RF Exposure Lab ### Plot 9 DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ S/m}$; $\epsilon_r = 38.34$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/3/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(7.65, 7.65, 7.65); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** Head Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.22 W/kg Head Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.025 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 11.05 W/kg Pin= 100 mW SAR(1 g) = 5.46 W/kg; SAR(10 g) = 2.52 W/kgMaximum value of SAR (measured) = 8.96 W/kg # RF Exposure Lab ### Plot 10 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119 Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used (interpolated): f = 5250 MHz; σ = 4.725 S/m; ϵ_r = 34.765; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(5.45, 5.45, 5.45); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** Head Verification/5250 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.47 W/kg Head Verification/5250 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 15.267 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.22 W/kg Pin=10 mW SAR(1 g) = 0.803 W/kg; SAR(10 g) = 0.226 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.88 W/kg ## RF Exposure Lab ### **Plot 11** DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119 Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 34.35$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(4.8, 4.8, 4.8); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** **Head Verification/5600 MHz/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.72 W/kg Head Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 15.398 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.59 W/kg Pin=10 mW **SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.241 W/kg** Maximum value of SAR (measured) = 2.01 W/kg # RF Exposure Lab ### Plot 12 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1119 Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL 3-6 GHz; Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.28$ S/m; $\epsilon_r = 34.18$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 – SN7530; ConvF(4.98, 4.98, 4.98); Calibrated: 1/14/2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** Head Verification/5750 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 1.61 W/kg Head Verification/5750 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 14.521 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.34 W/kg Pin=10 mW SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.233 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.78 W/kg ## **Appendix B – SAR Test Data Plots** ## RF Exposure Lab ### Plot 1 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 673 MHz; Duty Cycle: 1:1 Medium: HSL600; Medium parameters used (interpolated): f = 673 MHz; σ = 0.94 S/m; ϵ_r = 41.682; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 2/3/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.64, 10.64, 10.64); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B71 LTE/Left Low 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.21 W/kg B71 LTE/Left Low 1 RB 24 Offset/Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.948 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.581 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.28 W/kg ## RF Exposure Lab ### Plot 2 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.868 \text{ S/m}$; $\epsilon_r = 41.708$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/2/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.49, 10.49, 10.49); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B12 LTE/Left Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.04 W/kg B12 LTE/Left Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.693 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 0.942 W/kg; SAR(10 g) = 0.581 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg ## RF Exposure Lab ### Plot 3 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.922 \text{ S/m}$; $\epsilon_r = 41.268$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/2/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.49, 10.49, 10.49); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B13 LTE/Left Mid 1RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.85 W/kg B13 LTE/Left Mid 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.771 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.482 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.86 W/kg ## RF Exposure Lab ### Plot 4 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 793 MHz; Duty Cycle: 1:1 Medium: HSL750; Medium parameters used (interpolated): f = 793 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.208$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/2/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.49, 10.49, 10.49); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B14 LTE/Left Mid 1RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.944 W/kg B14 LTE/Left Mid 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.793 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.483 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.36 W/kg ## RF Exposure Lab ### Plot 5 DUT: ST1; Type: Tablet; Serial: 014 Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium:
HSL900; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.917 \text{ S/m}$; $\epsilon_r = 41.44$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/2/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.16, 10.16, 10.16); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B5 WCDMA/Left Mid/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.39 W/kg B5 WCDMA/Left Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.153 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.27 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.488 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg ## RF Exposure Lab ### Plot 6 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: HSL900; Medium parameters used (interpolated): f = 831.5 MHz; $\sigma = 0.912 \text{ S/m}$; $\epsilon_r = 41.456$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/2/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(10.16, 10.16, 10.16); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B26 LTE/Left Mid 1 RB 24 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.723 W/kg B26 LTE/Left Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.674 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.886 W/kg; SAR(10 g) = 0.382 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.944 W/kg ## RF Exposure Lab ### Plot 7 DUT: ST1; Type: Tablet; Serial: 014 Communication System: UMTS (WCDMA); Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.403$ S/m; $\epsilon_r = 39.235$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 1/31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(8.57, 8.57, 8.57); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B4 WCDMA/Left High/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.65 W/kg B4 WCDMA/Left High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.08 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.529 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.63 W/kg B4 WCDMA/Left High/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.822 W/kg; SAR(10 g) = 0.385 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.806 W/kg ## RF Exposure Lab ### Plot 8 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: HSL1750; Medium parameters used: f = 1770 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 1/31/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(8.57, 8.57, 8.57); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** **B66 LTE/Left High 1 RB 49 Offset/Area Scan (5x8x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.14 W/kg B66 LTE/Left High 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.517 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.80 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.579 W/kg Maximum value of SAR (measured) = 1.28 W/kg B66 LTE/Left High 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.517 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.924 W/kg SAR(1 g) = 0.544 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 0.606 W/kg ## RF Exposure Lab ### Plot 9 DUT: ST1; Type: Tablet; Serial: 014 Communication System: UMTS (WCDMA); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.398$ S/m; $\epsilon_r = 39.855$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 1/28/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(8.05, 8.05, 8.05); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B2 WCDMA/Left High/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg B2 WCDMA/Left High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.366 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.30 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.554 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.75 W/kg ## RF Exposure Lab ### Plot 10 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: HSL1900; Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.39 \text{ S/m}$; $\epsilon_r = 39.905$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 1/28/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(8.05, 8.05, 8.05); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B25 LTE/Left Mid 1 RB 49 Offset/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.04 W/kg B25 LTE/Left Mid 1 RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.053 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.478 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.45 W/kg ## RF Exposure Lab ### Plot 11 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: HSL2550; Medium parameters used (interpolated): f = 2535 MHz; $\sigma = 1.915$ S/m; $\epsilon_r = 38.985$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 1/27/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(7.3, 7.3, 7.3); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B7 LTE/Left 1 RB 49 Offset Mid/Area Scan (7x10x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.30 W/kg B7 LTE/Left 1 RB 49 Offset Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.364 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.05 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.414 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.49 W/kg ## RF Exposure Lab ### Plot 12 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:1 Medium: HSL2550; Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 1.99$ S/m; $\varepsilon_r = 38.853$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 1/27/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(7.3, 7.3, 7.3); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B41 LTE/Left 1 RB 49 Offset Mid/Area Scan (7x10x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg B41 LTE/Left 1 RB 49 Offset Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.282 V/m;
Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.28 W/kg Peak SAR (extrapolated) = 2.07 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.44 W/kg ## RF Exposure Lab ### Plot 13 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used: f = 3500 MHz; $\sigma = 2.96$ S/m; $\epsilon_r = 37$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/1/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(6.8, 6.8, 6.8); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** **B42** LTE/Left 1 RB 49 Offset Mid/Area Scan (7x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.827 W/kg B42 LTE/Left 1 RB 49 Offset Mid/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm Reference Value = 3.153 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.89 W/kg **SAR(1 g) = 0.999 W/kg; SAR(10 g) = 0.336 W/kg** Maximum value of SAR (measured) = 1.06 W/kg ## RF Exposure Lab ### Plot 14 DUT: ST1; Type: Tablet; Serial: 014 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 3625 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used (interpolated): f = 3625 MHz; $\sigma = 3.015$ S/m; $\epsilon_r = 36.715$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/1/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7531; ConvF(6.4, 6.4, 6.4); Calibrated: 4/16/2021 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/12/2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** B48 LTE/Left 1 RB 49 Offset Mid/Area Scan (7x10x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.840 W/kg B48 LTE/Left 1 RB 49 Offset Mid/Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=4mm Reference Value = 3.855 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.341 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.09 W/kg ## RF Exposure Lab ### Plot 15 DUT: ST1; Type: Tablet; Serial: 014 Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: HSL2450; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.822 \text{ S/m}$; $\epsilon_r = 38.336$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 2/3/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(7.65, 7.65, 7.65); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** 2.4 GHz/Secondary Left 11/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.72 W/kg 2.4 GHz/Secondary Left 11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.841 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.426 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.72 W/kg ## RF Exposure Lab ### Plot 16 DUT: ST1; Type: Tablet; Serial: 014 Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used: f = 5300 MHz; $\sigma = 4.78$ S/m; $\epsilon_r = 34.69$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(5.45, 5.45, 5.45); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** **5.2 GHz/Secondary Left 60/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.93 W/kg **5.2 GHz/Secondary Left 60/Zoom Scan (8x8x16)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.559 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 4.08 W/kg SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 1.89 W/kg ## RF Exposure Lab ### Plot 17 DUT: ST1; Type: Tablet; Serial: 014 Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5620 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used: f = 5620 MHz; $\sigma = 5.13$ S/m; $\epsilon_r = 34.32$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(4.8, 4.8, 4.8); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** **5.6 GHz/Primary Top 124/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.25 W/kg 5.6 GHz/Primary Top 124/Zoom Scan (8x8x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 9.255 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.88 W/kg SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.338 W/kg Maximum value of SAR (measured) = 2.34 W/kg ## RF Exposure Lab ### Plot 18 DUT: ST1; Type: Tablet; Serial: 014 Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: HSL3-6GHz; Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 5.315$ S/m; $\epsilon_r = 34.14$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 2/4/2022; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN7530; ConvF(4.98, 4.98, 4.98); Calibrated: 1/14/2022 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/22/2021 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) #### **Procedure Notes:** 5.8 GHz/Primary Top 157/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.49 W/kg 5.8 GHz/Primary Top 157/Zoom Scan (9x9x16)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 10.39 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 6.51 W/kg SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.324 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.58 W/kg ## Appendix C – SAR Test Setup Photos **Test Position Back 0 mm Gap** Note: Cables are removed prior to testing. Test Position Left 0 mm Gap Note: Cables are removed prior to testing. **Test Position Top 0 mm Gap** Note: Cables are removed prior to testing. **Antenna Locations** **Front of Device** **Back of Device** ## **Appendix D – Probe Calibration Data Sheets** #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: EX3-7530 Jan22 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:7530 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, Calibration procedure for desimetric E-field probes Calibration date: January 14, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Calibrated by: Leff
Klysher Laboratory Technician Sephilip Approved by: Sven Kühn Deputy Manager Issued: January 19, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty cycle) of the RF signal A. B. C. D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.42 | 0.48 | 0.43 | ± 10.1 % | | DCP (mV) ^B | 99.3 | 99.7 | 98.7 | | **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 159.3 | ±2.2 % | ± 4.7 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 142.4 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 141.6 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -141.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7530_Jan22 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 13 | 55.0 | 0.75 | 19.61 | 19.61 | 19.61 | 0.00 | 1.00 | ± 13.3 % | | 30 | 55.0 | 0.75 | 17.99 | 17.99 | 17.99 | 0.00 | 1.00 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.44 | 10.44 | 10.44 | 0.56 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.98 | 9.98 | 9.98 | 0.48 | 0.80 | ± 12.0 % | | 1300 | 40.8 | 1.14 | 9.27 | 9.27 | 9.27 | 0.40 | 0.95 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.42 | 8.42 | 8.42 | 0.30 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.06 | 8.06 | 8.06 | 0.30 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.85 | 7.85 | 7.85 | 0.34 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.65 | 7.65 | 7.65 | 0.33 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.42 | 7.42 | 7.42 | 0.35 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.12 | 7.12 | 7.12 | 0.35 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.10 | 7.10 | 7.10 | 0.35 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.90 | 6.90 | 6.90 | 0.35 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.83 | 6.83 | 6.83 | 0.40 | 1.60 | ± 13.1 % | | 4200 | 37.1 | 3.63 | 6.38 | 6.38 | 6.38 | 0.40 | 1.70 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.45 | 5.45 | 5.45 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.80 | 4.80 | 4.80 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.98 | 4.98 | 4.98 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.60 | 5.60 | 5.60 | 0.20 | 2.50 | ± 18.6 % | ^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary
effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell, f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: EX3-7531 Apr21 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN(7531) Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, Calibration procedure for dosimetric E-field probes Calibration date: April 16, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Issued: April 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7531_Apr21 Page 1 of 10 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ ϕ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7531_Apr21 Page 2 of 10 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.39 | 0.47 | 0.40 | ± 10.1 % | | DCP (mV) ^B | 100.2 | 101.2 | 98.6 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊨]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 195.5 | ±3.3 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 189.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 192.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter, uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -173.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7531_Apr21 Page 4 of 10 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 12.89 | 12.89 | 12.89 | 0.00 | 1.00 | ± 13.3 % | | 220 | 49.0 | 0.81 | 12.66 | 12.66 | 12.66 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 12.09 | 12.09 | 12.09 | 0.10 | 1.30 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.21 |
11.21 | 11.21 | 0.16 | 1.30 | ± 13.3 % | | 600 | 42.7 | 0.88 | 10.64 | 10.64 | 10.64 | 0.10 | 1.25 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.49 | 10.49 | 10.49 | 0.63 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.16 | 10.16 | 10.16 | 0.54 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.57 | 8.57 | 8.57 | 0.33 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.05 | 8.05 | 8.05 | 0.37 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.88 | 7.88 | 7.88 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.37 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.30 | 7.30 | 7.30 | 0.40 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.80 | 6.80 | 6.80 | 0.40 | 1.35 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.40 | 6.40 | 6.40 | 0.40 | 1.35 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.19 | 5.19 | 5.19 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.65 | 4.65 | 4.65 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 4.75 | 4.75 | 4.75 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-7531 Apr21 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.40 | 5.40 | 5.40 | 0.20 | 2.50 | ± 18.6 % | ^c Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-7531_Apr21 Page 6 of 10 F At frequencies 6-10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz Report Number: SAR.20220203 # **Appendix E – Dipole Calibration Data Sheets** #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D600V3-1012_Feb19 #### CALIBRATION CERTIFICATE Object D600V3 - SN: 1012 Calibration procedure(s) **QA CAL-15.09** Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: February 18, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--|--|--| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination |
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 3877 | 31-Dec-18 (No. EX3-3877_Dec18) | Dec-19 | | DAE4 | SN: 654 | 05-Jul-18 (No. DAE4-654_Jul18) | Jul-19 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 100 mg 10 | | | The second of th | | | | Approved by: | Katja Pokovic | Technical Manager | MUL | | | | Action (Fig.) (1986)
(Fig.) (Fig.) | 1000 | Issued: February 18, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D600V3-1012_Feb19 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D600V3-1012 Feb19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 600 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.7 | 0.88 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.7 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.51 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.31 W/kg ± 17.6 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.1 | 0.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.67 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.60 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.36 W/kg ± 17.6 % (k=2) | Certificate No: D600V3-1012_Feb19 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 56.3 Ω - 5.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.1 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 52.6 Ω - 7.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.154 ns | | |---|--| |---|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| #### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (<-20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D600V3 SN: 1012 - Head | | | | | | | |------------------------|------------------------|------|------------------|------|-----------------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
(Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 2/18/2019 | -22.1 | | 56.3 | | -5.5 | | | 2/18/2020 | -21.9 | -0.9 | 56.8 | 0.5 | -5.2 | 0.3 | | 2/18/2021 | -22.5 | 1.8 | 55.8 | -0.5 | -5.9 | -0.4 | | | D600V3 SN: 1012 - Body | | | | | | | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
(Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 2/18/2019 | -22.4 | | 52.6 | | -7.3 | | | 2/18/2020 | -22.6 | 0.9 | 53.2 | 0.6 | -6.9 | 0.4 | | 2/18/2021 | -21.5 | -4.0 | 52.3 | -0.3 | -7.8 | -0.5 | Certificate No: D600V3-1012_Feb19 #### **DASY5 Validation Report for Head TSL** Date: 18.02.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1012 Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.01, 10.01, 10.01) @ 600 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn654; Calibrated: 05.07.2018 • Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 • DASY52 52.10.2(1495);
SEMCAD X 14.6.12(7450) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.96 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.70 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.1 W/kg Maximum value of SAR (measured) = 2.29 W/kg 0 dB = 2.29 W/kg = 3.60 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 18.02.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1012 Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.2, 10.2, 10.2) @ 600 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn654; Calibrated: 05.07.2018 • Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.63 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.67 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.1 W/kg Maximum value of SAR (measured) = 2.29 W/kg 0 dB = 2.29 W/kg = 3.60 dBW/kg #### Impedance Measurement Plot for Body TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D750V3-1053_Jun21 #### CALIBRATION CERTIFICATE Object D750V3 - SN:1053 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 04, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | 1 | | _ | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | 1/11/1~ | | · | | | MINEX | | Approved by: | Katja Pokovic | Technical Manager | all | Issued: June 8, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1053_Jun21 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D750V3-1053_Jun21 e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.7 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.57 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.58 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $56.5 \Omega + 0.1 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 24.3 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.035 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1053_Jun21 ## **DASY5 Validation Report for
Head TSL** Date: 04.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1053 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 42.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.74 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.30 W/kg #### SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30mm) Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 2.93 W/kg 0 dB = 2.93 W/kg = 4.67 dBW/kg #### Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D900V2-1d128_Jun21 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** CALIBRATION CERTIFICATE Object **D900V2 - SN:1d128** Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 04, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.Nelso- | | Approved by: | Katja Pokovic | Technical Manager | Mag | Issued: June 8, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D900V2-1d128_Jun21 Page 1 of 6 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D900V2-1d128_Jun21 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | ,, | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.96 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 11.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.77 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.14 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.0 Ω - 0.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 38.5 dB | ## **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D900V2-1d128_Jun21 ### **DASY5 Validation Report for Head TSL** Date: 04.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:1d128** Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349;
ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 65.79 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.23 W/kg SAR(1 g) = 2.76 W/kg; SAR(10 g) = 1.77 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 3.74 W/kg 0 dB = 3.74 W/kg = 5.73 dBW/kg ## Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No. D1750V2-1061_Jun21 | Object | D1750V2 - SN:10 | 061 | | |--|--|--|--| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | belween 0.7-3 GHz | | Calibration date: | June 03, 2021 | | | | The measurements and the uncerta | ainties with confidence pred | onal standards, which realize the physical unicobability are given on the following pages any facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | ype-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349 Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | econdary Standards | | | | | | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power meter E4419B | SN: GB39512475
SN: US37292783 | 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A | | , | | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: US37292783
SN: MY41092317 | 07-Oct-15 (in house check Oct-20)
07-Oct-15 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22 | | Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-21 | | Power meter E4419B
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SMT-06 | SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function | In house check: Oct-22
In house check: Oct-22
In house check: Oct-22
In house check: Oct-21 | Certificate No: D1750V2-1061_Jun21 Page 1 of 6 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1061 Jun21 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.4 Ω + 0.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 44.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.221 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve
matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1750V2-1061 Jun21 ## **DASY5 Validation Report for Head TSL** Date: 03.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.38 W/kg; SAR(10 g) = 4.93 W/kg Smallest distance from peaks to all points 3 dB below = 9.1 mm Ratio of SAR at M2 to SAR at M1 = 54% Maximum value of SAR (measured) = 14.6 W/kg 0 dB = 14.6 W/kg = 11.64 dBW/kg ## Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Certificate No: D1900V2-5d147_Jun21 Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** ## CALIBRATION CERTIFICATE D1900V2 - SN:5d147 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz June 04, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | Alleser | | Approved by: | Katja Pokovic | Technical Manager | All I | Issued: June 8, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d147 Jun21 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d147_Jun21 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.3 Ω + 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.2 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by |
SPEAG | |-----------------|-------| Certificate No: D1900V2-5d147_Jun21 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 04.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg ## Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: June 8, 2021 Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: D2550V2-1003_Jun21 | Object | D2550V2 - SN:10 | 003 | | |---|---|--|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | June 03, 2021 | | | | This calibration certificate documer | nts the traceability to nation | onal standards, which realize the physical unit | ts of measurements (SI). | | The measurements and the uncerta | ainties with confidence pr | obability are given on the following pages and | d are part of the certificate. | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | c and humidity < 70%. | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | milary Claridated | | | Contraction Campitation | | | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power meter NRP | SN: 104778
SN: 103244 | | | | Power meter NRP
Power sensor NRP-Z91 | | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: BH9394 (20k) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
28-Dec-20 (No. EX3-7349_Dec20)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Nov-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN:
MY41092317
SN: 100972
SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21 | Certificate No: D2550V2-1003_Jun21 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2550V2-1003_Jun21 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2550 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.1 | 1.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 1.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.4 Ω - 3.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.0 dB | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.156 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2550V2-1003_Jun21 ### **DASY5 Validation Report for Head TSL** Date: 03.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland **DUT:** Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 1.98 \text{ S/m}$; $\epsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.6 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.28 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 47.1% Maximum value of SAR (measured) = 24.3 W/kg 0 dB = 24.3 W/kg = 13.86 dBW/kg ## Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D3500V2-1061_Apr21 # **CALIBRATION CERTIFICATE** Object D3500V2 - SN:1061 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for \$AR Validation Sources between 3-10 GHz Calibration date: April 13, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name |
Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | | | | | | M. Nese | | Approved by: | Katja Pokovic | Technical Manager | a oc | | | | | | Issued: April 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3500V2-1061_Apr21 ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ## **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1061_Apr21 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.73 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.5 Ω - 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.2 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.134 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3500V2-1061 Apr21 ## **DASY5 Validation Report for Head TSL** Date: 13.04.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1061 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.93$ S/m; $\epsilon_r = 37.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 3500/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.28 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 6.73 W/kg; SAR(10 g) = 2.52 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.3% Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.05 dBW/kg ## Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D3700V2-1024_Apr21 ## **CALIBRATION CERTIFICATE** Object D3700V2 - SN:1024 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for \$AR Validation Sources between 3-10 GHz Calibration date: April 13, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.Vieses | | Approved by: | Katja Pokovic | Technical Manager | Mas | Issued: April 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the
laboratory. Certificate No: D3700V2-1024_Apr21 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1024_Apr21 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1024_Apr21 ## Appendix (Additional assessments outside the scope of SCS 0108) ## **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 46.1 Ω + 2.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.7 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.127 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: D3700V2-1024 Apr21 ## **DASY5 Validation Report for Head TSL** Date: 13.04.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1024 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.09$ S/m; $\varepsilon_r = 37$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 3700/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.95 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 6.85 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.2% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.36 dBW/kg ## Impedance Measurement Plot for Head TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: D2450V2-881_Jun21 | | | | 1 8 | |-----------------------------------|------------------------------------|--|--------------------------| | CALIBRATION C | ERTIFICATE | | | | Object | D2450V2 - SN:88 | Ħ | | | Calibration procedure(s) | QA CAL-05 v11
Calibration Proce | dure for SAR Validation Source | es between 0.7-3 GHz | | Calibration date: | June 03, 2021 | | | | | | onal standards, which realize the physical robability are given on the following pages | | | All calibrations have been conduc | ted in the closed laborator | y facility: environment temperature (22 ± 3 | 3)°C and humidity < 70%. | | Calibration Equipment used (M&T | ΓE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358/ | A SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | J. hts | | Approved by: | Katja Pokovic | Technical Manager | | Issued: June 8, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-881_Jun21 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse
d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-881 Jun21 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and substantial transfer approximately | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.0 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.3 Ω + 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.156 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-881_Jun21 # **DASY5 Validation Report for Head TSL** Date: 03.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:881 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 37.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.34 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.5% Maximum value of SAR (measured) = 23.1 W/kg 0 dB = 23.1 W/kg = 13.64 dBW/kg ## Impedance Measurement Plot for Head TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D5GHzV2-1119_Jun21 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1119 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: June 08, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|----------------------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | | | Cambratou by. | | | M.Ke (e) | | | J. Bellow School and the control | 1 | | | Approved by: | Katja Pokovic | Technical Manager | IL IL | | | | | | Issued: June 8, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1119_Jun21 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to
the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1119_Jun21 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # **Head TSL parameters at 5250 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 4.95 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1119_Jun21 Page 3 of 8 # **Head TSL parameters at 5750 MHz** The following parameters and calculations were applied. | <u>. </u> | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.9 ± 6 % | 5.10 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1119_Jun21 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.9 Ω - 7.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.6 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.8 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.8 dB | ## Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.9 Ω - 1.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.206 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | Manufactured by | JI LAG | Certificate No: D5GHzV2-1119_Jun21 ## **DASY5 Validation Report for Head TSL** Date: 08.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f=5250 MHz; $\sigma=4.59$ S/m; $\epsilon_r=34.6;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.95$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=5.1$ S/m; $\epsilon_r=33.9;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.83 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.7% Maximum value of SAR (measured) = 17.7 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 68.4% Maximum value of SAR (measured) = 19.1 W/kg Certificate No: D5GHzV2-1119_Jun21 Page
6 of 8 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.64 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg ## Impedance Measurement Plot for Head TSL Report Number: SAR.20220203 # **Appendix F – Phantom Calibration Data Sheets** Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### Certificate of Conformity / First Article Inspection | Item | Oval Flat Phantom ELI 4.0 | |--------------|---------------------------------| | Type No | QD OVA 001 B | | Series No | 1003 and higher | | Manufacturer | Untersee Composites | | | Knebelstrasse 8 | | | CH-8268 Mannenbach, Switzerland | #### Tests Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff. | Test | Requirement | Details | Units tested | |-------------------------|---|--|--------------------------------------| | Material thickness | Compliant with the standard requirements | Bottom plate:
2.0mm +/- 0.2mm | ali | | Material parameters | Dielectric parameters for required frequencies | < 6 GHz: Rel. permittivity = 4
+/-1, Loss tangent ≤ 0.05 | Material sample | | Material
resistivity | The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. | DGBE based simulating liquids. Observe Technical Note for material compatibility. | Equivalent phantoms, Material sample | | Shape | Thickness of bottom material,
Internal dimensions,
Sagging
compatible with standards from
minimum frequency | Bottom elliptical 600 x 400 mm Depth 190 mm, Shape is within tolerance for filling height up to 155 mm, Eventual sagging is reduced or eliminated by support via DUT | Prototypes,
Sample
testing | #### Standards - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005 - [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001 Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. Date 28.4.2008 Signature / Stamp Schmid & Partner Engineering AG Zeughāugstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9709, Fax +41,46,245 9779 info@speag.com; http://www.speag.com Report Number: SAR.20220203 # **Appendix G – Validation Summary** Per FCC KDB 865664 D02 v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue equivalent media for system validation according to the procedures outlined in FCC KDB 865664 D01 v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point using the system that normally operates with the probe for routine SAR measurements and according to the required tissue equivalent media. A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. Table G-1 SAR System Validation Summary | 64.5 | | | | | Probe Cal.
Point | | | | CW Validation | | | Modulation Valildation | | | |--------------------|----------------|------------|--------------|---------------|---------------------|------|--------------|----------------------------|------------------|--------------------|-------------------|------------------------|----------------|------| | SAR
System
| Freq.
(MHz) | Date | Probe
S/N | Probe
Type | | | Cond.
(σ) | Perm.
(ε _r) | Sens-
itivity | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty
Factor | PAR | | | | | | | | | | | | | | | | | | 2 | 600 | 05/03/2021 | 7531 | EX3DV4 | 600 | Head | 0.90 | 42.36 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 750 | 05/03/2021 | 7531 | EX3DV4 | 750 | Head | 0.91 | 41.21 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 900 | 05/03/2021 | 7531 | EX3DV4 | 900 | Head | 0.99 | 41.03 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 900 | 05/03/2021 | 7531 | EX3DV4 | 900 | Head | 0.99 | 41.03 | Pass | Pass | Pass | WCDMA | Pass | Pass | | 2 | 1750 | 05/04/2021 | 7531 | EX3DV4 | 1750 | Head | 1.38 | 38.22 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 1750 | 05/04/2021 | 7531 | EX3DV4 | 1750 | Head | 1.38 | 38.22 | Pass | Pass | Pass | WCDMA | Pass | Pass | | 2 | 1900 | 05/04/2021 | 7531 | EX3DV4 | 1900 | Head | 1.42 | 39.17 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 1900 | 05/04/2021 | 7531 | EX3DV4 | 1900 | Head | 1.42 | 39.17 | Pass | Pass | Pass | WCDMA | Pass | Pass | | 2 | 2550 | 05/05/2021 | 7531 | EX3DV4 | 2550 | Head | 1.92 | 38.59 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 3500 | 05/05/2021 | 7531 | EX3DV4 | 3500 | Head | 2.93 | 37.38 | Pass | Pass | Pass | QPSK | Pass | Pass | | 2 | 3700 | 05/05/2021 | 7531 | EX3DV4 | 3700 | Head | 3.12 | 36.99 | Pass | Pass | Pass | QPSK | Pass | Pass | | 3 | 2450 | 02/03/2022 | 7530 | EX3DV4 | 2450 | Head | 1.81 | 38.34 | Pass | Pass | Pass | OFDM/TDD | Pass | Pass | | 3 | 5250 | 02/04/2022 | 7530 | EX3DV4 | 5250 | Head | 4.73 | 34.77 | Pass | Pass | Pass | OFDM/TDD | Pass | Pass | | 3 | 5600 | 02/04/2022 | 7530 | EX3DV4 | 5600 | Head | 5.11 | 34.35 | Pass | Pass | Pass | OFDM/TDD | Pass | Pass | | 3 | 5750 | 02/04/2022 | 7530 | EX3DV4 | 5750 | Head | 5.28 | 34.18 | Pass | Pass | Pass | OFDM/TDD | Pass | Pass |