

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

> on the Juniper Systems, Inc. Transmitter Model: BC04 in TK6000

UPN: TBD FCC ID: **VSF19799AR**

GRANTEE: Juniper Systems, Inc. 1132 West 1700 North Logan, UT 84321

TEST SITE(S): **Elliott Laboratories** 684 W. Maude Ave Sunnyvale, CA 94086 IC Site Registration #: IC 2845-1; IC 2845-2

REPORT DATE: October 22, 2008

FINAL TEST DATE:

October 2, October 3 and October 7, 2008

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R73406 Rev 1 Page 1 of 21

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	October 23, 2008	Report issued without Industry Canada Certification Number	
		for the module as the application was still in progress when	
		this report was released.	

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7 7
MEASUREMENT UNCERTAINTIES	8
EQUIDMENT UNDED TEST (EUT) DETAILS	0
CENED AL	9
OENEKAL	9
ENCLOSURE	9
MODIFICATIONS	9
SUPPORT EQUIPMENT	9
EUT OPERATION	10
TEST SITE	11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	12
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	12
FILTERS/ATTENUATORS	
ANTENNAS	13
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	14
RADIATED EMISSIONS	14
RADIATED EMISSIONS	15
CONDUCTED EMISSIONS SPECIFICATION LIMITS' FCC 15 207' FCC 15 107(A) RSS GEN	18
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	19
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	20
SAMPLE CALCULATIONS - RADIATED EMISSIONS	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs, Host System Internal and External	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: RF Exposure Information	8

SCOPE

An electromagnetic emissions test has been performed on the Juniper Systems, Inc. model BC04 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Juniper Systems, Inc. model BC04 installed in the Juniper Systems model TK6000 and therefore apply only to the tested sample. The sample was selected and prepared by Kent Campbell of Juniper Systems, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Juniper Systems, Inc. model BC04 when installed in Juniper Systems model TK6000 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation			
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth			
	RSP100	99% Bandwidth	The proposed change	is to allow use of the mo	dule in a
15.247 (b)	RSS 210	Output Power	new host system (the j	uniper Systems model T	CK6000).
(3)	A8.2 (4)	(multipoint systems)	The module has not been modified to facilitate its use in		
15.247 (b)	RSS 210	Output Power this new host system, therefore the rf port measure		surements	
13.247 (0)	A8.2 (4)	(point-point systems)	have not been repeated and the data contained in the		
15.247(4)	15 247(d) RSS 210 Power Spectral original		original filing(s) remains unchanged.		
13.247(u)	A8.2 (2)	Density			
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz			
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	69.2dBµV/m @ 4960.3MHz	15.207 in restricted bands, all others < -20dBc	Complies (-4.8dB)

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule	RSS Rule part	Description	Measured Value /	Limit / Requirement	Result
15.203	-	RF Connector	Integral Antenna	Integral antenna or unique connector	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	48.9dBμV/m (278.6μV/m) @ 1989.0MHz	Refer to page 19	Complies (- 5.1 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	39.3dBµV (92.3µV) @ 0.926MHz	Refer to standard	Complies (-16.7dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to RF exposure evaluation document.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions	0.15 to 30 0.015 to 30	$\pm 2.4 \pm 3.0$
Radiated Emissions Radiated Emissions	30 to 1000 1000 to 40000	$\begin{array}{c} \pm 3.6 \\ \pm 6.0 \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Juniper Systems, Inc. model BC04 is a Bluetooth module. The device has a limited modular approval with the FCC. Testing was being performed to evaluate the module in a new host device, co-located with the P700 802.11bg module. The new host device for the two modules is a TK6000.

The samples were received on October 2, 2008 and tested on October 2, October 3 and October 7, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID	
Junipor Systems	BC04 in	Bluetooth		VSF19799AR	
Jumper Systems	TK6000	module	-		
Junipor Systems	D7 00	802.11bg		VSF19782MX	
Jumper Systems	F /00	module	-		
Ktoo	KSAC1200100	AC/DC adapter		NI/A	
KIEL	W1UV-1	AC/DC adaptor	-	1N/A	
Juniper Systems	TK6000	Field PC	-	N/A	

ANTENNA SYSTEM

The antenna is integral to the module.

ENCLOSURE

The host enclosure is primarily constructed of magnesium alloy and plastic. It measures approximately 13 cm wide by 4 cm deep by 27 cm high. The modules do not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The module did not require modifications during testing in order to comply with emissions specifications.

The host system was modified to comply with the radiated spurious emissions limits. The host system slots for the Bluetooth and WiFi modules had the edges chamfered.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
DELL	Latitude	Laptop	P/N: 3J578A02	IMRMPCIDE3

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected To	Cable(s)		
Fort		Description	Shielded or Unshielded	Length(m)
Serial	Laptop	Serial	Shielded	1.5
DC Power	AC/DC adaptor	DC power cable	Un-shielded	1.5

EUT OPERATION

Transmit mode, Bluetooth module: The Bluetooth module was configured to operate at maximum output power in GFSKDH5 mode, the mode that had the highest fundamental, band edge and spurious emissions during the original module certification. The device was operating in TXDATA3 mode on either top, bottom or center channel.

Transmit mode, WiFi module: The WiFi module was configured to operate continuously at the stated data rate in each of the two different modes (802.11b and 802.11g) using a software tool called RFUTIL. The data rates were selected based on the original test report as representing the worst case data rates with respect to radiated emissions. Compliance with radiated spurious emissions limits at the 2390MHz and 2483.5MHz restricted band edges were demonstrated in both operating modes. Spurious emissions were evaluated in 802.11b mode as the original test report indicated that this mode had the highest spurious emissions. The spurious emissions at the band edges were evaluated on top and bottom channels, the other spurious were evaluated on top, bottom and center channels. During the test on the center channel the Bluetooth module was also configured to operate on its high channel to confirm that no significant inter-modulation products were created with both modules operating simultaneously.

Receive mode: Both the Bluetooth and 802.11 modules were configured to operate in receive-only mode with both modules tuned to the center channel (2441MHz for the Bluetooth module and 2437MHz for the 802.11 module).

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 2, October 3 and October 7, 2008 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Sito	Registration Numbers		Location
Site	FCC	Canada	
SVOATS #1	90592	IC 2845-1	684 West Maude Ave,
SVOATS #2	90593	IC 2845-2	CA 94085-3518

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz) Average Limit (dBuV)		Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = 1000000 \sqrt{30 P} \text{ microvolts per meter}$ 3
where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 2	26,500 MHz, 12-Sep-08			
Engineer: Rafael Varelas				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Sep-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	15-Oct-08
Radiated Emissions, 1000	- 6,500 MHz, 19-Sep-08			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	15-Jul-10
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	19-Feb-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	High Pass filter, 3.5 GHz (Red System)	P/N 84300-80038 (84125C)	1403	28-Aug-09
Radiated Emissions, 1,000	- 26,500 MHz, 02 and 03-Oct-08			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	15-Oct-08
Radiated Emissions, 30 - 7	7,500 MHz, 07-Oct-08			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	Asset #	<u>Cal Due</u>
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	26-Mar-09
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	13-Dec-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	29-May-09
Conducted Emissions - AC	C Power Ports, 07-Oct-08			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	31-Jul-09
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	19-Feb-09
Fischer Custom Comm.	Calibration Fixture - BCI	FCC-BCICF-1	1298	17-Oct-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
Radiated Emissions, 30 - 2	26,500 MHz, 07-Oct-08			
Manufacturor	Description	Model #	Accot #	
<u>Manuacturer</u>	Les Deriedie Antenne 200 1000 MUZ		<u>A3301 #</u>	27 Feb 00
Elliott Laboratories		EL300.1000	20	27-Feb-09
	Discribed Antenne, 20,200 MUZ	0449D 2110D	700	06-Jun-09
ENICO		3110B	001	19-Sep-09
	Antenna, Horn, 1-18 GHZ (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	15-Oct-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
Radiated Emissions, 30 - 2	25000 MHz, 19-Oct-08			
Lingineer. Raidel Vareias	Description	Model #	Accot #	
Howlett Dooksrd	Microwaya Proomalifier 4.96.50Uz		705	
	NICOWAVE Fleampliner, 1-20.3GHZ		7 00 1 1 4 0	00-JUN-09
	Specali 30 MZ -40 GMZ, 38 (SA40) Kea Antonno Horn 1 18 CU-	0004E (041200)	1140	
LIVICO Micro Tropico	Antenna, HUIII, 1-10 GHZ Rand Reject Filter, 2400 2500 MHz	3113 RDM50702.02	1001	
WIGO-TIONICS	Danu Reject Filler, 2400-2300 MITZ	DIVINOU/02-02	1005	00-Aug-09

EXHIBIT 2: Test Measurement Data

13 Pages

CEI	liott

EMC Test Data

	company		
Client:	Juniper Systems	Job Number:	J72953
Model:	BC04 Bluetooth module and P700 WiFi module in	T-Log Number:	T72992
	TK6000	Account Manager:	Mark Briggs
Contact:	Kent Campbell		-
Emissions Standard(s):	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Juniper Systems

Model

BC04 Bluetooth module and P700 WiFi module in TK6000

Date of Last Test: 10/20/2008

Ellic)tt			EM	C Test Data
Client: Juniper Syst	ems		,	Job Number:	J72953
Madely PC04 Pluete		TKEOOO	T-I	Log Number:	T72992
		1K6000	Accou	unt Manager:	Mark Briggs
Contact: Kent Campt	ell				
Standard: FCC Part 15	.247 / RSS 210 Issue 7			Class:	: N/A
	Conducted Emi	issions - Pow	er Port	S	
Test Specific Detail	S				
• Objective:	The objective of this test session is to p specification listed above.	perform final qualification	testing of th	ie EUT with r	respect to the
Date of Test:	7-Oct	Config. Used:	Bluetooth ar	nd 802.11 in	transmit mode
Test Engineer:	Mehran Birgani	Config Change:	No local sup	oport equipm	ent
Test Location:	SV OATS #1	Host Unit Voltage	120V/60Hz		
General Test Confi	ruration				
The EUT was located	on a wooden table, 40 cm from a vertica	al coupling plane and 80	cm from the	LISN.	
Ambient Condition	S: Temperature:	24 °C			
	Rel. Humidity:	53 %			
Summary of Result	S	Limit	Docult	I Ma	
KUII #		FCC 15,209	Resuit	39.3dBuV	(92 3uV) @
1	CE, AC Power,120V/60Hz	RSS GEN	Pass	0.926MH;	z (-16.7dB)
Modifications Made No modifications were Deviations From Th No deviations were ma	During Testing made to the EUT during testing e Standard de from the requirements of the standa	ard.			

EMC Test Data

Client:	Juniper Systems	Job Number:	J72953
Model	PC04 Plustoath module and P700 WiEi module in TK6000	T-Log Number:	T72992
MOUEI.		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/50Hz

Frequency	Level	AC	FCC 15.1	09/5.209	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.253	21.2	Neutral	51.7	-30.5	AVG	AVG (0.10s)
0.315	27.1	Line	49.8	-22.7	AVG	AVG (0.10s)
0.378	19.1	Neutral	48.3	-29.2	AVG	AVG (0.10s)
0.387	23.1	Line	48.1	-25.0	AVG	AVG (0.10s)
0.490	23.4	Line	46.2	-22.8	AVG	AVG (0.10s)
0.919	19.4	Neutral	46.0	-26.6	AVG	AVG (0.10s)
0.926	25.6	Line	46.0	-20.4	AVG	AVG (0.10s)
6.614	11.5	Neutral	50.0	-38.5	AVG	AVG (0.10s)
0.253	36.2	Neutral	61.7	-25.5	QP	QP (1.00s)
0.315	38.5	Line	59.8	-21.3	QP	QP (1.00s)
0.378	33.3	Neutral	58.3	-25.0	QP	QP (1.00s)
0.387	35.7	Line	58.1	-22.4	QP	QP (1.00s)
0.490	37.7	Line	56.2	-18.5	QP	QP (1.00s)
0.919	32.2	Neutral	56.0	-23.8	QP	QP (1.00s)
0.926	39.3	Line	56.0	-16.7	QP	QP (1.00s)
6.614	19.6	Neutral	60.0	-40.4	QP	QP (1.00s)

Client: Juniper Systems Job Number: J72953 Model: BC04 Bluetooth Module in TK6000 T-Log Number: T72992 Contact: Kent Campbell Account Manager: Mark Briggs Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions Bluetooth Module BC02 in TK6000

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	14 °C
	Rel. Humidity:	95 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
			255/40		Restricted Band Edge	FCC Part 15.209 /	45.8dBµV/m @
1a -		2402 MH-	200/40	-	(2390 MHz)	15.247(c)	2386.1MHz (-8.2dB)
	-		255/40		Radiated Emissions,	FCC Part 15.209 /	67.5dBµV/m @
			200/40	-	1 - 26 GHz	15.247(c)	4804.0MHz (-6.5dB)
			11 MH- 255/40		Radiated Emissions,	FCC Part 15.209 /	65.6dBµV/m @
ŭ	-	2441 101112	200/40	-	1 - 26 GHz	15.247(c)	4881.8MHz (-8.4dB)
			255/40		Restricted Band Edge	FCC Part 15.209 /	47.7dBµV/m @
1c	-	2480 MHz -	200/40	-	(2483.5 MHz)	15.247(c)	2483.5MHz (-6.3dB)
			255/40		Radiated Emissions,	FCC Part 15.209 /	69.2dBµV/m @
			200/40	-	1 - 26 GHz	15.247(c)	4960.3MHz (-4.8dB)

Modifications Made During Testing

The host system slots for the Bluetooth and WiFi moduleshad the edges chamfered.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Client: Juniper Systems Job Number: J72953 T-Log Number: T72992 Model: BC04 Bluetooth Module in TK6000 Account Manager: Mark Briggs Contact: Kent Campbell Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: N/A Run #1: Radiated Spurious Emissions, 30 - 25,000 MHz. Operating Mode: GFSKDH5 Note: Output power for the device is 10mW. With a 0dBi antenna the expected field strength would be 105.3dBuV/m. The field strength of the fundamental signal was verified to be within 3dB of this value (measured 102.6dBuV/m in 3MHz measurement bandwidth for top and bottom channels) prior to making modifications to the host enclosure and the band-edge and other spurious measurements. Run #1a: Low Channel @ 2402 MHz Fundamental Signal Field Strength: Peak measurement made with RB=2MHz, VB=3MHz to verify output power. Date of Test: 10/3/2008 Config. Used: 1 Test Engineer: Mehran Birgani Config Change: None Test Location: SVOATS #1 Host Unit Voltage 120V/60Hz Orientation with highest fundamental field strength also used for band-edge measurement and 100kHz reference measurement 15.209 / 15.247 EUT Frequency Level Pol Detector Azimuth Height Comments dBµV/m V/H Limit Pk/QP/Avg degrees MHz Margin meters 2401.870 101.7 Н ΡK 157 1.2 RB=2MHz, VB=3MHz Upright -RB=2MHz, VB=3MHz 2402.010 97.3 V PK 166 1.0 Upright V ΡK 2402.070 96.1 224 1.0 RB=2MHz, VB=3MHz Flat --2402.080 94.4 Η ΡK 164 1.1 RB=2MHz, VB=3MHz Flat _ -RB=2MHz, VB=3MHz 99.1 93 2401.990 Н ΡK 1.6 Side -V ΡK 86 2402.080 99.3 1.5 RB=2MHz, VB=3MHz Side --2402.040 101.4 Н 157 1.2 RB=VB=100kHz Upright _ Band Edge Signal Field Strength - EUT Upright (worst case orientation) 15.209 / 15.247 Azimuth Comments Frequency Level Pol Detector Height V/H Pk/QP/Avg MHz dBµV/m Limit Margin degrees meters 2386.070 45.8 Н 54.0 -8.2 AVG 157 1.2 RB=1MHz, VB=100Hz 2374.000 Η 74.0 ΡK 157 1.2 RB = VB = 1MHz 58.4 -15.6 Average measurements made with RB=1MHz, VB=100Hz and do not include any duty cycle correction for the hopping Note 1: mode of operation. RB 1 MHz; VB 100 Hz (Average - Black line), RB=VB=1MHz (Peak - Blue line), Upright (Horizontal) 85.0 80.0 75.0 Amplitude (dBuV/m) 70.0 65.0 60.0 And marked water and a share the state water and a state of the state 55.0 50.0 45.0 40.0 ^{-|}..... 2390 2350 2355 2360 2365 2370 2380 2385 2375 Frequency (MHz)

EMC Test Data											
Client:	Juniper Syst	tems						Job Number:	J72953		
Madala		ath Maalula	_og Number:	T72992							
Model:	BC04 Blueto	Account Manager: Mark Briggs									
Contact:	Kent Campb	oell									
Standard:	ard: FCC Part 15.247 / RSS 210 Issue 7 Class: N/A										
Other Spuri	ous Emissio	ons									
Ε	Date of Test:	10/2/2008			С	onfig. Used:	1				
Te	st Engineer:	Mehran Birg	ani		Cor	nfig Change:	None				
Te	est Location:	SV OATS #	1		Host	Unit Voltage	120V/60Hz				
	Average du	tu ovala aarr	action (honor	l an anab ba	nning channe	al used E0/).	26.0	٩D			
Frequency	Average du			1 on each no / 15 247	Detector	Azimuth	20.0 Height	0B Comments			
MHz	dBuV/m	V/H	L imit	Margin	Pk/OP/Avg	dearees	meters	Commenta		LUI	
4803,700	37.2	V	54.0	-16.8	AVG	116	1.3	Note 3		Flat	
4803.750	38.6	H	54.0	-15.4	AVG	213	1.0	Note 3		Upright	
4803.790	30.8	Н	54.0	-23.2	AVG	232	1.0	Note 3		Side	
4803.850	39.4	V	54.0	-14.6	AVG	160	1.0	Note 3		Upright	
4803.980	41.5	Н	54.0	-12.5	AVG	92	1.1	Note 3		Flat	
4804.170	34.2	V	54.0	-19.8	AVG	89	1.0	Note 3		Side	
4803.700	63.2	V	74.0	-10.8	PK	116	1.3	RB 1 MHz; '	VB: 1 MHz	Flat	
4803.750	64.6	Н	74.0	-9.4	PK	213	1.0	RB 1 MHz;	VB: 1 MHz	Upright	
4803.790	56.8	H	74.0	-17.2	PK	232	1.0	RB 1 MHz;	VB: 1 MHz	Side	
4803.850	65.4	V	74.0	-8.6	PK	160	1.0	RB 1 MHz;	VB: 1 MHz	Upright	
4803.980	67.5	H	74.0	-6.5	PK	92	1.1	RB 1 MHZ;	VB: 1 MHZ	Flat	
4804.170	6U.Z	V	74.0	-13.8	Ph	69	1.0	RB I MHZ;	VB: I IVIHZ	Side	
	For emiss	ions in restri	rted hands t	he limit of 15	209 was use	ed For all of	her emission	is the limit w	as set 20dB l	pelow the	
Note 1:	level of the	e fundament	al and measu	red in 100kl	-200 was ase -17						
Note 2:	Signal is r	not in a restri	cted band .								
Note 3:	Average v	alue calculat	ted from peal	k value by su	ubtracting the	duty cycle co	orrection fact	tor.			
				· · · · · · · · · · · · · · · · · · ·	¥						

Client: Job Number: J22853 Model: BC04 Bluetooth Module in TK6000 T-Log Number: T72992 Contact: Kent Campbell Account Manager: Mark Briggs Standard: FCC Part 15 247 / RSS 210 Issue 7 Class: N/A Run #1b: Center Channel @ 2441 MHz Config. Lused: 1 Date of Test: 10/2/2008 Config. Lused: 1 Test Engineer: Mehan Birgani Config. Change: None Test Location: SV OATS #1 Host Unit Voltage 120//60Hz E Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB E Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBju//m V/H Limit Margin PK/OP/Avg Gegress meters 4881.500 39.3 V 54.0 -14.7 AVG 235 1.7 Note 3 Up 4881.500 39.6 H 54.0 -17.1 AVG		An De	ノしし A [*] company							J I est	Data	
T-Log Number: T-Log Number: T72992 Account Manager: Mark Briggs Contact: Kent Campbell Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: IVA Cast: fCC Part 15.247 / RSS 210 Issue 7 Class: IVA Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: IVA Cast: for Channel @ 2441 MHz Date of Test: for C2008 Config. Used: 1 Test Location: SV OATS #1 Config. Used: 1 Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBu/Vim VIH Ump Vin/Viv/Vi Murber 3 0.0 Ad81:750 39.6 H 54.0 -17.1 AVG 28.0 10 No	Client:	Juniper Syst	ems						Job Number:	J72953		
Account Manager: Mark Briggs Account Manager: Mark Briggs Contact: Kent Campbell Standard: FCC Part 15.247 / RSS 210 Issue 7 Contact: Kent Campbell Contact: Kent Campbell Contact: FCC Part 15.247 / RSS 210 Issue 7 Contact: FCC Part 15.247 / RSS 210 Issue 7 Contact: Config. Used: 1 Test Location: SV OATS #1 Mark Briggs Contact: Co	Madal	DC01 Diugto	oth Modulo	n TK6000				T-	Log Number:	T72992		
Contact: Kent Campbell Standard: FCC Part 15.247 / RSS 210 Issue 7 Config Change: None Test Engineer: Mehran Birgani Config Change: None Test Engineer: Mehran Birgani Config Change: None Test Location: SV OATS #1 Host Unit Voltage 120V/60Hz Average duty cycle correction (based on each hopping channel used 5%): 2.0.0 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBu/Vm VH Liptic Avianth Height Comments E MHZ OBU/Vm VH VH VI VI VI Average duty cycle correction (based on each hopping channel used 5%): 20.0 dB The Sub Colspan="2">Config Change: Note 3 VI MHZ BU/VMZ <th colspa<="" td=""><td>wouer.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Acco</td><td>unt Manager:</td><td>Mark Briggs</td><td>;</td></th>	<td>wouer.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Acco</td> <td>unt Manager:</td> <td>Mark Briggs</td> <td>;</td>	wouer.							Acco	unt Manager:	Mark Briggs	;
Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: N/A Run #1b: Center Channel @ 2441 MHz Date of Test: 10/2/2008 Config. Used: 1 Test Engineer: Mehran Birgani Test Location: SV OATS #1 Config Change: None Test Location: SV OATS #1 Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBu/Vm VIII Host Unit Voltage Comments E MHz dBu/Vm VIII Mote 3 Up MHz dBu/Vm VIII Mote 3 S MHz dBu/Vm VIII Mote 3 S 4881.760 39.3 V 54.0 -16.7 Note 3 S 4881.930 31.4	Contact:	Kent Campb	ell									
Run #1b: Center Channel @ 2441 MHz: Date of Test: 10/2/2008 Config. Used: 1 Test Engineer: Mehran Birgani Test Location: SV OATS #1 Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB Mehran Birgani Test Location: SV OATS #1 Config. Used: 1 Config Change: None Host Unit Voltage 120V/60Hz Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB Frequency Level Pol MHz data of the system system of the system of the system of the system of the system	Standard:	FCC Part 15	5.247 / RSS 2	210 Issue 7					Class:	N/A		
Note Chill with the totage reprint to totage reprint to the totage reprint to totage reprint to the totage reprint to t	Run #1b: C [Te	Center Chan Date of Test: st Engineer:	nel @ 2441 l 10/2/2008 Mehran Birg	MHz Jani		C Cor Host	onfig. Used: Ifig Change:	1 None 120\//60Hz				
Average duty cycle correction (based on each hopping channel used 5%): 26.0 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBµV/m V/H Limit Margin Pk/QP/Avg geres meters 4881.750 39.6 H 54.0 -14.4 AVG 235 1.7 Note 3 Up 4881.900 35.1 H 54.0 -12.6 AVG 238 1.5 Note 3 F 4881.930 31.4 H 54.0 -17.1 AVG 248 1.3 Note 3 F 4882.330 36.9 V 54.0 -17.5 AVG 220 1.0 Note 3 F 7322.700 28.6 H 54.0 -26.5 AVG 223 1.4 Note 3 S 7322.920 31.0 H 54.0 -26.5 AVG 223 1.0 Note 3 S 7323.570	i e		5V 0A15#	1		TIOST		1200/00112				
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments E MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4881.750 39.6 H 54.0 -14.4 AVG 235 1.7 Note 3 Up 4881.750 39.6 H 54.0 -14.7 AVG 238 1.5 Note 3 Up 4881.900 35.1 H 54.0 -12.6 AVG 180 1.0 Note 3 S 4882.300 36.9 V 54.0 -17.5 AVG 280 1.0 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 233 1.4 Note 3 S 7322.750 27.5 V 54.0 -22.6 AVG 233 1.4 Note 3 S 7323.600 28.2 V 54.0 -22.8 AVG 225	_	Average du	ty cycle corr	ection (base	d on each ho	pping channe	el used 5%):	26.0) dB			
mHz cityum V/H Limit Margin PK/UP/Avg degrees meters 4881.750 39.6 H 54.0 -14.4 AVG 235 1.7 Note 3 Up 4881.800 39.3 V 54.0 -14.7 AVG 238 1.5 Note 3 Up 4881.900 35.1 H 54.0 -18.9 AVG 238 1.5 Note 3 F 4882.303 36.9 V 54.0 -17.1 AVG 248 1.0 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 273 1.0 Note 3 S 7322.700 28.6 H 54.0 -26.5 AVG 298 1.0 Note 3 S 7323.600 28.2 V 54.0 -23.0 AVG 233 1.4 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 252 <td< td=""><td>Frequency</td><td>Level</td><td>Pol</td><td>15.209</td><td>/ 15.247</td><td>Detector</td><td>Azimuth</td><td>Height</td><td>Comments</td><td></td><td>EUT</td></td<>	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		EUT	
4881.70 39.5 H 54.0 -14.4 AVG 235 1.7 Note 3 Up 4881.800 39.3 V 54.0 -14.7 AVG 210 1.0 Note 3 Up 4881.900 35.1 H 54.0 -12.6 AVG 180 1.0 Note 3 S 4881.930 31.4 H 54.0 -22.6 AVG 180 1.0 Note 3 S 4882.330 36.9 V 54.0 -17.5 AVG 280 1.0 Note 3 S 7322.700 28.6 H 54.0 -26.5 AVG 298 1.0 Note 3 S 7322.700 28.2 V 54.0 -26.5 AVG 249 1.1 Note 3 Up 732.300 28.2 V 54.0 -20.0 AVG 255 1.3 Note 3 Up 4881.750 65.6 H 74.0 -8.4 PK	MHz	dBµV/m	<u>V/H</u>	Limit	Margin	Pk/QP/Avg	degrees	meters				
4481.600 35.1 H 54.0 -14.7 AVG 210 1.0 Note 3 S 4881.900 35.1 H 54.0 -18.9 AVG 238 1.5 Note 3 S 4881.930 31.4 H 54.0 -17.1 AVG 248 1.3 Note 3 F 4882.330 36.9 V 54.0 -17.5 AVG 280 1.0 Note 3 F 7322.700 28.6 H 54.0 -26.5 AVG 233 1.4 Note 3 S 7322.700 28.6 H 54.0 -25.4 AVG 233 1.4 Note 3 S 732.920 31.0 H 54.0 -23.0 AVG 233 1.4 Note 3 S 7323.50 28.2 V 54.0 -20.0 AVG 252 1.0 Note 3 Up 4881.750 65.6 H 74.0 -19.2 AVG	4881.750	39.0	H	54.0	-14.4	AVG	235	1.7	Note 3		Upright	
4401.900 33.1 H 54.0 -10.9 AVG 238 1.3 Note 3 F 4881.930 31.4 H 54.0 -22.6 AVG 180 1.0 Note 3 F 4882.300 36.5 V 54.0 -17.1 AVG 280 1.0 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 273 1.0 Note 3 F 7322.750 27.5 V 54.0 -26.5 AVG 298 1.0 Note 3 S 7322.920 31.0 H 54.0 -26.8 AVG 249 1.1 Note 3 S 7323.500 28.2 V 54.0 -20.0 AVG 255 1.3 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 252 1.0 Note 3 Up 4881.900 61.1 H 74.0 -8.7 PK	4001.000	39.3	V	54.0	-14.7	AVG	210	1.0	Note 3		Oprigni	
4401.300 31.4 H 34.0 -22.0 AVG 100 1.0 Note 3 F 4882.300 36.9 V 54.0 -17.1 AVG 248 1.3 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 273 1.0 Note 3 F 7322.750 27.5 V 54.0 -26.5 AVG 298 1.0 Note 3 S 7323.060 28.2 V 54.0 -25.8 AVG 249 1.1 Note 3 F 7323.530 34.0 V 54.0 -25.8 AVG 249 1.1 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 252 1.0 Note 3 Up 4881.750 65.6 H 74.0 -8.7 PK 210 1.0 RB 1MHz; VB: 1MHz Up 4881.900 61.1 H 74.0 -11.1 PK<	4001.900	১১.। 21.4		54.0	-10.9	AVG	200	1.0	Note 3		Side	
4402.300 36.5 V 34.0 -17.1 AVG 248 1.3 Note 3 S 4882.400 36.5 V 54.0 -17.5 AVG 280 1.0 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 273 1.0 Note 3 S 7322.750 27.5 V 54.0 -26.5 AVG 298 1.0 Note 3 S 7323.060 28.2 V 54.0 -25.8 AVG 249 1.1 Note 3 Up 7323.501 34.8 H 54.0 -19.2 AVG 255 1.3 Note 3 Up 7323.570 34.8 H 74.0 -8.4 PK 235 1.7 RB 1 MHz; VB: 1 MHz Up 4881.900 65.6 H 74.0 -8.7 PK 210 1.0 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -11.9	4001.930	31.4		54.0	-22.0	AVG	249	1.0	Note 3		Fial	
4002.400 30.3 V 54.0 -11.3 AVG 200 1.0 Note 3 F 7322.700 28.6 H 54.0 -25.4 AVG 273 1.0 Note 3 F 7322.750 27.5 V 54.0 -26.5 AVG 298 1.0 Note 3 S 7323.060 28.2 V 54.0 -25.8 AVG 249 1.1 Note 3 S 7323.500 34.0 V 54.0 -20.0 AVG 255 1.3 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 252 1.0 Note 3 Up 4881.750 65.6 H 74.0 -8.7 PK 235 1.7 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -12.9 PK 238 1.5 RB 1 MHz; VB: 1 MHz S 4881.930 57.4 H 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 7322.700	4002.330	36.5	V	54.0	-17.1	AVG	240	1.5	Note 3		Flat	
1222.100 20.0 11 34.0 -23.4 AVG 27.3 1.0 Note 3 F 7322.750 27.5 V 54.0 -26.5 AVG 298 1.0 Note 3 S 7322.920 31.0 H 54.0 -23.0 AVG 233 1.4 Note 3 S 7323.060 28.2 V 54.0 -25.8 AVG 249 1.1 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 255 1.3 Note 3 Up 4881.750 65.6 H 74.0 -8.4 PK 235 1.7 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -8.7 PK 210 1.0 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -16.6 PK 180 1.0 RB 1 MHz; VB: 1 MHz S 4882.400 62.9 V 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 7322.750 </td <td>4002.400</td> <td>28.6</td> <td>V L</td> <td>54.0</td> <td>-17.5</td> <td>AVG</td> <td>200</td> <td>1.0</td> <td>Note 3</td> <td></td> <td>Flat</td>	4002.400	28.6	V L	54.0	-17.5	AVG	200	1.0	Note 3		Flat	
1222.300 21.3 V 54.0 -20.3 AVG 230 1.0 Hole 3 5 7322.920 31.0 H 54.0 -23.0 AVG 233 1.4 Note 3 S 7323.060 28.2 V 54.0 -20.0 AVG 235 1.3 Note 3 Up 7323.570 34.8 H 54.0 -20.0 AVG 255 1.3 Note 3 Up 7881.750 65.6 H 74.0 -8.4 PK 235 1.7 RB 1 MHz; VB: 1 MHz Up 4881.750 65.6 H 74.0 -8.7 PK 210 1.0 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -12.9 PK 238 1.5 RB 1 MHz; VB: 1 MHz S 4881.930 57.4 H 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F	7322.700	20.0	V	54.0	-25.4		273	1.0	Note 3		Sido	
1022.320 31.0 11 34.0 12.00 12.00 1.0 10.00 30.0 7323.00 28.2 V 54.0 -25.8 AVG 249 1.1 Note 3 F 7323.000 28.2 V 54.0 -20.0 AVG 255 1.3 Note 3 Up 7323.570 34.8 H 54.0 -19.2 AVG 252 1.0 Note 3 Up 4881.750 65.6 H 74.0 -8.4 PK 235 1.7 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -8.7 PK 210 1.0 RB 1 MHz; VB: 1 MHz Up 4881.900 61.1 H 74.0 -16.6 PK 180 1.0 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz S 732.92.920 57.0 <td>7322.750</td> <td>21.5</td> <td> Н</td> <td>54.0</td> <td>-20.5</td> <td></td> <td>230</td> <td>1.0</td> <td>Note 3</td> <td></td> <td>Side</td>	7322.750	21.5	 Н	54.0	-20.5		230	1.0	Note 3		Side	
Average value calculated from peak value by subtracting the duty cycle correction factor. Average value calculated from peak value by subtracting the duty cycle correction factor.	7323.060	28.2	V	54.0	-25.8	AVG	233	1.4	Note 3		Flat	
Note 3000 0 110 10100 1010 1010	7323 530	34.0	V	54.0	-20.0	AVG	255	1.1	Note 3		Unright	
Association	7323 570	34.8	H	54.0	-19.2	AVG	252	1.0	Note 3		Upright	
A881.800 65.3 V 74.0 -8.7 PK 210 1.0 RB 1 MHz; VB: 1 MHz Up 4881.800 61.1 H 74.0 -12.9 PK 238 1.5 RB 1 MHz; VB: 1 MHz VB: 1 MHz VB 4881.900 61.1 H 74.0 -12.9 PK 238 1.5 RB 1 MHz; VB: 1 MHz S 4881.930 57.4 H 74.0 -16.6 PK 180 1.0 RB 1 MHz; VB: 1 MHz S 4882.330 62.9 V 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz S 7322.750 53.5 V 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 732	4881.750	65.6	H	74.0	-8.4	PK	235	1.7	RB 1 MHz: \	/B: 1 MHz	Upright	
AB81.900 61.1 H 74.0 -12.9 PK 238 1.5 RB 1 MHz; VB: 1 MHz S 4881.930 57.4 H 74.0 -16.6 PK 180 1.0 RB 1 MHz; VB: 1 MHz S 4881.930 57.4 H 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz F 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz F 7322.750 53.5 V 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7323.920 57.0 H 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz S 7323.530 60.0<	4881.800	65.3	V	74.0	-8.7	PK	210	1.0	RB 1 MHz: \	/B: 1 MHz	Upright	
4881.930 57.4 H 74.0 -16.6 PK 180 1.0 RB 1 MHz; VB: 1 MHz F 4882.330 62.9 V 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz F 7322.920 57.0 H 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7323.920 57.0 H 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 7323.530 60.0 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8	4881.900	61.1	H	74.0	-12.9	PK	238	1.5	RB 1 MHz: \	/B: 1 MHz	Side	
4882.330 62.9 V 74.0 -11.1 PK 248 1.3 RB 1 MHz; VB: 1 MHz S 4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz F 7322.750 53.5 V 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7322.920 57.0 H 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz S 7323.530 60.0 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For	4881.930	57.4	Н	74.0	-16.6	PK	180	1.0	RB 1 MHz: \	/B: 1 MHz	Flat	
4882.400 62.5 V 74.0 -11.5 PK 280 1.0 RB 1 MHz; VB: 1 MHz F 7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz F 7322.750 53.5 V 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz F 7322.920 57.0 H 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz F 7323.530 60.0 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz Up 7323.530 60.0 V 74.0 -11.2 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Ve	4882.330	62.9	V	74.0	-11.1	PK	248	1.3	RB 1 MHz; \	/B: 1 MHz	Side	
7322.700 54.6 H 74.0 -19.4 PK 273 1.0 RB 1 MHz; VB: 1 MHz F 7322.750 53.5 V 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7322.920 57.0 H 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz S 7323.530 60.0 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz F 7323.530 60.0 V 74.0 -14.0 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 2: Signal is not in a restricted band but the more stringen	4882.400	62.5	V	74.0	-11.5	PK	280	1.0	RB 1 MHz; V	/B: 1 MHz	Flat	
7322.750 53.5 V 74.0 -20.5 PK 298 1.0 RB 1 MHz; VB: 1 MHz S 7322.920 57.0 H 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz F 7323.530 60.0 V 74.0 -14.0 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycl	7322.700	54.6	Н	74.0	-19.4	PK	273	1.0	RB 1 MHz; \	/B: 1 MHz	Flat	
7322.920 57.0 H 74.0 -17.0 PK 233 1.4 RB 1 MHz; VB: 1 MHz S 7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz F 7323.530 60.0 V 74.0 -14.0 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Ievel of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	7322.750	53.5	V	74.0	-20.5	PK	298	1.0	RB 1 MHz; \	/B: 1 MHz	Side	
7323.060 54.2 V 74.0 -19.8 PK 249 1.1 RB 1 MHz; VB: 1 MHz F 7323.530 60.0 V 74.0 -14.0 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	7322.920	57.0	Н	74.0	-17.0	PK	233	1.4	RB 1 MHz; \	/B: 1 MHz	Side	
7323.530 60.0 V 74.0 -14.0 PK 255 1.3 RB 1 MHz; VB: 1 MHz Up 7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	7323.060	54.2	V	74.0	-19.8	PK	249	1.1	RB 1 MHz; \	/B: 1 MHz	Flat	
7323.570 60.8 H 74.0 -13.2 PK 252 1.0 RB 1 MHz; VB: 1 MHz Up Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	7323.530	60.0	V	74.0	-14.0	PK	255	1.3	RB 1 MHz; \	/B: 1 MHz	Upright	
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	7323.570	60.8	Н	74.0	-13.2	PK	252	1.0	RB 1 MHz; \	/B: 1 MHz	Upright	
Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used. Note 3: Average value calculated from peak value by subtracting the duty cycle correction factor.	Note 1:	For emiss level of the	ions in restrie e fundament	cted bands, f al and meas	the limit of 15 ured in 100kl	5.209 was use Hz.	ed. For all ot	her emissio	ns, the limit w	as set 20dB	below the	
Note 5. Average value calculated from peak value by subtracting the duty cycle correction factor.	Note 2:			LIEU DANU DL		unigent restri		nt was used	i. Ntor			
·	NOTE 3:	Average v	alue calcula	led from pea	k value by Sl	ubtracting the	uuty cycle C	UTECTION 180	JUI.			

C	Ellic	ott						EM	C Tes	t Data
Client:	Juniper Syst	tems						Job Number:	J72953	
							T-I	Log Number:	T72992	
Model:	BC04 Blueto	Account Manager: Mark Briggs								
Contact:	ntact: Kent Campbell									
Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: N/A										
Other Spurious Emissions Date of Test: 10/2/2008 Config. Used: 1 Test Engineer: Mehran Birgani Config Change: None										
	est Location: Average du	SV OATS #	l ection (based	d on each ho	Host	Unit Voltage el used 5%):	120V/60Hz 26.0	dB		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
4959.920	40.9	V	54.0	-13.1	AVG	79	1.0	Note 3		Side
4959.950	39.3	V	54.0	-14.7	AVG	70	1.1	Note 3		Flat
4959.980	40.9	Н	54.0	-13.1	AVG	298	1.0	Note 3		Upright
4960.150	32.8	Н	54.0	-21.2	AVG	72	1.0	Note 3		Flat
4960.320	43.2	Н	54.0	-10.8	AVG	147	1.0	Note 3		Side
4960.390	41.2	V	54.0	-12.8	AVG	351	1.1	Note 3		Upright
7439.540	38.5	V	54.0	-15.5	AVG	101	1.0	Note 3		Side
7439.750	33.4	V	54.0	-20.6	AVG	21	1.4	Note 3		Flat
7439.770	34.2	Н	54.0	-19.8	AVG	2	1.6	Note 3		Upright
7440.060	38.8	H	54.0	-15.2	AVG	60	1.0	Note 3		Side
7440.080	36.5	V	54.0	-17.5	AVG	13	1.0	Note 3		Upright
7440.380	28.8	H	54.0	-25.2	AVG	255	1.3	Note 3		Flat
4959.920	66.9	V	74.0	-7.1	PK	79	1.0	RB 1 MHz; V	VB: 1 MHz	Side
4959.950	65.3	V	74.0	-8.7	PK	70	1.1	RB 1 MHz; V	VB: 1 MHz	Flat
4959.980	66.9	H	74.0	-7.1	PK	298	1.0	RB 1 MHz; V	VB: 1 MHz	Upright
4960.150	58.8	H	/4.0	-15.2	PK	/2	1.0	RB 1 MHz; V	VB: 1 MHz	Flat
4960.320	69.2	H	74.0	-4.8	PK	147	1.0	RB 1 MHz; V	VB: 1 MHz	Side
4960.390	67.2	V	74.0	-6.8	PK	351	1.1	RB 1 MHZ; V	VB: 1 MHz	Upright
7439.540	64.5	V	74.0	-9.5	PK	101	1.0	RB 1 MHZ; V	VB: 1 MHZ	Side
7439.750	59.4	V	74.0	-14.0	PK	21	1.4	RB 1 MHZ; 1		Flat
7439.770	60.2	H	74.0	-13.8	PK	2	1.0	RB 1 MHZ; 1		
7440.060	64.8 C0.5	H	74.0	-9.2	PK	60	1.0	RB 1 MHZ; 1		SIDE
7440.080	62.5	V U	74.0	-11.5	PN	13	1.0			
7440.380	54.8	П	74.0	-19.2	PN	200	1.3	RB I MHZ;	VB: I IVIHZ	Fiat
Note 1:	For emiss level of th	ions in restric e fundament	cted bands, t al and measu	he limit of 15 ured in 100k	5.209 was use Hz.	ed. For all ot	her emissior	ns, the limit w	as set 20dB	below the
Note 2:	Signal is r	not in a restri	cted band.							
Note 3:	Average v	alue calculat	ed from pea	k value by si	ubtracting the	duty cycle c	orrection fac	tor.		

EMC Test Data

C	An AZAS [*] company		
Client:	Juniper Systems	Job Number:	J72953
Model:	PC04 Plusteeth medule and P700 WiEi medule in TK6000	T-Log Number:	T72992
		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Radiated Emissions - Receiver Spurious (Bluetooth and 802.11 Modules)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. The EUT was tested in all three orthogonal orientations.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	24 °C	
	Rel. Humidity:	53 %	

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1	Receiver Radiated Spurious		Pass	48.9dBµV/m (278.6µV/m) @
Ι	Emissions, 30 - 7,500 MHz	100 210/100 OLN		1989.0MHz (-5.1dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 7,500 MHz	3	3	0.0

Elliott

EMC Test Data

Client:	Juniper Systems	Job Number:	J72953
Model:	PC04 Plusteeth medule and P700 WiEi medule in TK6000	T-Log Number:	T72992
		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Date of Test: 10/07/08 Test Engineer: Mehran Birgani Test Location: SV OATS #2 Config. Used: Bluetooth and 802.11bg in receive mode Config Change: No local support equipment EUT Voltage: 120V/ 60Hz

Center Channel (2441 MHz for Bluetooth module and 2437MHz for 802.11bg module)

······································									
Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments	EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
1650.000	37.9	Н	54.0	-16.1	PK	46	1.0	Pk reading w/ Avg limit	Flat
1989.020	48.9	H	54.0	-5.1	PK	10	1.2	Pk reading w/ Avg limit	Side
4824.010	44.5	H	54.0	-9.5	PK	16	1.0	Pk reading w/ Avg limit	Upright
36.075	22.6	V	40.0	-17.4	QP	38	1.0	QP (1.00s)	Upright
145.994	20.0	H	43.5	-23.5	QP	128	1.2	QP (1.00s)	Upright
153.625	17.9	H	43.5	-25.6	QP	113	1.0	QP (1.00s)	Side
300.007	22.7	V	46.0	-23.3	QP	100	1.0	QP (1.00s)	Flat
604.500	24.1	V	46.0	-21.9	QP	30	1.0	QP (1.00s)	Upright
872.250	31.2	V	46.0	-14.8	QP	0	1.0	QP (1.00s)	Flat

Note 1:

Prescan at chamber showed all three orientations were almost the same. Worse signal level of three orientation was selected and measured at open test site.

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs, Host System Internal and External

EXHIBIT 6: Operator's Manual

EXHIBIT 7: Block Diagram

EXHIBIT 8: RF Exposure Information