

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report In Accordance With Industry Canada

FCC Part 22 and Part 24

Juniper Systems, Inc. Transmitter Model: MTSMC-E

FCC ID NUMBER: VSF22455

GRANTEE: Juniper Systems, Inc. 1132 West 1700 North Logan, UT 84321

TEST SITE: Elliott Laboratories 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE:

FINAL TEST DATE:

August 14, August 20 and August 21, 2009

AUTHORIZED SIGNATORY:

TIMR DHAF

Mark Briggs Staff Engineer

September 2, 2009

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R76671 Page 1 of 11

REVISION HISTORY

Revision #	Date	Comments	Modified By
-	September 21, 2009	First Release	-

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF TEST RESULTS	5
MEASUREMENT UNCERTAINTIES	5
FOUIPMENT UNDER TEST (FUT) DETAILS	6
	0
GENEKAL	6
ANTENNA SISTEM	0
MODIFICATIONS	0
SUPPORT FOI IPMENT	0
FUT INTERFACE PORTS	/
EUT OPERATION	/
TEST SITE	
	0
GENEKAL INFORMATION	ð
KADIATED EMISSIONS CONSIDERATIONS	0
MEASUREMENT INSTRUMENTATION	8
RECEIVER SYSTEM	8
INSTRUMENT CONTROL COMPUTER	8
OUTPUT POWER	8
FILTERS/ATTENUATORS	9
ANTENNAS	9
ANTENNA MAST AND EQUIPMENT TURNTABLE	9
INSTRUMENT CALIBRATION	9
TEST PROCEDURES	.10
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	.11
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	.11
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS RADIATED EMISSIONS SPECIFICATION LIMITS	.11
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS RADIATED EMISSIONS SPECIFICATION LIMITS CALCULATIONS – EFFECTIVE RADIATED POWER	.11 .11 .11
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS RADIATED EMISSIONS SPECIFICATION LIMITS CALCULATIONS – EFFECTIVE RADIATED POWER EXHIBIT 1: Test Equipment Calibration Data	.11 .11 .11 <i>1</i>
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS RADIATED EMISSIONS SPECIFICATION LIMITS CALCULATIONS – EFFECTIVE RADIATED POWER. EXHIBIT 1: Test Equipment Calibration Data EXHIBIT 2: Test Data Log Sheets	.11 .11 1 2

SCOPE

Testing has been performed on the Juniper Systems, Inc. model MTSMC-E in the TK6000 host system to determine the eirp and erp against the requirements of FCC Part 22 and FCC part 24. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Part 22 and FCC Part 24. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF TEST RESULTS

Part 2 Measurements Required Section	FCC Rule section	Test Performed	Measured Value	Limit	Result
2.1046: RF power output	22.913 (a)	Effective radiated power	26.7 dBm erp 0.468W erp	7 Watts ERP	Complies
2.1046: RF power output	24.232 (c)	Effective isotropic radiated power	22.2dBm eirp 0.166W eirp	2 Watts EIRP	Complies

Measurements were limited to the evaluation of the eirp and erp for the module installed in the host system. All other characteristics of the module remain unchanged.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7 x 10 ⁻⁷
RF power, conducted	dBm	25 to 7,000 MHz	$\pm 0.52 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 40,000 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	$\pm 2.5 \text{ dB}$
Radiated emission (field strength)	dBµV/m	25 to 1,000 MHz 1 to 40 GHz	$\begin{array}{c} \pm 3.6 \text{ dB} \\ \pm 6.0 \text{ dB} \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Juniper Systems, Inc. model MTSMC-E is a GSM/EDGE Cellular radio module. Testing was performed with the module installed in the Juniper Systems hand-held system, model TK6000.

As the TK6000 may be held in the users hand or mounted to a surveyor pole during operation eirp/erp measurements were made with the device in both orientations.

The sample was received on August 14, 2009 and tested on August 14, August 20 and August 21, 2009. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Multi Tech Systems, Inc.		GSM/EDGE		
	MTSMC-E	cellular radio		VSF22455
		module		

ANTENNA SYSTEM

The antenna system used with the Juniper Systems, Inc. model MTSMC-E in the TK6000 host consists of an external antenna, model number ANCF2-1HRA. A specification sheet for this antenna will be uploaded with the application documents.

ENCLOSURE

The module does not have an enclosure but meets all pertinent requirements for modular approval.

The host enclosure is primarily constructed of magnesium alloy and plastic. It measures approximately 13 cm wide by 4 cm deep by 27 cm high..

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following support equipment was used during testing.

Company	Model	Description	Serial Number
Juniper Systems, Inc.	TK6000	Hand held computer	None
Agilent	E5515C	Cellular simulator	None

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected		Cable(s)	
	То	Description	Shielded or Unshielded	Length(m)
AC/DC Power AC Mains		2 Wire	Unshielded	1.0

EUT OPERATION

A communications test set was used to initiate an over-the-air link to the system under test. The test set was configured to set the device under test to transmit at maximum power.

TEST SITE GENERAL INFORMATION

Final test measurements were taken on August 14, 2009 at the Elliott Laboratories test sites located at 684 West Maude Ave, Sunnyvale, CA 94085-3518.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

MEASUREMENT INSTRUMENTATION RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

OUTPUT POWER

A spectrum analyzer was used to measure the peak power and peak radiated field strength.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4:2003 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 10kHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a horn antenna and signal generator. The horn antenna factors can be reference to a half-wave dipole in dBi. The signal generator power level was adjusted until a similar level, which was measured on the first scan, is achieved on the spectrum analyzer. The level on the signal generator is than added to the antenna factor, in dBi, which will give the corrected value. SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is $43+10Log_{10}$ (mean output power in watts) dB below the measured amplitude at the operating power.

CALCULATIONS – EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m

P= Power in Watts (for this example we use 3 watts) G= Gain of antenna in numeric gain (Assume 1.64 for ERP) d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts } * 1.64 \text{ dB}}}{3 \text{ meters}}$$

 $20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$

FCC Rules request an attenuation of $43 + 10 \log (3)$ or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

132.1 dBuV/m - 47.8 dB = 84.3 dBuV/m (a) 3 meter.

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength and for determining the erip and erp of the intentional signal.

EXHIBIT 1: Test Equipment Calibration Data

Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	23-Dec-09
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	29-Dec-09
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T76431 4 Pages

©Elliott

EMC Test Data

AN DUC	2 company		
Client:	Juniper systems	Job Number:	J76286
Model:	MTSMC-E in TK6000	T-Log Number:	T76431
		Account Manager:	Dean Eriksen
Contact:	Kent Cambell		-
Emissions Standard(s):	FCC Part 22, 24, RSS 132, 133	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Juniper systems

Model

MTSMC-E in TK6000

Date of Last Test: 8/21/2009

C					EM	C Test Data
Client:	Juniper systems	· · ·		Job N	lumber:	176286
Model:	MTSMC-E in TK6	000		T-Log N	lumber:	Г76431 — — — —
Contact	Kont Camboll			Account M	anager: [Dean Eriksen
Standard:	FCC Part 22, 24,	RSS 132. 133		Class: 1	N/A	
		EIRP and	ERP Measu	rements		
		FCC Part 2	2, 24 / RSS	132, 133		
Test Spe	cific Details					
	Objective: The obj specific	ective of this test session i ation listed above.	is to perform final qu	alification testing o	f the EUT	with respect to the
Da	te of Test: 8/14/20	09	Config. Use	ed: 1		
Test	Engineer: Mehran	Birgani ar #2	Config Chang FUT Voltag	ge: None		
100		51 #2		Je: 1207, 00112		
General The EUT w	Test Configura as located on the to	tion urntable for radiated spuric	ous emissions testing] .		
The measu	rement antenna wa	as located 3 meters from th	ne EUT.			
Ambiant	Conditions	Temperature	22 °C			
	Conditions.	Rel. Humidity:	38 %			
Summar	y of Results					
Rur	n #	Test Performed	Limit	Pass / Fail	F	Result / Margin
2		850MHz Band	22.913 (a)	Pass	:	26.7 dBm erp
			04.022(a)	Dese		22.2dBm eirp
2		1900MHZ Band	24.232(C)	Pass		0.166W eirp
Modificat	tions Made Du	rina Testina				
No modifica	ations were made to	the EUT during testing				
Doviation	as Erom Tha Si	andard				
No deviatio	ns were made from	arruaru 1 the requirements of the s	tandard.			
		·				

Ć		ot						EM	C Test	t Data
Client:	Juniper sy	/stems					J	lob Number:	J76286	
							T-L	.oa Number:	T76431	
Model:	MTSMC-E	E in TK60	000				Δοτομ	nt Manager	Dean Frikser	ר ר
Contact	Kont Com	hall					Accou	int Manager.		1
Contact.			00 400 40	<u>^</u>				0	N1/A	
Standard:	FCC Part	22, 24, F	RSS 132, 13	3				Class:	N/A	
Run #1: Ra	adiated Sp	ourious l	Emissions,	Transmit N	lode					
Measureme	ents made	e at 3m v	vith RB=3M	Hz, VB=3M	Hz, peak de	tector.				
Results Ta	ble - All cl	hannels			_			1-		
Frequency	Level	Pol	FC	CC	Detector	Azimuth	Height	Comments		Channel
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
835.800	120.0	V	-	-	PK	360	1.7	Upright		190
836.330	115.2	Н	-	-	PK	162	1.7	Upright		190
837.330	112.9	V	-	-	PK	142	1.7	Flat		190
837.350	121.9	Н	-	-	PK	311	1.7	Flat		190
824.980	116.7	V	-	-	PK	249	1.7	Flat		128
824.230	121.7	Н	-	-	PK	360	1.7	Flat		128
849.330	112.5	V	-	-	PK	245	1.7	Flat		251
848.650	120.5	Н	-	-	PK	81	1.7	Flat		251
1879.450	117.5	V	-	-	PK	200	1.7	Flat		661
1879.000	114.0	Н	-	-	PK	244	1.7	Flat		661
1879.950	116.5	V	-	-	PK	168	1.7	Upright		661
1880.550	113.5	Н	-	-	PK	36	1.7	Upright		661
1849.700	120.1	V	-	-	PK	158	1.7	Upright		512
1849.100	117.5	Н	-	-	PK	0	1.7	Upright		512
1909.100	114.7	V	-	-	PK	332	1.7	Upright		810
1908.830	113.3	Н	-	-	PK	335	1.7	Upright		810

Note - output power at the antenna terminal was measured to be 0.66Watts in the 1900 MHz band as listed on the grant. Note - output power at the antenna terminal was measured to be 1.35Watts in the 850 MHz band as listed on the grant.

EMC Test Data

Job Number: J76286

Madalı						T-Log Number: T76431				
woder:						Accour	nt Manager:	Dean Eriksen		
Contact:	Kent Cambell									
Standard:	I: FCC Part 22, 24, RSS 132, 133 Class: N/A									
Run #2· R	un #2: Radiated Sourious Emissions Transmit Mode: Final Field Strength and Substitution Measurements									
Measureme	ents made	e at 3m	,			r leia otrelig			Jusurennennes	
Horizontal										
Frequency	Substitu	tion mea	surements	Site		EU	r measurem	ents		
MHz	Pin ¹	Gain ²	FS ³	Factor ⁴	FS⁵	eirp (dBm)	erp (dBm)	eirp (W)	erp (W)	
824.20	0.0	7.0	99.8	92.8	121.7	28.9	26.7	0.776	0.468	
836.60	0.0	6.7	99.7	93.0	121.9	28.9	26.7	0.776	0.468	
848.80	0.0	7.4	99.2	91.8	120.5	28.7	26.5	0.741	0.447	
1850.20	0.0	3.5	102.4	98.9	117.5	18.6	16.4	0.072	0.044	
1880.00	0.0	3.5	102.0	98.5	114.0	15.5	13.3	0.035	0.021	
1909.80	0.0	3.6	102.1	98.5	113.3	14.8	12.6	0.030	0.018	
Vertical										
Frequency	Substitu	tion mea	surements	Site	-	EU	measurem	ents		
MHz	Pin ¹	Gain ²	FS ³	Factor⁴	FS⁵	eirp (dBm)	erp (dBm)	eirp (W)	erp (W)	
824.20	0.0	7.0	99.6	92.6	116.7	24.1	21.9	0.257	0.155	
836.60	0.0	6.7	99.5	92.8	120.0	27.2	25.0	0.525	0.316	
848.80	0.0	7.4	98.6	91.2	112.5	21.3	19.1	0.135	0.081	
1850.20	0.0	3.5	101.4	97.9	120.1	22.2	20.0	0.166	0.100	
1880.00	0.0	3.5	100.8	97.3	117.5	20.2	18.0	0.105	0.063	
1909.80	0.0	3.6	101.1	97.5	114.7	17.2	15.0	0.052	0.032	
NL L A	D' L' UL	· · · · · ·			C					
Note 1:	Pin is the	Input po	ver (dBm) to	the substit	ution anteni	ha linglo hag o g				
Note 2:	Gain is the	e gain (u fiold stroi	DI) IOI IIIE SI	m) monsure	d from the c	npole has a ga		•		
Note J:	Cito Eacto	neiu siiei or this is	the site fac	tor to conve	t from a fie	Id strongth in	dBuV/m to a	n oirn in dE	m	
Note 5:	FLIT field	strength		d during init	ial run	iu sitengin in			nii.	
NOLE J.		Sucrigui			iarrun.					

EXHIBIT 3: Test Configuration Photographs

Note – horn antenna in photo is connected to the wireless communications test set to establish the control link to the EUT

