

Bundesrepublik Deutschland

Federal Republic of Germany

Bundesamt für Seeschifffahrt und Hydrographie Federal Maritime and Hydrographic Agency

UND HYDROGRAPHIE

Conformance test report of a

GPS receiver modul

integrated in an AIS SART

Tron AIS SART

IEC 61108-1:2003

Jotron

Equipment under test:

Type: Applying test standards:

Test Report No.:

BSH/4615/4361595/10

Applicant:

Jotron AS Østbyveien 1, PO Box 54 3280 Tjodalyng Norway

by order

Tosias Ellers

Tobias Ehlers Test engineer

Hamburg, 22nd March 2010 Federal Maritime and Hydrographic Agency

by order

Jochen Ritterbusch Head of Laboratory

nach DIN EN 17025 akkreditiertes Prüflaboratorium

Bernhard-Nocht-Str. 78 D-20359 Hamburg

Federal Maritime and Hydrographic Agency

Germany

Note: Extracts from this test report shall not be copied without permission of the Federal Maritime and Hydrographic Agency Version 2.21 page 1 of 76

SEESCHIFFFAHRT UND HYDROGRAPHIE

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Table of contents

1	GE	ENERAL	6
1 1 1	.2 .3 .4	SUMMERY EQUIPMENT HISTORY TEST ENVIRONMENT LEGEND	8 9 10
-		GENERAL OBSERVATIONS	
2		INCTIONAL TESTS	
-		IEC 61108-1	
ANN	IEX A	A - TEST EQUIPMENT	35
A	A.1	TEST EQUIPMENT SUMMARY	35
A	A.2	DOCUMENTATION OF TEST EQUIPMENT	
	<i>A</i> .2		
	<i>A</i> .2		
	<i>A</i> .2		
	<i>A</i> .2	2.4 GPS Simulation	39
ANN	IEX B	3 - TEST DIAGRAMS	42
F	3.1	§ 5.6.4.1STATIC ACCURACY	42
		1.1 § 5.6.4.1.1 Static accuracy – GPS	
F	3.2	§ 5.6.4.2 ANGULAR MOVEMENT OF THE ANTENNA	
	B .2	•	
F	3.3	§ 5.6.4.3 DYNAMIC ACCURACY.	
	B .3	3.1 § 5.6.4.3.1 GPS part a)	48
	B .3	3.2 § 5.6.4.3.1 GPS part b)	52
F	3.4	§ 5.6.5 AQUISITION	55
	B. 4	4.1 § 5.6.5.1 Condition A - Initialization	55
	B .4	4.2 § 5.6.5.3 Condition C – Interruption of GPS signal	57
F	3.5	§ 5.6.9 EFFECTS OF SPECIFIC INTERFERING SIGNALS	
	B .5	5.1 § 5.6.9.1 L-Band interference	60
	B. 5	5.2 §5.6.9.2 S- Band interference	63
F	3.6	§ 5.6.10 POSITION UPDATE	66
	B. 6	6.1 § 5.6.10.1 Slow speed update rate	66
	B. 6	6.2 § 5.6.10.2 High speed update rate	69
ANN	IEX C	C - PHOTOS OF EQUIPMENT UNDER TEST	73

1 General

SEESCHIFFFAHRT UND HYDROGRAPHIE

1.1 Summery

Test standard: IEC 61108-1 Ed. 2, 2003

Test No.	Reference	Section	Result (passed/ not passed / not applicable / not tested)
1	IEC 61108-1	4.1 Object compliance with IEC 61162-1 compliance with IEC 60945	not tested
2/16	IEC 61108-1	4.2 GPS receiver equipment	not applicable
3/17	IEC 61108-1	4.3.1 General	passed
4/18	IEC 61108-1	4.3.2 Equipment output	not applicable
5/19-23	IEC 61108-1	4.3.3 Accuracy	passed
6/24-27	IEC 61108-1	4.3.4 Acquisition	passed
7/28	IEC 61108-1	4.3.5 Protection	not applicable
8/29	IEC 61108-1	4.3.6 Antenna design	passed
9/30-31	IEC 61108-1	4.3.7 Dynamic range	passed
10/32- 33	IEC 61108-1	4.3.8 Effects of specific interfering signals	passed
11/34- 35	IEC 61108-1	4.3.9 Position update	passed
12/36	IEC 61108-1	4.3.10 Differential GPS input	not applicable
13/37- 40	IEC 61108-1	4.3.11 Failure warnings and status indications	not applicable
14/41- 42	IEC 61108-1	4.3.12 Output of COG, SOG and UTC	not applicable
15/43- 44	IEC 61108-1	4.3.13 Typical interference conditions	not applicable

1.2 Equipment history

Transponder					
Туре	Tron AIS-SART		Part No.:		Tron AIS-SART
Delivery date	2010/02/19		Serial number		970010125
HW Version:	Delivery date	2010/0	2/19	Version	
	Installation date	2010/0	2/19	no	
SW Version:	Delivery date	2010/0	2/19	Version	
	Installation date	2010/0	2/19	no	

1.3 Test environment

Documentation of equipment tests and dates of tests. Test environment is completely equipped as described in Annex A.

Room	BSH room 908			
Test engineer	T. Ehlers (S3310)			
Location	Hamburg			

Equipment	Start of test	End of test	Test engineer
no			
1	2010/03/01	2010/03/12	T. Ehlers (S3310)

Note

All measurements were made using an AIS class A transponder for reception of the AIS SART signals.

1.4 Legend

Result marki Passed Not passed N/T N/A	ing (in the "result" column) ² : Item was OK, test successful No colour marking Test of a required item was not successful, change required Not tested Not applicable
Specific rem REC Note	arks (in the "remark" column, marked "bold italic"): recommendation (in terms of IEC17025 "opinion"); an improvement or change is recommended Note or comment (in terms of IEC17025 "interpretation");rationale for specific results or interpretation of requirements as appropriate

1.5 General observations

General observations unrelated to any paragraphs of applied test standards.

All measurements were made using an AIS class A transponder for reception of the AIS SART signals.

² Test items maybe colour marked in draft versions of the report as follows:
 Passed no colour marking
 Not passed yellow
 N/T blue
 N/A no colour marking
 REC green

2 Functional Tests

2.1 IEC 61108-1

No. of test	IEC 61108-1	Requirement/Condition	Remark	Result
	4	Minimum Performance Standards		Ì
1	4.1	Object compliance with IEC 61162-1 (see §2.3) compliance with IEC 60945		N/T N/T
2	4.2	GPS Receiver equipment		
	4.2.1	 (M.112/A2.1) The words "GPS receiver equipment" as used in this performance standard include all the components and units necessary for the system to properly perform its intended functions. The equipment shall include the following minimum facilities: a) antenna capable of receiving GPS signals; b) GPS receiver and processor; c) means of accessing the computed latitude/longitude position; d) data control and interface; and e) position display and, if required, other form of output. 	NOTE EUT is an AIS-SART with integrated GPS-Receiver. See also test results under test no. 16.	N/A
	4.2.2	The equipment may be supplied in one of the several configurations to provide the necessary position information. Examples are: stand-alone receiver with means of accessing computed position via a keyboard with the position information suitably displayed; GPS black box receiver fed with operational para- meters from external devices/remote locations and feeding an integrated system with means of access to the computed position via an appropriate interface, and the positional information available to at least one remote location. The above examples should not be implied as limiting the scope of future development.	NOTE EUT is an AIS-SART with integrated GPS receiver See also test results under test no. 16	N/A

	4.3	Performance standard for GPS receiver equipment		
3	4.3.1	General(M.112/A3.1) The GPS receiver equipment shall be capable of receiving and processing the Standard Positioning Service (SPS) and provide position information in latitude and longitude World Geodetic System (WGS 84) co-ordinates in degrees, minutes and thousandths of minutes and time of solution referenced to UTC (USNO). Means may be provided to transform the computed position based upon WGS-84 into data compatible with the datum of the navigational chart in use. Where this facility exists, the display shall indicate that co- ordinate conversion is being performed and shall identify the co-ordinate system in which the position is expressed. (M.112/A3.2) The GPS receiver equipment shall operate on the L1 signal and C/A code.	See also test results under test no. 17.	Passed

4	4.3.2	Equipment output		N/A
		(M.112/A3.3) The GPS receiver equipment shall be	NOTE	
		provided with at least one output from which	EUT is an AIS-SART	
		position information can be supplied to other	with integrated GPS	
		equipment. The output of position information	receiver	
		based upon WGS-84 shall be in accordance with		
		International Standards - IEC 61162		
		The position information output shall be in		
		accordiance with IEC 61162 as follows:		
		For positioning reporting purposes the following		
		sentences shall be available in any combination.		
		DMT – Datum reference		
		GBS – GNSS satellite fault detection		
		GGA – GPS fix data		
		GNS – GNSS fix data		
		RMC – Recommended minimum specific GNSS		
		data		
		VTG – Course over ground and ground speed		
		ZDA – Time and date		
		If a sentences uses a datum other than WGS-84		
		then the DTM sentence must be used in compliance		
		with IEC 61162.		
		In addition, for integrating with other navigational		
		aids the following sentences may be available in		
		any combination.		
		GRS – GNSS range residuals		
		GSA – GNSS DOP and active satellites		
		GSA – GNSS DOP and active satemites GST – GNSS pseudorange error statistics		
		GSV – GNSS satellites in view		
		NOTE GRS, GSA, GST, GSV are required to		
		support external integrity checking. They are to be		
		synchronized with corresponding fix data (GGA or		
		GNS).		

5	4.3.3	Accuracy		
	4.3.3.1	Static Accuracy (M.112/A3.4) The GPS receiver equipment shall have static accuracy such that the position of the antenna is determined to 100 m (95 %) with horizontal dilution of position (HDOP)≤4 (or PDOP≤6). Since Selective Availability has been set to zero, the static accuracy has been determined to be within 13 m (95 %) as specified by the GPS SPS Performance Standards of October 2001.	See test results under test no. 19 – 21.	Passed
	4.3.3.2	Dynamic Accuracy (M.112/A3.5) The GPS receiver equipment shall have dynamic accuracy such that the position of the antenna is determined to within an accuracy of 100 m (95 %) with HDOP \leq 4 (or PDOP \leq 6) under the conditions of sea state and ship's motion likely to be experienced in ships (see IMO Resolution A.694, IEC 60721-3-6 and IEC 60945). Since Selective Availability has been set to zero, the dynamic accuracy has been determined to be within 13 m (95 %) as specified by the GPS SPS Performance Standards of October 2001.	See test results under test no. 22 and 23.	Passed
6	4.3.4	Acquisition (M.112/A3.6) The GPS receiver equipment shall be capable of selecting automatically the appropriate satellite transmitted signals for determination of the ship's position with the required accuracy and update rate. (M.112/A3.8) The GPS receiver equipment shall be capable of acquiring position to the required accuracy, within 30 min, when there is no valid almanac data. (M.112/A3.9) The GPS receiver equipment shall be capable of acquiring position to the required accuracy, within 5 min, when there is valid almanac data. (M.112/A3.10) The GPS receiver equipment shall be capable of re-acquiring position to the required accuracy, within 5 min, when the GPS signals are interrupted for a period of at least 24 h, but there is no loss of power. (M.112/A3.11) The GPS receiver equipment shall be capable of re-acquiring position to the required accuracy, within 2 min, when subjected to a power interruption of 60 s. Acquisition is defined as the processing of GPS satellite signals to obtain a position fix within the required accuracies. Four conditions of the GPS receiver equipment are set out under which the minimum performance	See test results under test no. 24 – 27	

		Condition A Initialization - the equipment has been transported over large distances (>1 000 km to <10 000 km) without power or GPS signals or by the deletion of the current almanac; or not been powered for >7 days		Passed
		Condition B Power outag: under normal operation the equipment losses power for at least 24 h.	Note EUT is a battery powered emergency AIS transmitter	N/A
		Condition C Interruption of GPS signal reception - under normal operation the GPS signal reception is interrupted for at least 24 h, but there is no loss of power. Condition D		Passed
		Condition D Brief interruption of power for 60 s. No user action other than applying power and providing a clear view from the antenna for the GPS signals, shall be necessary, from any of the initial conditions above, in order to achieve the required acquisition time limits in Table 1: A: 30 minutes B: 5 minutes C: 5 minutes D: 2 minutes	EUT is a battery powered emergency AIS transmitter	N/A
7	4.3.5	Protection		
	4.3.5.1	Antenna and input/output connections (M.112/A4) Precautions shall be taken to ensure that no permanent damage can result from an accidental short circuit or grounding of the antenna or any of its input or output connections or any of the GPS receiver equipment inputs or outputs for a duration of 5 min.		N/A
8	4.3.6	Antenna design (M.112/A2.2) The antenna design shall be suitable for fitting at a position on the ship which ensures a clear view of the satellite constellation.	See test results under test no. 29.	Passed
9	4.3.7	Dynamic range (M.112/A3.7) The GPS receiver equipment shall be capable of acquiring satellite signals with input signals having carrier levels in the range of – 130 dBm to –120 dBm as measured at the output of a 3 dBi linear polarized receiving antenna. Once the satellite signals have been acquired the equipment shall continue to operate satisfactorily with satellite signals having carrier levels down to – 133 dBm as measured at the output of a 3 dBi linear polarized receiving antenna.	See test results under test no. 30 and 31.	Passed

10	4.3.8	Effects of specific interfering signals The GPS receiver equipment shall meet the following requirements: a) In a normal operating mode, i.e. switched on and with antenna attached, it is subject to radiation of 3 W/m ² at a frequency of 1 636.5 MHz for 10 min. When the unwanted signal is removed and the GPS receiver antenna is exposed to the normal GPS satellite signals, the GPS receiver equipment shall calculate valid position fixes within 5 min without further operator intervention. b) In a normal operating mode, i.e. switched on and with antenna attached, it is subject to radiation consisting of a burst of 10 pulses, each 1.0 μs to 1.5 μs long on a duty cycle of 1600:1 at a frequency lying between 2.9 GHz and 3.1 GHz at power density of about 7.5 kW/m ² . The condition shall be maintained for 10 min with the bursts of pulses repeated every 3 s. When the unwanted signal is removed and the GPS receiver antenna is exposed to the normal GPS satellite signals, the receiver shall calculate valid position fixes within 5 min without further operator intervention. Advice shall be given in the manual for adequate installation of the antenna unit, to minimise interference with other radio equipment such as marine radars, Inmarsat SES's, etc.	NOTE (Condition A) is equivalent to exposing the antenna to radiation from an INMARSAT-A or B transmitter at 10 m distance along the bore sight. See test results under test no. 32. NOTE (Condition B) This condition is approximately equivalent to exposing the antenna to radiation from a 60 kW 'S' band marine radar operating at a nominal 1,2 μs pulse width at 600 pulses/s using a 4 m slot antenna rotating at 20 r/min with the GPS antenna placed in the plane of the bore site of the radar antenna at a distance of 10 m from the centre of rotation.	Passed
11	4.3.9	Position update (M.112/A3.12) The GPS receiver equipment shall generate and output to a display and digital interface a new position solution at least once every 1 s. (M.112/A3.13) The minimum resolution of position i.e. latitude and longitude shall be 0.001 min.	NOTE EUT is an AIS –SART, transmitting the calculated position in a time interval of once per minute See test results under test no. 34 and 35.	Passed

12	4.3.10	Differential GPS input	N/A
14	4.3.10	(M.112/A3.15) The GPS receiver equipment shall	IN/A
		have the facilities to process differential GPS	
		(DGPS) data fed to it in accordance with the	
		standards of Recommendation ITU-R M.823 and	
		an appropriate RTCM standard.	
		When a GPS receiver is equipped with a	
		differential receiver, performance standards for	
		static and dynamic accuracy (M.112/A3.4 and	
		A3.5) shall be 10 m (95 %) together with integrity	
		monitoring.	
		An integrated DGPS receiver shall have an ITU-R	
		M823 compliant data output port for testing or	
		alternatively, a possibility to display Word Error	
		Rate (WER) on the integrated equipment. The	
		WER is the number of incorrect ITU-R M.823	
		words in relation to total number of words	
		received.	
13	4.3.11	Failure warnings and status indications	N/A
		(M.112/A5.1) The equipment shall provide an	
		indication if the position calculated is likely to be	
		outside of the requirements of these performance	
		standards;	
	4.3.11.1	General	N/A
		(M112/A52) The GPS receiver equipment shall provide	
		as a minimum:	
		a) (M.112/A5.2.1) an indication within 5 s if either:	
		1) the specified HDOP has been exceeded; or	
		2) a new position has not been calculated for more than	
		1 s;	
		3) under such conditions the last known position and the	
		time of the last valid fix, with explicit indication of this	
		state, so that no ambiguity can exist, shall be output until	
		normal operation is resumed;	
		b) (M.112/A5.2.2) a warning of loss of position; and	
		c) (M.112/A5.2.3) differential GPS status indication of:	
		1) the receipt of DGPS signals; and 2) whether DGPS connections are being applied to the	
		2) whether DGPS corrections are being applied to the indicated ship's position	
		indicated ship's position. d) (M112/A5.2.5) DGPS text message display. The GPS	
		receiver either shall have as a minimum the capability of	
		displaying appropriate DGPS text messages or	
		forwarding those messages to for display on a	
		remote system.	
		i chiote system.	

4.3.11.2	Integrity using RAIM The GPS receiver equipment shall incorporate integrity monitoring using fault detection, for example receiver autonomous integrity monitoring (RAIM), or similar means to determine if accuracy is within the performance standards and provide an integrity indication. An integrity indication shall be used to present the result of the integrity calculation with respect to the selected accuracy level appropriate for vessels operational mode. According to IMO Resolution A.815 these accuracy levels shall be user selectable for 10 m and 100 m. Additional accuracy levels for user selection may be provided. The integrity indication for different position accuracy levels shall be expressed in three states: "safe'		N/A
	"caution", and "unsafe" for the currently selected accuracy level with a 95 % confidence level. The integrity status shall be continuously displayed along with an indication of the accuracy level selected. The integrity status and the accuracy level selected, shall be provided to other equipment in accordance with the equipment output requirements in 4.3.2.		
	The manufacturer may use colours for integrity indication and if so the following colours shall be used: "safe" shall be green, "caution shall be yellow, and "unsafe" shall be red. The maximum delay for reaction of the integrity calculation by means of RAIM due to negative changes affecting the integrity status is 10 s. The integrity status shall be provided to other equipment in accordance with the equipment output requirements in 4.3.2. For receiver equipment which do not provide information by a		
	dedicated display, the provision of the integrity indication status and the selected accuracy level with the appropriate output interface is mandatory.		
4.3.11.3	GPS integrity status using DGPS (M.112/A5.2) The GPS receiver equipment shall provide as a minimum GPS integrity status using DGPS. If the range-rate correction or the pseudo range correction of a satellite is out of tolerance, the	NOTE	N/A

		binary code in the ITU-R M.823-2 types 1, 9, 31		
		and 34 messages will cause the GPS receiver not to		
		use that satellite.	N7/4	
	4.3.11.4	DGPS integrity status and alarm	N/A	
		(M.112/A5.2.4) The GPS receiver equipment shall		
		provide as a minimum DGPS integrity status and		
		alarm.		
		The following functions shall be performed in		
		either an integrated DGPS receiver or an		
		associated GPS receiver connected to a DGPS		
		radio beacon receiver.		
		When in differential mode, the GPS receiver shall		
		present a DGPS integrity indication on a display,		
		or forward those messages for display on a remote		
		system:		
		if no DGPS message is received within 10 s;		
		while in manual station selection mode and the		
		selected station is unhealthy, unmonitored, or		
		signal quality is below threshold;		
		while in automatic station selection mode and the		
		only available station is unhealthy, unmonitored,		
		or signal quality is below threshold.		
14	4.3.12	Output of COG, SOG and UTC	N/A	
		(M.112/A3.14) The GPS receiver equipment shall		
		generate and output to the digital interface		
		(conforming to the IEC 61162 series) course over		
		ground (COG), speed over ground (SOG) and		
		universal time coordinated (UTC). Such outputs		
		shall have a validity mark aligned with that on the		
		position output. The accuracy requirement for		
		COG and SOG shall no be inferior to the relevant		
		performance standards for heading (Resolution		
		A.424(XI)) and SDME (Resolution A.824/19)),		
		within the limitations of GPS measurements		
		provided by one antenna, compared to the		
		requirements of those standards. Generation and		
		output of COG and SOG are not intended to satisfy		
		the carriage requirements of SOLAS, Chapter V		
		for Heading Devices and SDME by GPS receivers.		
		GPS receivers of this standard have limitations in		
		COG accuracy under high dynamic movement.		
		Such limitations shall be described in the		
		manufacturer's operating manual as shown in		
		Table 2.		
	4.3.12.1	Accuracy of COG information	N/A	
	4.3.12.1	The error in the COG (the path of the antenna	1 1 /A	
		position over ground) due to the actual ship's speed		
		over ground shall not exceed the following values:		
		Table 2:		
		Speed range (knots) Accuracy of COG output to		
	1	user		

		0 to ≤1 knot Unreliable or not available		
		>1 to \leq 17 knots $\pm 3^{\circ}$		
		>17 knots $\pm 1^{\circ}$		
		Due to the limitations of GPS receivers of this		
		standard, it is not appropriate to include		
		requirements for COG errors attributed to high		
		dynamic movement. Such limitations shall be in the		
		manufacturer's operation manual.		
	4.3.12.2	Accuracy of SOG information		N/A
		Errors in the SOG (velocity of the antenna position		
		over ground) shall not exceed 2 % of the actual		
		speed or 0.2 knots, whichever is greater.		
	4.3.12.3	Availability and validity of time information		N/A
	-1.0.12.0	The GPS receiver equipment shall provide UTC		11/11
		with resolution of 0.01 s on the digital interface.		
		The validity mark of the digital interface for		
		position contained in GGA message of IEC 61162		
		shall be used for interpretation of validity of digital		
		interface for UTC contained in ZDA message of		
	4.2.12	IEC 61162.		
15	4.3.13	Typical interference conditions	See test results under Test no. 43 and 44.	Passed
		(M.112/A3.16) The GPS receiver equipment shall	1 est no. 45 and 44.	
		be capable of operating satisfactorily in typical		
		interference conditions.		
		For clarification of this requirement see 5.7.1 and		
		for the associated tests see 5.7.2.		
	5.6	Methods of test and required test results	NOTE	
			The number in brackets	
			is the sub-clause of the	
			relevant performance	
16	5.6.1	GPS receiver equipment	standard.	N/A
10				11/A
	(4.2.1)	The equipment under test (EUT) shall be checked		
		for composition by inspection of the equipment and		
1.7	5.60	the manufacturer's documentation.	NOTE	N T/A
17	5.6.2	Position output	NOTE AIS msg. 1 format was	N/A
	(4.3.1)	The EUT shall be checked for the form of the	used for evaluation of	
		position output by inspection of the manufacturer's	system data.	
		documentation.	system data.	
18	5.6.3	Equipment output		N/A
	(4.3.2)	The EUT shall be checked for conformity to IEC		
		61162-1 by inspection of the manufacturer's		
		documentation and protocol tests.		

	5.6.4 (4.3.3)	Accuracy		
	5.6.4.1 (4.3.3.1)	Static accuracy		
19	5.6.4.1.1	GPS Position fix measurements shall be taken over a period of not <24 h. The absolute horizontal accuracy shall be within 13 m (95 %), having discarded measurements taken in conditions of HDOP \ge 4 and PDOP \ge 6.	NOTE Accuracy requirements are met - see Annex B for printouts of the measurements for static accuracy in GPS mode.	Passed
20	5.6.4.1.2	Differential GPS Position fix measurements shall be taken once per second over a period of not <24 h. The distribution of the horizontal error shall be within 10 m (95 %). The horizontal position of the antenna shall be known to within 0.1 m in the datum used for the generation of the corrections. The corrections shall be provided by an actual DGPS broadcast in accordance with ITU-R M.823.		N/A
21	5.6.4.2	Angular movement of the antenna The static tests specified in 5.6.4.1.1 and 5.6.4.1.2 shall be repeated with the antenna performing an angular displacement of $\pm 22.5^{\circ}$ (simulating roll) in a period of about 8 s (see IEC 60721-3-6) during the duration of the tests.	Accuracy requirements are met - see Annex B for printouts of the measurements for static accuracy in GPS mode	Passed

	5.6.4.3	Dynamic accuracy	
	(4.3.3.2)		
22	5.6.4.3.1	GPS The tests for dynamic accuracy are a practical interpretation of the conditions set out in IEC 60721-3-6, Table V, item e), X-direction (surge) and Y-direction (sway). These are stated as surge 5 m/s ² and sway 6 m/s ² for all classes of environment. When using a simulator, the simulator characteristics shall accurately represent the signals required. The results of the test performed by simulation facilities shall be identical with those in a) and b) below.	Passed
		Alternatively to the use of a simulator, an example of applying these accelerations is given below: a) a fully locked and settled EUT travelling in a straight line at 48 knots \pm 2 knots for a minimum of 1.2 min which is reduced to 0 knots in the same straight line in 5 s, shall not indicate a positional offset > \pm 13 m from the final position 10 s after coming to rest; a fully locked and settled EUT travelling at least 100 m at 24 knots \pm 1 knot in a straight line then subjected, for at least 2 min, to smooth deviations either side of the straight line of approximately 2 m at a period of 11 s to 12 s shall remain in lock and follow the actual position to within an lane of 30 m wide centred on the mean direction of motion. For all methods above, the rest position shall be established by one of the following methods: providing a stationary receiver identical to the EUT alongside the rest point and comparing indicated output positions; or providing the reference inputs from the simulator.	

00				N T/A
23	5.6.4.3.2	Differential GPS		N/A
		The tests for dynamic accuracy are a practical		
		interpretation of the conditions set out in IEC		
		60721-3-6, Table V, item e), X-direction (surge)		
		and Y-direction (sway). These are stated as surge 5		
		m/s ² and sway 6 m/s ² for all classes of environment.		
		When using a simulator, the simulator		
		characteristics shall accurately represent the		
		signals required.		
		The results of the test performed by simulation		
		facilities shall be identical with those in a) and b)		
		below.		
		Alternatively to the use of a simulator, an example		
		of applying these accelerations is given below:		
		a fully locked and settled EUT travelling in a		
		straight line at 48 knots ± 2 knots for a minimum of		
		1.2 min which is reduced to 0 knots in the same		
		straight line in 5 s, shall not indicate a positional		
		offset $>\pm 10$ m from the true position at rest and the		
		indicated position shall settle to within ± 2 m of the		
		rest position indication within 10 s of coming to		
		rest;		
		a fully locked and settled EUT travelling at least		
		100 m at 24 knots \pm 1 knot in a straight line then while the for at least 2 min to smooth deviations		
		subjected, for at least 2 min, to smooth deviations		
		either side of the straight line of approximately 2 m		
		at a period of 11 s to 12 s shall remain in lock and		
		follow the actual position to within an lane of 30 m		
		wide centred on the mean direction of motion.		
		For the methods above, the true and rest positions		
		shall be established by one of the following		
		methods:		
		a) for method a) above, the rest position		
		indication shall be determined by averaging the 15		
		consecutive position indications recorded following		
		the 10 s settling period and the true position at rest		
		shall be measured to an accuracy of 1 m;		
		b) providing the reference inputs from a		
		simulator within 1 m.		
	5.6.5	Acquisition		
	(4.3.4)			
24	5.6.5.1	Condition A - Initialisation		Passed
		The EUT shall be either:	NOTE: All Simulator	
		a) initialised to a false position at least	tests force almanach	
		1 000 km and not greater than 10 000 km from the	reset	
		test position, or alternatively, by deletion of the		
		current almanac; or		
		b) isolated from a power source and GPS		
		signals for >7 days.		
		A performance check shall be carried out after the		
		time limit contained in Table 1.		
L	1			1

25 5.6.5.2 **Condition B - Power outage** NOTE N/A EUT is a battery The EUT shall be isolated from the power source powered emergency for a period within 24 h to 25 h. transmitter with at least At the end of the period, a performance check shall 96hours of battery be carried out after the time limit contained in power Table 1. 5.6.5.3 26 **Condition C - Interruption of GPS signals** Passed During normal operation of the EUT, the antenna shall be completely masked for a period within 24 h to 25 h. At the end of the period, a performance check shall be carried out after the time limit contained in Table 1. 27 **Condition D – Brief interruption of power** NOTE N/A 5.6.5.4 EUT is a battery During normal operation of the EUT, the power powered emergency shall be removed for a period of 60 s. At the end of transmitter with at least this period, the power shall be restored. 96hours of battery A performance check shall be carried out after the power time limit contained in Table 1. 5.6.6 Protection (4.3.5)28 5.6.6.1 Antenna and input/output connections N/A (4.3.5.1)The antenna input of the receiver, if provided, shall be connected to ground for 5 min. After completion of the test and reset of the EUT, if required, the antenna or input/output connections shall be connected normally, and a performance check shall be carried out to ensure that no permanent damage has resulted. 5.6.7 N/A 29 Antenna design (4.3.6)The antenna of the EUT shall be checked by inspection of the documentation provided by the manufacturer, to confirm that it is suitable for shipborne installation to ensure a clear view of the satellite constellation. 5.6.8 Sensitivity and dynamic range (4.3.7)30 5.6.8.1 Acquisition Passed This is tested by using a simulator. Method: Transmit the simulator signal over a suitable antenna. Adjust the signal power by use of a calibrated test receiver to $-125 \text{ dBm} \pm 5 \text{ dBm}$. Replace the antenna of the calibrated test receiver by the receiving unit of the EUT. A performance check shall be carried out. **Required result:** The EUT shall meet the requirements of this check,

with this signal range.

5.6.8.2 31 Tracking Passed The received satellite signals shall be monitored by a suitable test receiver. These signals shall be attenuated down to -133 dBm. Under these conditions the performance requirements of a performance check shall be met. This is tested by using a simulator. Method: Transmit the simulator signal over a suitable antenna. Adjust the signal power by use of a calibrated test receiver to $-125 \text{ dBm} \pm 5 \text{ dBm}$. Replace the antenna of the calibrated test receiver by the receiving unit of the EUT. After the start of transmission and tracking with the nominal transmission level condition, gradually reduce transmission level down to -133 dBm. **Required result:** The EUT shall continue tracking at least one satellite. 5.6.9 Effects of specific interfering signals (4.3.8) 32 5.6.9.1 **L Band Interference** Passed For test results see (4.3.8 a) In a normal operating mode, using an appropriate Annex B of this report signal source, the EUT shall be subjected to radiation of 3 W/m² at a frequency of 1 636.5 MHz Test was carried out for 10 min. using real satellite The signal shall be removed and a successful signals performance check shall be carried out within 5 min. 5.6.9.2 33 **S Band Interference** Passed Test was carried out (4.3.8 b) In a normal operating mode, using an appropriate using real satellite signal source, the EUT shall be subjected to signals radiation consisting of a burst of 10 pulses, each 1.0 µs to 1.5 µs long on a duty cycle of 1600:1 at a frequency in the range of 2.9 GHz to 3.1 GHz at power density of approximately 7.5 kW/m². This condition shall be maintained for 10 min with the bursts of pulses repeated every 3 s. NOTE The peak power density is 7.5 kW/m² to be measured at the EUT, this is approximately 4.7 W/m² average power at a fixed transmitting antenna. The signal shall be removed and a successful performance check shall be carried out within 5 min.

	5.6.10 (4.3.9)	Position update		
34	5.6.10.1	Slow speed update rate The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 5 knots \pm 1 knot. The position output of the EUT shall be checked at intervals of 10 s, over a period of 10 min. The output position shall be observed to be updated on each occasion. This test may be carried out by using a simulator.	NOTE EUT is a emergency transmitter with a transmitting interval of once per second. The EUT was tested in a simulator (see Annex B)	Passed
35	5.6.10.2	 High speed update rate The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 50 knots ± 5 knots. The position output of the EUT shall be checked at intervals of 1 s, over a period of 10 min. The output position shall be observed to be updated on each occasion. This test may be carried out by using a simulator with a speed of 70 knots at intervals of 0.5 s. The minimum resolution of position, i.e. latitude and longitude shall be checked by observation during 5.6.10.1 and 5.6.10.2 above. Record the IEC 61162 output of the EUT during this test and confirm that received positions at the end of each interval are in compliance with the real or simulated reference position. 	NOTE EUT is a emergency transmitter with a transmitting interval of once per second. The EUT was tested in a simulator (see Annex B).	Passed
36	5.6.11 (4.3.10)	 Differential GPS input The manufacturer's documentation shall be inspected to: a) verify that the EUT will correctly process the message protocol of 1) the RTCM recommended standards for differential NAVSTAR GPS service; or 2) in the case where maritime radio beacons are used as the means of communication of the differential corrections, the standard contained in ITU-R M.823, and b) confirm that 1) receipt of DGPS signals will be indicated; 2) that the application of DGPS signals to the output ship's position is indicated; and 3) the WER information is provided on an output port or at the display. 		N/A

	5.6.12 (4.3.11)	Failure warnings and status indications	
	5.6.12.1	General alarm tests	
87	5.6.12.1.1	Position/HDOP alarm test	N/A
	(4.3.11.1a	Set up the EUT in a simulation environment with	
	4.3.11.1b)	an HDOP <4. Select a specific EUT HDOP value as	
		an indication threshold >4. Modify the simulator	
		output until its HDOP is greater than the EUT	
		specified HDOP threshold. Observe that an	
		indication is given at the EUT within 5 s.	
		Modify the simulator output until HDOP <4 and	
		observe that the indication is removed.	
		Switch off transmission of simulated signals and	
		observe that the EUT releases an appropriate	
		indication within 5 s.	
		Verify that the last known position and ist time	
		stamp are being displayed indicating the "loss of	
		position" condition. Verify that this mode is	
		provided constantly on display and output	
		interface until removal of the error condition at the	
		simulation environment.	
		Switch on transmission of simulated signals and	
		observe that the EUT resumes normal operation.	
38	5.6.12.1.2	Differential GPS status indication test	N/A
	(4.3.11.1c)	Set up the EUT in a simulation environment	
	(1011110)	providing with an HDOP <4. Observe that the	
		status of the EUT operation is GPD without using	
		DGPS corrections.	
		Set the EUT differential correction age mask to	
		30 s (if available).	
		Start transmission of ITU-R M.823 differential	
		corrections. Observe that the indication for DGPS	
		status of EUT operation is given within 40 s.	
		Stop transmission of ITU-R M.823 differential	
		corrections. Observe that the status of EUT	
		operation resumes to GPS without using DGPS	
		corrections within 40 s	
	5.6.12.2	Test of integrity monitoring using RAIM	N/A
	(4.3.11.2)	For the purpose of testing the RAIM functionality,	
	()	it is recommended that means are provided for	
		real-time display of the actual position error with	
		reference to the simulated position.	
<u>89</u>	5.6.12.2.1	Testing of "safe" and "caution" status	N/A
-		The EUT shall be set up under simulated	11/12
		conditions, providing 8 "healthy" satellites	
		available, acquired and tracked.	
		a) Select an accuracy level of 100 m.	
		b) Observe that	
		1) RAIM is indicated as "in operation", and	
		2) the "safe" status is indicated.	
		artine sale status is multated.	

			•
		c) Consecutively reduce the number of "healthy"	
		satellites until the "caution" state is raised.	
		Observe that	
		1) RAIM is still indicated as "in operation", and	
		2) the status indication switched to "caution"	
		within 10 s of the satellite change that caused it.	
		d) Increase the number of "healthy" satellites	
		until	
		the RAIM state returns to "safe" state.	
		Observe that	
		1) RAIM is still indicated as "in operation",	
		and	
		2) the status indication switches to "safe"	
		within	
		2 min of the satellite change that prompted	
		it.	
		For each step of the above test sequence observe if	
		the appropriate interface output is provided.	
		Repeat the above test sequence for a selected	
		accuracy level of 10 m and, if provided, for another	
40	5.6.12.2.2	accuracy level.	NT/A
40	5.0.12.2.2	Testing of "unsafe" status	N/A
		The EUT shall be set up under simulated	
		conditions, providing 8 "healthy" satellites	
		available, acquired and tracked.	
		Select an accuracy level of 100 m. Observe that	
		RAIM is indicated as "in operation", and	
		The "safe" status is indicated.	
		Change the behaviour of at least 1 satellite by	
		varying the satellite clocks with the result that the	
		position accuracy gradually degrades until it will	
		no longer be inside the selected accuracy level with	
		95 % confidence level.	
		Observe that RAIM is still indicated as "in	
		operation", and the status indication switches to	
		"unsafe" within 10 s if the actual position error	
		exceeding the selected accuracy level.	
		Change the behaviour of the satellites back to	
		regular behaviour with the result that the position	
		accuracy will be again inside of the selected	
		accuracy level within 95 % confidence level.	
		Observe that	
		RAIM is still indicates as "in operation", and	
		The status indication switches to "safe" within	
		2 min.	
		For each step of the above test sequence observe if	
		the appropriate interface output is provided.	
		Repeat the above test sequence for a selected	
		accuracy level of 10 m and, if provided, for another accuracy level.	

41	5.6.13	Accuracy of COG and SOG	N/A
-1	(4.3.12)	Methods of test	1 \ / <i>E</i>
	(4.3.12)		
		The EUT shall be set up on an appropriate mobile	
		unit or simulator and all outputs indicating course	
		over ground shall be monitored.	
		At a constant forward direction, the forward speed	
		shall be within 0 knots to 1 knot. Ten seconds after	
		being in the range, measurements shall be made for	
		a duration of 2 min. This cycle shall be repeated for	
		all speed ranges of the Table 2 above.	
		Required results	
		The test results shall be observed on the display	
		and the approved interface.	
		For SOG tests, no reading of the speed indicator	
		shall differ from the constant speed being applied	
		at the time by more than 2 % of that speed or	
		0.2 knots, whichever is the greater.	
		For COG tests, the differences between the	
		reference direction and the measured course over	
		ground in each test cycle shall not exceed the limits	
		of Table 2.	
		Validity of COG and SOG information	
		The quality indicator of the GGA and VTG	
		message of IEC 61162 shall be used for	
		interpretation of validity of COG and SOG.	
		Methods of testing	
		Check of digital interface with IEC 61162. With the	
		EUT normally operating, preclude invalid position	
		data by reducing the number of received satellites.	
		Investigate the content of the resultant GGA and	
		VTG.	
		Required result	
		Observe that the quality indicator of GGA and	
		VTG messages of IEC 61162 turn to invalid.	
		Observe that the COG and SOG information	
		contained in VTG message of IEC 61162 is	
		replaced by null fields.	
42	5.6.14	Output of UTC - Method of testing	N/A
	(4.3.12)	Check of digital interface with IEC 61162. While	
		the EUT is navigating, provoke an invalid position	
		by reducing the number of received satellites to	
		two. Investigate the content of the GGA and ZDA	
		messages provided.	
		Required results	
		Observe that the resolution of UTC information	
		contained in the ZDA message is according to IEC	
		61162 requirements. Observe that the validity flag	
		of GGA message of IEC 61162 turns to invalid.	
		Observe that the ZDA message remains	
		transmitted carrying complete UTC information.	

5.7	Typical interference conditions	
5.7.1	Requirements	
5.7.1	Typical interference conditionsThe GPS receiver equipment shall be capable of operating in typical interference condition.Operational situations include static accuracy and reacquisition within 30 s after satellite signals have been masked for 60 s or less by an obstruction, for example a bridge.Typical GPS interference effects can be characterised as being broadband noise-like interference, Continuous Wave Interference (CWI), or pulsed interference. Much work has been done in the aviation community to define interference levels in these three categories as reported in the Minimum Operational Performance Standards(MOPS) for Global Positioning System/Wide Area Augmentation System (GPS/WAAS) Airborne	N/A
6710	Equipment (RTCA/DO-229B October 6, 1999). The levels defined in this subclause are based upon the interference masks developed within RTCA. These masks are also described in ITU-R Recommendation M.1477.	
5.7.1.2	Broadband interference levels The interference mask for broadband noise-like interference varies as a function of the bandwidth of the interfering signal. This interference effect can be represented by broadband noise centred at 1575.42 MHz. The bandwidth dependent interference mask can be seen in Figure 1.	N/A
5.7.1.3	Continuous wave interference (CWI) Continuous wave interference interacts with the individual C/A code spectral lines found in the GPS signal structure. GPS receivers are typically more susceptible to CWI than to any other type of interference. The CWI mask can be seen in Figure 2.	N/A

5.7.1.4	Pulsed interference Pulsed interference can occur due to proximity to radars or other RF devices using pulsed waveforms. GPS receivers typically are fairly robust when exposed to low duty cycle pulsed interference. The interference mask for pulsed interference will consist of a pulse modulated carrier (CW) at 1575.42 MHz, with peak carrier level of –20 dBm and duty factor of 10 % while using a 1 ms pulse width.	N/A
5.7.2 5.7.2.1	TestingThe interference test procedures presented in this sub-clause follow closely the procedures used by aviation receiver manufacturers in the self- certification process used to show compliance with RTCA/DO-229B. The procedures have been adapted as necessary to meet the requirements of the IMO GPS requirements.	N/A
5.7.2.2	Simulator conditions The simulator conditions are as follows: five GPS satellites; one satellite at a maximum level of –120 dBm plus antenna gain at 90° elevation; one satellite at a minimum level of –130 dBm plus antenna gain at 5° elevation; three satellites at a level of –127 dBm plus antenna gain at 45° elevation.	N/A

5.7.2.3	Navigation solution accu		N/A
5.7.2.5	8		IN/A
	The normalised error as		
		ch will be compared with	
	·	tal accuracy requirement	
		the formula shown below:	
	$NE = [4(d_i)]/[HDOP_i]$		
	where NE is the normali	ised error;	
	d _i is the instantaneous 2	-D horizontal position	
	error (meters);	-	
	HDOP _i is the instantant	eous horizontal dilution of	
	precision.		
	Scaling the instantaneou	is 2-dimensional position	
	error (d_i) by 4/HDOP _i p		
		a constant HDOP = 4 and	
	accounts for fluctuation	in the satellite coverage	
	due to changing geometr	ry. HDOP _i may be obtained	
	from the receiver under	test or calculated. Only	
	those satellites used in the	he position solution shall be	
	included in the HDOP _i c	calculation.	
 5.7.2.4	Navigation solution accu	uracy test procedures	
5.7.2.4.1	Interference conditions		N/A
	Interference conditions,	including broadband noise	
	centred at 1575.42 MHz	z, continuous wave	
		l pulsed interference shall	
	be simulated. For the pu	ilsed interference tests, a	
	pulse-modulated carrier	r (CW)with peak carrier	
		ity factor of 10 % shall be	
	used. The interference v	alues are shown in the	
	Three tables below.		
	Broadband interference	e values	
	Noise bandwidth:	1 MHz	
	Total RMS power:	-110.5 dBm	
	Pulsed interference valu	ies	
	Frequency:	1575.42 MHz	
	Pulse width:	1 ms	
	Continuous wave interfe		
	Frequency:	1575.42 MHz	
	Power:	-120.5 dBm	
	Frequency:	1626.0 MHz	
	Power:	+8.0 dBm	

	5.7.2.4.2	Test procedures		N/A
		The EUT is subjected to one of the interference		
		sources.		
		The simulator scenario shall be engaged and the		
		satellite signals turned on.		
		The EUT shall be powered and initialised.		
		While the EUT is providing position solutions, the		
		interference shall be applied to the EUT, and the		
		level of the interference shall be adjusted to the		
		required value.		
		When steady-state accuracy is reached, record a		
		minimum of 100 position and HDOP values as		
		reported by the EUT at a rate of one sample every		
		2 min.		
		Repeat this cycle for any remaining interference		
		source.		
43	5.7.2.4.3	Required results	NOTE	N/A
		Pass/fail determination	Test not mandatory for	
		If the EUT reports a position with a normalised	AIS-SART equipment	
		error greater than 10 m or fails to report a position		
		in more than 5 % of the samples, a test failure is		
		declared.		
	5.7.2.5	Reacquisition test		N/A
		Method of test		
		The reacquisition test is designed to simulate a		
		temporary loss of signal, such as passing under a		
		bridge. To determine the re-acquisition pass/fail		
		criteria, consider a single trial where the EUT		
		provides a valid position fix that is within required		
		accuracy at 30 s from restoration of the satellite		
		signals, and maintains a tracking status for at least		
		the next 60 s. This unit is considered to have Passed		
	5 7 3 5 1	one trial.		
	5.7.2.5.1	Re-acquisition test procedures Interference conditions		
	5.7.2.5.2	The interference conditions to be tested is shown		N/A
		below. This is a broadband noise value centred at 1575.42 MHz.		
		Noise bandwidth: 1 MHz		
		Total RMS power: -110.5 dBm	1	I

	5.7.2.6	Re-acquisition scenarios		
	5.7.2.6	Re-acquisition scenariosTest proceduresThe EUT is subjected to the broadbandinterference source.The simulator scenario shall be engaged and thesatellite signals turned on.The EUT shall be powered and initialised.The EUT shall be allowed to reach steady-stateaccuracy before the satellites are to be switched off.The simulator RF output shall be removed for30 S.The simulator RF output shall be restored to theEUT.After 30 s record a position and HDOP value asreported by the EUT. If after 30 s, no positionreport has been sent from the receiver, record atrial failure and go to step i).		N/A
		Ensure that the receiver continues position reporting for the next 60 s. Go to step d) and repeat as required (note that if the simulator scenario is reset, some receiver may require purging of all previous data to enable proper operation. This is due to the persistence of time data in the receiver and the inability of the receiver's software to deal with a backward transition in time).		
44	5.7.2.6.2	Required results Pass/fail criteria A failure by the EUT to provide a position output after 30 s, reporting a position with normalised error greater than 10 m, or failing to continue position reporting for 60 s after sampling indicated a failure mode, and results in declaring a trial failure. To determine the reacquisition time pass/fail criteria, the test disposition table shall be used.	NOTE Test not mandatory for AIS-SART equipment	N/A
45	5.8	Used. Performance checks under IEC 60945 conditions Environmental requirements of IEC 60945 appropriate to its category, i.e. "protected" and "exposed", shall be carried out. The manufacturer shall declare any pre-conditioning required before environmental checks. Performance checks shall be performed for initial (cold) start; acquisition; tracking (navigation)	NOTE For marine equipment environmental testing has to be carried out for granted type approval. 60945 testing is not part of this testreport. See 60945 test for EUT.	N/T

UND HYDROGRAPHIE

Annex A - Test equipment

A.1 Test equipment summary

Model / Program	Serial No. / Version No.	Calibrated / Function test	Used for
Reference position roof of BSH building		Lat: 53° 32.8136481666' Lon:9° 58. 1016981666'	Static accuracy testing
GPS Simulation Unit	SPIRENT Communications Hardware:Typ: GSS8000, S/N: 8629 Software: SimGEN Ver, 2.7	Under constant calibration control. Calibration date 2009/12/14 Function tests performed successfully according documented test procedures before performance of tests	All GPS testing, unless stated otherwise
INMARSAT- M communication device	QUFC 911 901/1 SN 00354	N/A	L-Band interference
Radar-Device Furuno FR 2135S	FR-2105 Series	N/A	S-Band interference
Signal Generator R&S SMJ100	S/N: 100858	2007/10/15	Interference tests IEC 61108- 1 Ed.2, §5.7
Power sensor R&S Smart Sensor NRP-Z81	S/N: 100140	2007/08/27	Calibration of GPS measurement and RF- chamber
Narda Electromagnetic Radiation Monitor	Model 8616	Calibration Certificate E-38743-02-10	Induced Power of L-Band
Horn Antenna Schwarzbeck BBHA 9120A	BBHA 9120A 535	2009/11/26	Calibration of GPS measurement and RF- chamber

Reference position

Made by FREIE UND HANSESTADT HAMBURG Vermessungsamt –VA311-

Description of point	geocentrically co-ordinates (WGS84)		geodetical geographical co-ordinates (WGS84)		Gauß-Krüger (Bessel)	
	x(m)	3740601.680	Ν	53° 32' 49".49049	x(m)	5935502.790
North	y(m)	657439.492	E	9° 58' 6".10408	y(m)	3 564257.804
	z(m)	5107029.673	Height over Ellipsoid	95.900 m	Altitude above sea level	55.969 m
	x(m)	3740618.106	Ν	53° 32' 48".81889	x(m)	5935482.027
South	y(m)	657442.338	E	9° 58' 6".10189	y(m)	3 564258.046
	z(m)	5107017.296	Height over Ellipsoid	95.849 m	Altitude above sea level	55.917

Accuracy of survey = 0.02 m - last survey dated 2009-05-04

A.2 Documentation of test equipment

A.2.1 Inmarsat communication device

Specification of Inmarsat-M used for L-Band Test

Manufacturer: Model: NERA Saturn Mm Marine

Specifications:

System : Tx Freq. EIRP Rx Freq. Channel spacing G/T Antenna

1626.5 – 1646.5 MHz 27/21 dBW 1525.0 – 1545.0 MHz 10 kHz -10 dB/K Stabilized flat plane array

Electromagnetic compatibility:

Radiated Conducted	EN 55022 class B EC 801
Interfaces:	
Ext. tel/fax outlets	5 x RJ11, 2-wire with echo cancelling and touch-tone dialling
Fax	CCITT G3 at 2400 bps
Data	D-sub, 25-pin fem., 2400 bps, RS-232
Hayes AT compatible	
PC	D-sub, 9-pin fem., RS-232
Printer	D-sub, 9-pin male, RS-232
Gyro	Synchro, step-by-step
(Basic system incorporates buil	t-in fluxgate compass)

Navigator	NMEA 0183
Power Supply	10 - 34 VDC
Power Consumption	75 W

(90-276 VAC optional)

A.2.2 Radar device

Specification of RADAR used for S-Band Test

Manufacturer: Model: Specifications: Furuno Electric Co., LTD. FR-2105 Series

Antenna radiator:	
Туре:	Slotted waveguide array
Bandwidth:	S-Band
Radiator Type:	SN7AF
Length:	12 ft
Beamwidth (H):	1.9°
Beamwidth (V)	20°
Sidelobes ±10°:	-28 dB
Polarization:	Horizontal
RF Transceiver:	
Frequency:	X-Band, 3050 MHz ± 30 MHz
Output power:	FR-2135S/SW: 35 KW

Pulse lengths and PRR (<RF aloft>)

Range scales	P/L (µs)	PRR (Hz)
0.125 / 0.25	0.07	3000
0.5	0.07 / 0.15	3000
0.75 / 1.5	2 from 0.07 / 0.15 / 0.3	3000 / 1500
3	2 from 0.15 / 0.3 / 0.5 / 0.7	3000 / 1500
6	2 from 0.3 / 0.5 / 0.7 / 1.2	1500 / 1500
12 / 24	2 from 0.5 / 0.7 / 1.2	1000 / 600
48 / 96	1.2	600

A.2.3 Narda electromagnetic radiation monitor

Specification of Radiation Monitor

Manufacturer: Model: Specifications: Dynamic range Full scale ranges (mW/cm²)

Accuracy: Response Time (approx.)

Model:

Specifications:

Frequency sensitivity

narda Electromagnetic Radiation Monitor Model 8616

30 dB 0-0.2; 0-2; 0-20, and 0-1; 0-10; 0-100

6 3 % 1 sec in fast position, 3 sec in slow position

Probe 8621B

13 to 200 MHz 10 to 300 MHz 1 to 12 GHz 0.85 to 16 GHz 0.3 to 18 GHz 0.3 to 2 GHz

CW overload rating Peak Power 300 mW/cm² 60 W/cm² 0.5 dB 2 dB maximum total deviation 6 0.75 dB + 0.75 dB - 1 dB + 0.75 dB - 3 dB + 0.75 dB - 4.5 dB

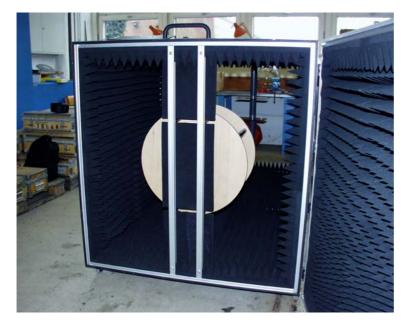
HYDROGRAPHIE

A.2.4 GPS Simulation

GPS/ Galileo Simulation at BSH

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

Arrangement of GPS- and noise/ interference transmitting antennas


GPS test box, exterior view

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

GPS test box, interior view

Annex B - Test diagrams

B.1 § 5.6.4.1 Static accuracy

B.1.1 § 5.6.4.1.1 Static accuracy – GPS

Position fix measurements shall be taken over a period of not <24 h. The absolute horizontal position accuracy shall be within 13m (95 %), having discarded measurements taken in conditions of HDOP \ge 4 and PDOP \ge 6.

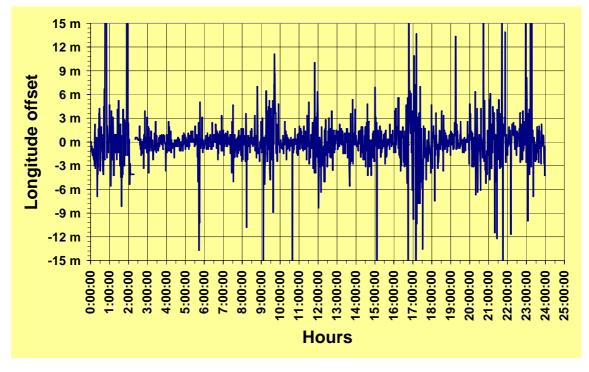
Conditions of tests performed: Simulated signals

Period of position fix measurements:	~24 h
Position fix measurements :	>11000
Accuracy:	HDOP \leq 4 (or PDOP \leq 6)

Test results

All deviations of measured positions from reference position are $<\pm$ 13 m (95 %). 2 sigma value of position data: 10.31m.

Test result: Passed



HYDROGRAPHIE

15 m 12 m 9 m Latitude offset 6 m 3 m 0 m -3 m -6 m -9 m -12 m -15 m 6:00:00 3:00:00 4:00:00 5:00:00 7:00:00 8:00:00 10:00:00 14:00:00 15:00:00 16:00:00 17:00:00 24:00:00 00:00:00 1:00:00 2:00:00 9:00:00 1:00:00 12:00:00 13:00:00 8:00:00 25:00:00 00:00:6 20:00:00 21:00:00 22:00:00 23:00:00 Hours

Latitude offset – GPS static accuracy

Longitude offset - GPS static accuracy

15 m 2 Sigma ♦ EUT ٠ 12 m ٠ 9 m •• Latitude offset 6 m 3 m 4 0 m -3 m -6 m -9 m -12 m ¢ ٠ -15 m 7 -15 m -12 m -3 m ш 0 3 m 12 m ε ε Ε ε ε ၐ ဖု 9 6 15 Longitude offset

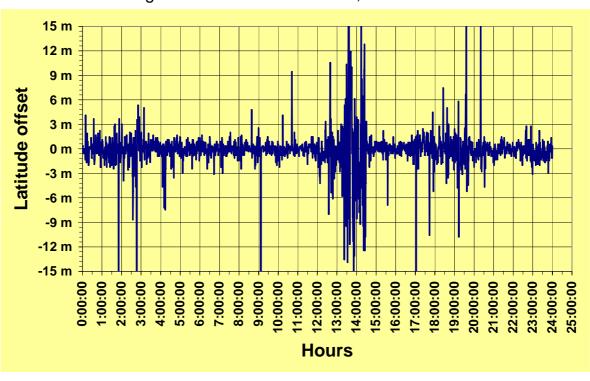
Position offset - GPS static accuracy

B.2 § 5.6.4.2 Angular movement of the antenna

B.2.1 § 5.6.4.2 Angular movement of the antenna – GPS

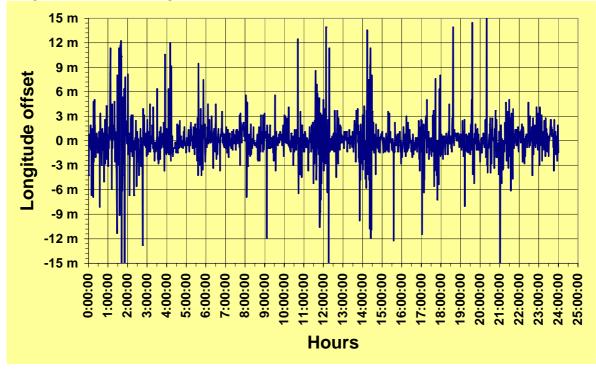
The static test(s) specified in 5.6.4.1.1 (and 5.6.4.1.2) shall be repeated with the antenna performing an angular displacement of \pm 22.5 ° (simulating roll) in a period of about 8 s during the duration of the test.

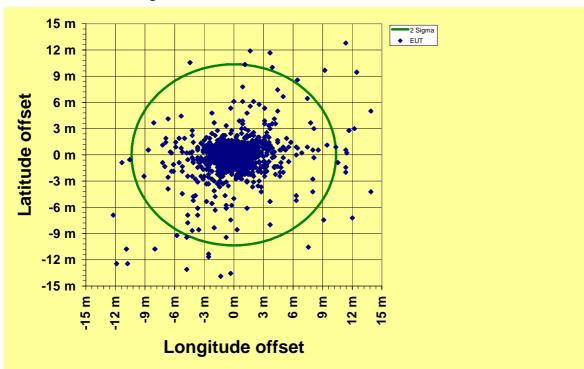
Conditions of tests performed: Simulated signals


Period of position fix measurements:	~ 24 h
Position fix measurements :	~11000
Accuracy:	HDOP \leq 4 (or PDOP \leq 6)

Test results for § 5.6.4.2.1

All deviations of measured positions from reference position are $<\pm 13$ m (95 %). 2 sigma value of position data: 10.36m.


Test result: Passed



Latitude offset - Angular movement of antenna, GPS

Longitude offset - Angular movement of antenna, GPS

Position offset - Angular movement of antenna, GPS

B.3 § 5.6.4.3 Dynamic accuracy

Reference position generated by GPS-Simulator

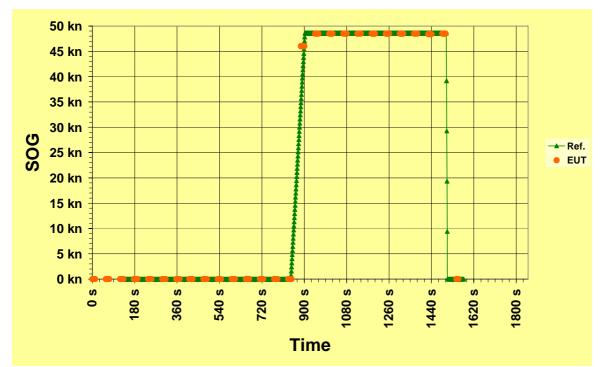
	geocentrically co-ordinates (WGS84)
Latitude	0.0000000000 ° N
Longitude	0.000000000 ° E

Accuracy = \pm 5cm

B.3.1 § 5.6.4.3.1 GPS part a)

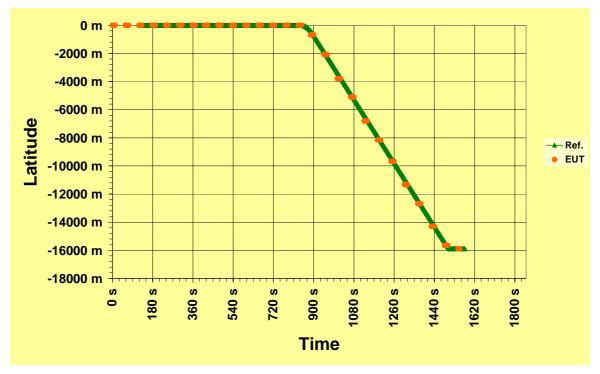
A fully locked and settled EUT travelling in a straight line at 48 kn \pm 2 kn for a minimum of 1.2 min which is reduced to 0 kn in the same straight line in 5 s, shall not indicate a position offset \pm 13 m from the final position 10 s after coming to rest.

Conditions of tests performed: Simulated signals


Test results

All positions offsets are $<\pm$ 13 m.

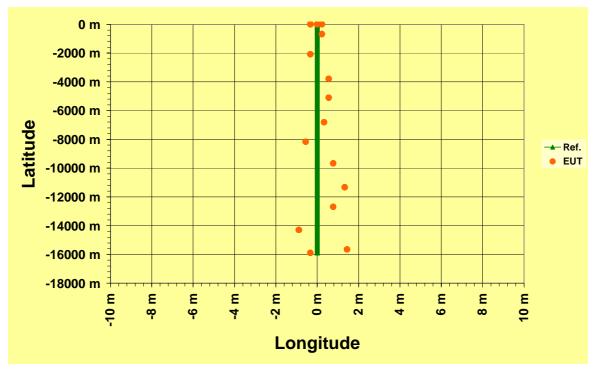
Test result: Passed



BUNDESAMT FUR SEESCHIFFFAHRT UND HYDROGRAPHIE

Speed over ground (SOG)

Latitude



SEESCHIFFFAHRT UND HYDROGRAPHIE

Longitude

Position

-15886 m -15887 m -15888 m -15889 m Latitude -15890 m ARef. -15891 m EUT -15892 m -15893 m -15894 m -15895 m -15896 m +---.... mm 11111 а Ч ш 0 1 2 4 T -7 m 2 m 3 m 4 M 5 m Ε ε မှ ကို Longitude

Position offset, coming to rest position

B.3.2 § 5.6.4.3.1 GPS part b)

A fully locked and settled EUT travelling at least 100 m at 24 kn \pm 1 kn in a straight line then subjected, for at least 2 min, to smooth deviations either side of the straight line of approximately 2 m at a period of 11 s to 12 s shall remain in lock and follow the actual position to within a lane of 30 m wide centred on the mean direction of motion.

Conditions of tests performed: Simulated signals

Test results

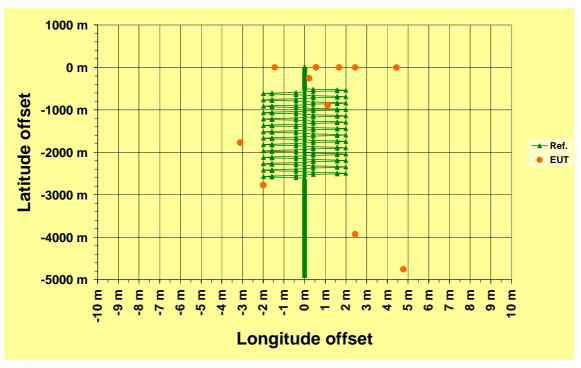
All positions offsets are within a lane of 30 m.

Test result: Passed

UND HYDROGRAPHIE

Speed over ground (SOG) vs. time

Latitude vs. time



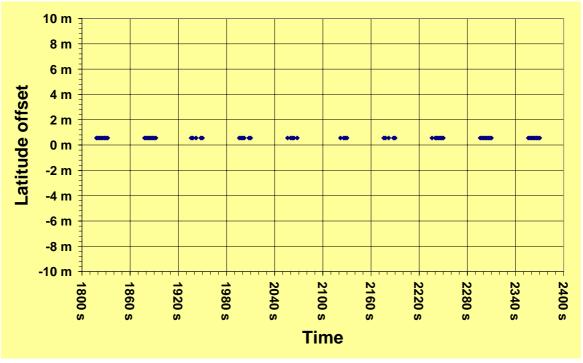
10 m 8 m 6 m Longitude offset 4 m 2 m 0 m • EUT -2 m -4 m -6 m -8 m -10 m S S S S S S S S S S S S S 120 180 240 300 480 540 600 720 0 09 360 420 660 Time

Longitude vs. time

Position

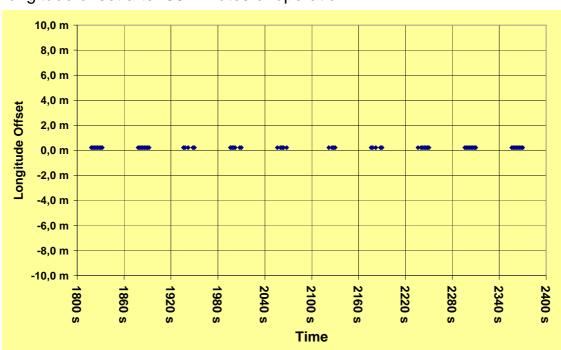
B.4 § 5.6.5 Aquisition

B.4.1 § 5.6.5.1 Condition A - Initialization

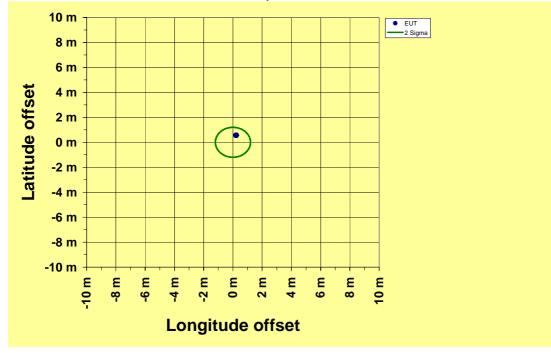

EUT shall be powered on without valid almanach data in memory. A performence check shall be carried out after 30 minutes of operation.

Conditions of test performed: Simulated signal

EUT locked on to GPS simulation within less than 30 minutes and provided a valid positon fix.


A performance check was carried out.

Test result: Passed


Latitude offset after 30 minutes operation

Longitude offset after 30 minutes of operation

Position offset after 5 minutes of operation

B.4.2 § 5.6.5.3 Condition C – Interruption of GPS signal

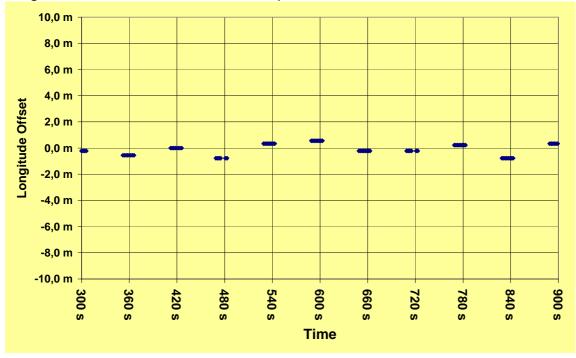
EUT antenna shall be completely masked for 24 to 25 hours. A performence check shall be carried out after 5 minutes of operation.

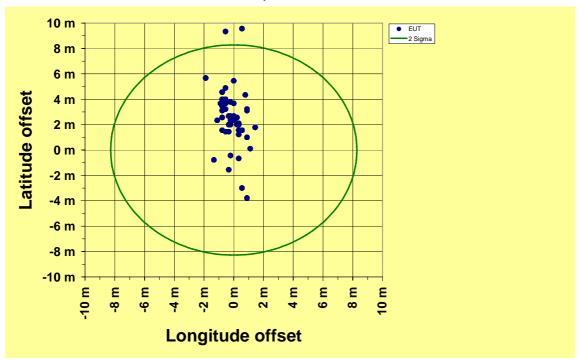
Conditions of test performed: Simulated signal

EUT antenna was masked for approx. 24.5 hours.

EUT locked on to GPS signal within less than two minutes and provided a valid positon fix. A performance check was carried out after 5 minutes of operation.

2 Sigma value of performence check: 8.28m


Test result: Passed


10 m 8 m 6 m Latitude offset 4 m 2 m 0 m -2 m -4 m -6 m -8 m -10 m 300 s 540 s 600 s 660 s 006 360 s 840 s 420 s 480 s 720 s 780 s S Time

Latitude offset after 5 minutes operation

Longitude offset after 5 minutes of operation

Position offset after 5 minutes of operation

B.5 § 5.6.9 Effects of specific interfering signals

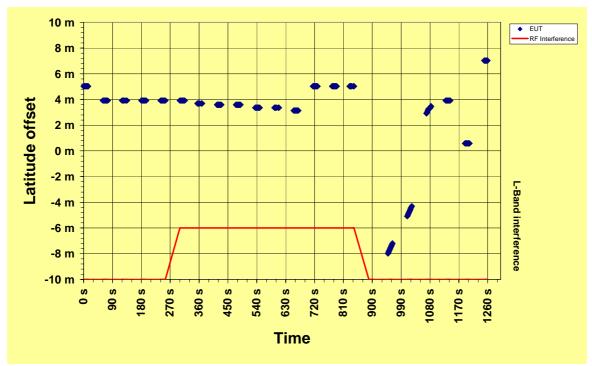
B.5.1 § 5.6.9.1 L-Band interference

In a normal operating mode, using an appropriate signal source, the EUT shall be subjected to radiation of 3 W/m^2 at a frequency of 1636.5 MHz for 10 min. The signal shall be removed and a performance check shall be carried out.

Conditions of tests performed: Real GPS signals

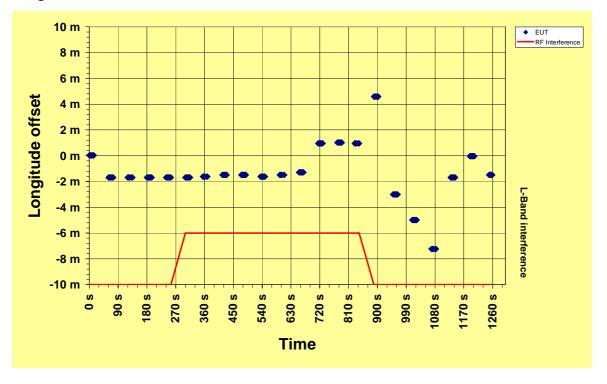
Frequency:	1636.5 MHz
Radiation:	3 W/m ²
Duration of test:	10 min

Test results


After removing the signal, the performance of the EUT was checked and found operating properly.

Position accuracy: 11.11m (2 sigma)

Test result: Passed



UND HYDROGRAPHIE

Latitude offset vs. time

Longitude offset vs. time

Position 12 m ♦ EUT 2 Sigma 10 m 8 m ٠ 6 m Latitude offset ۲ 4 m 2 2 m 0 m -2 m -4 m -6 m -8 m -10 m ٠ -12 m ‡ -12 m -10 m -8 m -6 m -4 m -2 m ш 0 2 m 4 m 6 m 8 m 10 m 12 m Longitude offset

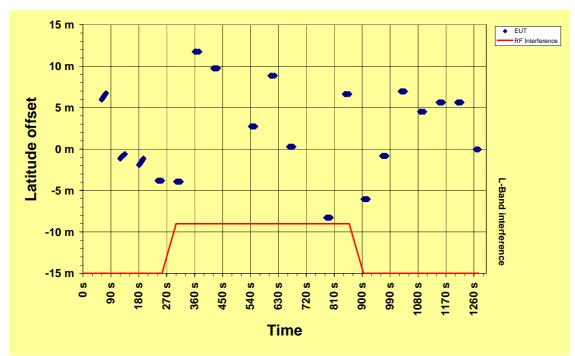
B.5.2 §5.6.9.2 S- Band interference

In a normal operating mode, using an appropriate signal source, the EUT shall be subjected to radiation consisting of a burst of 10 pulses, each 1.0 to 1.5 μ s long on a duty cycle of 1600:1 at a frequency in the range of 2.9 to 3.1 GHz at a power density of approximately 7.5 kW/m². This condition shall be maintained for 10 min with the bursts of pulses repeated every 3 s.

The signal shall be removed and a performance check shall be carried out.

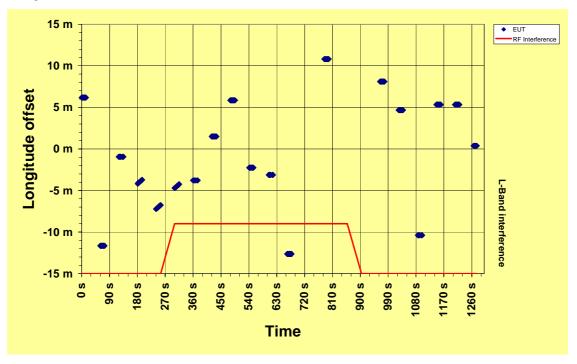
Conditions of tests performed

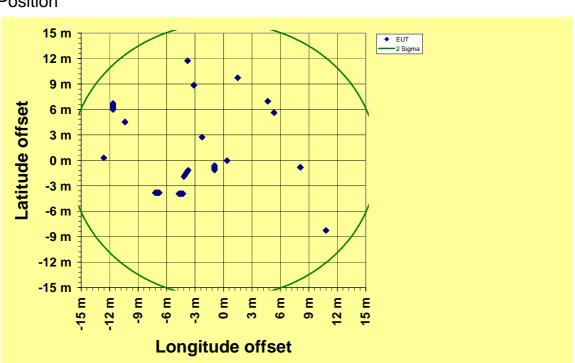
Frequency range:	2.9 to 3.1 GHz
Radiation:	7.5 kW/m ²
Duration of test:	10 min


Test results

After removing the signal, the performance of the EUT was checked and found operating properly.

Position accuracy: 16.2m (2 sigma)


Test result: Passed



Latitude offset vs. time

Longitude offset vs. time

Position

B.6 § 5.6.10 Position update

B.6.1 § 5.6.10.1 Slow speed update rate

The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 5 knots ± 1 knots. The position output of the EUT shall be checked at intervals of 10 s, over a period of 10 min. The output position shall be observed to be updated on each occasion.

This test may be carried out by a simulator.

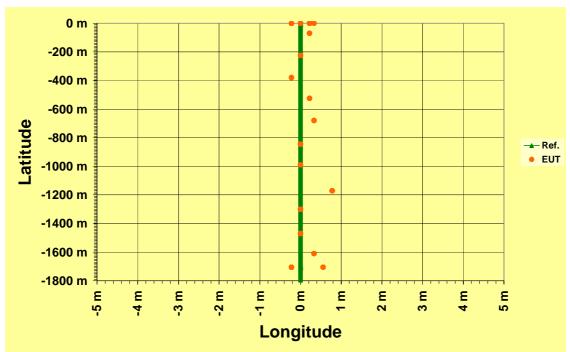
The minimum resolution of position, i.e. latitude and longitude shall be checked by observation during §5.6.10.1.

Record the IEC 61162 output of the EUT during this test and confirm that received positions at the end of each interval are in compliance with the real or simulated reference position.

Conditions of tests performed: Simulated signal

Test result: Passed

HYDROGRAPHIE



Latitude @5.0knots

Test Report No. BSH/4615/4361595/10

Position 5.0knots

B.6.2 § 5.6.10.2 High speed update rate

The EUT shall be placed upon a platform, moving in approximately a straight line, at a speed of 50 knots \pm 5 knots. The position output of the EUT shall be checked at intervals of 10 s, over a period of 10 min. The output position shall be observed to be updated on each occasion.

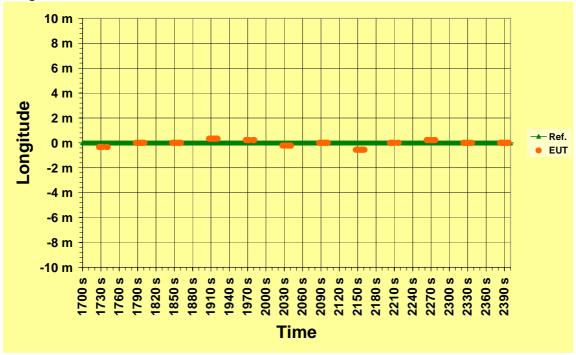
This test may be carried out by a simulator with a speed of 70 knots at intervals of 0.5 s.

The minimum resolution of position, i.e. latitude and longitude shall be checked by observation during 5.6.10.2.

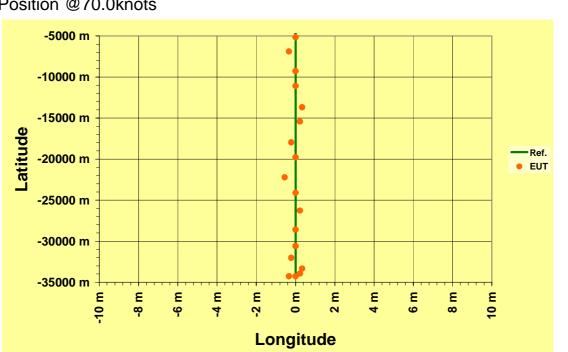
Record the IEC 61162 output of the EUT during this test and confirm that received positions at the end of each interval are in compliance with the real or simulated reference position.

Conditions of tests performed: Simulated signal

Test result: Passed



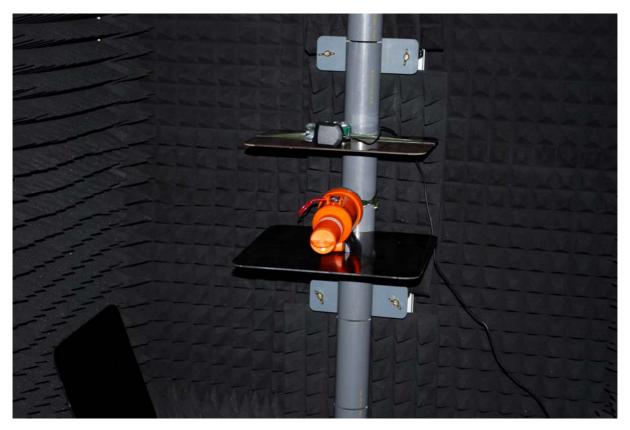
HYDROGRAPHIE



Latitude @70.0knots

Longitude @70.0knots

Position @70.0knots



BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

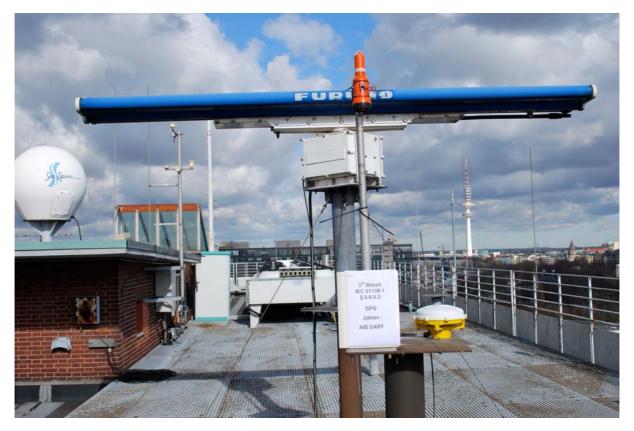
Annex C - Photos of equip ment under test

EUT at testside, inside RF- chamber - BSH Hamburg

HYDROGRAPHIE

EUT functional test, ID tag

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE


EUT - L -Band interference test

BUNDESAMT FÜR SEESCHIFFFAHRT UND HYDROGRAPHIE

EUT – S –Band interference test

