

FCC / ISED Test Report

FOR: Juniper Systems, Inc.

> Model Name: AG3

Product Description: AG3 is an ultra-rugged handheld computer for field data collection.

> FCC ID: VSF-AG3 IC ID: 7980A-AG3

Applied Rules and Standards:

47 CFR Part 15.247 (DTS) RSS-247 Issue 2 (DTS) & RSS-Gen Issue 5

REPORT #: EMC_JUNIP_038_20001_15.247_WLAN_DTS

DATE: 2020-08-14

A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc. 411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • <u>http://www.cetecom.com</u> CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V4.0 2012-07-25

The BLUETOOTH trademarks are owned by Bluetooth SIG, Inc., U.S.A. and licensed to CETECOM Inc.

© Copyright by CETECOM

TABLE OF CONTENTS

1		ASSESSMENT	3
2		ADMINISTRATIVE DATA	4
	2.1 2.2 2.3	Identification of the Testing Laboratory Issuing the EMC Test Report Identification of the Client Identification of the Manufacturer	
3	I	EQUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5 3.6	EUT SPECIFICATIONS EUT SAMPLE DETAILS ACCESSORY EQUIPMENT DETAILS SUPPORT EQUIPMENT TEST SAMPLE CONFIGURATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	
4	\$	SUBJECT OF INVESTIGATION	7
5	I	MEASUREMENT RESULTS SUMMARY	8
6	I	MEASUREMENTS	9
	6.1 6.2 6.3	Measurement Uncertainty Environmental Conditions During Testing: Dates of Testing:	9 9 9
7	I	MEASUREMENT PROCEDURES	10
	7.1	RADIATED MEASUREMENT	10
8	٦	TEST RESULT DATA	13
	8.1 8.2	Radiated Transmitter Spurious Emissions and Restricted Bands AC Power Line Conducted Emissions	13 39
9		TEST SETUP PHOTOS	42
10) 1	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	42
11	I	REVISION HISTORY	43

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

No deviations were ascertained.

Company	Description	Model #
Juniper Systems, Inc.	AG3 is an ultra-rugged handheld computer for field data collection.	AG3

Responsible for Testing Laboratory:

Date	Section	Name	Signature
2020-08-14	Compliance	(Lab Manager)	0
		Cindy Li	Cindy Li

Responsible for the Report:

		Yuchan Lu	
2020-08-14	Compliance	(Test Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
EMC Lab Manager:	Cindy Li
Responsible Project Leader:	Sangeetha Sivaraman

2.2 Identification of the Client

Client's Name:	Juniper Systems, Inc.
Street Address:	1132 W 1700 N
City/Zip Code:	Logan, UT 84321
Country:	USA

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Come en Client
City/Zip Code	
Country	

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	AG3
HW Version :	0.1
SW Version :	7.1.2
FCC-ID:	VSF-AG3
IC-ID:	7980A-AG3
HVIN:	AG3
PMN:	FL7502
Product Description:	AG3 is an ultra-rugged handheld computer for field data collection.
Frequency Range / number of channels:	Manufature: Silex Module name/number: SX-SDMAC-2832S+ FCC/IC ID: N6C-SDMAC / 4908A-SDMAC Nominal band: 2400 MHz – 2483.5 MHz; Center to center: 2412 MHz (ch 1) – 2462 MHz (ch 11), 11 channels
Type(s) of Modulation:	BPSK, QPSK, 16-QAM, 64QAM
Modes of Operation:	802.11b/g/n, 20MHz
Antenna Information as declared:	 2402 MHz: -0.11 dBi 2442 MHz: 1.01 dBi 2480 MHz: 2.28 dBi
Max. Peak Output Power:	Conducted Power 24.84 dBm
Power Supply/ Rated Operating Voltage Range:	Vmin: 9.65 VDC/ Vnom: 12/24 VDC / Vmax: 30 VDC
Operating Temperature Range:	Low -30°C, Nominal 20°C, High 60°C
Other Radios included in the device:	 WCDMA, LTE Manufature: Sierra Wireless Module name/number: WP7603 FCC/IC ID: N7NWP76C / 2417C-WP76C Classic BT, BLE Manufature: Silex Module name/number: SX-SDMAC-2832S+ FCC/IC ID: N6C-SDMAC / 4908A-SDMAC GNSS/GPS

	 Manufature: u-blox AG Module name/number: NEO-M8N Sensus Panther Raduio Manufature: Sensus Module name/number: Panther
Sample Revision:	□Prototype Unit; □Production Unit; ■Pre-Production

3.2 EUT Sample details

EUT # Serial Number		HW Version	SW Version	Notes/Comments
1	272323	0.1	7.1.2	Radiated Emissions

3.3 Accessory Equipment details

AE #	Туре	Manufacture	Model	P/N
1	AC/DC Adapter	Phihong Technology Co., Ltd	PSAA20R-120L6	164691695

3.4 Support Equipment

SE #	Description
1	Interface card (control board).
2	Laptop, Dell Latitude E6530
3	Mouse
4	Serial cable and serial-to-USB adapter
5	USB cable
6	USB cable and USB-to-Ethernet adapter

3.5 Test Sample Configuration

EUT Set-up #	Combination of AE used for test set up	Comments
1	EUT#1+ AE#1	 QCARCT used to configure the WLAN radio to low, mid and high channels provided by the client that will not be available to the end user. RIU radio [US] Channel 8 (956.34375MHz) is co-transmitting simultaneously using Panther RIU/LPL Hardware Protocol Application provided by client that is not available to the end user. For radiated measurements, the internal antenna was connected.
2	EUT#1+ AE#1	 QCARCT used to configure the WLAN radio to low, mid and high channels provided by the client that will not be available to the end user. RIU radio [CAN.] Channel 6 (952.91875MHz) is co-transmitting simultaneously using Panther RIU/LPL Hardware Protocol Application provided by client that is not available to the end user. For radiated measurements, the internal antenna was connected.

3.6 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on WLAN low, mid and high channels, and cotransmitting with RIU radio on RIU radio [US] Channel 8 (956.34375MHz) or RIU radio [CAN.] Channel 6 (952.91875MHz). The EUT was configured to the highest duty cycle and maximum output power.

For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 of ISED Canada.

Testing procedures are based on 558074 D01 DTS Meas Guidance v05r02 – "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER SECTION 15.247" - April 2, 2019, by the Federal Communications Commission, Office of Engineering and Technology, Laboratory Division.

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(a)(1) RSS-247 5.2(1)	Emission Bandwidth	Nominal	802.11 b/g/n				Note1 Note2
§15.247(e) RSS-247 5.2(2)	Power Spectral Density	Nominal	802.11 b/g/n				Note1 Note2
§15.247(b)(1) RSS-247 5.4(4)	Maximum Conducted Output Power and EIRP	Nominal	802.11 b/g/n				Note1 Note2
§15.247(d) RSS-247 5.5	Band edge compliance Unrestricted Band Edges	Nominal	802.11 b/g/n				Note1 Note2
§15.247; 15.209; 15.205 RSS-Gen 8.9; 8.10	Band edge compliance Restricted Band Edges	Nominal	802.11 b/g/n				Note1 Note2
§15.247(d); §15.209 RSS-Gen 6.13	TX Spurious emissions- Radiated	Nominal	802.11g				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	802.11g				Complies

Note1: NA= Not Applicable; NP= Not Performed.

Note2: Leveraged from module certification FCC ID: N6C-SDMAC

6 <u>Measurements</u>

6.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30 MHz 30 MHz to 1000 MHz 1 GHz to 40 GHz	±2.5 dB (Magnetic Loop Antenna) ±2.0 dB (Biconilog Antenna) ±2.3 dB (Horn Antenna)
Conducted measurement	
150 kHz to 30 MHz	±0.7 dB (LISN)
RF conducted measurement	±0.5 dB

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

6.2 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

- Ambient Temperature: 20-25° C
- Relative humidity: 40-60%

6.3 Dates of Testing:

05/26/2020 -- 05/29/2020

7 <u>Measurement Procedures</u>

7.1 Radiated Measurement

The radiated measurement is performed according to ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency
 range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and
 both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3
 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The TestSW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace.
 The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop
 is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn
 antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup below 30MHz Measurements

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in $dB\mu V$
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS (dB μ V/m) = Measured Value on SA (dB μ V) + Cable Loss (dB) + Antenna Factor (dB/m)

Example:

Frequency (MHz)	Measured SA (dBµV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)
1000	80.5	3.5	14	98.0

8 <u>Test Result Data</u>

8.1 Radiated Transmitter Spurious Emissions and Restricted Bands

8.1.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation factor as follow: Conversion factor (CF) = 40 log (D/d) = 40 log (300m / 3m) = 80dB

8.1.2 Limits:

FCC §15.247

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

FCC §15.209 & RSS-Gen 8.9

• Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency of emission (MHz)	Field strength (µV/m)	Measurement Distance (m)	Field strength @ 3m (dBµV/m)
0.009–0.490	2400/F(kHz) /	300	-
0.490–1.705	24000/F(kHz) /	30	-
1.705–30.0	30 / (29.5)	30	-
30–88	100	3	40 dBµV/m
88–216	150	3	43.5 dBµV/m
216–960	200	3	46 dBµV/m
Above 960	500	3	54 dBµV/m

FCC §15.205 & RSS-Gen 8.10

• Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

*PEAK LIMIT= 74 dBµV/m *AVG. LIMIT= 54 dBµV/m

8.1.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	802.11g	110 VAC

8.1.4 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 8.1.2	Pass
4-8	Mid	9 kHz – 26 GHz	See section 8.1.2	Pass
9-11	High	30 MHz – 18 GHz	See section 8.1.2	Pass

8.1.5 Measurement Plots:

			Plot #	2 Radia	ated Emiss	ions: 1-3 (GHz				
Modulation:	802.11g				Channel:	Low					
Final_Res	sult										
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
1594.286	59.00		73.98	14.98	500.0	1000.000	192.0	V	168.0	32.5	
1594.286	st!	45.74	53.98	8.24	500.0	1000.000	192.0	V	168.0	32.5	
1912.714	61.59		73.98	12.39	500.0	1000.000	140.0	V	287.0	33.0	
1912.714	<u>ا ا</u>	50.31	53.98	3.67	500.0	1000.000	140.0	V	287.0	33.0	
2869.286	·	53.15	53.98	0.83	500.0	1000.000	140.0	Н	143.0	37.0	
2869.286	65.24		73.98	8.74	500.0	1000.000	140.0	H	143.0	37.0	
Level in dBµV/m	00- 90- 80- 70- 60- 50-				•	•	WiFi_Low 2.415714 102.565	<mark>w_Ch</mark> 4286 G ; dBµV/		5.209 PK (209 AVG (at 3m
	40-										
	30										
	1G				Frequency	/ in Hz	د 				36
•	Preview Res Final_Resul	₃ult 1-PK+ t PK+	•	FCC 15.2 Final_Re	209 PK at 3m ∋sult CAV		FCC 15.2	209 AV	G at 3m		

			Plot #	#6 Radi	ated Emiss	ions: 1-3	GHz				
Modulation:	802.11g					Channel:	Mid				
Final_Res	ult										
Frequency (MHz)	MaxPeak (dBuV/m)	CAverage (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
1594.286	(uDµ1////)	45.62	53.98	8.36	500.0	1000.000	230.0	V	179.0	32.5	
1594.286	58.79		73.98	15.19	500.0	1000.000	230.0	V	179.0	32.5	
1912.571		49.83	53.98	4.15	500.0	1000.000	140.0	V	298.0	33.0	
1912.571	60.72		73.98	13.26	500.0	1000.000	140.0	V	298.0	33.0	
2869.143	63.96	51.41	53.98 73.98	2.57	500.0	1000.000	240.0	V	22.0	37.0	
ار م بر م ب ب ب ب ب م ب ب م ب ب م ب ب م ب ب م ب ب م ب ب م ب م ب م ب م ب م ب م ب م	10 00 30 70						WiFi_N 2.431 104.2	<mark>Vid_Ch</mark> 185714: 244 dB	3 GHz μV/m FCC 1	1 <u>5.209 PK</u>	<u>at 3m</u>
	50 50 40-	Acception of all up							FCC 15.	209 AVG	at.3m
3	30										
	1G				Frequenc	20 y in Hz	3				3G
•	Preview Re Final_Resu	sult 1-PK+ It PK+	•	FCC 15. Final_R	.209 PK at 3m esult CAV		FCC 15	.209 A	.VG at 3m		

		F	lot #9 Ra	adiated	Emissions	: 30 MHz ·	– 1GHz				
Modulation:	802.11g				Cha	nnel: High	۱				
Final_Res	ult				<u> </u>						
Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
30.549	35.97		40.00	4.03	500.0	120.000	140.0	٧	329.0	20.7	
35.277	35.25		40.00	4.75	500.0	120.000	140.0	٧	330.0	17.8	
62.483	33.34		40.00	6.66	500.0	120.000	221.0	<u>v</u>	20.0	10.6	
264.088	34.17		46.02	11.85	500.0	120.000	162.0	H	216.0	20.9	
432.356	38.65		46.02	7.37	500.0	120.000	172.0	H	13.0	22.2	
10 9 7 6 6 4 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 60		100M	Frequency	2000 in Hz		400	FCC 15	209 QP a	t3m 1G
F	Preview Resi	ult 1-PK+	—— F	CC 15.20	09 Q P at 3m	♦ Fi	nal_Resu	ılt Q Pł	< •	Final_	_Result PK+

dulatic		02 11a					Channel [.]	High				
uuluu	<u></u>	02.119				l	Ullumon	Tiigii				
inal_R	esu	lt										
Frequenc (MHz)	1	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
1595.	429	58.92		73.98	15.06	500.0	1000.000	198.0	V	170.0	32.5	
1595.	429		45.61	53.98	8.37	500.0	1000.000	198.0	V	170.0	32.5	
1912.	714	61.01		73.98	12.97	500.0	1000.000	140.0	V	281.0	33.0	L
1912.	/14		49.18	53.98	4.80	500.0	1000.000	140.0	V	281.0	33.0	L
2869.	143		51.55	53.98	2.43	500.0	1000.000	219.0	H	147.0	37.0	<u> </u>
2000.	140	04.01		10.00	0.07	000.0	1000.000	210.0		147.0	07.0	<u> </u>
۱ in dBµV/m	90 90 80 70							2.46	300000 .531 dB	0 GHz ;µV/m FCC	:.15.209.PK	<u>Cat 3m</u>
Lev	60 ⁻					•				FCC 1	5.209 AVG	Lat.3m
	00				and the state of the state of the	and the second s	And A Day and a lot	Health Bill			free and the second sec	
		Land of Actually	and the second	and and stated as the		In the Institution of the	and the second sec	Party.				
	40											
	30											
	1	G					20	G				3G
						Frequenc	y in Hz					
	- P/	eview Re [,]	sult 1-PK+		ECC 15	209 PK at 3m		ECC 1	5 209 4	VG at 3m	,	
		G 110 11 1101	Juit I-I ivi		100.10.	.2031 R at om		10010	1.2007		·	

8.1.6 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	2	802.11g	110 VAC

8.1.7 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
12-14	Low	30 MHz – 18 GHz	See section 8.1.2	Pass
15-19	Mid	9 kHz – 26 GHz	See section 8.1.2	Pass
20-22	High	30 MHz – 18 GHz	See section 8.1.2	Pass

8.1.8 Measurement Plots:

Frequency (MHz) 1595.286 1595.286 1905.857 2858.857 2858.857	Sult MaxPeak (dBµV/m) 5 58.95 5 7 7 62.33 7 7 64.41	CAverage (dBµV/m) 	Limit (dBµV/m) 73.98 53.98 53.98 73.98 53.98 73.98	Margin (dB) 15.03 8.29 3.79 11.65	Meas. Time (ms) 500.0 500.0	Bandwidth (kHz) 1000.000	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Commen
Frequency (MHz) 1595.286 1595.286 1905.857 2858.857 2858.857	MaxPeak (dBμV/m) δ 58.95 δ 7 62.33 7 7 64.41	CAverage (dBµV/m) 45.69 50.19 51.33 	Limit (dBµV/m) 73.98 53.98 53.98 73.98 53.98 73.98 73.98	Margin (dB) 15.03 8.29 3.79 11.65	Meas. Time (ms) 500.0 500.0	Bandwidth (kHz) 1000.000	Height (cm) 152.0	Pol	Azimuth (deg)	Corr. (dB/m)	Commen
1595.286 1595.286 1905.857 1905.857 2858.857 2858.857	(dEp + m) 6 58.95 7 7 62.33 7 7 64.41	45.69 50.19 	73.98 53.98 53.98 73.98 53.98 53.98 73.98	15.03 8.29 3.79 11.65	500.0 500.0	1000.000	152.0		(ueg)	ULDrive	
1595.286 1905.857 1905.857 2858.857 2858.857	7 7 62.33 7 7 64.41	45.69 50.19 51.33 	53.98 53.98 73.98 53.98 73.98 73.98	8.29 3.79 11.65	500.0			iV I	192.0	32.5	
1905.857 1905.857 2858.857 2858.857	7 7 62.33 7 7 64.41	50.19 51.33 	53.98 73.98 53.98 73.98	3.79 11.65		1000.000	152.0	V	192.0	32.5	
1905.857 2858.857 2858.857	7 62.33 7 7 64.41	51.33 	73.98 53.98 73.98	11.65	500.0	1000.000	184.0	V	118.0	32.9	
2858.857	7 7 64.41		53.98 73.98		500.0	1000.000	184.0	V	118.0	32.9	
1	7 04.41		73.90	2.65	500.0	1000.000	164.0	H +	114.0	37.0	
	10					WiF	i Low Ci		_		
1	00-							<u></u>]		
	-						2.40442	28572 GH	Hz		
	90-						103.03	5 ubµv/i			
Ę	80-										
2 MB									FCC 1	5.209 PK	<u>at 3m</u>
in dl	70-										
evel	60-				•	•					
									FCC 15.	209 AVG	at.3m
	50			ملين ورون و	under an and and	والمسطية الملط وسيراري	a ha da h		line and the second sec		
	10-	والمراجع والمتألف والمتلك ألماهم				1					
	40										
	30										
	1G					20	Э				3G
					Frequenc	y in Hz					
	D			500.45	000 DK -1 0		F00 / -		00		

Plot #14 Radiated Emissions: 3-18 GHz												
Modulation:	802.11g					Channel:	Low					
Final_Res	sult											
Frequency (MHz)	MaxPeak (dBuV/m)	CAverage (dBuV/m)	Limit (dBuV/m)	Margin Meas. Time		Bandwidth	Height (cm)	Pol	Azimuth	Corr.	Comment	
3405.500	(ubµv/iii)	27.14	53.98	26.84	500.0	1000.000	315.0	н	132.0	-8.1		
3405.500	39.51		73.98	34.47	500.0	1000.000	315.0	Н	132.0	-8.1		
3811.500	52.25		73.98	21.73	500.0	1000.000	163.0	V	133.0	-6.4		
3811.500		45.85	53.98	8.13	500.0	1000.000	163.0 287.0	V	133.0	-6.4		
4764.500	45.61		73.98	28.37	500.0	1000.000	287.0	v	234.0	-4.9		
5717.500		48.06	53.98	5.92	500.0	1000.000	140.0	V	68.0	-3.5		
5717.500	54.62		73.98	19.36	500.0	1000.000	140.0	V	68.0	-3.5		
7623.500	41.97	39.14	53.98	14.84	500.0	1000.000	140.0	V	225.0	-0.3		
Level in dBµV/m	90 80 70 60 50 40 30 \$20								FCC 15.2	5209 PK at	3m 3m 3m	
	10		5G	6	5 7 Frequenc	89 y in Hz	10G				 18G	
•	Preview Re Final_Resul	sult 1-PK+ it PK+	*	FCC 15. Final_Re	209 PK at 3m əsult CAV		FCC 15	.209 A	VG at 3m			

			Plot #	17 Radi	iated Emiss	sions: 1-3	GHz			
Modulation	n: 802.11g					Channel:	Mid			
Final_Re	sult									
Frequency (MHz)	MaxPeak (dBuV/m)	CAverage (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height Po	Azimuth	Corr. (dB/m)	Comment
1596.28	6	45.74	53.98	8.23	500.0	1000.000	204.0 V	175.0	32.5	
1596.28	6 59.47		73.98	14.51	500.0	1000.000	204.0 V	175.0	32.5	
1905.85	61.47		73.98	12.51	500.0	1000.000	206.0 V	288.0	32.9	
1905.85		50.08	53.98	3.90	500.0	1000.000	206.0 V	288.0	32.9	
2858.85	57	52.52	53.98	1.46	500.0	1000.000	227.0 V	226.0	37.0	
2858.85	64.84		73.98	9.14	500.0	1000.000	227.0 V	226.0	37.0	
evel in dBµV/m	100 90 80 70 60						2.431571 103.406	429 GHz dBµV/m	15.209 PK :	at 3m
	50 40 30 1G	pla / anostilo d star, - pysia		, and the second se		2(3	FLC.15	209 AVG.	3G
					Frequency	y in Hz				
•	Preview Ro Final_Reso	∋sult 1-PK+ JIt PK+	•	FCC 15. Final_Re	209 PK at 3m esult CAV		FCC 15.209	AVG at 3m		

Modulation: 802.11g Channel: Mid Final_Result Englishing Constrained by the state of the s					Plot #1	8 Radia	ated Er	nissi	ons:	3-18	GHz				
Final_Result Trequiency (dBpV/m) (dBpV/m	Modulati	on: 8	302.11g					C	nanne	el: M	id				
Frequency MaxPeak CAverage Limit Margin Meas. Time Bandwidth Height Pol Azimuth Corr. 3409.000 39.02 73.36 34.96 500.0 1000.000 223.0 V 65.0 8.1 3409.000 27.11 53.98 26.77 500.0 1000.000 223.0 V 65.0 8.1 3811.500 44.57 53.98 26.87 500.0 1000.000 207.0 V 133.0 6.4 5717.500 54.25 73.98 19.73 500.0 1000.000 140.0 V 65.0 3.3 66070.500 47.81 53.98 11.55 500.0 1000.000 140.0 V 243.0 0.2 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 0.3 7623.500 50.43 73.98 23.54 <	Final I	Res	ult												
image: state in the state	Frequer	су	MaxPeak	CAverage	Limit	Margin	Meas. 1	lime	Bandy	vidth	Height	Pol	Azimuth	Corr.	Comment
3409.000 39.02 2 73.38 28.87 500.0 1000.000 223.0 V 65.0 45.1 3811.500 44.57 53.38 34.41 500.0 1000.000 223.0 V 65.0 45.1 5717.500 44.57 53.38 54.41 500.0 1000.000 27.0 V 133.0 6.4 5717.500 47.81 53.98 6.17 500.0 1000.000 140.0 V 65.0 3.5 5670.500 41.21 53.98 12.77 500.0 1000.000 140.0 V 243.0 0.2 6670.500 49.82 73.38 23.54 500.0 1000.000 140.0 V 243.0 0.2 7623.500 50.43 73.38 23.54 500.0 1000.000 140.0 V 292.0 0.3 7623.500 50.43 73.38 23.54 500.0 1000.000 140.0 V 292.0 0.3 100	(MHz)	0.000	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kH	z)	(cm)	V	(deg)	(dB/m)	
3811.500	340	9.000	39.0Z	27.11	53.98	26.87		500.0	100	0.000	223.0	v	65.0	-0.1	
3811.500 51.09 73.88 22.89 500.0 1000.000 207.0 V 133.0 4.4 5717.500 47.81 53.36 6.17 500.0 1000.000 140.0 V 65.0 3.5 6670.500 41.21 53.36 6.17 500.0 1000.000 140.0 V 65.0 3.5 6670.500 41.21 53.38 12.77 500.0 1000.000 140.0 V 243.0 0.2 7623.500 42.43 53.98 11.55 500.0 1000.000 140.0 V 243.0 0.2 7623.500 50.43 73.38 23.54 500.0 1000.000 140.0 V 292.0 0.3 7623.500 50.43 73.38 23.54 500.0 1000.000 140.0 V 292.0 0.3 90.00 1000.000 140.0 V 292.0 0.3 - 73.98 23.54 500.0 1000.000 140.0 V	381	1.500		44.57	53.98	9.41		500.0	100	0.000	207.0	v	139.0	-6.4	
5717.500 54.25 73.98 19.73 500.0 1000.000 140.0 V 65.0 3.5 5717.500 41.21 53.98 6.17 500.0 1000.000 164.0 V 65.0 3.5 6670.500 41.21 53.98 12.77 500.0 1000.000 164.0 V 243.0 -0.2 6670.500 49.82 73.98 21.16 500.0 1000.000 164.0 V 243.0 -0.2 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 90.00 90.00 140.0 V 292.0 -0.3	381	1.500	51.09		73.98	22.89		500.0	100	0.000	207.0	V	139.0	-6.4	
5717.500	571	7.500	54.25		73.98	19.73		500.0	100	0.000	140.0	V	65.0	-3.5	
6670.500 41.21 53.98 12.77 500.0 1000.000 164.0 V 243.0 -0.2 7623.500 49.82 73.98 24.16 500.0 1000.000 164.0 V 243.0 -0.2 7623.500 50.43 73.98 24.16 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 78.9 106 FCC 15.209 PK at 3m FCC 15.209 AVG at 3m Frequency in Hz 760	571	7.500		47.81	53.98	6.17		500.0	100	0.000	140.0	V	65.0	-3.5	
6670.300 49.82 73.38 24.15 500.0 1000.000 140.0 V 243.0 -0.2 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 1000000 140.0 V 292.0 -0.3 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 1000000 140.0 V 292.0 -0.3	667	0.500		41.21	53.98	12.77		500.0	100	0.000	164.0	V	243.0	-0.2	
1223.300 1233 300.0 1000.000 140.0 V 222.0 -0.3 7623.500 50.43 73.98 23.54 500.0 1000.000 140.0 V 292.0 -0.3 1000000 140.0 V 292.0 -0.3	667	0.500	49.82	43.42	73.98	24.16		500.0	100	0.000	164.0	V	243.0	-0.2	
1023.300 30.43 13.50 23.54 300.0 1000.000 140.0 V 232.0 -0.3 100000 1000.000 140.0 V 122.0 -0.3 -0.3 100000 1000.000 140.0 V 1000.000 140.0 V 122.0 -0.3 100000 1000.000 140.0 V 1000.000 140.0 V 123.0 -0.3 100000 100000 FCC 15.209 PK at 3m FCC 15.209 PK at 3m FCC 15.209 AVG at 3m 100000 Frequency in Hz FCC 15.209 PK at 3m FCC 15.209 AVG at 3m 1000000 Frequency in Hz FCC 15.209 AVG at 3m FCC 15.209 AVG at 3m	762	3.500	50.43	42.43	73.90	23.54		500.0	100	0.000	140.0	V	292.0	-0.3	
Preview Result 1-PK+ FCC 15.209 PK at 3m FCC 15.209 AVG at 3m Final_Result PK+	t in dBuV/m	80 70 60 50					•						FCC 15	5.209 PK at 09 AVG at	<u>3m.</u> 3m.
30 30 30 30 30 30 30 30 30 30 100 180 33 56 6 7 8 9 100 180 Frequency in Hz Preview Result 1-PK+ FCC 15.209 PK at 3m FCC 15.209 PK at 3m FCC 15.209 AVG at 3m Final_Result CAV		40	, †		مر المراجع الم		ر الجوريد				الية ماسية روك إيرانية. محالة موجوع ومحالية	a fairt a status	<u></u>		
20 20 10 3G 3G 5G 6 7 8 9 10 18G Frequency in Hz Preview Result 1-PK+ FCC 15.209 PK at 3m Final_Result PK+ FCC 15.209 PK at 3m FCC 15.209 AVG at 3m		. 3(ļ.	111											
10 10 10 10 10 18G 3G 5G 6 7 8 9 10G 18G Frequency in Hz Preview Result 1-PK+ FCC 15.209 PK at 3m FCC 15.209 AVG at 3m Final_Result CAV		20) 												
3G 5G 6 7 8 9 10G 18G Frequency in Hz ◆ Preview Result 1-PK+ Final_Result PK+ FCC 15.209 PK at 3m Final_Result CAV FCC 15.209 AVG at 3m		1(, İ						-	-	Ì				_
Frequency in Hz Preview Result 1-PK+ FCC 15.209 PK at 3m Final_Result PK+ Final_Result CAV			3G		5G	6	7	7	8	9	10G				18G
Preview Result 1-PK+ FCC 15.209 PK at 3m Final_Result PK+ Final_Result CAV							Frequ	lency	in Hz						
	•	F	review Res inal_Resul	sult 1-PK+ t PK+	•	FCC 15.2 Final_Re	209 PK a sult CA	at 3m √			FCC 15	.209 A'	VG at 3m		

lulatio	n: 8	02.11g					Channel:	High				
		<u></u>										
nal Re	esu	lt										
requency		MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.	Comment
(MHZ)	57	(dBµV/m) 61.19	(ashr/w)	(abµv/m) 73.98	(dB) 12.79	(ms)	(KHZ)	(cm)	V	(deg)	(dB/m)	
1905.8	57	01.15	49.37	53.98	4.61	500.0	1000.000	140.0	v	116.0	32.9	
2858.8	57	64.95		73.98	9.03	500.0	1000.000	250.0	V	222.0	37.0	
2858.8	57		52.48	53.98	1.50	500.0	1000.000	250.0	٧	222.0	37.0	
	100 90							iFi_High_	Ch B	<u>JV/m</u>		
Bμ//m	80	-								FCC	15.209 PK	at 3m
li n	70	-										•
Leve	60						•			FOC 15	.209 AVG	at 3m
	50							Allenations	anda Militada I	بها البي	الدرائية وي دران منام محمد معروف من	
	40	an far staden	literate Malulation and a									
	30	 										
		IG					2	G				3G
						Frequenc	y in Hz					
	P	review Re	sult 1-PK+		FCC 15.	209 PK at 3m		FCC 15	5.209 A	VG at 3m		

Plot #22 Radiated Emissions: 3-18 GHz											
Modulation:	802.11g				C	hannel: H	igh				
Final Res	ult										
Frequency	MaxPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.	Comment
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)	
3406.500	39.89	21.24	53.98 73.98	26.74	500.0	1000.000	162.0	н	227.0	-8.1	
3811.500	51.04		73.98	22.93	500.0	1000.000	209.0	v	140.0	-6.4	
3811.500		44.57	53.98	9.41	500.0	1000.000	209.0	V	140.0	-6.4	
5717.500		48.02	53.98	5.96	500.0	1000.000	140.0	v	66.0	-3.5	
5717.500	54.28		73.98	19.70	500.0	1000.000	140.0	v	66.0	-3.5	
6670.500		38.49	53.98	15.49	500.0	1000.000	198.0	V	90.0	-0.2	
6670.500	48.68		73.98	25.30	500.0	1000.000	198.0	V	90.0	-0.2	
7623.000	50.22	42.66	73.90	23.75	500.0	1000.000	140.0	V	293.0	-0.3	
8576.500		38.49	53.98	15.49	500.0	1000.000	151.0	v	58.0	-0.5	
8576.500	48.31		73.98	25.67	500.0	1000.000	151.0	v	58.0	1.5	
9 8 7 7 6 6 7 7 7 8 7 9 7 7 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5G	•	7	8 9	10G		FCC 15 2	209 PK at	3m. 3m. 18G
F	Preview Res	sult 1-PK+		FCC 15.2	Frequency	in Hz	FCC 15.	209 A'	VG at 3m		
• F	inal_Resul	tPK+	•	Final_Re	sultCAV						

8.2 AC Power Line Conducted Emissions

8.2.1 Measurement according to ANSI C63.10 (2013)

Analyzer Settings:

- RBW = 9 KHz (CISPR Bandwidth)
- Pre-scan Detector = Peak / Average for
- Final Measurements Detector = Quasi-Peak / Average

8.2.2 Limits: FCC 15.207 & RSS-Gen 8.8

(a) Except as shown in paragraphs (b) and (c) of this section of the CFR, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table (1), as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between frequency ranges.

Frequency of omission (MHz)	Conducted limit (dBµV)					
	Quasi-peak	Average				
0.15–0.5	66 to 56*	56 to 46*				
0.5–5	56	46				
5–30	60	50				

*Decreases with the logarithm of the frequency.

8.2.3 Test conditions and setup:

Ambient Temperature (C)	EUT Set-Up #	EUT operating mode	Power line (L1, L2, L3, N)	Power Input
22	1	802.11g	Line & Neutral	110 V / 60 Hz
22	2	802.11g	Line & Neutral	110 V / 60 Hz

8.2.4 Measurement Result:

Plot #	Port	EUT Set-Up #	EUT operating mode	Scan Frequency	Limit	Result
1	AC Mains	1	802.11g	150 kHz – 30 MHz	See section 8.2.2	Pass
2	AC Mains	2	802.11g	150 kHz – 30 MHz	See section 8.2.2	Pass

8.2.5 Measurement Plots:

Plot # 1

Disclaimer: Any measurement data within 2dB from the limit line is conditional PASS/FAIL due to measurement uncertainty considerations.

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	PE	Corr. (dB)	Comment
0.154		39.26	55.78	16.52	500.0	9.000	L1	GND	10.7	
0.154	49.42		65.78	16.36	500.0	9.000	L1	GND	10.7	
0.170		36.78	54.96	18.18	500.0	9.000	Ν	GND	10.6	
0.170	47.08		64.96	17.88	500.0	9.000	Ν	GND	10.6	
0.350		27.78	48.96	21.18	500.0	9.000	Ν	GND	10.3	
0.350	36.29		58.96	22.68	500.0	9.000	Ν	GND	10.3	

Preview Result 1-PK+ EN 55032 Voltage on Mains QP EN 55032 Voltage on Mains AV Final_Result QPK Final_Result CAV

Plot # 2

Disclaimer: Any measurement data within 2dB from the limit line is conditional PASS/FAIL due to measurement uncertainty considerations.

Final_Result

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	PE	Corr.	Comment
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)	
0.158		39.76	55.57	15.81	500.0	9.000	L1	GND	10.7	
0.158	50.00		65.57	15.56	500.0	9.000	L1	GND	10.7	
0.194		32.89	53.86	20.98	500.0	9.000	N	GND	10.5	
0.194	43.65		63.86	20.22	500.0	9.000	N	GND	10.5	
0.266		35.43	51.24	15.81	500.0	9.000	N	GND	10.5	
0.266	43.83		61.24	17.41	500.0	9.000	N	GND	10.5	

9 <u>Test setup photos</u>

Setup photos are included in supporting file name: "EMC_JUNIP_038_20001_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
PASSIVE LOOP ANTENNA	ETS.LINDGREN	6507	00161344	3 YEARS	10/26/2017
BILOG ANTENNA	ETS.LINDGREN	3142	00166067	3 YEARS	03/12/2020
HORN ANTENNA	ETS.LINDGREN	3115	00035111	3 YEARS	04/17/2019
HORN ANTENNA	ETS.LINDGREN	3117	00215984	3 YEARS	01/26/2018
HORN ANTENNA	ETS.LINDGREN	3116	00070497	3 YEARS	10/31/2017
SIGNAL ANALYZER	R&S	FSU26	200065	3 YEARS	07/16/2019
SIGNAL ANALAYZER	R&S	FSV 40	101022	3 YEARS	07/15/2019
TEST RECEIVER	R&S	ESU.EMI	100256	3 YEARS	07/16/2019
COMPACT DIGITAL BAROMETER	CONTROL COMPANY	35519-055	91119547	3 YEARS	06/20/2017
DIGITAL THRMOMETER	CONTROL COMPANY	36934-164	181230565	2 YEARS	01/10/2019
LINE IMPEDANCE STABILIZATION NETWORK	FCC	FCC-LISN-50-25-2-08	08014	3 YEARS	07/19/2019

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

11 <u>Revision History</u>

Date	Report Name	Changes to report	Report prepared by
2020-08-14	EMC_JUNIP_038_20001_15.247_WLAN_DTS	Initial version	Yuchan Lu

<<The End>>