval of the lab | oratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL                 | tissue simulating liquid                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| NORMx,y,z           | sensitivity in free space                                                                                                                            |
| ConvF               | sensitivity in TSL / NORMx,y,z                                                                                                                       |
| DCP                 | diode compression point                                                                                                                              |
| CF                  | crest factor (1/duty_cycle) of the RF signal                                                                                                         |
| A, B, C, D          | modulation dependent linearization parameters                                                                                                        |
| Polarization $\phi$ | φ rotation around probe axis                                                                                                                         |
| Polarization 9      | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis |
| Connector Angle     | information used in DASY system to align probe sensor X to the robot coordinate system                                                               |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.39     | 0.47     | 0.40     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 100.2    | 101.2    | 98.6     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>└</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 195.5    | ±3.3 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 189.5    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 192.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

<sup>B</sup> Numerical linearization parameter: uncertainty not required. <sup>E</sup> Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### **Other Probe Parameters**

| Triangular |
|------------|
| -173.8     |
| enabled    |
| disabled   |
| 337 mm     |
| 10 mm      |
| 9 mm       |
| 2.5 mm     |
| 1 mm       |
| 1 mm       |
| 1 mm       |
| 1.4 mm     |
|            |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 52.3                                  | 0.76                               | 12.89   | 12.89   | 12.89   | 0.00               | 1.00                       | ± 13.3 %     |
| 220                  | 49.0                                  | 0.81                               | 12.66   | 12.66   | 12.66   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 45.3                                  | 0.87                               | 12.09   | 12.09   | 12.09   | 0.10               | 1.30                       | ± 13.3 %     |
| 450                  | 43.5                                  | 0.87                               | 11.21   | 11.21   | 11.21   | 0.16               | 1.30                       | ± 13.3 %     |
| 600                  | 42.7                                  | 0.88                               | 10.64   | 10.64   | 10.64   | 0.10               | 1.25                       | ± 13.3 %     |
| 750                  | 41.9                                  | 0.89                               | 10.49   | 10.49   | 10.49   | 0.63               | 0.80                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                               | 10.16   | 10.16   | 10.16   | 0.54               | 0.80                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                               | 8.57    | 8.57    | 8.57    | 0.33               | 0.86                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                               | 8.05    | 8.05    | 8.05    | 0.37               | 0.86                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                               | 7.88    | 7.88    | 7.88    | 0.29               | 0.90                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                               | 7.57    | 7.57    | 7.57    | 0.37               | 0.90                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                               | 7.30    | 7.30    | 7.30    | 0.40               | 0.90                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                               | 6.80    | 6.80    | 6.80    | 0.40               | 1.35                       | ± 13.1 %     |
| 3700                 | 37.7                                  | 3.12                               | 6.40    | 6.40    | 6.40    | 0.40               | 1.35                       | ± 13.1 %     |
| 5250                 | 35.9                                  | 4.71                               | 5.19    | 5.19    | 5.19    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                                  | 5.07                               | 4.65    | 4.65    | 4.65    | 0.40               | 1.80                       | ± 13.1 %     |
| 5750                 | 35.4                                  | 5.22                               | 4.75    | 4.75    | 4.75    | 0.40               | 1.80                       | ± 13.1 %     |

#### **Calibration Parameter Determined in Head Tissue Simulating Media**

<sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

| f (MHz) <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 6500                 | 34.5                                  | 6.07                               | 5.40    | 5.40    | 5.40    | 0.20               | 2.50                       | ± 18.6 %     |

#### Calibration Parameter Determined in Head Tissue Simulating Media

<sup>c</sup> Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>F</sup> At frequencies 6-10 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

<sup>o</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.



Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



Uncertainty of Linearity Assessment: ± 0.6% (k=2)



# **Conversion Factor Assessment**



Report Number: SAR.20220401

## **Appendix E – Dipole Calibration Data Sheets**



Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D750V3-1053\_Jun21

|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | A CONTRACT OF |   | and proved in the second                 |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|------------------------------------------|
|  | A. J. 1998, M. 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                                                                 | - | 2.2.2                                    |
|  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | A CONTRACTOR OF |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                 |   |                                          |
|  | A second s |                                    | An arrest to the second second                                                                                  |   | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                           |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | 2 C C C C C C C C C C C C C C C C C C C                                                                         |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (a) CAS MARK 1                     | 2 CO 2 C                                                                                                        |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                 |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                 |   |                                          |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the state of the second second |                                                                                                                 |   | and a second second second               |
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                                 |   |                                          |

| Object                                                                                                          | D750V3 - SN:1053                                                                           | <b>3</b> . (***                                                                                                                                                |                                                                            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Calibration procedure(s)                                                                                        | QA CAL-05.v11<br>Calibration Procedure for SAR Validation Sources between 0.7-3 GHz        |                                                                                                                                                                |                                                                            |  |  |  |  |
|                                                                                                                 |                                                                                            |                                                                                                                                                                |                                                                            |  |  |  |  |
|                                                                                                                 |                                                                                            |                                                                                                                                                                |                                                                            |  |  |  |  |
| Calibration date:                                                                                               | June 04, 2021                                                                              |                                                                                                                                                                |                                                                            |  |  |  |  |
| This calibration certificate documen<br>The measurements and the uncerta<br>All calibrations have been conducte | ts the traceability to natio<br>ainties with confidence pro<br>ad in the closed laboratory | nal standards, which realize the physical units obbability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C and | of measurements (SI).<br>re part of the certificate.<br>nd humidity < 70%. |  |  |  |  |
| Calibration Equipment used (M&TE                                                                                | critical for calibration)                                                                  |                                                                                                                                                                |                                                                            |  |  |  |  |
| Primary Standards                                                                                               | ID #                                                                                       | Cal Date (Certificate No.)                                                                                                                                     | Scheduled Calibration                                                      |  |  |  |  |
| Power meter NRP                                                                                                 | SN: 104778                                                                                 | 09-Apr-21 (No. 217-03291/03292)                                                                                                                                | Apr-22                                                                     |  |  |  |  |
| Power sensor NRP-Z91                                                                                            | SN: 103244                                                                                 | 09-Apr-21 (No. 217-03291)                                                                                                                                      | Apr-22                                                                     |  |  |  |  |
| Power sensor NRP-Z91                                                                                            | SN: 103245                                                                                 | 09-Apr-21 (No. 217-03292)                                                                                                                                      | Apr-22                                                                     |  |  |  |  |
| Reference 20 dB Attenuator                                                                                      | SN: BH9394 (20k)                                                                           | 09-Apr-21 (No. 217-03343)                                                                                                                                      | Apr-22                                                                     |  |  |  |  |
| Type-N mismatch combination                                                                                     | SN: 310982 / 06327                                                                         | 09-Apr-21 (No. 217-03344)                                                                                                                                      | Apr-22                                                                     |  |  |  |  |
| Reference Probe EX3DV4                                                                                          | SN: 7349                                                                                   | 28-Dec-20 (No. EX3-7349_Dec20)                                                                                                                                 | Dec-21                                                                     |  |  |  |  |
| DAE4                                                                                                            | SN: 601                                                                                    | 02-Nov-20 (No. DAE4-601_Nov20)                                                                                                                                 | Nov-21                                                                     |  |  |  |  |
| Secondary Standards                                                                                             | ID #                                                                                       | Check Date (in house)                                                                                                                                          | Scheduled Check                                                            |  |  |  |  |
| Power meter E4419B                                                                                              | SN: GB39512475                                                                             | 30-Oct-14 (in house check Oct-20)                                                                                                                              | In house check: Oct-22                                                     |  |  |  |  |
| Power sensor HP 8481A                                                                                           | SN: US37292783                                                                             | 07-Oct-15 (in house check Oct-20)                                                                                                                              | In house check: Oct-22                                                     |  |  |  |  |
| Power sensor HP 8481A                                                                                           | SN: MY41092317                                                                             | 07-Oct-15 (in house check Oct-20)                                                                                                                              | In house check: Oct-22                                                     |  |  |  |  |
| RF generator R&S SMT-06                                                                                         | SN: 100972                                                                                 | 15-Jun-15 (in house check Oct-20)                                                                                                                              | In house check: Oct-22                                                     |  |  |  |  |
| Network Analyzer Agilent E8358A                                                                                 | SN: US41080477                                                                             | 31-Mar-14 (in house check Oct-20)                                                                                                                              | In house check: Oct-21                                                     |  |  |  |  |
|                                                                                                                 | Name                                                                                       | Function                                                                                                                                                       | Signature                                                                  |  |  |  |  |
| Calibrated by:                                                                                                  | Michael Weber                                                                              | Laboratory Technician                                                                                                                                          | 11/11/1~                                                                   |  |  |  |  |
|                                                                                                                 |                                                                                            |                                                                                                                                                                | M.NEX                                                                      |  |  |  |  |
| Approved by:                                                                                                    | Katja Pokovic                                                                              | Technical Manager                                                                                                                                              | delf-                                                                      |  |  |  |  |
|                                                                                                                 |                                                                                            |                                                                                                                                                                | Issued: June 8, 2021                                                       |  |  |  |  |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

|                              | V V                    |             |
|------------------------------|------------------------|-------------|
| DASY Version                 | DASY5                  | V52.10.4    |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.7 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.17 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.57 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.41 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.58 W/kg ± 16.5 % (k=2) |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 56.5 Ω + 0.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.3 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.035 ns |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.035 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

### **DASY5 Validation Report for Head TSL**

Date: 04.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1053

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz;  $\sigma$  = 0.91 S/m;  $\epsilon_r$  = 42.7;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.30 W/kg **SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.41 W/kg** Smallest distance from peaks to all points 3 dB below: Larger than measurement grid ( > 30mm) Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 2.93 W/kg



0 dB = 2.93 W/kg = 4.67 dBW/kg





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D900V2-1d128\_Jun21

## **CALIBRATION CERTIFICATE**

| Object                                                                   | D900V2 - SN:1d1                                           | 128                                                                                             |                                                             |
|--------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Calibration procedure(s)                                                 | QA CAL-05.v11<br>Calibration Proce                        | dure for SAR Validation Sources                                                                 | between 0.7-3 GHz                                           |
|                                                                          |                                                           |                                                                                                 |                                                             |
| Calibration date:                                                        | June 04, 2021                                             |                                                                                                 |                                                             |
| This calibration certificate documer<br>The measurements and the uncerta | nts the traceability to nati<br>ainties with confidence p | onal standards, which realize the physical un<br>robability are given on the following pages an | its of measurements (SI).<br>d are part of the certificate. |
| All calibrations have been conducte                                      | ed in the closed laborato                                 | ry facility: environment temperature (22 $\pm$ 3)°(                                             | C and humidity < 70%.                                       |
| Calibration Equipment used (M&TE                                         | critical for calibration)                                 |                                                                                                 |                                                             |
| Primary Standards                                                        | ID #                                                      | Cal Date (Certificate No.)                                                                      | Scheduled Calibration                                       |
| Power meter NRP                                                          | SN: 104778                                                | 09-Apr-21 (No. 217-03291/03292)                                                                 | Apr-22                                                      |
| Power sensor NRP-Z91                                                     | SN: 103244                                                | 09-Apr-21 (No. 217-03291)                                                                       | Apr-22                                                      |
| <sup>2</sup> ower sensor NRP-Z91                                         | SN: 103245                                                | 09-Apr-21 (No. 217-03292)                                                                       | Apr-22                                                      |
| Reference 20 dB Attenuator                                               | SN: BH9394 (20k)                                          | 09-Apr-21 (No. 217-03343)                                                                       | Apr-22                                                      |
| Type-N mismatch combination                                              | SN: 310982 / 06327                                        | 09-Apr-21 (No. 217-03344)                                                                       | Apr-22                                                      |
| Reference Probe EX3DV4                                                   | SN: 7349                                                  | 28-Dec-20 (No. EX3-7349_Dec20)                                                                  | Dec-21                                                      |
| DAE4                                                                     | SN: 601                                                   | 02-Nov-20 (No. DAE4-601_Nov20)                                                                  | Nov-21                                                      |
| Secondary Standards                                                      | ID #                                                      | Check Date (in house)                                                                           | Scheduled Check                                             |
| Power meter E4419B                                                       | SN: GB39512475                                            | 30-Oct-14 (in house check Oct-20)                                                               | In house check: Oct-22                                      |
| <sup>o</sup> ower sensor HP 8481A                                        | SN: US37292783                                            | 07-Oct-15 (in house check Oct-20)                                                               | In house check: Oct-22                                      |
| <sup>2</sup> ower sensor HP 8481A                                        | SN: MY41092317                                            | 07-Oct-15 (in house check Oct-20)                                                               | In house check: Oct-22                                      |
| RF generator R&S SMT-06                                                  | SN: 100972                                                | 15-Jun-15 (in house check Oct-20)                                                               | In house check: Oct-22                                      |
| Network Analyzer Agilent E8358A                                          | SN: US41080477                                            | 31-Mar-14 (in house check Oct-20)                                                               | In house check: Oct-21                                      |
|                                                                          | Name                                                      | Function                                                                                        | Signature                                                   |
| Calibrated by:                                                           | Michael Weber                                             | Laboratory Technician                                                                           | M. Heles                                                    |
| Approved by:                                                             | Katja Pokovic                                             | Technical Manager                                                                               | M&L                                                         |
|                                                                          |                                                           |                                                                                                 | Issued: June 8, 2021                                        |

Certificate No: D900V2-1d128\_Jun21

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 900 MHz ± 1 MHz        |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.97 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.3 ± 6 %   | 0.96 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.76 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 11.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.77 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 7.14 W/kg ± 16.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51.0 Ω - 0.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 38.5 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.412 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

### **DASY5 Validation Report for Head TSL**

Date: 04.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d128

Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz;  $\sigma = 0.96$  S/m;  $\epsilon_r = 42.3$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 65.79 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.23 W/kg **SAR(1 g) = 2.76 W/kg; SAR(10 g) = 1.77 W/kg** Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 3.74 W/kg



0 dB = 3.74 W/kg = 5.73 dBW/kg

#### Impedance Measurement Plot for Head TSL



**RF Exposure Lab** 

Client





S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Certificate No: D1750V2-1061\_Jun21

CALIBRATION CERTIFICATE

| Object                   | D1750V2 - SN:1061                                                                   |
|--------------------------|-------------------------------------------------------------------------------------|
| Calibration procedure(s) | QA CAL-05.v11<br>Calibration Procedure for SAR Validation Sources between 0.7-3 GHz |
| Calibration date:        | June 03, 2021                                                                       |

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

|                                         | 1                       |                                                 |                        |
|-----------------------------------------|-------------------------|-------------------------------------------------|------------------------|
| Primary Standards                       | ID #                    | Cal Date (Certificate No.)                      | Scheduled Calibration  |
| Power meter NRP                         | SN: 104778              | 09-Apr-21 (No. 217-03291/03292)                 | Apr-22                 |
| Power sensor NRP-Z91                    | SN: 103244              | 09-Apr-21 (No. 217-03291)                       | Apr-22                 |
| Power sensor NRP-Z91                    | SN: 103245              | 09-Apr-21 (No. 217-03292)                       | Apr-22                 |
| Reference 20 dB Attenuator              | SN: BH9394 (20k)        | 09-Apr-21 (No. 217-03343)                       | Apr-22                 |
| Type-N mismatch combination             | SN: 310982 / 06327      | 09-Apr-21 (No. 217-03344)                       | Apr-22                 |
| Reference Probe EX3DV4                  | SN: 7349                | 28-Dec-20 (No. EX3-7349_Dec20)                  | Dec-21                 |
| DAE4                                    | SN: 601                 | 02-Nov-20 (No. DAE4-601_Nov20)                  | Nov-21                 |
|                                         |                         |                                                 |                        |
| Secondary Standards                     | ID #                    | Check Date (in house)                           | Scheduled Check        |
| Power meter E4419B                      | SN: GB39512475          | 30-Oct-14 (in house check Oct-20)               | In house check: Oct-22 |
| Power sensor HP 8481A                   | SN: US37292783          | 07-Oct-15 (in house check Oct-20)               | In house check: Oct-22 |
| Power sensor HP 8481A                   | SN: MY41092317          | 07-Oct-15 (in house check Oct-20)               | In house check: Oct-22 |
| RF generator R&S SMT-06                 | SN: 100972              | 15-Jun-15 (in house check Oct-20)               | In house check: Oct-22 |
| Network Analyzer Agilent E8358A         | SN: US41080477          | 31-Mar-14 (in house check Oct-20)               | In house check: Oct-21 |
|                                         |                         |                                                 |                        |
|                                         | Name                    | Function                                        | Signature              |
| Calibrated by:                          | Jeffrey Katzman         | Laboratory Technician                           | 1/1                    |
| -                                       |                         |                                                 | d. both                |
|                                         |                         |                                                 |                        |
| Approved by:                            | Katia Pokovic           | Technical Manager                               | Mal                    |
|                                         |                         |                                                 | and                    |
|                                         |                         | in an       |                        |
|                                         |                         |                                                 | Issued: June 8, 2021   |
| This calibration certificate shall not  | he reproduced except in | full without written approval of the laboratory |                        |
| i mis calibration certificate shall not |                         | iun williout willen approval of the laboratory. |                        |

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.
#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.7 ± 6 %   | 1.37 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 $\text{cm}^3$ (1 g) of Head TSL | Condition          |                          |
|-----------------------------------------------------|--------------------|--------------------------|
| SAR measured                                        | 250 mW input power | 9.38 W/kg                |
| SAR for nominal Head TSL parameters                 | normalized to 1W   | 37.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.93 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.8 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.4 Ω + 0.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 44.5 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.221 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
| ,               |       |

#### **DASY5 Validation Report for Head TSL**

Date: 03.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz;  $\sigma$  = 1.37 S/m;  $\epsilon_r$  = 40.7;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 17.5 W/kg **SAR(1 g) = 9.38 W/kg; SAR(10 g) = 4.93 W/kg** Smallest distance from peaks to all points 3 dB below = 9.1 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 14.6 W/kg



0 dB = 14.6 W/kg = 11.64 dBW/kg



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 0108

Client RF Exposure Lab

Certificate No: D1900V2-5d147\_Jun21

# **CALIBRATION CERTIFICATE**

Multilateral Agreement for the recognition of calibration certificates

| Object                                                                                                                                              | D1900V2 - SN:5d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1147                                                                                                                                                   |                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                            | QA CAL-05.v11<br>Calibration Proce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dure for SAR Validation Sources                                                                                                                        | between 0.7-3 GHz                                                                     |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                       |
| Calibration date:                                                                                                                                   | June 04, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        |                                                                                       |
| This calibration certificate documen<br>The measurements and the uncerta<br>All calibrations have been conducte<br>Calibration Equipment used (M&TE | its the traceability to nationality to nationality to nationality to nationality to nationality to nationality the closed laboratoration of the closed laboration of the calibration of | conal standards, which realize the physical un<br>robability are given on the following pages an<br>y facility: environment temperature (22 $\pm$ 3)°C | its of measurements (SI).<br>Id are part of the certificate.<br>C and humidity < 70%. |
|                                                                                                                                                     | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |                                                                                       |
| Primary Standards                                                                                                                                   | ID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cal Date (Certificate No.)                                                                                                                             | Scheduled Calibration                                                                 |
| Power meter NRP                                                                                                                                     | SN: 104778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-Apr-21 (No. 217-03291/03292)                                                                                                                        | Apr-22                                                                                |
| Power sensor NRP-Z91                                                                                                                                | SN: 103244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-Apr-21 (No. 217-03291)                                                                                                                              | Apr-22                                                                                |
| Power sensor NRP-Z91                                                                                                                                | SN: 103245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-Apr-21 (No. 217-03292)                                                                                                                              | Apr-22                                                                                |
| Reference 20 dB Attenuator                                                                                                                          | SN: BH9394 (20k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09-Apr-21 (No. 217-03343)                                                                                                                              | Apr-22                                                                                |
| Type-N mismatch combination                                                                                                                         | SN: 310982 / 06327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09-Apr-21 (No. 217-03344)                                                                                                                              | Apr-22                                                                                |
| Reference Probe EX3DV4                                                                                                                              | SN: 7349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28-Dec-20 (No. EX3-7349_Dec20)                                                                                                                         | Dec-21                                                                                |
| DAE4                                                                                                                                                | SN: 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02-Nov-20 (No. DAE4-601_Nov20)                                                                                                                         | Nov-21                                                                                |
| Secondary Standards                                                                                                                                 | D #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check Date (in house)                                                                                                                                  | Scheduled Check                                                                       |
| Power meter E4419B                                                                                                                                  | SN: GB39512475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30-Oct-14 (in house check Oct-20)                                                                                                                      | In house check: Oct-22                                                                |
| Power sensor HP 8481A                                                                                                                               | SN: US37292783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-Oct-15 (in house check Oct-20)                                                                                                                      | In house check: Oct-22                                                                |
| Power sensor HP 8481A                                                                                                                               | SN: MY41092317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-Oct-15 (in house check Oct-20)                                                                                                                      | In house check: Oct-22                                                                |
| RF generator R&S SMT-06                                                                                                                             | SN: 100972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-Jun-15 (in house check Oct-20)                                                                                                                      | In house check: Oct-22                                                                |
| Network Analyzer Agilent E8358A                                                                                                                     | SN: US41080477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31-Mar-14 (in house check Oct-20)                                                                                                                      | In house check: Oct-21                                                                |
|                                                                                                                                                     | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Function                                                                                                                                               | Signature                                                                             |
| Calibrated by:                                                                                                                                      | Michael Moher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laboratory Technician                                                                                                                                  |                                                                                       |
| Calibrated by.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lavoratory (Contrincian                                                                                                                                | MARKET                                                                                |
| Approved by:                                                                                                                                        | Katja Pokovic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Technical Manager                                                                                                                                      | All of                                                                                |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d147\_Jun21

Issued: June 8, 2021

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY5                  | V52.10.4                                                                                                  |
|------------------------|-----------------------------------------------------------------------------------------------------------|
| Advanced Extrapolation |                                                                                                           |
| Modular Flat Phantom   |                                                                                                           |
| 10 mm                  | with Spacer                                                                                               |
| dx, dy, dz = 5 mm      |                                                                                                           |
| 1900 MHz ± 1 MHz       |                                                                                                           |
|                        | DASY5<br>Advanced Extrapolation<br>Modular Flat Phantom<br>10 mm<br>dx, dy, dz = 5 mm<br>1900 MHz ± 1 MHz |

Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.9 ± 6 %   | 1.41 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 10.1 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 40.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.1 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 53.3 Ω + 5.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.2 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.192 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
| -               |       |

# **DASY5 Validation Report for Head TSL**

Date: 04.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.41 S/m;  $\epsilon_r$  = 40.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.7 W/kg **SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg

### Impedance Measurement Plot for Head TSL



Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2550V2-1003 Jun21

Client

**RF Exposure Lab** 

| Cheffit | IN EQUIVERSE         |  |
|---------|----------------------|--|
| CAL     | IBRATION CERTIFICATE |  |

| Object                   | D2550V2 - SN:1003                                                                   |
|--------------------------|-------------------------------------------------------------------------------------|
| Calibration procedure(s) | QA CAL-05.v11<br>Calibration Procedure for SAR Validation Sources between 0.7-3 GHz |
| Calibration date:        | June 03, 2021                                                                       |

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID #                                   | Cal Date (Certificate No.)                                                                                               | Scheduled Calibration                                      |
|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Power meter NRP                 | SN: 104778                             | 09-Apr-21 (No. 217-03291/03292)                                                                                          | Apr-22                                                     |
| Power sensor NRP-Z91            | SN: 103244                             | 09-Apr-21 (No. 217-03291)                                                                                                | Apr-22                                                     |
| Power sensor NRP-Z91            | SN: 103245                             | 09-Apr-21 (No. 217-03292)                                                                                                | Apr-22                                                     |
| Reference 20 dB Attenuator      | SN: BH9394 (20k)                       | 09-Apr-21 (No. 217-03343)                                                                                                | Apr-22                                                     |
| Type-N mismatch combination     | SN: 310982 / 06327                     | 09-Apr-21 (No. 217-03344)                                                                                                | Apr-22                                                     |
| Reference Probe EX3DV4          | SN: 7349                               | 28-Dec-20 (No. EX3-7349_Dec20)                                                                                           | Dec-21                                                     |
| DAE4                            | SN: 601                                | 02-Nov-20 (No. DAE4-601_Nov20)                                                                                           | Nov-21                                                     |
|                                 |                                        |                                                                                                                          |                                                            |
| Secondary Standards             | ID #                                   | Check Date (in house)                                                                                                    | Scheduled Check                                            |
| Power meter E4419B              | SN: GB39512475                         | 30-Oct-14 (in house check Oct-20)                                                                                        | In house check: Oct-22                                     |
| Power sensor HP 8481A           | SN: US37292783                         | 07-Oct-15 (in house check Oct-20)                                                                                        | In house check: Oct-22                                     |
| Power sensor HP 8481A           | SN: MY41092317                         | 07-Oct-15 (in house check Oct-20)                                                                                        | In house check: Oct-22                                     |
| RF generator R&S SMT-06         | SN: 100972                             | 15-Jun-15 (in house check Oct-20)                                                                                        | In house check: Oct-22                                     |
| Network Analyzer Agilent E8358A | SN: US41080477                         | 31-Mar-14 (in house check Oct-20)                                                                                        | In house check: Oct-21                                     |
|                                 |                                        |                                                                                                                          |                                                            |
|                                 | Name                                   | Function                                                                                                                 | Signature                                                  |
| Calibrated by:                  | Jeffrey Katzman                        | Laboratory Technician                                                                                                    |                                                            |
|                                 |                                        |                                                                                                                          | J. Lator                                                   |
|                                 | 0.000000000000000000000000000000000000 | ыл ал тал талаатык жана жана кончектеренде калалар де калар жана калар калар калар калар калар калар калар кала<br>Калар | C                                                          |
| Approved by:                    | Katja Pokovic                          | Technical Manager                                                                                                        | 00101                                                      |
|                                 |                                        |                                                                                                                          | and                                                        |
|                                 |                                        | mentektenet errende arterna ander ander er erreftektet bledde til det til det bledde bledde i 18 en 18 en 18 e<br>T      | aan dhaalaan ah soo ah |
|                                 |                                        |                                                                                                                          | Issued: June 8. 2021                                       |
|                                 |                                        |                                                                                                                          | ····· , •·                                                 |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2550 MHz ± 1 MHz       |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.1         | 1.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.3 ± 6 %   | 1.98 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.2 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 55.3 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.7 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.4 Ω - 3.5 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 29.0 dB       |  |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.156 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
| manalaota by    |       |

### **DASY5 Validation Report for Head TSL**

Date: 03.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1003

Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz;  $\sigma$  = 1.98 S/m;  $\epsilon_r$  = 37.3;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.6 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 29.9 W/kg **SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.28 W/kg** Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 24.3 W/kg



0 dB = 24.3 W/kg = 13.86 dBW/kg

Impedance Measurement Plot for Head TSL



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse d etalonnage
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

|          | Certii | icate I   | No: [ | 224    | 150     | уV: | 2-8   | 18                   | ١., | Ju | n2 | 1     |           |  |
|----------|--------|-----------|-------|--------|---------|-----|-------|----------------------|-----|----|----|-------|-----------|--|
| NORTH NO | -      | CARA LANK | 1     | 3892D2 | ananan. |     | 20020 | 1995-020<br>1995-020 |     |    |    | 19.88 | <br>39819 |  |

Client RF Exposure Lab

| Client | KF Exposure Lan   |   |
|--------|-------------------|---|
| CAL    | BRATION CERTIFICA | Т |

| Object                   | D2450V2 - SN:881                                                                    |
|--------------------------|-------------------------------------------------------------------------------------|
| Calibration procedure(s) | QA CAL-05.v11<br>Calibration Procedure for SAR Validation Sources between 0.7-3 GHz |
| Calibration date:        | June 03, 2021                                                                       |

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                      | ID #                                                                                                            | Cal Date (Certificate No.)        | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Power meter NRP                        | SN: 104778                                                                                                      | 09-Apr-21 (No. 217-03291/03292)   | Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Power sensor NRP-Z91                   | SN: 103244                                                                                                      | 09-Apr-21 (No. 217-03291)         | Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Power sensor NRP-Z91                   | SN: 103245                                                                                                      | 09-Apr-21 (No. 217-03292)         | Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Reference 20 dB Attenuator             | SN: BH9394 (20k)                                                                                                | 09-Apr-21 (No. 217-03343)         | Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Type-N mismatch combination            | SN: 310982 / 06327                                                                                              | 09-Apr-21 (No. 217-03344)         | Apr-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Reference Probe EX3DV4                 | SN: 7349                                                                                                        | 28-Dec-20 (No. EX3-7349_Dec20)    | Dec-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| DAE4                                   | SN: 601                                                                                                         | 02-Nov-20 (No. DAE4-601_Nov20)    | Nov-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                        |                                                                                                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Secondary Standards                    | ID#                                                                                                             | Check Date (in house)             | Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Power meter E4419B                     | SN: GB39512475                                                                                                  | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Power sensor HP 8481A                  | SN: US37292783                                                                                                  | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Power sensor HP 8481A                  | SN: MY41092317                                                                                                  | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| RF generator R&S SMT-06                | SN: 100972                                                                                                      | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Network Analyzer Agilent E8358A        | SN: US41080477                                                                                                  | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                        |                                                                                                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                        | Name                                                                                                            | Function                          | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Calibrated by:                         | Jeffrey Katzman                                                                                                 | Laboratory Technician             | 1 he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                        |                                                                                                                 |                                   | d. hopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                        |                                                                                                                 |                                   | - <i>U</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Approved by:                           | Katja Pokovic                                                                                                   | Technical Manager                 | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                        |                                                                                                                 |                                   | a contraction of the contraction |  |  |  |
|                                        |                                                                                                                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                        |                                                                                                                 |                                   | Issued: June 8, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| This calibration certificate shall not | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

# Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.7 ± 6 %   | 1.87 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.9 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 54.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.34 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 54.3 Ω + 4.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.7 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.156 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

### **DASY5 Validation Report for Head TSL**

Date: 03.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:881

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma = 1.87$  S/m;  $\epsilon_r = 37.7$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.0 W/kg **SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.34 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.5% Maximum value of SAR (measured) = 23.1 W/kg



0 dB = 23.1 W/kg = 13.64 dBW/kg

#### Impedance Measurement Plot for Head TSL



Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client RF Exposure Lab

Certificate No: D5GHzV2-1119\_Jun21

# **CALIBRATION CERTIFICATE**

| Object                                                                                                                                             | D5GHzV2 - SN:1                                                                                                | <b>119</b>                                                                                                                                                      |                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                           | QA CAL-22.v6<br>Calibration Proce                                                                             | dure for SAR Validation Sources                                                                                                                                 | between 3-10 GHz                                                                     |
| Calibration date:                                                                                                                                  | June 08, 2021                                                                                                 |                                                                                                                                                                 |                                                                                      |
| This calibration certificate documer<br>The measurements and the uncert<br>All calibrations have been conducte<br>Calibration Equipment used (M&TE | nts the traceability to national confidence predimination of the closed laborator E critical for calibration) | onal standards, which realize the physical uni<br>robability are given on the following pages and<br>y facility: environment temperature $(22 \pm 3)^{\circ}$ C | its of measurements (SI).<br>d are part of the certificate.<br>C and humidity < 70%. |
| Brimony Standarda                                                                                                                                  | 10.4                                                                                                          | Cal Data (Cartificata Na.)                                                                                                                                      | Schodulod Calibration                                                                |
|                                                                                                                                                    | SN: 104779                                                                                                    | 00 Apr 21 (No. 217 02201/02202)                                                                                                                                 |                                                                                      |
| Power nieter NRP 701                                                                                                                               | SN: 104776                                                                                                    | 09-Apr-21 (No. 217-03291/03292)                                                                                                                                 | Apr-22                                                                               |
| Power sensor NPP 701                                                                                                                               | SN: 103244                                                                                                    | 00  Apr  21  (No.  217  03291)                                                                                                                                  | Apr-22                                                                               |
| Reference 20 dB Attenuator                                                                                                                         | SN: RH0304 (20k)                                                                                              | $(N_0, 217, 03232)$                                                                                                                                             | Δpr-22                                                                               |
| Type N mismatch combination                                                                                                                        | SN: 210092 (06227                                                                                             | 09-Apr-21 (No. 217-03343)                                                                                                                                       | Apr 22                                                                               |
| Potoropoo Probo EX2DV/4                                                                                                                            | SN: 310302 / 00027                                                                                            | $\frac{30}{20} \sum_{n=2}^{\infty} (N_0, EV3, 2503, Doc20)$                                                                                                     |                                                                                      |
|                                                                                                                                                    | SN: 601                                                                                                       | 02-Nov-20 (No. DAE4-601, Nov-20)                                                                                                                                |                                                                                      |
| DAE4                                                                                                                                               |                                                                                                               | 02-1100-20 (110. DAE4-001_110020)                                                                                                                               | 100-21                                                                               |
| Secondary Standards                                                                                                                                | ID #                                                                                                          | Check Date (in house)                                                                                                                                           | Scheduled Check                                                                      |
| Power meter E4419B                                                                                                                                 | SN: GB39512475                                                                                                | 30-Oct-14 (in house check Oct-20)                                                                                                                               | In house check: Oct-22                                                               |
| Power sensor HP 8481A                                                                                                                              | SN: US37292783                                                                                                | 07-Oct-15 (in house check Oct-20)                                                                                                                               | In house check: Oct-22                                                               |
| Power sensor HP 8481A                                                                                                                              | SN: MY41092317                                                                                                | 07-Oct-15 (in house check Oct-20)                                                                                                                               | In house check: Oct-22                                                               |
| RF generator R&S SMT-06                                                                                                                            | SN: 100972                                                                                                    | 15-Jun-15 (in house check Oct-20)                                                                                                                               | In house check: Oct-22                                                               |
| Network Analyzer Agilent E8358A                                                                                                                    | SN: US41080477                                                                                                | 31-Mar-14 (in house check Oct-20)                                                                                                                               | In house check: Oct-21                                                               |
|                                                                                                                                                    | Name                                                                                                          | Function                                                                                                                                                        | Signature                                                                            |
| Calibrated by:                                                                                                                                     | Michael Weber                                                                                                 | Laboratory Technician                                                                                                                                           | ĭ∕lıı/ ←                                                                             |
|                                                                                                                                                    |                                                                                                               |                                                                                                                                                                 | M.10 (2)                                                                             |
| Approved by:                                                                                                                                       | Katja Pokovic                                                                                                 | Technical Manager                                                                                                                                               | stellt                                                                               |
|                                                                                                                                                    |                                                                                                               |                                                                                                                                                                 | Issued: June 8, 2021                                                                 |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.10.4                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 4.59 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 8.02 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 79.5 W/kg ± 19.9 % (k=2) |
|                                                         |                    |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
| SAR measured                                            | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.9 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 4.95 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL | Condition          |                          |
|----------------------------------------------|--------------------|--------------------------|
| SAR measured                                 | 100 mW input power | 8.40 W/kg                |
| SAR for nominal Head TSL parameters          | normalized to 1W   | 83.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $\text{cm}^3$ (10 g) of Head TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 2.41 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 23.8 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.9 ± 6 %   | 5.10 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.13 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.0 W/kg ± 19.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 51.9 Ω - 7.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.6 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 56.8 Ω - 1.3 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 23.8 dB       |  |  |  |  |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 56.9 Ω - 1.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.5 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.206 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|

# **DASY5 Validation Report for Head TSL**

Date: 08.06.2021

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma = 4.59$  S/m;  $\epsilon_r = 34.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 4.95$  S/m;  $\epsilon_r = 34.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 5.1$  S/m;  $\epsilon_r = 33.9$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.83 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.7% Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 68.4% Maximum value of SAR (measured) = 19.1 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.64 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.3 W/kg



0 dB = 19.3 W/kg = 12.86 dBW/kg

### Impedance Measurement Plot for Head TSL





# Appendix F – Phantom Calibration Data Sheets

S

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

#### Certificate of Conformity / First Article Inspection

| Item         | Oval Flat Phantom ELI 4.0       |
|--------------|---------------------------------|
| Type No      | QD OVA 001 B                    |
| Series No    | 1003 and higher                 |
| Manufacturer | Untersee Composites             |
|              | Knebelstrasse 8                 |
|              | CH-8268 Mannenbach, Switzerland |

#### Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

| Test        | Requirement                            | Details                        | Units tested |
|-------------|----------------------------------------|--------------------------------|--------------|
| Material    | Compliant with the standard            | Bottom plate:                  | all          |
| thickness   | requirements                           | 2.0mm +/- 0.2mm                |              |
| Material    | Dielectric parameters for required     | < 6 GHz: Rel. permittivity = 4 | Material     |
| parameters  | frequencies                            | +/-1, Loss tangent ≤ 0.05      | sample       |
| Material    | The material has been tested to be     | DGBE based simulating          | Equivalent   |
| resistivity | compatible with the liquids defined in | liquids.                       | phantoms,    |
|             | the standards if handled and cleaned   | Observe Technical Note for     | Material     |
|             | according to the instructions.         | material compatibility.        | sample       |
| Shape       | Thickness of bottom material,          | Bottom elliptical 600 x 400 mm | Prototypes,  |
|             | Internal dimensions,                   | Depth 190 mm,                  | Sample       |
|             | Sagging                                | Shape is within tolerance for  | testing      |
|             | compatible with standards from         | filling height up to 155 mm,   |              |
|             | minimum frequency                      | Eventual sagging is reduced or |              |
|             |                                        | eliminated by support via DUT  |              |

#### Standards

- CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices – Human models, Instrumentation and Procedures – Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. **S P G a G** 

| Date 28.4.2008 Signature / Stamp | Schmid & Partner Engineering AG<br>Zeughausstrasse 43, 8004 Zurich, Switzerland<br>Phone +41 44 245 9700, Fax+41,44 245 9779<br>info@speag.com; http://www.speag.com |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Doc No 881 - QD OVA 001 B - D

Page 1 (1)



# **Appendix G – Validation Summary**

Per FCC KDB 865664 D02 v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue equivalent media for system validation according to the procedures outlined in FCC KDB 865664 D01 v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point using the system that normally operates with the probe for routine SAR measurements and according to the required tissue equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

| SAR         | Frog  |            | Droho | Brobo  | Probe Cal ( |                     | Brobo Col | Probo Ca            | Probe Cal | Probo Cal                  | Probo Cal        |                    | Drobo Col         |                    | Dorm           | CW Validation |  |  | Modulation Valildation |  | ion |
|-------------|-------|------------|-------|--------|-------------|---------------------|-----------|---------------------|-----------|----------------------------|------------------|--------------------|-------------------|--------------------|----------------|---------------|--|--|------------------------|--|-----|
| System<br># | (MHz) | Date       | S/N   | Туре   | Prob<br>Po  | Probe Cal.<br>Point |           | Probe Cal.<br>Point | (σ)       | ρεπη.<br>(ε <sub>r</sub> ) | Sens-<br>itivity | Probe<br>Linearity | Probe<br>Isotropy | Modulation<br>Type | Duty<br>Factor | PAR           |  |  |                        |  |     |
|             |       |            |       |        |             |                     |           |                     |           |                            |                  |                    |                   |                    |                |               |  |  |                        |  |     |
| 2           | 750   | 01/25/2022 | 7530  | EX3DV4 | 750         | Head                | 0.91      | 41.21               | Pass      | Pass                       | Pass             | QPSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 900   | 01/25/2022 | 7530  | EX3DV4 | 900         | Head                | 0.99      | 41.03               | Pass      | Pass                       | Pass             | QPSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 900   | 01/25/2022 | 7530  | EX3DV4 | 900         | Head                | 0.99      | 41.03               | Pass      | Pass                       | Pass             | WCDMA              | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 1750  | 01/26/2022 | 7530  | EX3DV4 | 1750        | Head                | 1.38      | 38.22               | Pass      | Pass                       | Pass             | QPSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 1750  | 01/26/2022 | 7530  | EX3DV4 | 1750        | Head                | 1.38      | 38.22               | Pass      | Pass                       | Pass             | WCDMA              | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 1900  | 01/26/2022 | 7530  | EX3DV4 | 1900        | Head                | 1.42      | 39.17               | Pass      | Pass                       | Pass             | QPSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 1900  | 01/26/2022 | 7530  | EX3DV4 | 1900        | Head                | 1.42      | 39.17               | Pass      | Pass                       | Pass             | WCDMA              | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 2550  | 01/27/2022 | 7530  | EX3DV4 | 2550        | Head                | 1.92      | 38.59               | Pass      | Pass                       | Pass             | QPSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 3           | 900   | 03/02/2022 | 3662  | EX3DV4 | 900         | Head                | 0.98      | 41.26               | Pass      | Pass                       | Pass             | FM                 | Pass              | Pass               |                |               |  |  |                        |  |     |
| 3           | 2450  | 03/07/2022 | 3662  | EX3DV4 | 2450        | Head                | 1.81      | 38.34               | Pass      | Pass                       | Pass             | GMSK               | Pass              | Pass               |                |               |  |  |                        |  |     |
| 3           | 2450  | 03/07/2022 | 3662  | EX3DV4 | 2450        | Head                | 1.81      | 38.34               | Pass      | Pass                       | Pass             | OFDM/TDD           | Pass              | Pass               |                |               |  |  |                        |  |     |
| 3           | 5250  | 03/07/2022 | 3662  | EX3DV4 | 5250        | Head                | 4.73      | 34.77               | Pass      | Pass                       | Pass             | OFDM/TDD           | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 5600  | 04/28/2021 | 7531  | EX3DV4 | 5600        | Head                | 5.11      | 34.35               | Pass      | Pass                       | Pass             | OFDM/TDD           | Pass              | Pass               |                |               |  |  |                        |  |     |
| 2           | 5750  | 04/29/2021 | 7531  | EX3DV4 | 5750        | Head                | 5.28      | 34.18               | Pass      | Pass                       | Pass             | OFDM/TDD           | Pass              | Pass               |                |               |  |  |                        |  |     |

Table G-1 SAR System Validation Summary