

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization Class II Permissive Change pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C on the Juniper Systems, Inc. Transmitter Model: P700 in TK6000

> UPN: TBD FCC ID: **VSF19782MX**

GRANTEE: Juniper Systems, Inc. 1132 West 1700 North Logan, UT 84321

Elliott Laboratories TEST SITE(S): 684 W. Maude Ave Sunnyvale, CA 94086 IC Site Registration #: IC 2845-1; IC 2845-2

REPORT DATE:

October 22, 2008

FINAL TEST DATE:

October 7 and October 19, 2008

AUTHORIZED SIGNATORY:

Mark Briggs Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R73459 Rev 1 Page 1 of 21

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	October 23, 2008	Report issued without Industry Canada Certification Number	
		for the module as the application was still in progress when	
		this report was released.	

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	9
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	18
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS SPECIFICATION LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS EMMITS - THIS AND DIS STOTEMS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Juniper Systems, Inc. model P700 in TK6000 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Juniper Systems, Inc. model P700 in TK6000 and therefore apply only to the tested sample. The sample was selected and prepared by Kent Campbell of Juniper Systems, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Juniper Systems, Inc. model P700 in TK6000 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation			
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth			
	RSP100	99% Bandwidth	The proposed change	is to allow use of the mo	odule in a
15.247 (b)	RSS 210	Output Power	new host system (the j	uniper Systems model 7	CK6000).
(3)	A8.2 (4)	(multipoint systems)	The module has not been modified to facilitate its use in		
15.247 (b)	RSS 210	Output Power	this new host system,	therefore the rf port mea	surements
13.247 (0)	A8.2 (4)	(point-point systems)	ems) have not been repeated and the data contained in the		in the
15.247(d)	RSS 210	Power Spectral	original filing(s) remain	ins unchanged.	
13.247(u)	A8.2 (2)	Density			
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz			
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	51.5dBµV/m @ 4924.1MHz	15.207 in restricted bands, all others <-20dBc	Complies (-2.5dB)

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral Antenna	Integral antenna or unique connector	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	48.9dBµV/m (278.6µV/m) @ 1989.0MHz	Refer to page 19	Complies (- 5.1 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	39.3dBµV (92.3µV) @ 0.926MHz	Refer to standard	Complies (-16.7dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to RF exposure evaluation document.	Refer to OET 65, FCC Part 1 and RSS 102	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$ \pm 2.4 \pm 3.0 \pm 3.6 \pm 6.0 $

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Juniper Systems, Inc. model P700 is an 802.11bg module. The device has a limited modular approval with the FCC. Testing was being performed to evaluate the module in a new host device, co-located with a BC04 Bluetooth module. The new host device for the two modules is a TK6000.

The sample was received on October 2, 2008 and tested on October 7 and October 19, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Juniper Systems	BC04	Bluetooth module	-	VSF19799AR
Juniper Systems	P700	802.11bg module	-	VSF19782MX
Ktec	KSAC1200100 W1UV-1	AC/DC adaptor	-	N/A
Juniper Systems	TK6000	Field PC	-	N/A

ANTENNA SYSTEM

The antenna is integral to the module.

ENCLOSURE

The host enclosure is primarily constructed of magnesium alloy and plastic. It measures approximately 13 cm wide by 4 cm deep by 27 cm high. The modules do not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

The module did not require modifications during testing in order to comply with emissions specifications.

The host system was modified to comply with the radiated spurious emissions limits. Two layers of ferrite absorber were added to the plastic cap over the WiFi module to reduce the level of the second harmonic. This also reduced the signal level of the fundamental. Note that the modification was not in place for measurements of the fundamental/band edge in 802.11g mode but were in place for all 802.11b mode measurements. As the modification reduced the level of fundamental and band edge signal levels there was no need to repeat the 802.11g mode measurements.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
DELL	Latitude	Laptop	P/N: 3J578A02	IMRMPCIDE3

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
Folt	Connected 10	Description	Shielded or Unshielded	Length(m)	
Serial	Laptop	Serial	Shielded	1.5	
DC Power	AC/DC adaptor	DC power cable	Un-shielded	1.5	

EUT OPERATION

Transmit mode, Bluetooth module: The Bluetooth module was configured to operate at maximum output power in GFSKDH5 mode, the mode that had the highest fundamental, band edge and spurious emissions during the original module certification. The device was operating in TXDATA3 mode on either top, bottom or center channel.

Transmit mode, WiFi module: The WiFi module was configured to operate continuously at the stated data rate in each of the two different modes (802.11b and 802.11g) using a software tool called RFUTIL. The data rates were selected based on the original test report as representing the worst case data rates with respect to radiated emissions. Compliance with radiated spurious emissions limits at the 2390MHz and 2483.5MHz restricted band edges were demonstrated in both operating modes. Spurious emissions were evaluated in 802.11b mode as the original test report indicated that this mode had the highest spurious emissions. The spurious emissions at the band edges were evaluated on top and bottom channels, the other spurious were evaluated on top, bottom and center channels. During the test on the center channel the Bluetooth module was also configured to operate on its high channel to confirm that no significant inter-modulation products were created with both modules operating simultaneously.

Receive mode: Both the Bluetooth and 802.11 modules were configured to operate in receive-only mode with both modules tuned to the center channel (2441MHz for the Bluetooth module and 2437MHz for the 802.11 module).

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 7 and October 19, 2008 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	
SVOATS #1	90592	IC 2845-1	684 West Maude Ave,
SVOATS #2	90593	IC 2845-2	- Sunnyvale CA 94085-3518

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

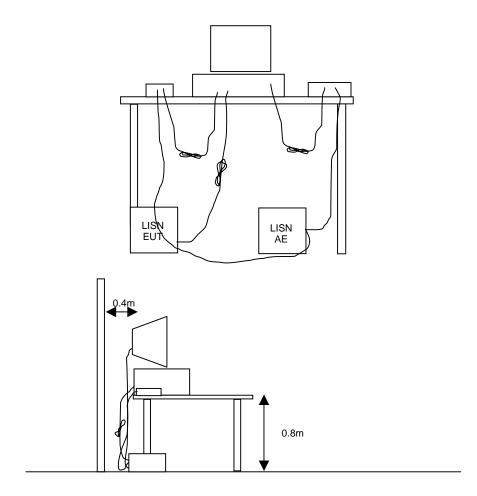
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

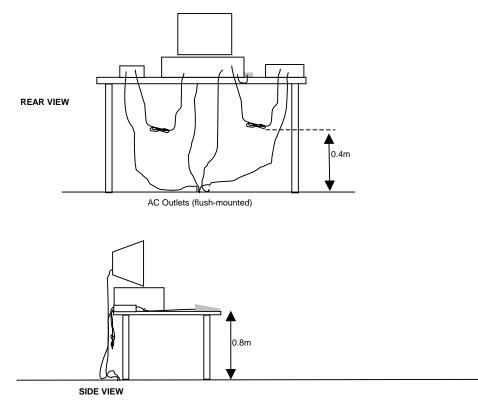

TEST PROCEDURES

EUT AND CABLE PLACEMENT

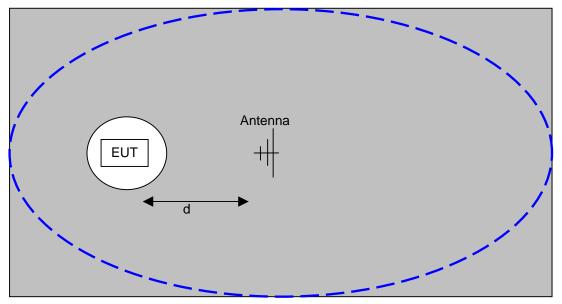
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

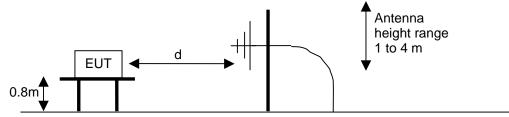
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.


RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 20 Engineer: Rafael Varelas	6,500 MHz, 12-Sep-08			
	Description	Madal #	A + #	
<u>Manufacturer</u>	Description	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Sep-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	15-Oct-08
Radiated Emissions, 1000 - Engineer: Mehran Birgani	- 6,500 MHz, 19-Sep-08			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	15-Jul-10
	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	487 787	19-Feb-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz		-	08-Nov-08
Hewlett Packard	• •	8449B	870	
Hewlett Packard	High Pass filter, 3.5 GHz (Red System)	P/N 84300-80038 (84125C)	1403	28-Aug-09
Radiated Emissions, 1,000 Engineer: Mehran Birgani	- 26,500 MHz, 02 and 03-Oct-08			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1142	24-Oct-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1140	24-0ct-08
Hewiell Fackalu	nigh rass liller, 5.5 GHz	F/N 04300-00030	1157	13-001-08
Radiated Emissions, 30 - 7,	,500 MHz, 07-Oct-08			
Engineer: Mehran Birgani	Description	NA - 1 - 1 - 4		
Manufacturer	Description	Model #		Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	26-Mar-09
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	13-Dec-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	29-May-09
Conducted Emissions - AC	Power Ports, 07-Oct-08			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304	31-Jul-09
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	19-Feb-09
Fischer Custom Comm.	Calibration Fixture - BCI	FCC-BCICF-1	1298	17-Oct-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
Radiated Emissions, 30 - 20	6,500 MHz, 07-Oct-08			
Engineer: Mehran Birgani				
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Log Periodic Antenna 300-1000 MHz	EL300.1000	55	27-Feb-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	19-Sep-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	15-Oct-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz		1332	29-Jan-09
Runue & Schwarz	Test Receiver, 0.009-2750 MHZ	ESN	1332	29-Jan-09
Radiated Emissions, 30 - 25	5000 MHz, 19-Oct-08			
Engineer: Rafael Varelas	Description	N 1 -1 -4		0-1 5
Manufacturer	Description	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Oct-08
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-Jun-10
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	05-Aug-09

EXHIBIT 2: Test Measurement Data

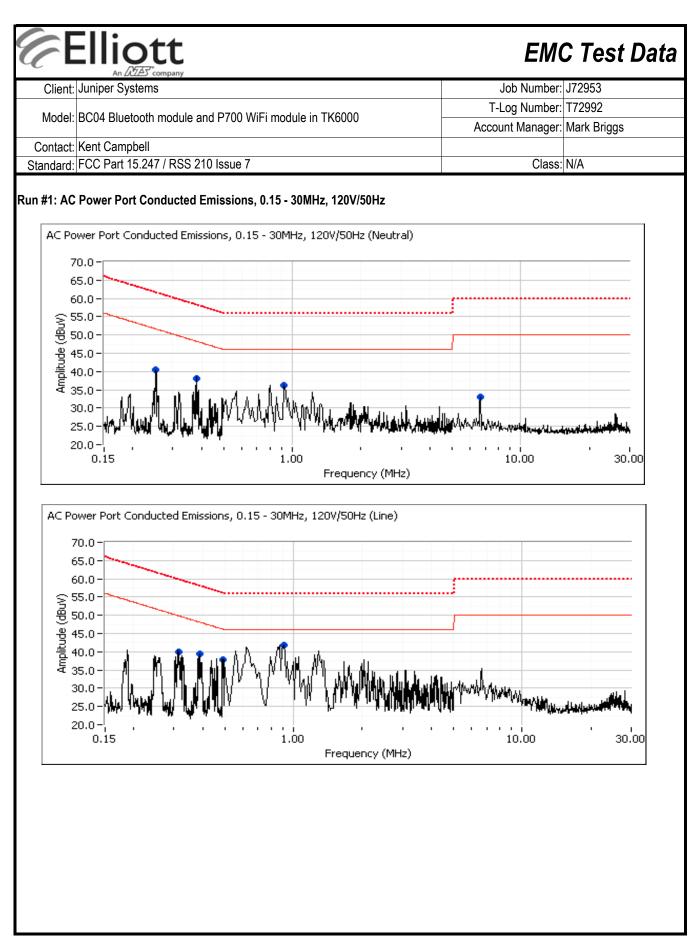
14 Pages

E C	Ellio	ott
	An /	ATAS company

	Company		
Client:	Juniper Systems	Job Number:	J72953
Model:	BC04 Bluetooth module and P700 WiFi module in	T-Log Number:	T72992
	TK6000	Account Manager:	Mark Briggs
Contact:	Kent Campbell		-
Emissions Standard(s):	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Juniper Systems

Model

BC04 Bluetooth module and P700 WiFi module in TK6000

Date of Last Test: 10/20/2008

Client: Juniper Syst Model: BC04 Blueto	company				C Test
Model: BC04 Blueto	ans			Job Number:	J72953
	oth module and P700 WiFi module in T	K6000		Log Number:	
Contact: Kent Campb			Acco	unt Manager:	Mark Briggs
	.247 / RSS 210 Issue 7			Class:	N/A
	Conducted Emi	ssions - Pov	ver Port	S	
-	S The objective of this test session is to p specification listed above.	erform final qualificatio	on testing of th	ne EUT with r	espect to the
Date of Test: Test Engineer: Test Location:	Mehran Birgani	Config. Used Config Change Host Unit Voltage	: No local su	pport equipme	
General Test Config The EUT was located of	juration on a wooden table, 40 cm from a vertica	I coupling plane and 8	0cm from the	LISN.	
Ambient Conditions	Temperature: Rel. Humidity:	24 °C 53 %			
Summary of Result	3				
Run #	Test Performed	Limit	Result		rgin
1	CE, AC Power,120V/60Hz		Pass		
Summary of Result Run # 1 Modifications Made	Rel. Humidity: Test Performed CE, AC Power,120V/60Hz	53 %		39.3dBµV	

	And the company		
Client:	Juniper Systems	Job Number:	J72953
Model	BC04 Bluetooth module and P700 WiFi module in TK6000	T-Log Number:	T72992
Model.		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/50Hz

Level	AC	FCC 15.1	109/5.209	Detector	Comments
dBµV	Line	Limit	Margin	QP/Ave	
21.2	Neutral	51.7	-30.5	AVG	AVG (0.10s)
27.1	Line	49.8	-22.7	AVG	AVG (0.10s)
19.1	Neutral	48.3	-29.2	AVG	AVG (0.10s)
23.1	Line	48.1	-25.0	AVG	AVG (0.10s)
23.4	Line	46.2	-22.8	AVG	AVG (0.10s)
19.4	Neutral	46.0	-26.6	AVG	AVG (0.10s)
25.6	Line	46.0	-20.4	AVG	AVG (0.10s)
11.5	Neutral	50.0	-38.5	AVG	AVG (0.10s)
36.2	Neutral	61.7	-25.5	QP	QP (1.00s)
38.5	Line	59.8	-21.3	QP	QP (1.00s)
33.3	Neutral	58.3	-25.0	QP	QP (1.00s)
35.7	Line	58.1	-22.4	QP	QP (1.00s)
37.7	Line	56.2	-18.5	QP	QP (1.00s)
32.2	Neutral	56.0	-23.8	QP	QP (1.00s)
39.3	Line	56.0	-16.7	QP	QP (1.00s)
19.6	Neutral	60.0	-40.4	QP	QP (1.00s)
	dBμV 21.2 27.1 19.1 23.1 23.4 19.4 25.6 11.5 36.2 38.5 33.3 35.7 37.7 32.2 39.3	dBμV Line 21.2 Neutral 27.1 Line 19.1 Neutral 23.1 Line 23.4 Line 19.4 Neutral 25.6 Line 11.5 Neutral 36.2 Neutral 38.5 Line 33.3 Neutral 35.7 Line 37.7 Line 32.2 Neutral 39.3 Line	dBμV Line Limit 21.2 Neutral 51.7 27.1 Line 49.8 19.1 Neutral 48.3 23.1 Line 48.1 23.4 Line 46.2 19.4 Neutral 46.0 25.6 Line 46.0 11.5 Neutral 50.0 36.2 Neutral 61.7 38.5 Line 59.8 33.3 Neutral 58.3 35.7 Line 58.1 37.7 Line 56.2 32.2 Neutral 56.0 39.3 Line 56.0	dBμV Line Limit Margin 21.2 Neutral 51.7 -30.5 27.1 Line 49.8 -22.7 19.1 Neutral 48.3 -29.2 23.1 Line 48.1 -25.0 23.4 Line 46.2 -22.8 19.4 Neutral 46.0 -26.6 25.6 Line 46.0 -20.4 11.5 Neutral 50.0 -38.5 36.2 Neutral 61.7 -25.5 38.5 Line 59.8 -21.3 33.3 Neutral 58.3 -25.0 35.7 Line 58.1 -22.4 37.7 Line 56.2 -18.5 32.2 Neutral 56.0 -23.8 39.3 Line 56.0 -16.7	dBμV Line Limit Margin QP/Ave 21.2 Neutral 51.7 -30.5 AVG 27.1 Line 49.8 -22.7 AVG 19.1 Neutral 48.3 -29.2 AVG 23.1 Line 48.1 -25.0 AVG 23.4 Line 46.2 -22.8 AVG 19.4 Neutral 46.0 -26.6 AVG 25.6 Line 46.0 -20.4 AVG 11.5 Neutral 50.0 -38.5 AVG 36.2 Neutral 50.0 -38.5 QP 38.5 Line 59.8 -21.3 QP 33.3 Neutral 58.3 -25.0 QP 35.7 Line 58.1 -22.4 QP 37.7 Line 56.2 -18.5 QP 32.2 Neutral 56.0 -23.8 QP 39.3 Line 56.0 -

Client:	Juniper Systems	Job Number:	J72953
Modol	P700 WiFi Module	T-Log Number:	T72992
woder.		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 802.11 bg Module

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

Elliott

The EUT was located on the turntable for radiated spurious emissions testing.

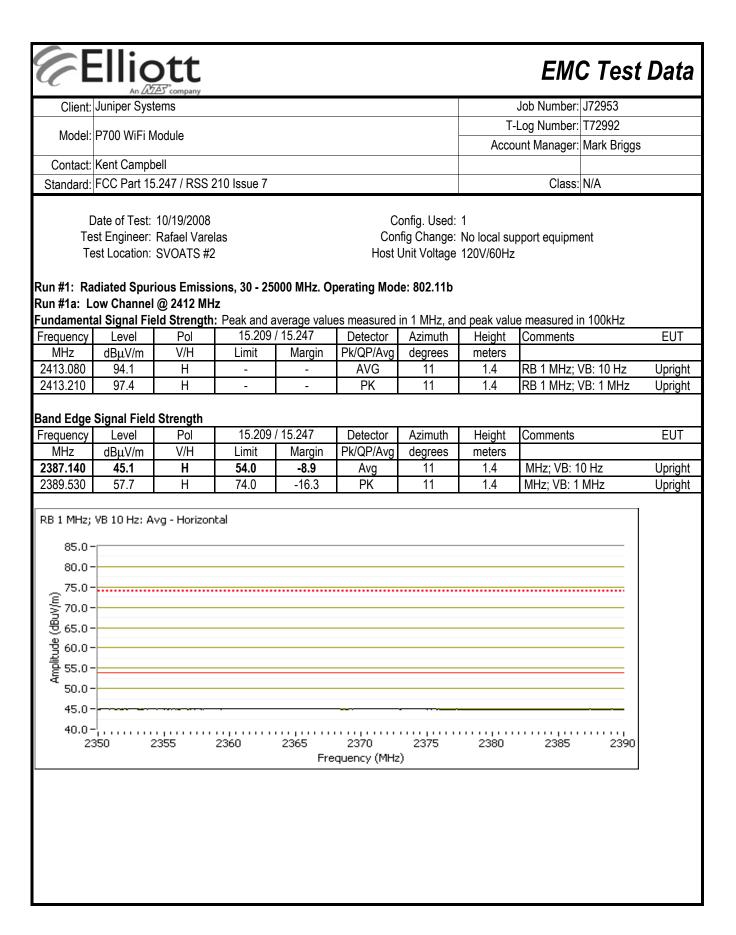
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
					Restricted Band Edge	FCC Part 15.209 /	45.1dBµV/m @
1a		low			(2390 MHz)	15.247(c)	2387.1MHz (-8.9dB)
Ia		1000			Radiated Emissions,	FCC Part 15.209 /	49.5dBµV/m @
			Powersettin	ig is fixed by	1 - 26 GHz	15.247(c)	4824.1MHz (-4.5dB)
1b	802.11b	center		ng software	Radiated Emissions,	FCC Part 15.209 /	48.4dBµV/m @
10	002.110	Center		kimum.	1 - 26 GHz	15.247(c)	4874.1MHz (-5.6dB)
			10 11142	AIITIUITI.	Restricted Band Edge	FCC Part 15.209 /	46.2dBµV/m @
1c		high			(2483.5 MHz)	15.247(c)	2483.7MHz (-7.8dB)
10		riigi i			Radiated Emissions,	FCC Part 15.209 /	51.5dBµV/m @
					1 - 26 GHz	15.247(c)	4924.1MHz (-2.5dB)
					Restricted Band Edge	FCC Part 15.209 /	46.1dBµV/m @
2a		low			(2390 MHz)	15.247(c)	2389.9MHz (-7.9dB)
20		1011			Radiated Emissions,	FCC Part 15.209 /	N/A - 802.11b mode is
			Power settir	ng is fixed by	1 - 26 GHz	15.247(c)	worst case
2b	802.11g	center		ng software	Radiated Emissions,	FCC Part 15.209 /	N/A - 802.11b mode is
20	002.119	Contor	-	kimum.	1 - 26 GHz	15.247(c)	worst case
			10 1114	AIITIUITI.	Restricted Band Edge	FCC Part 15.209 /	69.9dBµV/m @
2c		high			(2483.5 MHz)	15.247(c)	2484.0MHz (-4.1dB)
20		ingri			Radiated Emissions,	FCC Part 15.209 /	N/A - 802.11b mode is
					1 - 26 GHz	15.247(c)	worst case

(F	Elliott			EMO	C Test Data
Client:	Juniper Systems			Job Number:	J72953
Madalı				T-Log Number:	T72992
Model:	P700 WiFi Module			Account Manager:	Mark Briggs
Contact:	Kent Campbell				
Standard:	FCC Part 15.247 / RSS 21	0 Issue 7		Class:	N/A
Ambient	Conditions:	Temperature: Rel. Humidity:	13 °C 92 %		

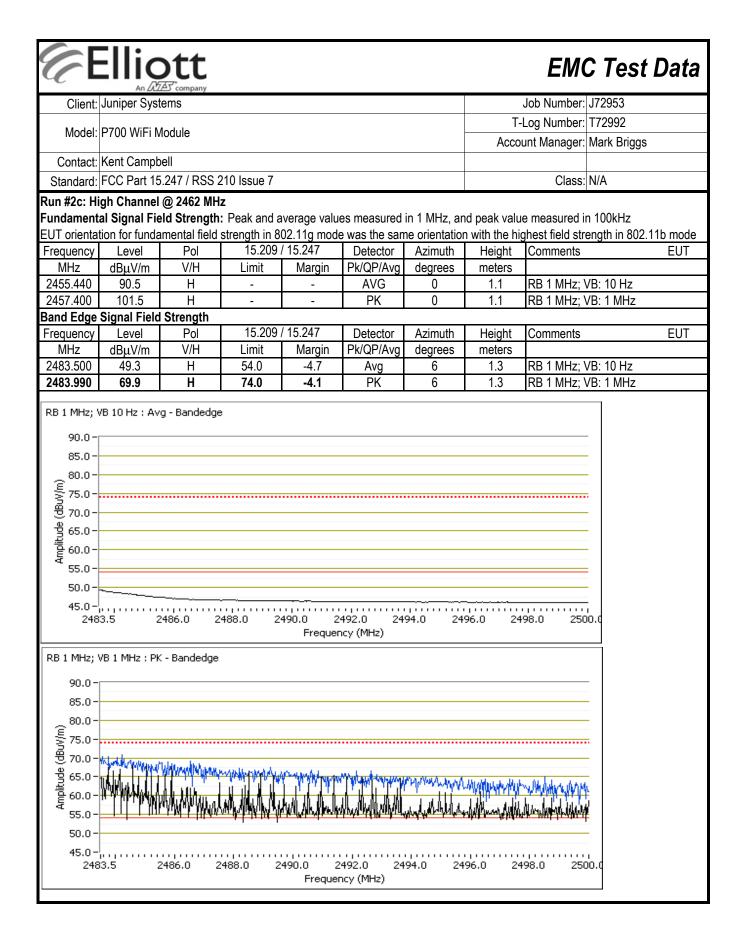
Modifications Made During Testing


Two layers of ferrite absorber were added to the plastic cap over the WiFi module to reduce the level of the second harmonic. This also reduced the signal level of the fundamental. Note that the modification was not in place for measurements of the fundamental/band edge in 802.11g mode but were in place for all 802.11b mode measurements. As the modification reduced the level of fundamental and band edge signal levels there was no need to repeat the 802.11g mode measurements.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Output Power Verification


The product is not connectorized, therefore it is not possible to directly measure the output power from the module. The module and the control software do not allow the output power to be mdified, and the software confugred the module to transmit at the maximum rated power. As a check the field strength was measured to be 101.5dBuV/m (Peak, 1Mhz measurement bandwidth, 802.11g mode). Converting the far field measurement to an eirp would result in an eirp of approximately 6dBm/MHz. Correcting for a signal bandiwdth of approximately 16MHz (99% bandwidth) the total power would be approximately 18dBm eirp. This was within 3dB of the expected output power of 16dBm.

MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz 4824.050 47.1 H 54.0 -6.9 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.060 49.5 V 54.0 -4.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.070 41.6 V 54.0 -12.4 AVG 158 1.2 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 48.5 V 74.0 -22.5 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.130 52.8 H 74.0 -21.2 <		Juniper Syste	ems						Job Number:	J72953	
Account Manager: Mark Briggs Account Manager: Mark Briggs Contact: Kent Campbell Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: IV/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz ABL/VM VIII Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBu/Vm VIII Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBu/Vm VIII Height Comments 4824.040 47.1 Regression Frequency Level V 74.0 -25.5 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>T-</th> <th>Log Number:</th> <th>T72992</th> <th></th>								T-	Log Number:	T72992	
Standard: FCC Part 15.247 / RSS 210 Issue 7 Class: IV/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz 4824.050 47.1 H 54.0 -7.8 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.050 47.1 H 54.0 -6.5 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0	Model:	P700 WIFI M	odule					Acco	unt Manager:	Mark Briggs	
Other Spurious Emissions Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin PK/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz L 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz L 4824.050 47.1 H 54.0 -6.9 AVG 291 1.0 RB 1 MHz; VB: 10 Hz L 4824.050 47.1 H 54.0 -6.5 AVG 221 1.0 RB 1 MHz; VB: 10 Hz L 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz L 4824.120 48.5 V 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 1 MHz L 4824.130 52.8 H 74.0 -21.2	Contact:	Kent Campbe	ell								
Atter Spectro Azimuth Height Comments MHz dBµV/m V/H Limit Margin PK/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz U 4824.050 47.1 H 54.0 -6.9 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.060 49.5 V 54.0 -6.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 48.5 V 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz				210 Issue 7					Class:	N/A	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.050 47.1 H 54.0 -7.8 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.060 49.5 V 54.0 -4.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.000 41.6 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.000 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0 -21.2 PK 25	ther Spur	ious Emissio	ns							I	
MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz L 4824.050 47.1 H 54.0 -7.8 AVG 291 1.0 RB 1 MHz; VB: 10 Hz L 4824.050 47.1 H 54.0 -4.5 AVG 291 1.0 RB 1 MHz; VB: 10 Hz L 4824.070 41.6 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz L 4824.100 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 10 Hz L 4824.100 51.5 V 74.0 -25.5 PK 158 1.2 RB 1 MHz; VB: 1 MHz 4824.100 52.3 V 74.0 -21.2 <td< td=""><td></td><td>1 1</td><td></td><td>15.209</td><td>/ 15.247</td><td>Detector</td><td>Azimuth</td><td>Height</td><td>Comments</td><td></td><td>EUT</td></td<>		1 1		15.209	/ 15.247	Detector	Azimuth	Height	Comments		EUT
4824.040 47.2 H 54.0 -6.8 AVG 137 1.8 RB 1 MHz; VB: 10 Hz 4824.040 46.2 H 54.0 -7.8 AVG 25 1.6 RB 1 MHz; VB: 10 Hz 4824.050 4824.050 47.1 H 54.0 -6.9 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.070 41.6 V 54.0 -4.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.070 41.6 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.020 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.100 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H <		dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees				
4824.050 47.1 H 54.0 -6.9 AVG 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.060 49.5 V 54.0 -4.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.060 49.5 V 54.0 -12.4 AVG 158 1.2 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.100 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.100 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz U 4824.100 52.3 V 74.0 -21.2 PK 137 1.8 RB 1 MHz; VB: 1 MHz U Vate1: For emi	4824.040		Н	54.0		AVG	137	1.8	RB 1 MHz; \	VB: 10 Hz	Side
4824.060 49.5 V 54.0 -4.5 AVG 328 1.2 RB 1 MHz; VB: 10 Hz U 4824.070 41.6 V 54.0 -12.4 AVG 158 1.2 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz U 4824.120 47.5 V 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.120 48.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz U 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For em	4824.040	46.2	Н	54.0	-7.8	AVG	25	1.6	RB 1 MHz; \	VB: 10 Hz	Flat
4824.070 41.6 V 54.0 -12.4 AVG 158 1.2 RB 1 MHz; VB: 10 Hz 4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz 4824.040 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.000 51.5 V 74.0 -22.5 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.120 48.5 V 74.0 -25.5 PK 158 1.2 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.100 54.1 H 74.0 -19.9 PK 137 1.8 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz wathis For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below </td <td>4824.050</td> <td>47.1</td> <td>Н</td> <td>54.0</td> <td>-6.9</td> <td>AVG</td> <td>291</td> <td>1.0</td> <td>RB 1 MHz; \</td> <td>VB: 10 Hz</td> <td>Upright</td>	4824.050	47.1	Н	54.0	-6.9	AVG	291	1.0	RB 1 MHz; \	VB: 10 Hz	Upright
4824.120 47.5 V 54.0 -6.5 AVG 271 1.0 RB 1 MHz; VB: 10 Hz 4824.040 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 10 Hz U 4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.120 48.5 V 74.0 -25.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo level of the fundamental and measured in 100kHz. MHz dBµV/m V/H Limit </td <td>4824.060</td> <td>49.5</td> <td>٧</td> <td>54.0</td> <td>-4.5</td> <td>AVG</td> <td>328</td> <td>1.2</td> <td>RB 1 MHz; \</td> <td>VB: 10 Hz</td> <td>Upright</td>	4824.060	49.5	٧	54.0	-4.5	AVG	328	1.2	RB 1 MHz; \	VB: 10 Hz	Upright
4824.040 51.7 H 74.0 -22.3 PK 291 1.0 RB 1 MHz; VB: 1 MHz U 4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz U 4824.120 48.5 V 74.0 -25.5 PK 158 1.2 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H 74.0 -19.9 PK 137 1.8 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo level of the fundamental and measured in 100kHz. PK 315 1.0 RB 1 MHz; VB: 10 Hz U 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0	4824.070	41.6	V	54.0	-12.4	AVG	158	1.2	RB 1 MHz; \	VB: 10 Hz	Side
4824.100 51.5 V 74.0 -22.5 PK 271 1.0 RB 1 MHz; VB: 1 MHz 4824.120 48.5 V 74.0 -25.5 PK 158 1.2 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo IMHz IMHz U Note 1: For emissions In restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo IMHz MHz MBU/m V/H Limit Margin PK/QP/Avg degrees meters MHz dBµV/m V/H Limit Margin PK/QP/Avg degrees meters	4824.120	47.5	V	54.0	-6.5	AVG	271	1.0	RB 1 MHz; \	VB: 10 Hz	Flat
4824.120 48.5 V 74.0 -25.5 PK 158 1.2 RB 1 MHz; VB: 1 MHz 4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H 74.0 -19.9 PK 137 1.8 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo level of the fundamental and measured in 100kHz. un #1b: Center Channel @ 2437 MHz Purious Emissions Prequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V	4824.040	51.7	Н	74.0	-22.3	PK	291	1.0	RB 1 MHz; V	VB: 1 MHz	Upright
4824.130 52.8 H 74.0 -21.2 PK 25 1.6 RB 1 MHz; VB: 1 MHz 4824.160 54.1 H 74.0 -19.9 PK 137 1.8 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo Invite the fundamental and measured in 100kHz. Prequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4874.080 48.4 V 54.0 -22.4 PK 315	4824.100	51.5	V	74.0	-22.5	PK	271	1.0	RB 1 MHz; V	VB: 1 MHz	Flat
4824.160 54.1 H 74.0 -19.9 PK 137 1.8 RB 1 MHz; VB: 1 MHz 4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo un #1b: Center Channel @ 2437 MHz purious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U degrees in testricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below det 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below det 1: for emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below	4824.120	48.5	V	74.0	-25.5	PK	158	1.2	RB 1 MHz; \	VB: 1 MHz	Side
4824.190 52.3 V 74.0 -21.7 PK 328 1.2 RB 1 MHz; VB: 1 MHz U Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo level of the fundamental and measured in 100kHz. un #1b: Center Channel @ 2437 MHz purious Emissions irequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. The fundamental and measured in 100kHz. ote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi arefunction (IM) products produced with both the WiFi arefunction (4824.130	52.8	Н	74.0	-21.2	PK	25	1.6	RB 1 MHz; \	VB: 1 MHz	Flat
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB belo level of the fundamental and measured in 100kHz. un #1b: Center Channel @ 2437 MHz purious Emissions irequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. Image: Poiled the fundamental and measured in 100kHz. Image: Poiled the fundamental and measured in 100kHz. ote 2: Measured in all three orientations, worst case result reported in the table above. Image: Poiled the fundamental and measured in 100kHz. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi and the table above.	4824.160	54.1	Н	74.0	-19.9	PK	137	1.8	RB 1 MHz; \	VB: 1 MHz	Side
Note 1: level of the fundamental and measured in 100kHz. un #1b: Center Channel @ 2437 MHz purious Emissions requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below ote 2: Measured in 100kHz. ote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar	4824.190	52.3	V	74.0	-21.7	PK	328	1.2	RB 1 MHz; \	VB: 1 MHz	Upright
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. ote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar			el @ 2437 M	ЛНz							
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Iote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar	1	I I I I I I I I I I I I I I I I I I I	Pol	15 200	/ 15 2/7	Detector	Azimuth	Hoight	Commonte		EUT
4874.080 48.4 V 54.0 -5.6 AVG 315 1.0 RB 1 MHz; VB: 10 Hz U 4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 10 Hz U lote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. lote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi and the table above.					T				Comments		EUT
4873.980 51.6 V 74.0 -22.4 PK 315 1.0 RB 1 MHz; VB: 1 MHz U lote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. lote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi and the table above.						× ×			RB 1 MHz· \	/B· 10 Hz	Upright
Interview For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below level of the fundamental and measured in 100kHz. Interview Interview									,		Upright
ote 1: level of the fundamental and measured in 100kHz. ote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar	101 0.000	0110	•	1 1.0			010		1 (D 1 1111),		oplight
ote 2: Measured in all three orientations, worst case result reported in the table above. During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar							For all othe	r emissions	, the limit was	set 20dB be	low the
During this test it was also confirmed that there were no inter-modulation (IM) products produced with both the WiFi ar	ote 1:						the table ab	ove.			
ote 3 With Bluetooth modules installed in the bost system operating simultaneously. The Bluetooth module was set to operate of		ivieasured in			that thora w	ere no inter-m	odulation (IN	1) products	produced with	h both the Wil	Fi and
bit of with Didotooth moduloo motuliou in the need system operating simulaneeds, the Didotooth modulo was set to operate of			est it was als	o confirmed	lial liele w		ouululon (in		produced ma		
highest channel at 2480 MHz. No IMs were observed, only the harmonics of the individual Bluetooth and WiFi signals	ote 2:	During this te					· ·	<i>,</i> .	•		te on its
	ote 2:	During this te Bluetooth mo	dules instal	ed in the ho	st system op	erating simult	aneously. T	he Bluetootl	h module was	set to opera	

	An AZ	Dtt Art company						EMC Test	Data
Client:	Juniper Syst	ems						Job Number: J72953	
Model	P700 WiFi M	Iodula					T-	Log Number: T72992	
Model.	1700 1111	louule					Acco	unt Manager: Mark Briggs	
Contact:	Kent Campb	ell							
Standard:	FCC Part 15	.247 / RSS 2	10 Issue 7					Class: N/A	
	gh Channel al Signal Fie	•		verage valu	es measured	in 1 MHz an	id neak valu	e measured in 100kHz	
requency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg		meters		
2461.420	94.0	Н	-	-	AVG	0	1.1	RB 1 MHz; VB: 10 Hz	Uprigh
2461.170	96.9	Н	-	-	PK	0	1.1	RB 1 MHz; VB: 1 MHz	Uprigh
and Edge	Signal Field	Strength							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.710	46.2	Н	54.0	-7.8	Avg	0	1.1	RB 1 MHz; VB: 10 Hz	Uprigh
2483.540	58.9	Н	74.0	-15.1	PK	0	1.1	RB 1 MHz; VB: 1 MHz	Uprigh
ଅ 65.0- ଅନୁ 60.0-									
		2486.0	2488.0	2490.0	2492.0	2494.0	2496.0	2498.0 2500.0	
50.0- 45.0- 40.0- 24		2486.0	2488.0	2490.0	2492.0 quency (MHz	2494.0	2496.0	2498.0 2500.0	
50.0 - 45.0 - 40.0 - 244 ther Spuri	33.5	2486.0	2488.0	2490.0 Fre	2492.0	2494.0	2496.0 Height	2498.0 2500.0	EUT
50.0 - 45.0 - 244 <u>40.0 -</u> 244 <u>ther Spuri</u> requency MHz	ous Emissio	2486.0 ons Pol V/H	2488.0 15.209 / Limit	2490.0 Fre	2492.0 quency (MHz Detector Pk/QP/Avg	2494.0) Azimuth degrees	2496.0 Height meters	2498.0 2500.0 Comments	
50.0 - 45.0 - 24i ther Spuri requency MHz 4924.020	ous Emissio Level dBµV/m 50.2	2486.0 ons Pol V/H H	2488.0 15.209 / Limit 54.0	2490.0 Fre / 15.247 Margin -3.8	2492.0 equency (MHz Detector Pk/QP/Avg AVG	2494.0) Azimuth degrees 360	2496.0 Height meters 1.2	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz	Flat
50.0 - 45.0 - 241 ther Spuri requency MHz 1924.020 1924.020	ous Emissio Level dBµV/m 50.2 45.2	2486.0 ons Pol V/H H V	2488.0 15.209 / Limit 54.0 54.0	2490.0 Fre / 15.247 Margin -3.8 -8.8	2492.0 oquency (MHz Detector Pk/QP/Avg AVG AVG	2494.0) Azimuth degrees 360 76	2496.0 Height meters 1.2 1.0	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz	Side
50.0 - 45.0 - 40.0 - 24 ther Spuri requency MHz 1924.020 1924.020 1924.030	ous Emissio Level dBµV/m 50.2 45.2 48.5	2486.0 ons Pol V/H H V H H	2488.0 15.209 / Limit 54.0 54.0 54.0	2490.0 Fre / 15.247 Margin -3.8 -8.8 -5.5	2492.0 quency (MHz Detector Pk/QP/Avg AVG AVG AVG	2494.0) Azimuth degrees 360 76 307	2496.0 Height meters 1.2 1.0 1.0	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz	Flat Side Uprigh
50.0 - 45.0 - 244 ther Spuri requency MHz 1924.020 1924.020 1924.020 1924.030	ous Emissio Level dBμV/m 50.2 45.2 48.5 51.5	2486.0 Pol V/H H V H V V	2488.0 15.209 / Limit 54.0 54.0 54.0 54.0 54.0	2490.0 Fre / 15.247 Margin -3.8 -8.8 -5.5 -2.5	2492.0 oquency (MHz Pk/QP/Avg AVG AVG AVG AVG	2494.0) Azimuth degrees 360 76 307 54	2496.0 Height meters 1.2 1.0 1.0 1.0	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz	Flat Side Uprigh Uprigh
50.0 - 45.0 - 241 ther Spuri requency MHz 1924.020 1924.020 1924.030 1924.030 1924.070 1923.790	ous Emission B33.5 Ous Emission ΔBμV/m 50.2 45.2 48.5 51.5 53.8	2486.0 DNS Pol V/H H V H V V V V	2488.0 15.209 / Limit 54.0 54.0 54.0 54.0 54.0 74.0	2490.0 Fre / 15.247 Margin -3.8 -3.8 -8.8 -5.5 -2.5 -20.2	2492.0 equency (MHz Pk/QP/Avg AVG AVG AVG AVG PK	2494.0) Azimuth degrees 360 76 307 54 54 54	2496.0 Height meters 1.2 1.0 1.0 1.0 1.0 1.0	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz	Flat Side Uprigh Uprigh Uprigh
50.0 - 45.0 - 241 ther Spuri requency MHz 4924.020 4924.020 4924.020 4923.790 4923.790	ous Emissio Level dBµV/m 50.2 45.2 48.5 51.5 53.8 52.8	2486.0 pois Pol V/H H V H V V H V H	2488.0 15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0	2490.0 Fre / 15.247 Margin -3.8 -3.8 -8.8 -5.5 -2.5 -20.2 -21.2	2492.0 equency (MHz Pk/QP/Avg AVG AVG AVG AVG PK PK	2494.0) Azimuth degrees 360 76 307 54 54 54 360	2496.0 Height meters 1.2 1.0 1.0 1.0 1.0 1.0 1.2	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz	Flat Side Uprigh Uprigh Uprigh Flat
50.0 - 45.0 - 40.0 - 241 ther Spuri requency MHz 4924.020 4924.020 4924.020 4924.030 4923.790 4923.790 4923.970	ous Emissio Level dBµV/m 50.2 45.2 48.5 51.5 53.8 52.8 52.0	2486.0 Pol V/H H V H V H V H H H	2488.0 15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0 74.0	2490.0 Fre / 15.247 Margin -3.8 -3.8 -5.5 -20.2 -20.2 -21.2 -22.0	2492.0 quency (MHz Pk/QP/Avg AVG AVG AVG AVG AVG PK PK PK	2494.0) Azimuth degrees 360 76 307 54 54 54 360 307	2496.0 Height meters 1.2 1.0 1.0 1.0 1.0 1.2 1.0	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz	Flat Side Uprigh Uprigh Uprigh Flat Uprigh
50.0 - 45.0 - 241 ther Spuri requency MHz 1924.020 1924.020 1924.020 1924.030 1923.790 1923.970	ous Emissio Level dBµV/m 50.2 45.2 48.5 51.5 53.8 52.8	2486.0 pois Pol V/H H V H V V H V H	2488.0 15.209 / Limit 54.0 54.0 54.0 54.0 74.0 74.0 74.0	2490.0 Fre / 15.247 Margin -3.8 -3.8 -8.8 -5.5 -2.5 -20.2 -21.2	2492.0 equency (MHz Pk/QP/Avg AVG AVG AVG AVG PK PK	2494.0) Azimuth degrees 360 76 307 54 54 54 360	2496.0 Height meters 1.2 1.0 1.0 1.0 1.0 1.0 1.2	2498.0 2500.0 Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz	Flat Side Uprigl Uprigl Uprigl Flat

(CE		D tt						EMO	C Test	Data
Client: Juniper Systems					Job Number: J72953					
						T-	Log Number:	T72992		
Model:	P700 WiFi N	lodule				-	Accou	unt Manager:	Mark Briggs	
Contact:	Kent Campt	oell								
Standard:	FCC Part 15	5.247 / RSS 2	210 Issue 7					Class:	N/A	
Run #2: Ra	diated Spur	ious Emissi	ons, 30 - 25	,000 MHz. O	perating Mod	de: 802.11g				
Fundament		eld Strength	: Peak and a		es measured e was the san					11h mode
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	crigar in 002	EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			_0.
2418.600	90.1	Н	-	-	AVG	11	1.4	MHz; VB: 1	0 Hz	Upright
2419.210	98.7	Н	-	-	PK	11	1.4	MHz; VB: 1	MHz	Upright
Band Edge	Signal Field	Strength	-					-		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2389.220	61.5	H	74.0	-12.5	Avg	11	1.4	MHz; VB: 1		Upright
2389.920	46.1	Н	54.0	-7.9	Avg	11	1.4	MHz; VB: 1	0 Hz	Upright
75.0- (W) 70.0- (W) 70.0- (M) 70.0- (55.0- 90.0- 50.0- 45.0- 40.0- 2:		2355	2360	2365	2370 2270 (MHz	2375	2380	2385	2390	
				116		<u>,</u>				

	An ATAS company		
Client:	Juniper Systems	Job Number:	J72953
Madal	BC04 Bluetooth module and P700 WiFi module in TK6000	T-Log Number:	T72992
woder.		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Radiated Emissions - Receiver Spurious (Bluetooth and 802.11 Modules)

Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. The EUT was tested in all three orthogonal orientations.

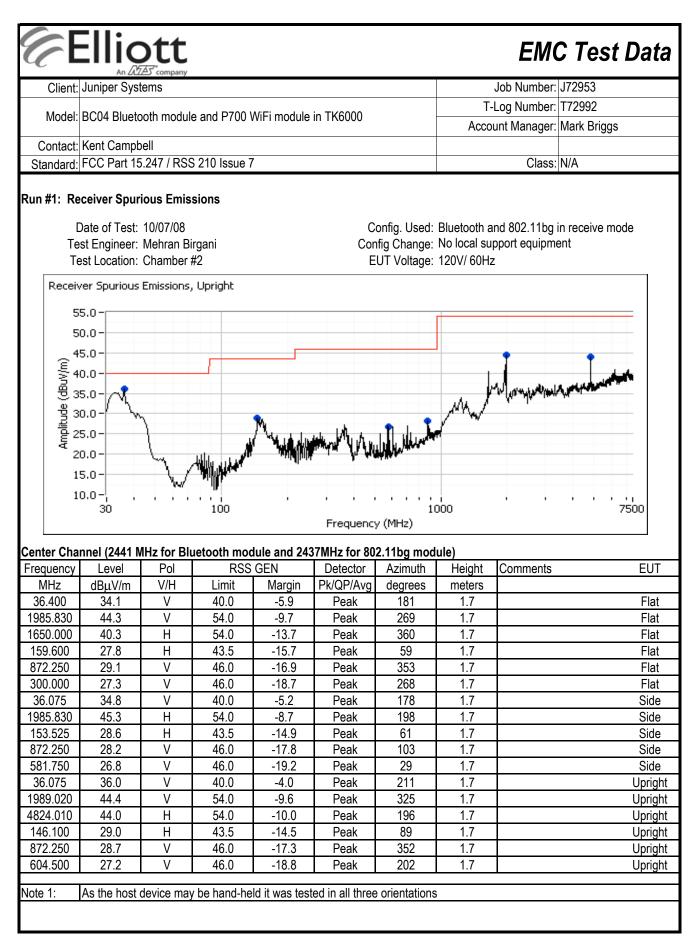
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	53 %

Summary of Results

Run # Test Performed		Limit	Result	Value / Margin
1	Receiver Radiated Spurious Emissions, 30 - 7,500 MHz	RSS 210/RSS GEN	Pass	48.9dBµV/m (278.6µV/m) @ 1989.0MHz (-5.1dB)


Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 7,500 MHz	3	3	0.0

Elliott

EMC Test Data

Client:	Juniper Systems	Job Number:	J72953
Madal	BC04 Bluetooth module and P700 WiFi module in TK6000	T-Log Number:	T72992
woder.		Account Manager:	Mark Briggs
Contact:	Kent Campbell		
Standard:	FCC Part 15.247 / RSS 210 Issue 7	Class:	N/A

Date of Test: 10/07/08 Test Engineer: Mehran Birgani Test Location: SV OATS #2 Config. Used: Bluetooth and 802.11bg in receive mode Config Change: No local support equipment EUT Voltage: 120V/ 60Hz

Center Channel (2441 MHz for Bluetooth module and 2437MHz for 802.11bg module)

Frequency	Level	Pol	RSS	GEN	Detector	Azimuth	Height	Comments	EUT
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
1650.000	37.9	Н	54.0	-16.1	PK	46	1.0	Pk reading w/ Avg limit	Flat
1989.020	48.9	Н	54.0	-5.1	PK	10	1.2	Pk reading w/ Avg limit	Side
4824.010	44.5	Н	54.0	-9.5	PK	16	1.0	Pk reading w/ Avg limit	Upright
36.075	22.6	V	40.0	-17.4	QP	38	1.0	QP (1.00s)	Upright
145.994	20.0	Н	43.5	-23.5	QP	128	1.2	QP (1.00s)	Upright
153.625	17.9	Н	43.5	-25.6	QP	113	1.0	QP (1.00s)	Side
300.007	22.7	V	46.0	-23.3	QP	100	1.0	QP (1.00s)	Flat
604.500	24.1	V	46.0	-21.9	QP	30	1.0	QP (1.00s)	Upright
872.250	31.2	V	46.0	-14.8	QP	0	1.0	QP (1.00s)	Flat

Note 1:

Prescan at chamber showed all three orientations were almost the same. Worse signal level of three orientation was selected and measured at open test site.

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs

EXHIBIT 6: Operator's Manual

EXHIBIT 7: Block Diagram

EXHIBIT 8: RF Exposure Information