

Choose certainty. Add value.

Report On

MED Testing of the Jotron AS Tron 40GPS MkII and Tron 40S MkII

COMMERCIAL-IN-CONFIDENCE

Document 75900217 Report 01 Issue 3

February 2008

Product Service

TUV Product Service Ltd, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuvps.co.uk</u>

COMMERCIAL-IN-CONFIDENCE

REPORT ON

MED Testing of the Jotron AS Tron 40GPS MkII and Tron 40S MkII

Document 75900217 Report 01 Issue 3

February 2008

PREPARED FOR

Jotron AS Østbyveien 1 PO. BOX 54 3280 Tjodalyng Norway

PREPARED BY

R Hampton Test Engineer

APPROVED BY

M Jenkins Authorised Signatory

DATED

05 February 2008

This report has been up-issued to Issue 2 to correct typographical errors.

CONTENTS

Section

Page No

1	REPORT SUMMARY	4
1.1	Introduction	5
1.2	Application Form	9
1.3	Product Information	. 14
1.4	Deviations from the Standard	. 16
1.5	Modification Record	. 16
1.6	Alternative Test Site	. 16
2	TEST DETAILS	.17
2.1	Message Format And Homing Devices	. 24
2.2	Dry Heat Test (Combined Storage And Operational)	. 25
2.3	Damp Heat Test	. 32
2.4	Vibration Test	.36
2.5	Ruggedness Test	.42
2.6	Corrosion Test	.45
2.7	Drop Test (On Hard Surface)	.49
2.8	Drop Test (In Water)	.51
2.9	Thermal Shock Test	58
2.10	Immersion Test	62
2.11	Spurious Emissions Test	63
2 12	Conducted Interference test	66
2 13	Signal Light Test	67
2 14	Battery Canacity At Low Temperature Test	68
2 15	Cospas-Sarsat Type Approval	77
2 16	Compulsory Sequence Of Tests	78
2 17	Inadvertent Activation Test	80
2.18	Self-test	81
2 19	Automatic Release Mechanism And Automatic Activation Tests	83
2 20	Stability And Buovancy Test	84
2 21	Safety Inspection	87
2 22	Compass Safe Distance Test	88
2 23	Solar Radiation	90
2 24	Oil Resistance	91
2 25	Conducted Emissions	92
2.26	Radiated Emissions Test (Flectric Field)	93
2 27	Radiated Emissions Test (Magnetic Field)	106
2.28	Immunity To Conducted Radio Frequency Disturbance	111
2 29	Immunity To Radiated Radio frequencies	112
2.30	Immunity To Fast Transients	114
2.31	Immunity To Surges	115
2.32	Immunity To Power Supply Short-term Variation	116
2.33	Immunity To Power Supply Failure	117
2.34	Immunity To Electrostatic Discharge	118
2.35	121.5MHz Homing Device (Carrier Frequency Test)	121
2.36	121 5MHz Homing Device (Peak Effective Radiated Power)	122
2 37	121 5MHz Homing Device (Modulation Characteristics - Transmitter Duty cycle)	123
2.38	121 5MHz Homing Device (Modulation Characteristics - Modulation Frequency And Sween	0
2.00	Repetition Rate Modulation Duty Cycle)	126
2 39	121 5MHz Homing Device (Modulation Characteristics - Modulation Factor)	127
3		130
-		

Product Service

3.1	Test Equipment Used	
4	PHOTOGRAPHS	
4.1	Photographs of Equipment Under Test (EUT)	
5	DISCLAIMERS AND COPYRIGHT	144
5.1	Disclaimers and Copyright	
ANNEX	A Customer Supplied Information	A.2

SECTION 1

REPORT SUMMARY

MED Testing of the Jotron AS Tron 40GPS MkII and Tron 40S MkII

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the MED Testing of the Jotron AS Tron 40GPS MkII and Tron 40S MkII to the requirements of IEC 60945: 2002 and IEC 61097-2: 2002.

Objective	To perform MED Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.			
Manufacturer	Jotron AS			
Model Number(s)	Tron 40GPS MkII			
Serial Number(s)	001 (Modified sample to incorporate 50Ω output) 002 003 (Tron 40S MkII, non-GPS variant)			
Number of Samples Tested	Three			
Customer Declared Variant(s)	Tron 40S MkII (Non-GPS Variant)			
Test Specification/Issue/Date	IEC 60945: 2002 IEC 61097-2 Second edition 2002-09 (Herein referred to as IEC 61097-2: 2002)			
Incoming Release Date	Application Form 02 May 2007			
Order Number Date	PO0637001 02 October 2007			
Start of Test	12 March 2007			
Finish of Test	21 December 2007			
Name of Engineer(s)	R Hampton C Hedley C Bowles A Castle K Adsetts C Lewis A Guy D Day			

Related Document(s)	The following referenced documents are indispensable for the application of EN 60945:2002. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.			
	IEC 60050-161:1990, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility Amendment 1 (1997) Amendment 2 (1998)			
	IEC 60068-2-1:1990, <i>Environmental testing – Part 2: Tests – Tests A: Cold</i> Amendment 1 (1993) Amendment 2 (1994)			
	IEC 60068-2-2:1974, <i>Environmental testing – Part 2: Tests – Tests B: Dry heat</i> Amendment 1 (1993) Amendment 2 (1994)			
	IEC 60068-2-5:1975, Environmental testing – Part 2: Test Sa: Simulated solar radiation at ground level.			
	IEC 60068-2-6:1995, <i>Environmental testing – Part 2: Test Fc: Vibration (sinusoidal)</i> Corrigendum 1 (1995)			
	EC 60068-2-9:1975, <i>Environmental testing – Part 2:</i> <i>Guidance for solar radiation testing</i> Amendment 1 (1984) Corrigendum 1 (1989)			
	IEC 60068-2-30:1980, <i>Environmental testing – Part 2: Test Db and guidance: Damp heat, cyclic (12 + 12-hour cycle)</i> Amendment 1 (1985)			
	IEC 60068-2-48:1982, Environmental testing – Part 2: Guidance on the application of the tests of IEC 60068 to simulate the effects of storage			
	IEC 60068-2-52:1996, Environmental testing – Part 2: Test Kb: Salt mist, cyclic (sodium chloride solution) Corrigendum 1 (1996)			
	IEC 60071-2:1996, Insulation co-ordination – Part 2: Application guide			
	IEC 60092-101:1994, <i>Electrical installations in ships – Part 101: Definitions and general requirements</i> Amendment 1 (1995) Corrigendum 1 (1996)			

IEC 60417(all parts), Graphical symbols for use on equipment

IEC 60529:1989, Degrees of protection provided by enclosures (IP code) Amendment 1 (1999)

IEC 60533:1999, Electrical and electronic installations in ships – Electromagnetic Compatibility

IEC 60651:1979, *Sound level meters* Amendment 1 (1993)

The following referenced documents are indispensable for the application of IEC 61097-2:2002. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60945, Marine navigation and radiocommunication equipment and systems – General Requirements – Methods of testing and required test results

IMO Resolution A.658(16):1989, Use and fitting of retroreflective materials on life-saving appliances

IMO Resolution A.662(16):1989, Performance standards for float-free release and activation arrangements for emergency radio equipments

IMO Resolution A.689(17):1991, *Testing of life-saving appliances*

IMO Resolution A.694(17):1991, General requirements for shipborne radio equipment forming part of the global maritime distress and safety system (GMDSS) and for electronic navigational aids

IMO Resolution A.696(17):1991, *Type approval of satellite* emergency position-indicating radio beacons (EPIRBs) operating in the COSPAS-SARSAT system

IMO Resolution A.702(17):1991, Radio maintenance guidelines for the global maritime distress and safety system (GMDSS) related to sea areas A3 and A4

IMO Resolution A.810(19):1995, Performance standards for float-free satellite emergency position-indicating radio beacons (EPIRBs) operating on 406 MHz

ITU-R Recommendation M.585 as amended, Assignment and use of maritime mobile service identities

COMMERCIAL-IN-CONFIDENCE

Product Service

ITU-R Recommendation M.633, *Transmission* characteristics of a satellite emergency position-indicating radio beacon (satellite EPIRB) system operating through a low polarorbiting satellite system in the 406 MHz band

ITU-R Recommendation M.690-1, *Technical characteristics* of emergency position indicating radio beacons (EPIRBs) operating on the carrier frequencies of 121,5 MHz and 243 MHz

COSPAS-SARSAT

C/S T.001, as amended, *Specification for COSPAS-SARSAT 406 MHz distress beacons and* C/S T.007, as amended, *COSPAS-SARSAT 406 MHz distress beacon type approval standard* (as applicable to EPIRBs).

IMO Safety of Life at Sea (SOLAS) Convention 1974, as amended. (GMDSS)

1.2 APPLICATION FORM

1.2.1 Beacon Manufacturer and Beacon Model

Beacon Manufacturer	Jotron AS
Beacon Model	Tron 40GPS MkII / Tron 40S MkII

1.2.2 Beacon Type and Operational Configurations

Beacon Type	Beacon Type Beacon used while:	
EPIRB	Floating in water or on deck or in a safety raft	\square
PLB	On ground and above ground	
	On ground and above ground and floating in water	
ELT Survival On ground and above ground		
	On ground and above ground and floating in water	
ELT Auto Fixed	Fixed ELT with aircraft external antenna	
ELT Auto Portable	In aircraft with an external antenna	
	On ground, above ground, or in a safety raft with an integrated antenna	
ELT Auto Deployable	Deployable ELT with attached antenna	
Other (specify)		

1.2.3 Beacon Characteristics

Characteristic	Specification	
Operating temperature range	Tmin = -20°C Tmax = +55°C	
Operating lifetime	48 hours	
Battery chemistry	Litium-thionyl chloride	
Battery cell size and number of cells	C-size LSH14 light, 4	
Battery manufacturer	SAFT	
Battery pack manufacturer and part number	Jotron AS, X-83056	
Oscillator type (e.g. OCXO, MCXO, TCXO)	ТСХО	
Oscillator manufacturer	C-MAC	
Oscillator part name and number	C-MAC E4520LF	
Oscillator satisfies long-term frequency stability requirements (Yes or No)	Yes	

Document 75900217 Report 01 Issue 3

Characteristic	Specification	
Antenna type (Integrated or External)	Integrated	
Antenna manufacturer	Jotron AS	
Antenna part name and number	X-83053	
Navigation device type (Internal, External or None)	None	
Features in beacon that prevent degradation to 406 MHz signal or beacon lifetime resulting from a failure of navigation device or failure to acquire position data (Yes, No, or N/A)	N/A	
Features in beacon that ensures erroneous position data is not encoded into the beacon message (Yes, No or N/A)	N/A	
Navigation device capable of supporting global coverage (Yes, No or N/A)	N/A	
For Internal Navigation Devices		
- Geodetic reference system (WGS 84 or GTRF)	WGS 84	
- GNSS receiver cold start forced at every beacon activation (Yes or No)	Yes	
- Navigation device manufacturer	Fastrax	
- Navigation device model name and part Number	Fastrax iTrax03-S	
- GNSS system supported (e.g. GPS, GLONASS, Galileo)	GPS	
For External Navigation Devices		
- Data protocol for GNSS receiver to beacon interface	N/A	
- Physical interface for beacon to navigation device	N/A	
- Electrical interface for beacon to navigation device	N/A	
 Navigation device model and manufacturer (if beacon designed to use specific devices) 	N/A	

Characteristic	Specification	
Self-Test Mode Characteristics		
- Self-test has separate switch position (Yes or No)	Yes	
- Self-test switch automatically returns to normal position when released (Yes or No)	Yes	
- Self-test activation can cause an operational mode transmission (Yes or No)	No	
- Self-test causes a single beacon self-test message burst only regardless of how long the self-test activation mechanism applied (Yes or No)	Yes	
- Results of self-test indicated by (e.g. Pass / Fail Indicator Light, Strobe Light, etc.)	Strobe Light	
- Self-test can be activated from beacon remote activation points (Yes or No)	No	
 Self-test performs an internal check and indicates that RF power emitted at 406 MHz and 121.5 MHz if beacon includes a 121.5 MHz homer (Yes or No) 	Yes	
 Self-test transmits a signal(s) other than at 406 MHz (Yes & details or No) 	Yes, 121.5 MHz	
- Self-test can be activated directly at beacon (Yes or No)	Yes	
- List of Items checked by self-test	Included in Manuals	
- Self-test transmission burst duration (440 or 520 ms)	Both supported	
- Self-test format bit ("0" or "1")	Both supported	
Beacon includes a homer transmitter (if yes identify frequency of transmission)	121.5MHz	
-Homer Transmit Power	20dBm	
-Homer Duty Cycle	96%	
-Duty Cycle of Homer Swept Tone	37%	

Characteristic	Specification
Beacon includes a strobe light (Yes or No)	Yes
- Strobe light intensity	Average of 1.9cd
- Strobe light flash rate	21 per minute
Beacon transmission repetition period satisfies C/S T.001 requirement that two beacon's repetition periods are not synchronised closer than a few seconds over 5 minute period, and the time intervals between transmissions are randomly distributed on the interval 47.5 to 52.5 seconds (Yes or No)	Yes
Other ancillary devices (e.g. voice transceiver). List details on a separate sheet if insufficient space to describe.	None
Beacon includes automatic activation mechanism (Yes or No)	Yes

1.2.4 Information Provided by the Cospas-Sarsat Accepted Test Facility

Name and Location of Beacon Test Facility: TUV Product Service Ltd, United Kingdom

Date of Submission for Testing: October 2007

Applicable C/S Standards:

Document	Issue	Revision	Date
C/S T.001	3	7	Nov-05
C/S T.007	4	1	Oct-06

I hereby confirm that the 406 MHz beacon described above has been successfully tested in accordance with the Cospas-Sarsat Type Approval Standard (C/S T.007) and complies with the Specification for Cospas-Sarsat 406 MHz Distress Beacons (C/S T.001) as demonstrated in the attached report.

Signed:

Name:

<u>M Jenkins</u>

Position Held:

Authorised Signatory

Date:

05 February 2008

1.2.5 **Applicant Details**

Company Name	Jotron AS			
Address	Østbyveien 1 PO Box 54 3280 Tjodalyng Norway			
Cotogony of Applicant	Manufacturer		Importer	
Category of Applicant	Distributor		Agent	
Contact Name	Contact Name Eirik Storjordet Teleph		;	+47 33139714
Email	eirik.storjordet@jotron.co m	Facsimile		+47 33126780

1.2.6 Manufacturer Details

Company Name	See Applicant Details		
Address	N/A		
Contact Name	N/A	Telephone	N/A
Email	N/A	Facsimile	N/A

1.2.7 **Declaration of Build Status**

Hardware Version	000
- PCB Revision	MB: 0622, but modified according to 0703 Antenna: 0643
- Battery Model	

Applicant's Declaration 1.2.8

I hereby declare that I am entitled to sign on the behalf of the applicant and that the information supplied is correct and complete

Signed:

Eirik Storjordet

Name:	Eirik Storjordet
Position Held:	Certification Manager
Date:	27.04.2007

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment Under Test (EUT) was a Jotron AS Tron 40GPS MkII and Tron 40S MkII as shown in the photograph below. A full technical description can be found in the manufacturer's documentation.

Equipment Under Test, Sample Serial Number 001

1.3.2 Test Configuration

Tests requiring a conducted link to the EUT's transmitter we performed on test sample serial number 001 which was modified, by the manufacturer, to provide two 50Ω output ports, one for 121 MHz measurements, the other for 406 MHz measurements.

The EUT is capable of being mounted in a Float Free Cradle. EUT was tested out of said cradle except where otherwise specified.

The EUT was powered by its internal battery.

1.3.3 Modes of Operation

Modes of operation of the EUT during testing were as follows:

Test Mode 1: Idle; Beacon in quiescent state (main switch set to 'READY').

Test Mode 2: Operating; Beacon activated using the main switch. 406 MHz and 121MHz Transmitters active, EUT programmed with test mode as per Cospas-Sarsat T.007. Note: this is sometimes referred to as "Normal" mode due to the normal frame sync.

Test Mode 3: Self-test mode; Beacon activated using the main switch. Pre-programmed self-test mode runs and beacon subsequently returns to idle mode.

Specific test modes used are detailed in the test procedure for each individual test.

1.3.4 Monitoring of Performance

Performance check comprises successful self-test of beacon into a beacon tester and confirmation strobe flashes on EUT. Please note that Beacon Test Reports are provided to show successful transmission of the digital message only. All other values and measurements shown are for informative purposes only and are not traceable (calibrated) results.

1.3.5 Performance Criterion

EUT must successfully complete the performance check or performance test if required.

1.3.6 Additional Variants

Variants of the Tron 40GPS MkII include the Tron 40S MkII, a non-GPS version of the EPIRB. For the purposes of this report testing conducted and successfully passed can be considered to indicate a pass for both variants, see customer supplied information ("Similarity of Variants") in Annex A.

Cospas-Sarsat Approval has been sought for the variants subject to the successful completion of the Spurious Emissions, Beacon Coding Software, Satellite Qualitative, Self Test and Digital Message tests (T.007 Issue 4 - Rev 1 October 2006, in accordance with Section 6.4). Separate submissions were made to the Cospas-Sarsat Secretariat.

1.4 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.5 MODIFICATION RECORD

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer	N/A	N/A
1	Software update to version 1.01 to fix Repetition Rate problem	TÜV Product Service Ltd (SW Supplied by Jotron AS)	08 March 2007
2	Software update to version 1.02 to fix 121MHz Spurious Emissions problem	TÜV Product Service Ltd (SW Supplied by Jotron AS)	20 March 2007
3	Software update to version 1.03 to fix Encoded position drop problem	TÜV Product Service Ltd (SW Supplied by Jotron AS)	25 May 2007
4	Software update to version 1.04 to fix modulation problem on last bit	TÜV Product Service Ltd (SW Supplied by Jotron AS)	05 June 2007
5	Software update to version 1.05 to fix problems encountered during Cospas- Sarsat testing	TÜV Product Service Ltd (SW Supplied by Jotron AS)	20 June 2007
6	Software update to version 1.06 to fix coarse position and delta offset problem	TÜV Product Service Ltd (SW Supplied by Jotron AS)	09 August 2007
7	Hardware change to fix self-test fault measuring 121.5MHz power	Jotron AS	11 September 2007

1.6 ALTERNATIVE TEST SITE

Under our group UKAS Accreditation, TÜV Product Service Ltd conducted the following tests at MPI Services (UK) Limited, trading as Manor Marine, Portland, Dorset:

2.8 Drop Test in Water

Under our group UKAS Accreditation, TÜV Product Service Ltd conducted the following tests at Bearley, Stratford-upon-Avon Test Laboratory:

2.36 Peak Equivalent Radiated Power

SECTION 2

TEST DETAILS

MED Testing of the Jotron AS Tron 40GPS MkII and Tron 40S MkII

TEST RESULTS TABLE

Parameter To Be Measured	Range Of Specification Units	Units	Test Results			Comments	
		Ginto	T _{min} (-20°C)	T _{amb}	T _{max} (+55°C)		
1. Message Format and Homing Devices						Section 2.1	Result: Pass
Test Protocol Utilised	Utilised	\checkmark		Y			
Evidence of compliance provided	Provided	~		Y			
50Ω connection provided	Provided	~		Y		Tron 40GPS MkII, Ser	al Number 001
Homing frequency	≠ 121.5	MHz		122.55		Tron 40GPS MkII, Ser	al Number 002
2. Dry Heat Test – Combined Storage and Operational						Section 2.2	Result: Pass
Electrical And Functional Tests At Constant Temperature	Successful completion	✓			✓		
Performance Check (during 2 hour period)	Successful self-test	~			\checkmark	Doubles as "Post Stora Check"	age Performance
Performance Check (at end of 2 hour period)	Successful self-test	\checkmark			✓		
3. Damp Heat Test						Section 2.3	Result: Pass
Performance Test	Successful completion	\checkmark			✓		
Performance Check (during 2 hour period)	Successful self-test	\checkmark			\checkmark		
4. Vibration Test						Section 2.4	Result: Pass
Performance Check (post test)	Successful self-test	✓		\checkmark			
5. Ruggedness Test					Section 2.5	Result: Pass	
Performance Check (post test)	Successful self-test	✓		\checkmark			
6. Corrosion Test					Section 2.6	Result: Pass	
Exterior Mechanical Inspection	No damage	\checkmark		✓			
Performance Check	Successful self-test	\checkmark		\checkmark			

Parameter To Be Measured	ed Pange Of Specification Units			Test Results	-	- Comments	
	Range of opeemeation	01113	T _{min} (-20°C)	T_{min} (-20°C) T_{amb} T_{max} (+55°C)			
7. Drop Test On Hard Surface	Section 2.7 Result: Pass						
Exterior Mechanical Inspection	No damage	V		\checkmark		The EUT was soaked at the minimum stowage temperature (-30°C) prior to the drop.	
Performance Check	Successful self-test	\checkmark		\checkmark			
8. Drop Test In Water						Section 2.8 Result: Pass	
Exterior Mechanical Inspection	No damage	~		✓			
Performance Check	Successful self-test	~		\checkmark			
9. Thermal Shock	·	<u> </u>	·			Section 2.9 Result: Pass	
Performance Check	Successful self-test	~		\checkmark		The EUT was soaked at the maximum stowage temperature (+70°C) prior to the immersion.	
Interior Inspection	No water ingress	\checkmark		\checkmark			
10. Immersion Test						Section 2.10 Result: Pass	
Performance Check	Successful self-test	~		√			
Exterior Mechanical Inspection	No damage	~		\checkmark			
Interior Inspection	No water ingress	~		\checkmark			
11. Spurious Emissions Test					-	Section 2.11 Result: Pass	
156 - 174 MHz Band	Peak emission < 25mW	✓		✓			
1525 - 1545 MHz Band	Peak emission < 25mW	~		✓			
12. Conducted Interference Test						Section 2.12 Result: N/A	
Applicability	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
13. Signal Light Test	Section 2.13 Result: Completed						
Test	Completed	Y/N	Y*	Y*	Y*	* As per customer supplied information, see Annex A	

Parameter To Be Measured	Range Of Specification	Linits	Test Results			Comments		
		Offita	T _{min} (-20°C)	$T_{min} (-20^{\circ}C) \qquad T_{amb} \qquad T_{max} (+55^{\circ}C)$		T _{max} (+55°C)		
14. Battery Capacity At Low Temperature Test							Section 2.14	Result: Pass
Operational duration	≥48	Hours	54.1					
Transmit frequency:			Minimum	1	Μ	laximum	Minimum and maxim	um values stated are
Nominal value	C/S T.001	MHz	406.03693	35	40	6.036939		
Short-term stability	≤2x10 ⁻⁹	/100ms	9.456x10 ⁻	11	2.9	997x10 ⁻¹⁰		
Medium-term stability – slope	(-1 to +1)x10 ⁻⁹	/min	-6.762x10	-11	7.7	794x10 ⁻¹¹		
Medium-term stability – residual frequency variation	≤3x10 ⁻⁹		9.684x10 ⁻	11	3.2	295x10 ⁻¹⁰		
Transmitter power output	35 - 39	dBm	36.08		36.66			
Digital message	Correct	\checkmark	✓					
15. Cospas-Sarsat Type Approval							Section 2.15	
Cospas-Sarsat Certificate	Provided	Y/N	Pending					
16. Compulsory Sequence of Tests							Section 2.16	
All Tests	Completed	Y / N		Y				
Sequence	Maintained	Y / N		Y			"Environmental" San 002, not modified to	nple (Serial number provide 50Ω output)
17. Inadvertent Activation Test							Section 2.17	Result: Completed
Test	Completed	Y / N		Y*			* As per customer su see Annex A	pplied information,
18. Self-test							Section 2.18	Result: Pass
RF pulse duration	440 or 520*	ms		520)		* Range Of Specifica message length. EU message, hence limi	tion dependant on IT coded with long t is 520ms
Frame synchronisation pattern	0 1101 0000	~		\checkmark				

Parameter To Be Measured	Range Of Specification	Units	Test Results			Comments	
			T _{min} (-20°C)	T _{amb}	T _{max} (+55°C)	Commento	
19. Automatic Release Mechanism Test							Result: Completed
Test	Completed	Y / N		Y*		* As per custom see Annex A	er supplied information,
20. Stability and Buoyancy Test		_				Section 2.20	Result: Pass
Time to upright	< 2 seconds	Y/N		Y			
Reserve buoyancy	> 1.05	Y / N		Y			
Float upright; Antenna base	> 40 mm	Y / N		Y			
21. Safety Inspection							Result: Pass
Compliance with relevant clauses of the specification	Complies	Y / N		Y			
22. Compass Safe Distance Test						Section 2.22	Result: Pass
Safe distance for standard compass	Record	mm		700			
Safe distance for Steering, Standby Steering and Emergency Compass	Record	mm		500			
23. Solar Radiation						Section 2.23	Result: N/A
Test	Completed	Y / N			Ν	Waiver requeste	ed, see Annex A
24. Oil Resistance							Result: N/A
Test	Completed	Y / N		Ν		Waiver requeste	ed, see Annex A
25. Conducted Emissions						Section 2.25	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		N		Test not applica	ble

Parameter To Be Measured	Range Of Specification	Units	Test Results			Comments	
			T _{min} (-20°C)	T _{amb}	T _{max} (+55°C)	Comments	
26. Radiated Emissions Test (Electric Field)						Section 2.26	Result: Pass
Limiting Values For Radiated Emissions From Enclosure Ports	Below limits	Y / N		Y			
27. Radiated Emissions Test (Magnetic Field)				_		Section 2.27	Result: Pass
Limiting Values For Radiated Emissions From Enclosure Ports	Below limits	Y / N		Y			
28. Immunity To Conducted Radio Frequency Disturbance	e			_		Section 2.28	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
29. Immunity To Radiated Radiofrequencies						Section 2.29	Result: Pass
Complies With The Performance Criterion	Complies	Y/N		Y			
30. Immunity To Fast Transients						Section 2.30	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
31. Immunity To Surges						Section 2.31	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
32. Immunity To Power Supply Short-term Variation						Section 2.32	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
33. Immunity To Power Supply Failure						Section 2.33	Result: N/A
Applicability of test	EUT Connects to ships power system	Y / N		Ν		Test not applicable	
34. Immunity To Electrostatic Discharge						Section 2.34	Result: Pass
Complies With The Performance Criterion	Complies	Y / N		Y			

Peremeter To Po Manurod	Panga Of Specification	Units	Test Results			Comments	
	Range Of Specification		T _{min} (-20°C)	T _{amb}	T _{max} (+55°C)	Comments	
34. 121.5MHz Homing Device Tests						Result: Pass	
Carrier frequency	121.5 ± 50ppm	MHz	121.4997666		121.4997202	Section 2.35	
PERP	+17 ± 3dB	dBm		18.99		Section 2.36	
Pattern	Omnidirectional	\checkmark		~			
Polarisation	Vertical	\checkmark		✓			
Transmitter Duty cycle	Transmitter interruption to be less than 2 seconds	✓	~		✓	Section 2.37	
Modulation:							
Frequency	700 Hz within the range of 300 - 1600 Hz	~	\checkmark		\checkmark	Section 2.38	
– Range	≥ 700	Hz	944.3		945.75		
– Minimum	≥ 300	Hz	387.3		385.36		
– Maximum	≤ 1600	Hz	1331.6		1331.1		
Direction	Upward or Downward	Upward / Downward	Downward		Downward		
Duty cycle	33 - 55	%	33.61		35.73		
Sweep repetition rate	2 - 4	Hz	2.61		2.70		
Factor	0.85 - 1.0		87.3		93.7	Section 2.39	

2.1 MESSAGE FORMAT AND HOMING DEVICES

2.1.1 Specification Reference

IEC 61097-2:2002, Clause A.1.1 (5.1.7)

2.1.2 Equipment Under Test

Tron 40GPS MkII, Serial Numbers 001 and 002

2.1.3 Test Results

EUT and manufacturers data checked against requirements of the clause before the commencement of testing. No discrepancies were found. Detailed results can be found in the Table of Test Results, starting on page 18

2.2 DRY HEAT TEST (COMBINED STORAGE AND OPERATIONAL)

2.2.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.2 (5.13.1) IEC 60945: 2002, Clause 8.2

2.2.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.2.3 Date of Test and Modification State

12 to 13 March 2007 - Modification State 1

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle and Operating as per "Test Results", below.

Test Set-up

2.2.6 Environmental Conditions

Dry Heat Cycle Temperature Plot

2.2.7 Test Results

The test was performed "combined", i.e. rather than returning to ambient between the two tests the operational test immediately followed the storage period.

Test Procedure

EUT was placed in the Instron (Climatic) chamber. With EUT switched off, the chamber temperature was ramped to and held at +70°C for 16 hours. The chamber was then ramped to then held at +55°C and the EUT switched on and function tested, see results below.

Chamber temperature ramped to lab ambient. Upon reaching lab ambient the chamber was deactivated.

Performance Check (During Dwell)

A Performance Check was conducted during +55°C temperature dwell, see Beacon Test Report below.

 \boxtimes

VI.11

Span 50kHz

100Hz RBW

1 mS/div

100mS/div

Power vs. Time

Spectrum

Phase vs. Time

Beacon Test Report (Performance Check, During Test)

Beacon Test Report

A03D3CFCF400001

Organization: TUV Product Service Ltd Tested By: Emergency Beacons Dept. Date: 13-Feb-07 10:50:29 AM Tester Model/Serial No./File Name: BT100S/1025/jotron-3 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 21°C

FAIL

INITIALS:

5dB/div

10 dB/div

5 rads/div

Notes: Add text comments here.

15 Hex ID: A03D3CFCF400001 Full Hex: FFFE2F501E9E7E7A00000D504837 Burst Mode: Normal Mode (Short) Protocol: Test User Protocol Country 257: Norway National Use: 21783256236033

Emergency type: Non-Maritime Activation type: Auto

406 MHz Measurements 406 Frequency (INT REF): 406.0372 MHz 406 Power (5 Watt): 34.9 dBm Power Rise Time: 25 msPhase Deviation: -1.11 + 1.12 radiansModulation Rise Time: 130 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.5 bps CW Preamble: 161 ms

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

Note: The date shown on the beacon tester is incorrect and should read 13-Mar-07.

Electrical And Functional Tests At Constant Temperature

Parameter	Limit	Units	Result						
Power Output									
Transmitter power output	35 - 39	dBm	36.13						
Power output rise time	< 5	ms	0						
Digital Message Coding									
Bit Sync	15 bits "1"	P/F	Р						
Frame sync	"000101111"	P/F	Р						
Format flag	1 bit	bit value	0						
Protocol flag	1 bit	bit value	1						
ID / position data	59 bits	P/F	Р						
BCH code	21 bits	P/F	Р						
Emerg. Code/nat. use/supplem. Data	6 bits	bit value	110110						
Additional data / BCH (if applicable)	32 bits	P/F	N/A						
Position Error	< 5	km	N/A						
Digital Message Generator									
Repetition rate T _R :									
Average T _R	48.5 ≤ T _{Ravg} ≤ 51.5	seconds	50.541						
Minimum T _R	$47.5 \le T_{Rmin} \le 48.0$	seconds	47.79						
Maximum T _R	$52.0 \le T_{Rmax} \le 52.5$	seconds	52.35						
Standard deviation	0.5 - 2.0	seconds	1.704						
Bit rate									
Minimum fb	≥ 396	bits/sec	399.622						
Maximum fb	≤ 404	bits/sec	399.831						
Total transmission time									
Short message	435.6 - 444.4	ms	440.136						
Long message	514.8 - 525.2	ms	N/A						
Unmodulated carrier									
Minimum T1	≥ 158.4	ms	160.401						
Maximum T1	≤ 161.6	ms	160.501						
First burst delay	≥ 47.5	seconds	54						
Modulation									
Biphase-L	P/F	P/F	Ρ						
Rise time	50 - 250	μs	134.24						
Fall time	50 - 250	μs	131.78						
Phase deviation: positive	+(1.0 to 1.2)	radians	1.06						
Phase deviation: negative	-(1.0 to 1.2)	radians	-1.15						
Symmetry measurement	≤ 0.05		0.0081						

Parameter	Limit	Units	Result					
406 MHz Transmitted Frequency								
Nominal Value	C/S T.001	MHz	406.036997					
Short-term stability	≤ 2x10 ⁻⁹	/100ms	3.97x10 ⁻¹⁰					
Medium-term stability – Slope	(-1 to +1)x10 ⁻⁹	/minutes	-5.681x10 ⁻¹¹					
Medium-term stability – Residual frequency variation	≤ 3x10 ⁻⁹		2.54x10 ⁻¹⁰					
Spurious Emissions into 500	ohms							
In band (406.0 - 406.1 MHz)	C/S T.001 mask	P/F	See plot, below					
406 MHz VSWR Check								
Nominal transmitted frequency	C/S T.001	MHz	406.036996					
Modulation								
Rise time	50-250	μs	142.22					
Fall time	50-250	μs	129.78					
Phase deviation: positive	+ (1.0 to 1.2)	radians	1.07					
Phase deviation: negative	- (1.0 to 1.2)	radians	-1.15					
Symmetry measurement	≤ 0.05		0.0073					
Digital Message	correct	P/F	Р					
Self Test Mode								
Frame sync	011010000	P/F	Р					
Format flag	1/0	bit value	0					
Single radiated burst	≤440 / 520 (±1%)	ms	440.5					
Default position data (if applicable)	correct	P/F	N/A					
Single burst verification	one burst	P/F	Р					
Provides for 15 Hex ID	correct	P/F	Р					

Spurious Emissions Plot

Performance Check (During Dwell)

A Performance Check was conducted during +55°C temperature dwell, see Beacon Test Report below.

FAIL

Beacon Test Report (Performance Check, End Of Test)

Beacon Test Report A03D3CFCF400001

Organization: TUV Product Service Ltd Tested By: Emergency Beacons Dept. Date: 13-Feb-07 11:31:51 AM Tester Model/Serial No./File Name: BT100S/1025/jotron-5 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 18°C

PASS

INITIALS:

Notes: Add text comments here.

Note: The date shown on the beacon tester is incorrect and should read 13-Mar-07.

Document 75900217 Report 01 Issue 3

2.3 DAMP HEAT TEST

2.3.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.3 (5.13.2) IEC 60945: 2002, Clause 8.3

2.3.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.3.3 Date of Test and Modification State

15 to 16 February 2007 - Modification State 0

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle and Operating as per "Specification Reference", above.

2.3.6 Environmental Conditions

Damp Heat Cycle Temperature Plot (Climatec 3 Chamber)

75900217 15-02-07 to 16-02-07

2.3.7 Test Results

Performance Test Results

Parameter	Limit	Units	Result
Power Output			
Transmitter power output	35 - 39	dBm	36.36
Power output rise time	< 5	ms	0
Digital Message Coding			
Bit Sync	15 bits "1"	P/F	Р
Frame sync	"000101111"	P/F	Р
Format flag	1 bit	bit value	0
Protocol flag	1 bit	bit value	1
ID / position data	59 bits	P/F	Р
BCH code	21 bits	P/F	Р
Emerg. Code/nat. use/supplem. Data	6 bits	bit value	110110
Additional data / BCH (if applicable)	32 bits	P/F	N/A
Position Error	< 5	km	N/A
406 MHz Transmitted Frequency			
Nominal Value	C/S T.001	MHz	406.036988
Short-term stability	≤ 2x10 ⁻⁹	/100ms	4.062x10-10
Medium-term stability – Slope	(-1 to +1)x10 ⁻⁹	/minutes	-3.019x10-11
Medium-term stability – Residual frequency variation	≤ 3x10 ⁻⁹		2.466x10-10

Summary of Performance Check results

Stage	Pass / Fail
During Two Hour Dwell, Message 1	Pass
During Two Hour Dwell, Message 2	Pass

Beacon Test Report (Performance Check, During Two Hour Dwell, Message 1)

Beacon Test Report

A03D3CFCF400001

Organization: TUV Product Service Ltd Tested By: Emergency Beacons Dept. Date: 16-Feb-07 11:42:51 AM Tester Model/Serial No./File Name: BT100S/1025/joepirb-1 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 23°C

FAIL

INITIALS:

Notes: Add text comments here.

15 Hex ID: A03D3CFCF400001 Full Hex: FFFE2F501E9E7E7A00000D504837 Burst Mode: Normal Mode (Short) Protocol: Test User Protocol Country 257: Norway National Use: 21783256236033

Emergency type: Non-Maritime Activation type: Auto

406 MHz Measurements 406 Frequency (INT REF): 406.0372 MHz 406 Power (5 Watt): 36.2 dBm Power Rise Time: : < 5 ms Phase Deviation: -1.11 +1.11 radians Modulation Rise Time: 130 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.8% Modulation Bit Rate: 399.5 bps CW Preamble: 160.6 ms

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

Beacon Test Report (Performance Check, During Two Hour Dwell, Message 2)

Beacon Test Report

A03D3CFCF400001

Organization: TUV Product Service Ltd Tested By: Emergency Beacons Dept. Date: 16-Feb-07 11:43:39 AM Tester Model/Serial No./File Name: BT100S/1025/joepirb-2 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 25°C

FAIL

INITIALS:

Notes: Add text comments here.

15 Hex ID: A03D3CFCF400001 Full Hex: FFFE2F501E9E7E7A00000D504837 Burst Mode: Normal Mode (Short) Protocol: Test User Protocol Country 257: Norway National Use: 21783256236033

Emergency type: Non-Maritime **Activation type:** Auto

406 MHz Measurements 406 Frequency (INT REF): 406.0372 MHz 406 Power (5 Watt): 36.2 dBm Power Rise Time: 1 < 5 ms Phase Deviation: -1.08 +1.11 radians Modulation Rise Time: 142 uS Modulation Fall Time: 165 uS Modulation Symmetry: 0.8% Modulation Bit Rate: 399.5 bps CW Preamble: 160.5 ms

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

2.4 VIBRATION TEST

2.4.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.4 (5.13.6) IEC 60945: 2002, Clause 8.7

2.4.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.4.3 Date of Test and Modification State

28 February and 01 March 2007 - Modification State 1

2.4.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle

Test Set-up

2.4.6 Test Results

Test Procedure

EUT interfaced to tall bulkhead fixture. Control accelerometer fitted adjacent to interface point.

Vertical axis, Swept sine resonance search: Peak resonance @ 88.20Hz

Vertical axis, fixed frequency endurance for two hours @ 88.2Hz

Lateral axis, Swept sine resonance search: Peak resonance @ 59.55Hz

Lateral axis, fixed frequency endurance for two hours @ 59.55Hz

Longitudinal axis, Swept sine resonance search: Peak resonance @ 84.88Hz

Longitudinal axis, fixed frequency endurance for two hours @ 84.88Hz

After testing was complete, a performance check was carried out, see beacon test report below.

COMMERCIAL-IN-CONFIDENCE

Vertical axis, Resonance Search (EUT Response)

C:\VcpNT\Daten\m+p\Jotron\Res Search 005.rsn

C:\VcpNT\Daten\m+p\Jotron\Dwells 006.rsd

Page 38 of 145

COMMERCIAL-IN-CONFIDENCE

Lateral axis, Resonance Search (EUT Response)

C:\VcpNT\Daten\m+p\Jotron\Res Search 1 003.rsn

Lateral axis, Resonance Dwell

C:\VcpNT\Daten\m+p\Jotron\Dwells 1 001.rsd

COMMERCIAL-IN-CONFIDENCE

Longitudinal axis, Resonance Search (EUT Response)

C:\VcpNT\Daten\m+p\Jotron\Res Search 1 004.rsn

C:\VcpNT\Daten\m+p\Jotron\Dwells 1 003.rsd

Beacon Test Report (Post Test Performance Check)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 3/9/07 8:14:06 AM Tester Model/Serial No./File Name: BT100S/2383/jotron epirb presalt-72 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 31°C

FAIL INITIALS:

Notes: Add text comments here.

2.5 RUGGEDNESS TEST

- 2.5.1 Specification Reference IEC 61097-2: 2002, Clause A.1.5 (5.13.7)
- 2.5.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.5.3 Date of Test and Modification State

01 March 2007 - Modification State 1

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle

Physical test configuration: as per Vibration Test, above.

2.5.6 Test Results

Vertical axis, 4000 Bumps

C:\VcpNT\Daten\m+p\Jotron\Bump 10q 16ms 003.rcs

Beacon Test Report (Post Test Performance Check)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 3/9/07 8:14:06 AM Tester Model/Serial No./File Name: BT100S/2383/jotron epirb presalt-72 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 31°C

FAIL INITIALS:

Notes: Add text comments here.

 \boxtimes 15 Hex ID: 203DE7E7A0FFBFF Power vs. Time Full Hex: FFFED0901EF3F3D07FDFF81CA77783E0F66C 5dB/div 100mS/div Burst Mode: Self Test Mode (Long) Protocol: Standard Test Protocol Country 257: Norway Bits 41 - 64: 15987664 Position Source: Internal GPS Auxiliary Radio: 121.5 MHz Bits 107-110: Default Latitude: * ***** ** VI.11 Longitude: * **°**.** Spectrum 10 dB/div Span 50kHz 100Hz RBW 406 MHz Measurements 406 Frequency (INT REF): 406.0369 MHz 406 Power (INT ANT): 87% Power Rise Time: < 5 ms Phase Deviation: -1.09 +1.02 radians Modulation Rise Time: 153 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.5 bps Phase vs. Time CW Preamble: 160.9 ms .5 rads/div 1 mS/div DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

2.6 CORROSION TEST

2.6.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.6 (5.13.9) IEC 60945: 2002, Clause 8.7

2.6.2 Equipment Under Test

Tron 40S MkII, Serial Number 003

Note: Non-GPS variant sample used as external physical characteristics (size, shape, materials, etc...) declared identical to GPS sample by customer.

2.6.3 Date of Test and Modification State

09 March to 06 April 2007 - Modification State 1

2.6.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle

Test Set-up

2.6.6 Environmental Conditions

Storage Temperature Plot

Salt Storage 09-03-07 to 06-04-07

Note: Plot shows several 'spikes' throughout the test – these were the result of removal of the test sample for the 2 hour salt sprays at 7 day intervals.

2.6.7 Test Results

Before the test the EUT was visually inspected for any signs of deterioration, none was found. The EUT was also Performance Checked, see Beacon Test Report below.

Post test the EUT was inspected, no undue deterioration or corrosion of metal parts was noted. A performance check was completed satisfactorily, see Beacon Test Report below

Beacon Test Report (Performance Check, Pre-test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 3/9/07 8:14:06 AM Tester Model/Serial No./File Name: BT100S/2383/jotron epirb presalt-72 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 31°C

FAIL INITIALS:

Notes: Add text comments here.

 \times 15 Hex ID: 203DE7E7A0FFBFF Power vs. Time Full Hex: FFFED0901EF3F3D07FDFF81CA77783E0F66C 5dB/div 100m\$/div Burst Mode: Self Test Mode (Long) Protocol: Standard Test Protocol Country 257: Norway Bits 41 - 64: 15987664 Position Source: Internal GPS Auxiliary Radio: 121.5 MHz Bits 107-110: Default Latitude: * **°**.** V1.11 Longitude: * ****.** Spectrum 10 dB/div Span 50kHz 100Hz RBW 406 MHz Measurements 406 Frequency (INT REF): 406.0369 MHz 406 Power (INT ANT): 87% **Power Rise Time:** < 5 ms Phase Deviation: -1.09 +1.02 radians Modulation Rise Time: 153 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.5 bps Phase vs. Time CW Preamble: 160.9 ms .5 rads/div 1 m\$/div DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

 \boxtimes

100m\$/div

Beacon Test Report (Performance Check, Post-test)

Beacon Test Report A03D3CFCF400001

Organization: Tested By: Date: 21-Dec-07 4:14:53 PM Tester Model/Serial No./File Name: BT100S/1025/00217-60945Tshock-SN003-2 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 22°C

FAIL INITIALS:

Notes: Add text comments here.

15 Hex ID: A03D3CFCF400001 Full Hex: FFFED0501E9E7E7A00000D504837 Burst Mode: Self Test Mode (Short) Protocol: Test User Protocol Country 257: Norway National Use: 21783256236033

Emergency type: Non-Maritime **Activation type:** Auto

406 MHz Measurements 406 Frequency (INT REF): 406.0372 MHz 406 Power (INT ANT): 84% Power Rise Time: < 5 ms Phase Deviation: -1.1 +1.14 radians Modulation Rise Time: 153 uS Modulation Fall Time: 165 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.7 bps CW Preamble: 159.8 ms

121.5 MHz Measurements 121 Frequency (INT REF): Detected. 121 Power (INT ANT): 37% Signal was unmodulated.

Power vs. Time

5dB/div

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

2.7 DROP TEST (ON HARD SURFACE)

- 2.7.1 Specification Reference IEC 60945: 2002, Clause 8.6.1
- 2.7.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.7.3 Date of Test and Modification State

19 April 2007 - Modification State 2

2.7.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle

Test Set-up

2.7.6 Test Results

The test piece was located into test chamber and the chamber was set to -30° C. Once at -30° C, the chamber was dwelled for 2 hours 21 minutes.

The test piece was removed and 1 drop from a height of 1 metre onto the test surface was performed.

Upon completion of the drop test the EUT was subjected to a performance check; it continued to operate correctly.

2.8 DROP TEST (IN WATER)

2.8.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.7 (5.13.5) IEC 60945: 2002, Clause 8.6.2

2.8.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.8.3 Date of Test and Modification State

26 June 2007 - Modification State 5

2.8.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle*

*Note: EUT activated (entered Operating mode automatically) on contact with water.

2.8.6 Test Results

Method

EUT was dropped from a height of 20 meters into sea water three times. Each time the EUT was performance checked before and after the test and each time the EUT was released from a different orientation; upright, horizontal and inverted (with respect to the main antenna/normal orientation). An exterior mechanical inspection was conducted after each drop – no damage was found. Note: After the first drop the labelling partially lifted. By the final drop most of the labelling was so loose that it was removed to avoid loss.

Summary of Performance Check Results

Stage	Pass / Fail
Pre-Upright Test	Pass
Post-Upright Test	Pass
Pre-Inverted Test	Pass
Post-Inverted Test	Pass
Pre-Horizontal Test	Pass
Post-Horizontal Test	Pass

Note: Due to a programming error, the EUT was transmitting (during normal operational mode) a message with a self-test frame sync. After the test the EUT was reprogrammed and found to be capable of normal messages. Therefore, the following messages continue to demonstrate that the EUT functioned correctly even though the message output was technically incorrect.

Beacon Test Report (Performance Check, Pre-Upright Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 3:03:13 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBuprightPre–1 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 28°C

FAIL INITIALS:

Notes: Add text comments here.

Note: Because the EUT was a radiated sample and some external factor has reduced the power towards the final part of the message this Beacon Test Report (BTR) shows a short message. However, the power vs. time graph shows that a full 520ms burst **was** received hence the short message displayed is only part of the full message. This was attributed to the beacon tester receiving insufficient power to decode/display the remainder of the message.

Beacon Test Report (Performance Check, Post-Upright Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 3:06:36 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBuprightPost-1 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 27°C

FAIL INITIALS:

Notes: Add text comments here.

Note: Because the EUT was a radiated sample and some external factor has reduced the power towards the final part of the message this Beacon Test Report (BTR) shows a short message. However, the power vs. time graph shows that a full 520ms burst **was** received hence the short message displayed is only part of the full message. This was attributed to the beacon tester receiving insufficient power to decode/display the remainder of the message.

Beacon Test Report (Performance Check, Pre-Inverted Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 3:19:55 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBinvertPre-1 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 28°C

FAIL INITIALS:

Notes: Add text comments here.

Beacon Test Report (Performance Check, Post-Inverted Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 3:24:56 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBinvertPost-1 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 29°C

FAIL INITIALS:

Notes: Add text comments here.

 $\left| X \right|$ 15 Hex ID: 203DE7E7A0FFBFF (203DE7E7A06540A) Power vs. Time Full Hex: FFFED0901EF3F3D032A05203BAB79083BE4F 5dB/div 100mS/div Burst Mode: Self Test Mode (Long) Protocol: Standard Test Protocol Country 257: Norway Bits 41 - 64: 15987664 Position Source: Internal GPS Auxiliary Radio: 121.5 MHz Bits 107-110: Default Latitude: N 50°34'8" VI.11 Spectrum Longitude: W 2°26'16" 10 dB/div Span 50kHz 100Hz RBW 406 MHz Measurements 406 Frequency (INT REF): 406.0368 MHz 406 Power (INT ANT): 62% Power Rise Time: < 5 ms Phase Deviation: -1 +1.07 radians Modulation Rise Time: 130 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.7 bps Phase vs. Time CW Preamble: 160.7 ms 1 mS/div .5 rads/div DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

 \boxtimes

100mS/div

Beacon Test Report (Performance Check, Pre-Horizontal Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 2:50:15 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBuprightPre-4 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 27°C

FAIL INITIALS:

5dB/div

Notes: Add text comments here.

15 Hex ID: 203DE7E7A0FFBFF (203DE7E7A06540A) Full Hex: FFFED0901EF3F3D032A05203BAB79083BE4F Burst Mode: Self Test Mode (Long) Protocol: Standard Test Protocol Country 257: Norway Bits 41 - 64: 15987664

Position Source: Internal GPS Auxiliary Radio: 121.5 MHz Bits 107-110: Default Latitude: N 50°34'8" Longitude: W 2°26'16"

406 MHz Measurements 406 Frequency (INT REF): 406.0368 MHz 406 Power (INT ANT): 52% Power Rise Time: < 5 ms Phase Deviation: -0.98 +1.12 radians Modulation Rise Time: 142 uS Modulation Fall Time: 153 uS Modulation Symmetry: 0.8% Modulation Bit Rate: 399.7 bps CW Preamble: 160.8 ms Spectrum
VI.11
10 dB/div
Span 50kHz
100Hz RBW
VI.11
Phase vs. Time
.5 rads/div
ImS/div

Power vs. Time

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

 \times

VI.11

Span 50kHz

100Hz RBW

1 mS/div

100mS/div

Power vs. Time

Spectrum

Phase vs. Time

Beacon Test Report (Performance Check, Post-Horizontal Test)

Beacon Test Report 203DE7E7A0FFBFF

Organization: TUV Product Service Tested By: BT100A S/N: 2383 Date: 6/26/07 2:56:13 PM Tester Model/Serial No./File Name: BT100S/2383/EPIRBuprightPost-1 Tester Cal Due Date: Sep 6, 2008 Tester Temperature: 26°C

FAIL INITIALS:_

5dB/div

10 dB/div

5 rads/div

Notes: Add text comments here.

15 Hex ID: 203DE7E7A0FFBFF (203DE7E7A06540A) Full Hex: FFFED0901EF3F3D032A05203BAB7 Burst Mode: Self Test Mode (Short) Protocol: Standard Test Protocol Country 257: Norway Bits 41 - 64: 15987664

Position Source: Internal GPS Auxiliary Radio: 121.5 MHz Bits 107-110: Default Latitude: N 50°30'00" Longitude: W 2°30'00"

406 MHz Measurements 406 Frequency (INT REF): 406.0368 MHz 406 Power (INT ANT): 52% Power Rise Time: > 5 ms Phase Deviation: -0.96 +1.11 radians Modulation Rise Time: 142 uS Modulation Fall Time: 142 uS Modulation Symmetry: 1.1% Modulation Bit Rate: 399.7 bps

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

Note: Because the EUT was a radiated sample and some external factor has reduced the power towards the final part of the message this Beacon Test Report (BTR) shows a short message. However, the power vs. time graph shows that a full 520ms burst **was** received hence the short message displayed is only part of the full message. This was attributed to the beacon tester receiving insufficient power to decode/display the remainder of the message.

2.9 THERMAL SHOCK TEST

2.9.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.8 (5.13.4) IEC 60945: 2002, Clause 8.5

2.9.2 Equipment Under Test

Tron 40S MkII, Serial Number 003

2.9.3 Date of Test and Modification State

21 December 2007 - Modification State 7

2.9.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle*

*Note: EUT activated (entered Operating mode automatically) on contact with water.

Test Set-up

2.9.6 Environmental Conditions

Storage	70°C
Temperature	
Storage Duration	1:04 (hh:mm)
Water Temperature	26.8°C
Immersion Duration	1:00 (hh:mm)

2.9.7 Test Results

Prior to the commencement of the testing the EUT was subjected to a performance check and weighed:

- The test item operated correctly, see pre-test performance check, below
- Dry weight = 1.888 kg

The EUT was located an environmental chamber and stabilised at 70°C for 1 hour 4 minutes.

The EUT was removed from the chamber and immersed within 5 seconds in a vessel filled with water at a temperature of 26.8°C. The uppermost part of the EUT was 100mm from the surface of the water. The unit activated upon immersion. The unit was prevented from floating to the surface and left for one hour.

The EUT was removed from the vessel, dried externally, its weight was recorded and checks were made for signs of ingress:

- The test item operated correctly, see pre-test performance check, below
- Unit weight (post-test): 1.894 kg
- No signs of ingress were noted

Note: EUT deactivated immediately upon removal from the water.

Detailed inspection of the EUT (involving partial dismantling) was conducted and, as no moisture was found inside, the additional 5g of water was attributed to water contained within the outer portion of the seal and switch assembly.

 \boxtimes

100mS/div

Beacon Test Report (Performance Check, Pre-test)

Beacon Test Report A03D3CFCF400001

Organization: Tested By: Date: 21-Dec-07 4:14:53 PM Tester Model/Serial No./File Name: BT100S/1025/00217-60945Tshock-SN003-2 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 22°C

FAIL IN

INITIALS:

5dB/div

Notes: Add text comments here.

15 Hex ID: A03D3CFCF400001 Full Hex: FFFED0501E9E7E7A00000D504837 Burst Mode: Self Test Mode (Short) Protocol: Test User Protocol Country 257: Norway National Use: 21783256236033

Emergency type: Non-Maritime Activation type: Auto

406 MHz Measurements 406 Frequency (INT REF): 406.0372 MHz 406 Power (INT ANT): 84% Power Rise Time: < 5 ms Phase Deviation: -1.1 +1.14 radians Modulation Rise Time: 153 uS Modulation Fall Time: 165 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.7 bps CW Preamble: 159.8 ms

121.5 MHz Measurements 121 Frequency (INT REF): Detected. 121 Power (INT ANT): 37% Signal was unmodulated. S

Power vs. Time

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

 \boxtimes

VI.11

Span 50kHz 100Hz RBW

1 mS/div

100mS/div

Power vs. Time

Spectrum

Phase vs. Time

.5 rads/div

Beacon Test Report (Performance Check, Post-test)

Beacon Test Report A03D3CFCF400001

Organization: Tested By: Date: 21-Dec-07 6:46:50 PM Tester Model/Serial No./File Name: BT100S/1025/00217-60945Tshock-SN003-post-3 Tester Cal Due Date: Nov 10, 2006 Tester Temperature: 26°C

🗆 FAIL

INITIALS:

Notes: Add text comments here.

 15 Hex ID: A03D3CFCF400001
 I

 Full Hex: FFFED0501E9E7E7A00000D504837
 5dB/div

 Burst Mode: Self Test Mode (Short)
 5dB/div

 Protocol: Test User Protocol

 Country 257: Norway

 National Use: 21783256236033

 Emergency type: Non-Maritime

 Activation type: Auto
 10 dB/div

406 Frequency (INT REF): 406.0373 MHz 406 Power (INT ANT): 92% Power Rise Time: < 5 ms Phase Deviation: -1.1 +1.13 radians Modulation Rise Time: 153 uS Modulation Fall Time: 142 uS Modulation Symmetry: 0.4% Modulation Bit Rate: 399.7 bps CW Preamble: 160.8 ms

121.5 MHz Measurements 121 Frequency (INT REF): Detected. 121 Power (INT ANT): 26% Signal was unmodulated.

DISCLAIMER: IN NO EVENT SHALL WS TECHNOLOGIES INC. OR ITS DISTRIBUTORS OR AGENTS BE LIABLE FOR ANY DAMAGES OR LOSSES INCURRED AS A RESULT OF THE USE OR FAILURE OF THIS MEASUREMENT EQUIPMENT.

2.10 IMMERSION TEST

2.10.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.9 (5.13.8) IEC 60945: 2002, Clause 8.9

2.10.2 Test Results

Test completed as per customer supplied information, see Annex A.

2.11 SPURIOUS EMISSIONS TEST

- 2.11.1 Specification Reference IEC 61097-2: 2002, Clause A.1.10 (5.15)
- 2.11.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.11.3 Date of Test and Modification State

15 March 2007 - Modification State 1

2.11.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.11.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.11.6 Environmental Conditions

Ambient Temperature23.1°CAtmospheric1023mbarPressure

2.11.7 Test Results

EUT connected to 50Ω spectrum analyser (in peak hold mode) via 20.5dB of attenuation. The following plots were obtained.

Spurious Emissions, Band 1

🔆 Agi	lent 1	6:27:00	6 Mar∶	15,200)7					
Ref -9	.5 dBm		#Atten	0 dB				Mkr1	166.23 -65.8	24 MHz 9 dBm
Peak										
LOG 10										
dBZ										
Offst										
20.5										
dB										
DI 160										
-10.0 dBm										
	ويه المحمد عليه	have had a day		Ware Neves	ut All Speciel	press and	an a	haddalaw Madd	honorthicked	and all all
V1 S2										
53 FU										
Start 1	.56 MHz	2							Stop 17	'4 MHz
#Res B	W 120	kHz		#VB	W 100	kHz	Swee	ep 10 m	is (100)	l pts)

Spurious Emissions, Band 2

🔆 🔆 Agi	lent 1	16:56:0	2 Mari	15,200)7					
Ref -S).5 dBm		#Atten	0 dB				Mkr1	1.530 -66.6	66 GHz 5 dBm
Peak										
LOG										
dBZ										
Offst										
20.5										
dB										
DI 160										
dBm										
	and a set of	utt a baa ut							a ha a ba a a d	
V1 S2		a a fan de stander an de s En se	Plater and the second	and a state of the second s				(entrelighter of the second		a da da da gala da
\$3 FC										
AA										
Start 1	L.525 G	iHz						St	op 1.54	5 GHz
#Res B	3W 120	kHz		#VB	W 100	kHz	Swee	≥p 10 m	is (100)	1 pts)

Peak Values

Frequency Band (MHz)	Measured power (dBm)	Measured power (µW)	Limit (µW)
1. 156 - 174	-65.89	258x10 ⁻⁶	25
2. 1525 - 1545	-66.65	216x10 ⁻⁶	25

2.12 CONDUCTED INTERFERENCE TEST

2.12.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.11 (5.17) IEC 60945: 2002, Clause 10.3, 10.5, 10.6, 10.7 and 10.8

2.12.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Hence, test is not applicable.

2.13 SIGNAL LIGHT TEST

2.13.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.12 (5.3.3.3)

2.13.2 Test Results

Test completed as per customer supplied information, see Annex A.

2.14 BATTERY CAPACITY AT LOW TEMPERATURE TEST

2.14.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.13 (5.12.1) IEC 60945:2002, Clause 8.4

2.14.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.14.3 Date of Test and Modification State

12 to 14 November 2007 - Modification State 7

2.14.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.14.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.14.6 Environmental Conditions

Temperature Plot

Heraeus Temperature

2.14.7 Pre-Test Results

Battery Discharge Current

The discharge current for the batteries was measured for each of the following beacon states. Beacon in the Off or Standby State, "Standby Current" Beacon performing a Self-test, "Self-test Current" Beacon activated and transmitting, "Operating Current"

The individual tests were	conducted for the following durations:
---------------------------	--

Standby Current	:	30 minutes	(1799920 ms)
Self-test Current	:	7.92 seconds	(7920 ms)
Operating Current	:	30 minutes	(1799920 ms)

Assumptions / Supplied Data

Battery Replacement Interval	: 5 years
Battery Capacity	: 7.2 Ah
Battery Self Drain	: 3.00 % per year
Self-test Interval	: 12 tests per year

Test Results

Mode Current	=	Accumulated Charge / Time		
Standby Current	=	1.196E+09 pC / 1799920 ms	=	664.24 nA
Self-test Current	=	905591.2 uC / 7920 ms	=	114.34 mA
Operating Current	=	121755156 uC / 1799920 ms	=	67.64 mA

Battery Preconditioning / Discharge Time Calculations

Battery Self Drain	= Capacity - [(100% - Self Drain/Year%) ^{Replacement Interval} x Capacity] = 7.2- ((1- 0.0300) ⁵ x 7.2) = 1.0171 Ah
Standby Drain	= Hours per year x Battery Replacement Interval x Standby Current = $365 \times 24 \times 5 \times 664.24 \times 10^{-9} = 0.0291 \text{ Ah}$
Self-test Drain	= Self-tests per battery x Self-test Current x Self-test duration (in hours) = $12 \times 5 \times 114.34 \times 10^{-3} \times (7.92 / 3600) = 0.0151 \text{ Ah}$
Total Drain	 = Self Drain + Standby Drain (Worst Case) + Self-test Drain (Worst Case) = 1.0171 + 0.0291 + 0.0151 = 1.0613 Ah
Battery Preconditioning	/ Discharge Time = Worst Case drain / Operational Current = 1.0613 / (67.64×10^{-3}) = 15.69 hours

The battery was discharged by operating the EUT into a 50Ω load at ambient temperature for 15 hours and 42 minutes.

Battery Current Measurement Results (continued) - Standby Mode

Battery Current Measurement Results (continued) - Self-test Mode

2.14.8 Test Results

Note: This test approximates the two tests outlined in IEC 60945:2002, Clauses 8.4.1 and 8.4.2 (Storage and Functional Tests respectively) to an equal or more severe degree. This is based on the longer operational duration, shorter 'warm-up' time and that the operational portion is performed at a time when the EUT internal temperature is most likely still well below the chamber temperature of -20°C having stabilised at -30°C for 10 to 16 hours.

Summary of results can be found in the Test Results Table, starting on page 18.

406 MHz Test Result Graphs

Nominal Frequency Offset

COMMERCIAL-IN-CONFIDENCE

Short Term Stability

Medium Term Stability – Slope

COMMERCIAL-IN-CONFIDENCE

Medium Term Stability – Residual Frequency Variation

Output Power

Operating Lifetime at Minimum Temperature - Digital Message

Message Content Expected Mess Actual Message Message Error	sage ge ^ Count	FFFE2FCC96A000C6000F4B89E66FE0FF0146 FFFE2FCC96A000C6000F4B89E66FE0FF0146 00
Beacon Id Format. 15 Hex (Bits 26- 30 Hex (Bits 25-		0 Hex Id, Long Message, Bits 25-144 040018C001E9 992D40018C001E9 Default_Id 6A000C6000F4B89E66FE0FF0146
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 42 1101 0100 1100 1100 98 102 1	46 50 54 58 62 66 70 74 78 82 <
Field Name	Bit Pos	Value Decode Bits
Format Flag Protocol Flag MID User Protocol Beacon type Certification type	25 26 27-36 37-39 40-42 e 43	1 Long Message1 User201 ALBANIA0011 0010 03 Serialized2 Float Free EPIRB011 Cospas-Sarsat
Serial Number Cosp-Sar Spare Cosp-Sar Cert # Homing BCH Encoded	44- 63 64- 73 74- 83 84- 85 86-106	99 0000 0000 0110 001 0 0000 0000 0000 0000 0000 122 0001 1110 1 1110 1 1 121.5 0 0111 0001 0111 1100 1100
BCH Generated Long Message Encode Pos Device Encoded Position BCH Encoded BCH Generated	86-106 107-144 107 108-132 133-144 133-144	0111 0001 0011 1100 1100 Data Present 1 Internal DEFAULT 0111 1111 0000 0111 1111 1000 Errors=0 0001 0100 011 0001 0100 011

2.15 COSPAS-SARSAT TYPE APPROVAL

2.15.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.14

2.15.2 Test Results

Cospas-Sarsat Type Approval Tests completed outside the scope of this report and submission to Cospas-Sarsat made. Application pending approval at the time of issue of this report.

2.16 COMPULSORY SEQUENCE OF TESTS

2.16.1 Specification Reference

IEC 61097-2: 2002, Clause A.1

2.16.2 Test Results

In order to comply with the above-mentioned clause the sequence of tests was checked, see below.

Compulsory Sequence of Tests

Clause	Test	Date(s)	EUT Serial Number	Comments
A.1.1	Message format and homing devices	Before testing	001 & 002	Sequence OK
A.1.2	Dry heat test	12 - 13 March 2007	001	May be performed out of sequence Test was performed out of sequence and for the purposes of conducting the Performance Test sample serial number 001 was used (sample fitted with 50ohm interface)
A.1.3	Damp heat test	15 - 16 February 2007	001	Test performed on sample serial number 001 for the purposes of conducting the Performance Test (sample fitted with 500hm interface)
A.1.4	Vibration test	28 February - 01 March 2007	002	Sequence OK
A.1.5	Ruggedness test	01 March 2007	002	Sequence OK
A.1.6	Corrosion test	09 March to 06 April 2007	003	Test performed on sample serial number 003 scheduling purposes (long test duration)
A.1.7	Drop test into water	26 June 2007	002	Sequence OK
A.1.8	Thermal shock test	21 December 2007	003	Test performed on sample serial number 003
A.1.9	Immersion test	N/T	N/T	N/T = Not Tested by TÜV Product Service Ltd
A.1.10	Spurious emission	15 March 2007	001	May be performed out of sequence Test was performed out of sequence and for practical reasons sample with serial number 001 was used (sample fitted with 500hm interface)
A.1.11	Conducted interference test (if applicable)	N/A	N/A	N/A = Not Applicable
A.1.12	Signal light test	N/T	N/T	N/T = Not Tested by TÜV Product Service Ltd
A.1.13	Battery capacity and low- temperature test	12 - 14 November 2007	001	Test performed on sample serial number 001 for the purposes of conducting the required measurements (sample fitted with 500hm interface)
A.1.14	COSPAS-SARSAT type- approval test procedure	10 July 2007 - 29 November 2007 ① 29 November 2007 - 13 December 2007 ②	001 002 003 101	See TÜV Documents: 75900217 Report 02 ① and 75900217 Report 03 ②

① Tron 40GPS MkII

② Tron 40S MkII (non-GPS variant)

2.17 INADVERTENT ACTIVATION TEST

2.17.1 Specification Reference

IEC 61097-2: 2002, Clause A.2.1 (5.3.1 referring to 5.5.1.1)

2.17.2 Test Results

Test completed as per customer supplied information, see Annex A for information.

2.18 SELF-TEST

2.18.1 Specification Reference

IEC 61097-2: 2002, Clause A.2.1 (5.3.4)

2.18.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.18.3 Date of Test and Modification State

30 August 2007 - Modification State 6

2.18.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.18.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Self-test

2.18.6 Environmental Conditions

Ambient Temperature21.6°CAtmospheric Pressure1014mbar

2.18.7 Test Results

Parameter	Result
36 Hex Code	FFFED0CC96A000C6000F4B89E66FE0FF0146
15 Hex Code	992D40018C001E9
Decoded Bit Sync	1111111111111
Expected Bit Sync	1111111111111
Decoded Frame Sync	011010000
Expected Frame Sync	011010000
Emer. code / Nat. use	101111
Self-Test Burst Length	520.2706ms

COMMERCIAL-IN-CONFIDENCE

Self-test Message Decode

Message format: long format	25	1
Protocol: User	26	1
Country code: 201	27-36	0011001001
User type: Serial User	37-39	011
Serial Type: Float Free EPIRB with Serial Identification Number	40-42	010
Cospas-Sarsat Certificate Number in bits 74-83: Yes	43	1
Serial Number: 99	44-63	0000000000001100011
All 0s or National Use	64-73	000000000
C/S Number or National Use (bit 43 refers): 122	74-83	0001111010
Aux radio device: 121.5 MHz	84-85	01
Encoded BCH 1:	86-106	011100010011110011001
Calculated BCH 1:	N/A	011100010011110011001
Encoded Position Data Source From Internal Navigation Device	107	1
default	108	0
Latitude (degrees): default	109-115	1111111
Latitude (minutes): default	116-119	0000
default	120	0
Longitude (degrees): default	121-128	1111111
Longitude (minutes): default	129-132	0000
Encoded BCH 2:	133-144	000101000110
Calculated BCH 2:	N/A	000101000110
15 Hex ID:	N/A	992D40018C001E9

2.19 AUTOMATIC RELEASE MECHANISM AND AUTOMATIC ACTIVATION TESTS

2.19.1 Specification Reference

IEC 61097-2: 2002, Clause A.2.2 (5.2.1)

2.19.2 Test Results

Test completed as per customer supplied information, see Annex A for information.

2.20 STABILITY AND BUOYANCY TEST

- 2.20.1 Specification Reference IEC 61097-2: 2002, Clause A.2.3 (5.3.2.2)
- 2.20.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

- 2.20.3 Date of Test and Modification State 16 February 2007- Modification State 1
- 2.20.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.20.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle*

*Note: EUT activated (entered Operating mode automatically) on contact with water.

Test Set-up

2.20.6 Environmental Conditions

Ambient Temperature	22.2°C
Relative Humidity	31%
Atmospheric Pressure	1004mbar
Water Temperature	11.2°C

2.20.7 Test Procedure

Buoyancy

The EUT was strapped with cable ties to create a central fixing point at the base of the unit. A large tank was filled with domestic tap water and a 20Kg mass with a pulley attachment was submerged therein.

Completely submerging the EUT into the tank the unit was held under the surface with a rope tied to the fixing point, running through the pulley and attached to a force gauge held by the Test Engineer. The pulley converted the buoyant (upwards) force an equivalent force at an angle coaxial with the force gauge.

Stability

The EUT was submerged just below the surface of the aforementioned tank of fresh water with the antenna in a horizontal position (parallel with the water's surface). The EUT was released and allowed to float freely. The time for the EUT to pass through the vertical position was recorded.

Antenna Height

Determined by examining the EUT in the float-free state as per the end of the Stability procedure.

2.20.8 Test Results

Buoyancy

EUT Mass, m = 1.994Kg EUT Weight, F_{EUT} (m x Acceleration Due to Gravity, g) = 19.56N

Due to unstable reading from the force gauge caused by operator influence and water movement a total of five buoyant force readings were taken, the average (mean) was calculated.

Mean Buoyant Force, F_{Bmean} = 9.66N

= Buoyant Force + EUT Weight / EUT Weight
= F _{Bmean} + F _{EUT} / F _{EUT}
= 9.66 +19.56 / 19.56
= 1.49

Limit is \geq 1.05 hence, test result is a pass.

Stability

EUT passed upright position within 2 seconds, hence, test result is a pass.

Antenna Height

EUT floating freely in fresh water:

2.21 SAFETY INSPECTION

2.21.1 Specification Reference

IEC 61097-2: 2002, Clause A.2.5 (5.8) IEC 60945: 2002, Clause 12.1

2.21.2 Date of Verdict

14 December 2007

2.21.3 Inspection Results

An evaluation and assessment of the supporting documentation for the EUT was conducted, see comments below.

- IEC/EN 60945:2002 Clause 12.1 Protection against accidental access to dangerous voltages
 - Sub-clause 4.6.1 states as far as practicable, accidental access to dangerous voltages shall be prevented.
 - Maximum combined peak voltage is considered to be < 50V throughout the equipment after assessment of circuit diagrams and available documentation.
- IEC/EN 60945:2002 Clause 12.1.3 Required result
 - Although access to the main PCB and batteries was possible without the use of a tool, adequate clearance was found between the test probe and any potential hazardous parts.
- IEC/EN 60529:2001 Degrees of protection provided by enclosures
 - Clause 4 Designations
 - From the information detailed above the equipment is considered to provide IP2X against access to Hazardous parts with 12mm jointed test finger when applied as detailed in test procedure of Sub-clause 12.2 with a maximum 30N force.

The unit under test was considered to PASS all applicable criteria regarding electrical safety precautions.

2.22 COMPASS SAFE DISTANCE TEST

2.22.1 Specification Reference

IEC 61097-2: 2002, Clause A.2.6 (5.16) IEC 60945: 2002, Clause 11.2

2.22.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.22.3 Date of Test and Modification State

23 November 2007 - Modification State 7

2.22.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.22.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle (secured in float-free bracket) and Operating (separated from bracket)

2.22.6 Test Procedure

A wooden table aligned E-W was used with the compass set in the centre of the table and aligned to read zero. The table was marked to give a graduated scale of distance. The EUT was gradually moved towards the compass until a standard deviation of 0.3° was obtained. Each orientation of the EUT was tested in this manner with the measurement distance between the compass centre and the EUT being noted.

The test was repeated but with readings being taken when the compass gave a steering deviation of 1°

The local area Magnetic Flux density (H) at the site of testing was 18.48uT.

The above testing was performed twice with the EUT as follows:

- a. In the magnetic condition in which it is received with the EUT in Idle mode.
- b. After normalising with the EUT in Idle mode.
- c. In Operational mode.

Prior to performing the tests in accordance with parts a and b above, the EUT was normalised by placing it into Helmholtz Coil Assembly and subjecting it to a magnetic field of 79A/m.

2.22.7 Test Results

Summary of Distances

	Un-powered State		Normalised		Powered Up	
Orientation of the EUT	Distance From Compass (cm) at 0.3° deflection	Distance From Compass (cm) at 1° deflection	Distance From Compass (cm) at 0.3° deflection	Distance From Compass (cm) at 1° deflection	Distance From Compass (cm) at 0.3° deflection	Distance From Compass (cm) at 1° deflection
Front	32.5	45	31	42	29	37.5
Тор	29.5	44	28	42	30	42
Left Hand Side	32	45	30	40	27	42
Right Hand Side	31	45	30	40	30.5	42
Underside	17	33	19	40	22	34
Rear	44	55.5	46	67	39	56

<u>Outcome</u>

Safe distance for standard compass = 700mm Safe distance for Steering, Standby Steering and Emergency Compass = 500mm

2.23 SOLAR RADIATION

2.23.1 Specification Reference

IEC 60945: 2002, Clause 8.10

2.23.2 Test Results

Test waivered as per customer supplied information, see Annex A.

2.24 OIL RESISTANCE

2.24.1 Specification Reference

IEC 61097-2: 2002, Clause A.1.12 (5.3.3.3)

2.24.2 Test Results

Test waivered as per customer supplied information, see Annex A.

2.25 CONDUCTED EMISSIONS

2.25.1 Specification Reference

IEC 60945: 2002, Clause 9.2

2.25.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Hence, test is not applicable.

2.26 RADIATED EMISSIONS TEST (ELECTRIC FIELD)

2.26.1 Specification Reference

IEC 60945: 2002, Clause 9.3

2.26.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.26.3 Date of Test and Modification State

07 November 2007 - Modification State 2

2.26.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.26.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating and Idle

2.26.6 Environmental Conditions

Ambient Temperature17.3°CRelative Humidity48%Atmospheric1025mbarPressure1025mbar

2.26.7 Test Procedure

The EUT was set up on a remotely controlled turntable within a semi-anechoic Alternative Open Area Test Site [AOATS], powered up and correct operation verified.

Measurements were made over the frequency range 30MHz to 2GHz at a distance of 3m.

A preliminary profile of the EUT's emissions was made, the profiling yielding a list of worst case emission frequencies together with the EUT azimuth and antenna polarisation.

Utilising the data gathered during the preliminary profiling, the emissions detected were maximised by adjusting the antenna height, antenna polarisation and turntable azimuth.

Emission levels were then formally measured with a CISPR Quasi-Peak detector function and the measured levels recorded.

Emission levels, in the frequency band 156MHz to 165MHz were formally measured with a Peak detector function and the measured levels recorded.

The levels of emissions generated by the EUT were then compared with the test specification limits to determine EUT compliance.

2.26.8 Test Results

Idle Mode

No Emissions were detected above the test system noise floor, see plots below, hence no emissions were maximised and/or recorded.

Note: System Noise Floor >15dB below limit.

Radiated Emissions Plot 1 (156MHz – 165MHz Marine Distress Band)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

🌆 12:56:44 07 NOV 2007

Radiated Emissions Plot 2 (30MHz - 500MHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

4 12:42:25 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 78.2 MHz 9.17 dBµV/m

Radiated Emissions Plot 3 (500MHz - 1GHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

4 13:10:40 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 851.3 MHz 27.53 dBµV/m

Radiated Emissions Plot 4 (1GHz - 2GHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

4 13:24:12 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 1.703 GHz 32.90 dBµV/m

Operational Mode

Table 1 shows the final (maximised) results, plots 5 through 11 show the preliminary scans.

Frequency MHz	Polarity	Height cm	Azimuth degree	Field Strength at 10m dBµV/m	Specification Limit dBµV/m
243.00	Н	100	0	33.6	54.0
364.50	Н	100	0	45.7	54.0
486.00	V	100	0	45.0	54.0
607.50	V	100	0	37.9	54.0
812.07	Н	100	0	62.2*	54.0
1218.24	V	100	0	52.7*	54.0
1624.53	V	100	0	59.9*	54.0

Table 1 (Operational Mode Final (Maximised) Results)

* Note: 812.07MHz, 1218.24MHz and 1624.53MHz are harmonics of the EUT transmit frequency. These emissions were only detected every 50 seconds (synchronised with the transmitter). As per IEC 60945:2002, Clause 9.1 (*equipment including a radio transmitter operating within the measurement bands shall be in the operational state but not the transmitting state*"), these were omitted. I.e. Emissions found were not valid radiated emissions because they were noted during the EUT transmit period and were, in fact, harmonics of the transmitter. Due to the random transmission repetition interval it was not practicable to synchronise measurements to only occur in the transmitter off periods, hence they are included here for information only and are omitted from the final results.

Radiated Emissions Plot 5 (156MHz – 165MHz Marine Distress Band)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

🌆 14:06:11 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 160.523 MHz 1.64 dBµV/m

Radiated Emissions Plot 6 (30MHz - 300MHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

(b) 14:35:49 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 235.9 MHz 16.36 dBµV/m

Radiated Emissions Plot 7 (300MHz - 500MHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

(b) 15:58:10 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 365.2 MHz 45.68 dBµV/m

Radiated Emissions Plot 8 (500MHz - 800MHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

(b) 16:31:05 07 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 608.0 MHz 40.04 dBµV/m

Radiated Emissions Plot 9 (800MHz - 1.2GHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

🍈 18:30:05 08 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 813.0 MHz 64.88 dBµV/m

Radiated Emissions Plot 10 (1.2GHz - 1.6GHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

🍈 18:57:26 08 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 1.21BØ GHz 54.17 dBµV/m

Radiated Emissions Plot 11 (1.6GHz - 2GHz)

Yellow Trace:

Vertical Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

Blue Trace:

Horizontal Polarity (Antenna at 100cm fixed Height, EUT spun from 0° - 360° trace, Max hold)

4 19:15:54 08 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP MKR 1.6250 GHz 64.02 dBµV/m

2.27 RADIATED EMISSIONS TEST (MAGNETIC FIELD)

2.27.1 Specification Reference

IEC 60945: 2002, Clause 9.3

2.27.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.27.3 Date of Test and Modification State

08 November 2007 - Modification State 2

2.27.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.27.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating and Idle

2.27.6 Environmental Conditions

Ambient Temperature	17°C
Relative Humidity	43%
Atmospheric	1016mbar
Pressure	

2.27.7 Test Procedure

The EUT was set up within a shielded enclosure, powered up and correct operation verified.

Measurements were made over the frequency range 150kHz to 30MHz at a distance of 3m.

Measurements of emissions from the EUT were obtained with the Measurement Antenna (Magnetic Loop) configured to be Face On and then Edge On, in relation to the EUT, at a set height of 1.5 metres.

A preliminary profile of the EUT's emissions was made, the profiling yielding a list of worst case emission frequencies together with the EUT azimuth and antenna polarisation.

Utilising the data gathered during the preliminary profiling, the emissions detected were maximised by adjusting the antenna polarisation and turntable azimuth.

Emission levels were then formally measured with a CISPR Quasi-Peak detector function and the measured levels recorded.

The levels of emissions generated by the EUT were then compared with the test specification limits to determine EUT compliance.

2.27.8 Test Results

Idle Mode

No Emissions were detected above the test system's noise floor, see plots below, hence no emissions were maximised and/or recorded.

Radiated Magnetic Emissions Plot 1 (Side On)

ACIV	DET:	PEAK
MEAS	DET:	PEAK QP AVG
		MKR 27.05 MHz
		27.03 dBµV∕m

Radiated Magnetic Emissions Plot 2 (Edge On)

(m) 21:54:30 08 NOV 2007

ACIV	DET:	PEAK
MEAS	DET:	PEAK QP AVG
		MKR 27.05 MHz
		26.71 dBuV/m

Operational Mode

No Emissions were detected above the test system noise floor, see plots below, hence no emissions were maximised and/or recorded.

Radiated Magnetic Emissions Plot 3 (Side On)

🌆 22:01:13 08 NOV 2007

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKR 27.05 MHz 27.54 dBµV/m

Radiated Magnetic Emissions Plot 4 (Edge On)

(m) 22:12:42 08 NOV 2007

ACIV	DET:	PEAK
MEAS	DET:	PEAK QP AVG
		MKR 27.05 MHz
		27.65 dBuV/m

2.28 IMMUNITY TO CONDUCTED RADIO FREQUENCY DISTURBANCE

2.28.1 Specification Reference

IEC 60945: 2002, Clause 10.3

2.28.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Hence, test is not applicable.

2.29 IMMUNITY TO RADIATED RADIO FREQUENCIES

- 2.29.1 Specification Reference IEC 60945: 2002, Clause 10.4
- 2.29.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.29.3 Date of Test and Modification State

15 November 2007 - Modification State 7

2.29.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.29.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating and Idle

Test Set-up (Operating Mode)

COMMERCIAL-IN-CONFIDENCE

Test Set-up (Idle Mode)

2.29.6 Environmental Conditions

19.8°C
24%
1023mbar

2.29.7 Test Procedure

The test was applied in accordance with the test method requirements of EN 61000-4-3.

The EUT was set up within a screened enclosure, aligned with the uniform field calibration plane, powered up and correct operation verified.

The test was applied in the frequency range 80MHz to 2GHz to the front, rear, left hand and right hand sides of the EUT.

The performance of the EUT was monitored throughout the period of test and any anomalies/observations were recorded.

Test Level	12V/m
Modulation	80% amplitude at 400Hz
Dwell Times	3 seconds for each step

2.29.8 Test Results

The EUT met the requirements of EN 60945 for Immunity to Radiated Disturbance.

Document 75900217 Report 01 Issue 3

2.30 IMMUNITY TO FAST TRANSIENTS

2.30.1 Specification Reference

IEC 60945: 2002, Clause 10.5

2.30.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Furthermore, EUT has no signal or control lines which connect to the ship's systems. Hence, test is not applicable.

2.31 IMMUNITY TO SURGES

2.31.1 Specification Reference

IEC 60945: 2002, Clause 10.6

2.31.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Hence, test is not applicable.

2.32 IMMUNITY TO POWER SUPPLY SHORT-TERM VARIATION

2.32.1 Specification Reference

IEC 60945: 2002, Clause 10.7

2.32.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Furthermore EUT is d.c. powered. Hence, test is not applicable.

2.33 IMMUNITY TO POWER SUPPLY FAILURE

2.33.1 Specification Reference

IEC 60945: 2002, Clause 10.8

2.33.2 Test Results

EUT does not connect to the ships power system and runs 'stand-alone' from its own internal battery pack. Hence, test is not applicable.

2.34 IMMUNITY TO ELECTROSTATIC DISCHARGE

2.34.1 Specification Reference

IEC 60945: 2002, Clause 10.9

2.34.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 002

2.34.3 Date of Test and Modification State

23 November 2007 - Modification State 7

2.34.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.34.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Idle (secured in float-free bracket) and Operating (separated from bracket)

2.34.6 Environmental Conditions

Ambient Temperature21°CRelative Humidity30%Atmospheric Pressure1021mbar

2.34.7 Test Procedure

The test was applied in accordance with the test method requirements of EN 61000-4-2.

The EUT was set up on insulators 0.5mm above a Horizontal Coupling Plane within a test area, powered up and correct operation verified.

The test was applied with a proprietary ESD Simulator.

Air Discharge

At each applicable test point 10 positive and 10 negative Air Discharges were applied at each of 2kV and 4kV potentials. The interval between discharges was a minimum of 1 second.

Contact Discharge

At each applicable test point 10 positive and 10 negative Contact Discharges were applied at each of 2kV, 4kV and 6kV potentials. The interval between discharges was a minimum of 1 second

Each vertical sides of the EUT was subjected to Vertical Coupled Plane (VCP) discharges of 2kV, 4kV and 6kV, 10 positive and 10 negative polarity.

The base of the EUT was subjected to Horizontal Coupled Plane (HCP) discharges of 2kV and 4kV, 10 positive and 10 negative polarity.

The performance of the EUT was monitored throughout the period of test and any anomalies/observations were recorded.

2.34.8 Test Results

Idle Mode

The EUT met the requirements of EN 60945 for Immunity to Electrostatic Discharges.

	Contact Discharge						Air Discharge					
Test Point	2kV		4kV		6kV		2kV		4kV		8kV	
	+	-	+	-	+	-	+	-	+	-	+	-
Horizontal Coupling Plane	✓	✓	✓	~	~	✓	N/A	N/A	N/A	N/A	N/A	N/A
Vertical Coupling Plane	~	✓	~	~	~	~	N/A	N/A	N/A	N/A	N/A	N/A
Fixing Bushes	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Retaining Strap Bolts	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Manual Release Pin	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Lanyard Fixing Pin	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Interlock Pin	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Case Screws	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Water Activation Contact	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Float Free Bracket	N/A	N/A	N/A	N/A	N/A	N/A	√*	√*	√*	√*	√*	√*
Case	N/A	N/A	N/A	N/A	N/A	N/A	√*	√*	√*	√*	√*	√*

Details of the points tested and the results are presented in the following tables.

Key to Results:

✓ The EUT's performance was not impaired at test point when ESD pulse applied.

 \checkmark^* No discharge occurred at test point when ESD pulse applied.

N/A Test not applicable as defined in the specification.

Operating Mode

The EUT met the requirements of EN 60945 for Immunity to Electrostatic Discharges.

Details of the points tested and the results are presented in the following tables.

	Contact Discharge					Air Discharge						
Test Point	2kV 4kV		4kV	V 6kV		2kV			4kV		8kV	
	+	-	+	-	+	-	+	-	+	-	+	-
Horizontal Coupling Plane	~	~	~	~	~	~	N/A	N/A	N/A	N/A	N/A	N/A
Vertical Coupling Plane	~	✓	~	~	~	~	N/A	N/A	N/A	N/A	N/A	N/A
Lanyard fixing pin	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Case Screws	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Water activation contact	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*	√*
Case	N/A	N/A	N/A	N/A	N/A	N/A	√*	√*	√*	√*	√*	√*

Key to Results:

- ✓ The EUT's performance was not impaired at test point when ESD pulse applied.
- \checkmark^* No discharge occurred at test point when ESD pulse applied.
- N/A Test not applicable as defined in the specification.

2.35 121.5MHZ HOMING DEVICE (CARRIER FREQUENCY TEST)

2.35.1 Specification Reference

IEC 61097-2: 2002, Clause D.4.1

2.35.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.35.3 Date of Test and Modification State

Test at -20°C: 13 September 2007 - Modification State 7 Test at +55°C: 14 September 2007 - Modification State 7

2.35.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.35.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.35.6 Test Results

Parameter	Linita	Test Results				
	Units	T _{min} (-20°C)	T _{max} (+55°C)			
Carrier Frequency	MHz	121.4997666	121.4997202			

2.36 121.5MHZ HOMING DEVICE (PEAK EFFECTIVE RADIATED POWER)

2.36.1 Specification Reference

IEC 61097-2: 2002, Clause D.4.2

2.36.2 Equipment Under Test

Tron 40S MkII, Serial Number 003

2.36.3 Date of Test and Modification State

25 October 2007 - Modification State 7

2.36.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.36.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.36.6 Test Results

Note: EUT battery used for test had been operational in the same beacon for a duration of »44hours.

Measurements were made (in dBm) at an arbitrarily chosen azimuth angle across a range of elevation angles. Upon finding the maximum, the elevation was fixed and 12 measurements made at 30° azimuth increments.

These results (from the vertically polarised dipole) were converted to PERP in mW. See the following table.

Elovation (°)						Azimı	uth (°)					
	0	30	60	90	120	150	180	210	240	270	300	330
5	57.3	-	-	-	-	-	-	-	-	-	-	-
10	82.9	-	-	-	-	-	-	-	-	-	-	-
15	88.2	86.2	76.8	71.7	68.4	75.0	84.2	90.2	82.3	80.4	76.8	80.4
20	74.0	-	-	-	-	-	-	-	-	-	-	-

The median result was calculated to be 79.3mW, or 18.99dBm.

The ratio between the maximum and minimum of the highest 11 values was calculated to be 1.26 (showing the antenna to be radiating almost equally in all directions, hence, omnidirectional)

2.37 121.5MHZ HOMING DEVICE (MODULATION CHARACTERISTICS - TRANSMITTER DUTY CYCLE)

2.37.1 Specification Reference

IEC 61097-2: 2002, Clause D.4.3

2.37.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.37.3 Date of Test and Modification State

Test at -20°C: 12 September 2007- Modification State 7 Test at +55°C: 14 September 2007- Modification State 7

2.37.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.37.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.37.6 Test Results

Deremeter	Linita	Test R	Results
Parameter	Units	T _{min} (-20°C)	T _{max} (+55°C)
121.5 MHz transmission interruption duration	seconds	1.073	1.064
121.5 MHz transmission interruption interval (informative)	seconds	50.9810	46.953
Transmitter Duty Cycle (informative)	%	97.9	97.8

Note: Transmitter Duty Cycle = Transmitter On Time / (Transmitter On Time + Transmitter Off Time)

Plot showing 121.5MHz interruption duration (Low Temperature, -20°C)

Plot showing 121.5MHz interruption interval (Low Temperature, -20°C)

Plot showing 121.5MHz interruption duration (High Temperature, +55°C)

Plot showing 121.5MHz interruption interval (High Temperature, +55°C)

2.38 121.5MHZ HOMING DEVICE (MODULATION CHARACTERISTICS - MODULATION FREQUENCY AND SWEEP REPETITION RATE, MODULATION DUTY CYCLE)

2.38.1 Specification Reference

IEC 61097-2: 2002, Clauses D.4.4.1 and D.4.4.2

2.38.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.38.3 Date of Test and Modification State

Test at -20°C: 13 September 2007- Modification State 7 Test at +55°C: 14 September 2007- Modification State 7

2.38.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.38.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.38.6 Test Results

The EUT was connected to an automated test rack, the following results were obtained.

Baramatar	Lipito	Test R	esults
Falamelei	Onits	T _{min} (-20°C)	T _{max} (+55°C)
Frequency Range	Hz	944.3	945.75
Minimum Frequency	Hz	387.3	385.36
Maximum Frequency	Hz	1331.6	1331.1
Sweep Direction	Upward / Downward	Downward	Downward
Modulation Duty Cycle	%	33.61	35.73
Sweep repetition rate	sweeps per second	2.61	2.70

2.39 121.5MHZ HOMING DEVICE (MODULATION CHARACTERISTICS - MODULATION FACTOR)

2.39.1 Specification Reference

IEC 61097-2: 2002, Clauses D.4.4.3

2.39.2 Equipment Under Test

Tron 40GPS MkII, Serial Number 001

2.39.3 Date of Test and Modification State

Test at -20°C: 13 September 2007- Modification State 7 Test at +55°C: 14 September 2007- Modification State 7

2.39.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.39.5 Test Set-up and Operating Modes

The test was performed with the EUT in the following mode(s): Operating

2.39.6 Test Results

Deremeter	Lipito	Test Results	
Parameter	Units	T _{min} (-20°C)	T _{max} (+55°C)
A	mv	456	959
В	mv	31	31
Modulation Duty Cycle	%	87.3	93.7

Note: Modulation Factor = (A - B) / (A + B)

Plot showing "A" (Low Temperature, -20°C)

Plot Showing "B" (Low Temperature, -20°C)

Plot showing "A" (Low Temperature, +55°C)

Plot Showing "B" (Low Temperature, +55°C)

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Туре No	TE Number	Calibration Due					
Section 2.35 and 2.38, Carrier	Section 2.35 and 2.38, Carrier Frequency and Modulation Characteristics								
Climatic Chamber	Heraeus Votsch	VM 04/100	85	O/P Mon					
Rubidium Frequency Standard	Quartzlock	A10-B	92	22-Dec-2007					
Signal Generator	Hewlett Packard	8644A	96	11-Jan-2008					
Beacon RF Unit	TUV	N/A	97	TU					
Attenuator 10dB 25W	Weinschel	46-10-43	400	13-Apr-2008					
Attenuator (10dB, 10W)	Weinschel	23-10-34	470	19-Jun-2008					
Attenuator (10dB)	Weinschel	47-10-34	481	26-Feb-2008					
Load (50ohm, 15W)	Diamond Antenna	DL-30N	822	5-Sep-2008					
Climatic Chamber	Unitemp	MINISTRAT	2129	18-Sep-2007					
Distress Beacon RF Unit	TUV		2445	TU					
Beacon RF Unit	TUV	N/A	3066	TU					
Hygrometer	Rotronic	I-1000	3068	25-Apr-2008					
Termination (50ohm, 6W)	Micronde	R404613	3074	24-Feb-2008					
Termination (50ohm, 1W)	Suhner		3080	24-Feb-2008					
Termination (50ohm, 2W)	Omni-Spectra	3001-6100	3081	24-Feb-2008					
Termination (50ohm, 15W)	Diamond Antenna	DL-30N	3096	16-Mar-2008					
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3162	19-Jun-2008					
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3163	30-May-2008					
Thermocouple Thermometer	Fluke	51	3172	18-Jun-2008					
Time Interval Analyser	Yokogawa	TA720 704510	3253	4-Oct-2007					
Scope Corder	Yokogawa	DL750 701210	3254	9-Oct-2007					
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3353	18-Apr-2008					
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3354	18-Apr-2008					

Instrument	Manufacturer	Туре No	TE Number	Calibration Due
Section 2.35 and 2.38, Carrier	Frequency and Modula	ation Characteristics	(Continued	i)
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3356	18-Apr-2008
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3357	18-Apr-2008
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3358	18-Apr-2008
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3359	18-Apr-2008
Cable (3m, N-type)	Rhophase	NPS-1601-3000- NPS	3360	18-Apr-2008
Cable (3m, N-type)	Rhophase	NPS-1601-3000- NPS	3361	18-Apr-2008
Section 2.37 and 2.39, Transn	nitter Duty Cycle and M	odulation Factor		
Attenuator 10dB 25W	Weinschel	46-10-43	400	13-Apr-2008
Attenuator (10dB)	Weinschel	47-10-34	481	26-Feb-2008
Sensor Module	Hewlett Packard	11722A	1333	21-Nov-2007
Climatic Chamber	Unitemp	MINISTRAT	2129	18-Sep-2007
Oscilloscope	Lecroy	9370	2832	21-Sep-2007
Hygrometer	Rotronic	I-1000	3068	25-Apr-2008
Modulation Analyser	Hewlett Packard	8901B	3292	20-Nov-2007
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3351	18-Apr-2008
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3353	18-Apr-2008

Instrument	Manufacturer	Type No	TE Number	Calibration Due
Section 2.14, Battery Capacity	y At Low Temperature	Test		
Climatic Chamber	Heraeus Votsch	VMT 04/30	40	O/P Mon
Signal Generator	Rohde & Schwarz	SMX	43	10-May-2008
Power Meter	Hewlett Packard	436A	47	9-Jul-2008
Power Meter	Hewlett Packard	436A	83	11-Aug-2008
Climatic Chamber	Heraeus Votsch	VM 04/100	85	O/P Mon
Rubidium Frequency Standard	Quartzlock	A10-B	92	22-Dec-2007
Signal Generator	Hewlett Packard	8644A	96	11-Jan-2008
Time Interval Analyser	Yokogawa	TA720	181	21-Feb-2008
Termination	Diamond Antenna	DL-30N	187	28-Nov-2007
Signal Generator	Hewlett Packard	8644A	199	11-Jan-2008
Attenuator 10dB 25W	Weinschel	46-10-43	400	13-Apr-2008
Attenuator: 10dB/20W	Narda	766-10	480	13-Jul-2007
Power Meter	Hewlett Packard	436A	751	12-Sep-2007
Spectrum Analyser	Hewlett Packard	E4407B	1154	19-Jul-2008
Signal Generator	Hewlett Packard	3336C	1185	17-Jul-2007
Signal Generator	Hewlett Packard	3336C	1189	19-Jul-2008
Filter, Broadband	Texscan	8BC-134-67-3-BB	1241	TU
Power Sensor	Hewlett Packard	8482A	1341	4-Oct-2007
Distress Beacon RF Unit	TUV		2445	TU
Multimeter	Hewlett Packard	3478A	2758	21-Jul-2007
Beacon RF Unit	TUV	N/A	3066	TU
Hygrometer	Rotronic	I-1000	3068	25-Apr-2008
Termination (50ohm, 6W)	Micronde	R404613	3074	24-Feb-2008
Termination (50ohm, 1W)	Suhner		3080	24-Feb-2008
Termination (50ohm, 2W)	Omni-Spectra	3001-6100	3081	24-Feb-2008
Termination (50ohm, 15W)	Diamond Antenna	DL-30N	3097	16-Mar-2008

Instrument	Manufacturer	Type No	TE Number	Calibration Due	
Section 2.14, Battery Capacity At Low Temperature Test (Continued)					
Termination (50ohm, 15W)	Diamond Antenna	DL-30N	3098	16-Mar-2008	
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3158	1-Jun-2007	
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3159	30-May-2008	
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3160	30-May-2008	
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3161	30-May-2008	
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3162	19-Jun-2008	
Thermocouple Thermometer	Fluke	51	3172	18-Jun-2008	
Bandpass Filter	Trilithic	5BE406/35-1-AA	3205	28-Jul-2008	
Bandpass Filter	Trilithic	5BE406/35-1-AA	3207	O/P Mon	
Time Interval Analyser	Yokogawa	TA720 704510	3253	6-Nov-2008	
Scope Corder	Yokogawa	DL750 701210	3254	6-Nov-2008	
8 Channel Datalogger + Terminal Board	Pico Technology Ltd	ADC-16	3287	13-Nov-2007	
Power Sensor	Agilent	8482A	3290	14-Nov-2007	
Resistor (Nominal 0.25ohm)	TUV	2x RS Components 188- 071, R5/100W Resistors	3343	TU	
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16-Apr-2008	
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3351	18-Apr-2008	
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3353	18-Apr-2008	
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3354	18-Apr-2008	
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3356	18-Apr-2008	
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3358	18-Apr-2008	
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3359	18-Apr-2008	

Instrument	Manufacturer	Туре No	TE Number	Calibration Due
Section 2.14, Battery Capacity	y At Low Temperature 1	Test (Continued)		
Cable (3m, N-type)	Rhophase	NPS-1601-3000- NPS	3360	18-Apr-2008
Cable (3m, N-type)	Rhophase	NPS-1601-3000- NPS	3361	18-Apr-2008
Section 2.18, Self Test				
Climatic Chamber	Heraeus Votsch	VMT 04/30	40	O/P Mon
Beacon Tester	WS Technologies	BT 100S	87	TU
Rubidium Frequency Standard	Quartzlock	А10-В	92	22-Dec-2007
Signal Generator	Hewlett Packard	8644A	96	11-Jan-2008
Climatic Chamber	Unitemp	MINISTRAT	2129	18-Sep-2007
Stop Clock	R.S Components	RS328 061	2674	TU
Beacon RF Unit	TUV	N/A	3066	TU
Hygrometer	Rotronic	I-1000	3068	25-Apr-2008
Termination (50ohm, 6W)	Micronde	R404613	3074	24-Feb-2008
Attenuator (20dB, 75W)	Bird	8308-200	3076	26-Feb-2008
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3160	30-May-2008
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3162	19-Jun-2008
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3163	30-May-2008
Thermocouple Thermometer	Fluke	51	3172	18-Jun-2008
Bandpass filter	Trilithic	5BE406/35-1-AA	3206	28-Jul-2008
Bandpass Filter	Trilithic	5BE406/35-1-AA	3207	O/P Mon
Time Interval Analyser	Yokogawa	TA720 704510	3253	4-Oct-2007
Scope Corder	Yokogawa	DL750 701210	3254	9-Oct-2007
Cable (1m, N Type)	Rhophase	NPS-1601-1000- NPS	3354	18-Apr-2008
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3355	18-Apr-2008
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3359	18-Apr-2008

Instrument	Manufacturer	Type No	TE Number	Calibration Due	
Section 2.11, Spurious Emiss	ions				
Climatic Chamber	Heraeus Votsch	VM 04/100	85	O/P Mon	
Spectrum Analyser	Hewlett Packard	E4407B	1154	31-May-2007	
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3158	30-May-2008	
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3159	1-Jun-2007	
Attenuator (3dB, 20W)	Aeroflex / Weinschel	23-3-34	3163	1-Jun-2007	
Thermocouple Thermometer	Fluke	51	3172	18-Jun-2008	
Bandpass Filter	Trilithic	5BE406/35-1-AA	3207	O/P Mon	
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16-Apr-2008	
Cable (2m, N Type)	Rhophase	NPS-1601-2000- NPS	3356	18-Apr-2008	
Section 2.7, Drop (On Hard Su	urface)				
Climatic Chamber	Unitemp	MINISTRAT	2129	18-Sep-2007	
Tape Measure	Stanley		2276	TU	
Hardwood Block	Unknown	ELM	2650	TU	
Section 2.9, Thermal Shock	Section 2.9, Thermal Shock				
Climatic Chamber	Heraeus Votsch	VM 04/100	85	O/P Mon	
Thermocouple Thermometer	Fluke	51	3172	18-Jun-2008	
Timer	Radio Spares	427-590	3281	TU	

Instrument	Manufacturer	Туре No	TE Number	Calibration Due	
Section 2.4, Vibration - Sine	Section 2.4, Vibration - Sine				
Charge Amplifier	Endevco	133	2506	28-Sep-2007	
Vibration Controller	Hewlett Packard	E1434A	2507	2-Mar-2007	
Vibration System	Ling Dynamic Systems	LAS V964	2515	1-May-2007	
Charge Amplifier	Endevco	133	2725	6-Jul-2007	
Isotron Accelerometer	Endevco	256-10	3111	05-Sep-2007	
Isotron Accelerometer	Endevco	256-10	3113	06-Sep-2007	
Isotron Accelerometer	Endevco	256-10	3114	05-Sep-2007	
Isotron Accelerometer	Endevco	256-10	3119	15-Feb-2008	
Section 2.36, 121.5MHz Homin	ng Device (Peak Effectiv	ve Radiated Power)			
Antenna, (Tuned Dipole Set)	Roberts Antenna	A-100	569	TU	
Spectrum Analyser	Hewlett Packard	8568B	571	4-Jan-2008	
Signal Generator	Rohde & Schwarz	SMS-2/28	1431	2-May-2008	
Antenna Mast	EMCO	1050	1707	TU	
Turntable Controller	Various	RH253	1708	TU	
Open Area Site 2	TUV	OATS2	1850	3-Oct-2008	
Antenna Tower 6M	EMCO	1050	1859	TU	
Roberts Antenna 406MHz	Compliance Design	-	1860	29-Jun-2009	
Roberts Antenna 406MHz	Compliance Design	-	1861	12-Sep-2007	
Test Receiver	Rohde & Schwarz	ESIB40	2941	19-Oct-2008	
Section 2.2, Dry Heat Test					
Temperature Chamber	Instron	906	2128	7-Dec-2007	
Section 2.3, Damp Heat Test					
Climatic Chamber	Climatec	CLIMATEC 3	2846	18-Apr-2007	

Instrument	Manufacturer	Туре No	TE Number	Calibration Due
Section 2.20, Stability And Buoyancy				
Beacon Tester	WS Technologies	BT 100S	87	TU
Digital Force Gauge (500N)	TWL	AFG4	2971	16-Nov-2007
ESA-E Series Spectrum Analyser	Agilent	E4402B	3348	16-Apr-2008
Section 2.22, Compass Safe I	Distance			
Sussex Helmholtz Coil	Various	88771	327	TU
Power Supply Unit	Hewlett Packard	6253A	614	TU
Magnetometer	Bartington	MAG01	671	4-Jul-2008
Multimeter	Fluke	87	1427	12-Mar-2008
Marine Binacle Compass with Azimuth Circle	Cassens & Plath	Туре 11	3331	1-Jun-2009
Section 2.34, Electrostatic Dis	scharges			
Spectrum Analyser	Hewlett Packard	8562A	14	9-Jun-2008
Beacon Tester	WS Technologies	BT 100S	87	TU
Conducted Immunity Test System	Schaffner	BEST EMC	1935	21-Sep-2008
Multimeter	lso-tech	lso Tech IDM101	2423	13-Aug-2008
ESD Simulator	Schaffner	BEST ESD	2942	22-Aug-2008
Section 2.8, Drop (In Water)				
Beacon Tester	WS Technologies	BT 100S	87	TU
Tape Measure	Stanley	DYNAGRIP 5M/16	2741	TU
Section 2.27, Magnetic Emiss	ions			
Spectrum Analyser	Hewlett Packard	8542E	18	9-Feb-2008
Antenna (Active Loop, 9kHz- 30MHz)	Rohde & Schwarz	HFH2-Z2	333	22-Jun-2008
Mast Controller	Inn-Co GmbH	CO 1000	1606	TU

Instrument	Manufacturer	Type No	TE Number	Calibration Due
Section 2.26, Radiated Emissi	ions			
Spectrum Analyser	Hewlett Packard	8542E	18	9-Feb-2008
Antenna (Bilog)	Schaffner	CBL6143	287	13-Jan-2008
Screened Room (5)	Rainford	Rainford	1545	1-Mar-2008
Mast Controller	Inn-Co GmbH	CO 1000	1606	TU
Turntable/Mast Controller	EMCO	2090	1607	TU
Signal Generator	Marconi	2031	1845	16-Oct-2008
Filter (Hi Pass)	Mini-Circuits	NHP-800	2842	31-Oct-2008
Antenna (Bilog)	Chase	CBL6143	2904	24-Nov-2007
Antenna (Biconnical)	Schaffner	VBA6106A	3106	3-Apr-2008
Tunable Notch Filter	Wainwright	WRCD 400.0/500.0- 0.1/50-6EEK	3427	TU
Section 2.29, Radiated Immur	iity			
Signal Generator 10kHz to 2.7GHz	Marconi	2031	19	3-Jan-2008
Beacon Tester	WS Technologies	BT 100S	87	TU
Load (50ohm/15W)	Diamond Antenna	DL-30N	219	5-Sep-2008
Load	Diamond Antenna	DL-30N	220	5-Sep-2008
Amplifier (0.8GHz-2.2GHz)	MILMEGA	ASO822-30L	258	27-Oct-2008
Isotropic Field Monitor	Amp Research	FM1000	260	TU
Multimeter	Rohde & Schwarz	URV-5	261	TU
Signal Generator	Marconi	2031	262	28-Aug-2008
Sensor (10V)	Rohde & Schwarz	URV5-Z2	274	TU
Load (50ohm, 30W)	Weinschel	50T-054	275	TU
Load (50ohm, 30W)	Weinschel	50T-054	276	TU
Millivoltmeter	Rohde & Schwarz	URV-5	281	TU
Sensor (10V)	Rohde & Schwarz	URV-Z2	282	TU
Directional Coupler	Amp Research	DC6180	283	TU

Instrument	Manufacturer	Туре No	TE Number	Calibration Due
Section 2.29, Radiated Immur	ity (Continued)			
Antenna	Schaffner	CLB 6143	322	TU
Spectrum Analyser	Hewlett Packard	8590B	772	TU
CW TWT (1-2.5GHz)	Thorn	PTC6341	2069	TU
Laser Powered Electric Field Sensor	Dare Development	RadiSense IV	2148	29-Nov-2007
Directional Coupler	Amp Research	DC6180	2763	TU
RF Power Amplifier	Amp Research	250W1000A	2844	27-Oct-2008
Amplifier (250W, 80MHz - 1GHz)	Amp Research	250W1000A	3029	27-Oct-2008
Section 2.6 Climatic - Corrosi	on			
WEISS TECHNIK (T)	Weiss Technik	SALT MIST	2121	OP MON
Balance	Geniweigher	GM-11K	2334	15/03/2007 (Used at the beginning of the test when still calibrated)
PM METER	Unknown		2335	TU
Thermometer	Digitron	2098T	2347	27/09/2007
Balance	Sartorius	HK160	2678	15/03/2007 (Used at the beginning of the test when still calibrated)
Measuring cylinder	Unknown	50mL	3136	TU

TU – Traceability Unscheduled OP MON – Output Monitored with Calibrated Equipment

SECTION 4

PHOTOGRAPHS

4.1 PHOTOGRAPHS OF EQUIPMENT UNDER TEST (EUT)

Equipment Under Test, Sample Serial Number 003

View of EUT (Serial Number 003) in release mechanism

Document 75900217 Report 01 Issue 3

SECTION 5

DISCLAIMERS AND COPYRIGHT

5.1 DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report must not be reproduced, except in its entirety, without the written permission of TÜV Product Service Limited

© 2008 TÜV Product Service Limited

ANNEX A

CUSTOMER SUPPLIED INFORMATION

Similarity of Variants

Jotron AS Jotron Phontech AS Jotron UKLtd. Jotron USA.Inc. UAB Jotron

TUV Product Service Ltd Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire PO15 5RL United Kingdom

Tjodalyng: 07.01.2008

Tron 40S MkII and Tron 40GPS MkII

The Tron 40S MkII and Tron 40GPS MkII use the same housing, battery pack, boards, software, brackets and technical manual.

The difference between the Tron 40S MkII and the Tron 40GPS MkII is the GPS module, the GPS patch antenna and the Users manual.

The GPS module and the GPS patch antenna are mounted on each side of the Main Board for the Tron 40GPS MkII.

Link Storiardo

Eirik Storjordet Certification Manager

DNB Nor Bank ASA | 0021 Oslo | Norway | Bank account: 24400508514 | IBAN: N06624400508514 | BIC: DNBANOKK | Reg.no.: N0917713324 MVA QA Certificate: NS-EN ISO 9001:2000

Hardware Modification Information

JOTRON	Selftest	Number
	408 MkII	Page 1(1)

Problem:

The beacon failed with error message "low power 121.5" in selftest at – 20°C. Det beacon had no error message at selftest in 20°C.

Reason:

The 121.5 MHz signal is rectified trough a resistor R55. The rectified signal was to low/ or on edge, to be detected as a "OK" in selftest.

Change:

At the visit at TUV 11. Sept 07, this resistor R55 was changed from 1K5 to 1K0 to increase the rectified signal. This change do not affect other parameters in the beacon.

Figure 1 - Shows the 121.5 outputstage with the rectifier for the power detect:

Modification Information (Detail of Schematic, Above)

Information On Previous Testing (Immersion Test)

JOTRON	Test Report	Version A
15.11.05	Tron S-VDR CAPSULE	Page 23 of 39

3.8 Leakage And Immersion test

3.8.1 Test specifications and sequence

IEC 61097-2 ed.2 Section A1.7 (5.13.8)

3.8.2 Test program

A hydraulic pressure of 100kPa (1 bar) shall be applied to the EUT for a period of 5 min. At the end of the test the EUT shall be subjected to a performance check, and shall then be examined for damage and for unwanted ingress of water. The findings shall be noted in the test report. Following examination, the EUT shall be resealed in accordance with the manufacturer's instructions. Alternatively, if there are no external signs of unwanted ingress of water, an internal examination, which involves disturbance to seals, may be carried out after all environmental tests have been completed. (Section 8.9.2 of EN 60945 ed.4).

3.8.3 Equipment under test

Name : Tron S-VDR CAPSULE Ser. Nr: 100AA102

3.8.4 Test site Sandefjord, Torøya

3.8.5 Test Equipment

Tron Dec, Cospas Sarsat test unit 15 meters of rope 5 kg. weight

3.8.6 Test result Passed

3.8.7 Description of the test

To achieve a pressure of 1 bar, we lowered the EUT down to 10-meter depth using a rope and a 4 kg. weight. The EUT stayed at 10m for 5 minutes.

At the end of the test the EUT was subjected to a performance check, and it was examined for damage and for unwanted ingress of water.

Information On Previous Testing (Signal Light Test)

			Test Report		Version D		
M:\03 TRON \Appro	Development 40SMKII&60 oval\Jotron Te	(\Project_Design\ IS_200503\Admin sts	Tron 40S/GPS N	Tron 40S/GPS MkII Page 1 of			
Proie	sct name:						
Docu	T L au ment title: Jo	ron 40S/ ow duty nd super otron test	GPS MkII cycle light tests perfo vised by Notified Boo report	ormed by ly 0470	Jotron A	s	
Docu	iment referen Jot	ron test repo	t.DOC				
D	02.12.07	Inserted cal:	bration certificate and pictures	ES		BR	
С	29.11.07 Modified tables for extreme temperature*		ES				
B	B 20.11.07 Added tables, edited text		ES				
A	15.11.07	Test report		ES	<i>a</i> 1 1 1		
Rev Proje	Issue Date sct no:	Keason for Iss	ue Contract no:	Made by Checked by Approved by Customer Doc.no:			
Jotro	m File Name	c		Jotron File no	5		

* Limited measurements agreed with Mrs. Doreen Thoma, BSH, 29.11.2007

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 2 of 10

LIST OF CONTENTS

1. Strobe Light tests	ļ
1.1 Test specifications and sequence	į.
1.2 Test program	ļ
1.3 Equipment under test	j.
1.4 Test site	į.
1.5 Test Equipment	Ļ
1.6 Description of light test	Ļ
1.6.1 Conclusion	Ļ
1.7 Test Jig drawings	ĵ.
1.8 Test Jig pictures	í
1.9 Calibration certificate	1
1.10 Light test)
1.10.1 Flash rate)
1.10.2 Test results	1
1.11 Test summary)

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 3 of 10

1. STROBE LIGHT TESTS

1.1 Test specifications and sequence

The effective luminous intensity shall be at least an arithmetic mean of 0.5 cd over the entire upper hemisphere as determined below. The flash rate shall be 20 to 30 times per minute. The flash duration shall be between 10^{-6} s and 10^{-1} s.

The effective luminous intensity shall be measured at 49 points over the upper hemisphere of the satellite EPIRB. The satellite EPIRB shall be floated in a container of fresh water to determine its waterline, which shall then be marked on the body of the satellite EPIRB and used as the baseline for the following tests. The effective luminous intensity shall be measured in accordance with the following table. The arithmetic mean effective luminous intensity of all 49 points shall be at least 0,50 cd. No points shall have an effective luminous intensity of less than 0.2cd.

1.2 Test program

The effective luminous intensity, flash duration and flash rate shall be checked at the normal temperature and at the extreme temperatures. The effective luminous intensity shall be defined by the following formula as indicated in IMO Resolution MSC.81(70) – Testing of life-saving appliances, 10.4.9:

$$\frac{\int_{t_1}^{t_2} i \cdot dt}{0.2 + (t_2 - t_1)}$$
 For 50msec pulse (t2-t1)=0.05

where

is the instantaneous intensity;

0,2 is the Blondel-Rey constant;

 $t_2 - t_1$ are the time limits of integration in seconds at which the intensity is *i* or greater.

1.3 Equipment under test

Name : Tron 40GPS MkII Ser. Nr: 001

 1.4 Test site Jotron AS, New lab.

Document 75900217 Report 01 Issue 3

$$\frac{\int_{t_1}^{t_2} i \cdot dt}{0.25} = 4 \int_{t_1}^{t_2} i \cdot dt$$

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 4 of 10

1.5 Test Equipment

IL 1700 Light measuring equipment with calibration certificates. SED033 sensor with type Y filter and type L30 lens.

1.6 Description of light test

The test site was covered inside with black textiles and the light measure equipment was mounted. The calibration factor for lux measurement was installed in the IL 1700.

Figure 1.6 The relation between the units

From this relation we can conclude that if we use a distance of 1 meter between the sensor and the light source, 1 lux is equivalent to 1 candela. The pulse width is 50ms.

1.6.1 Conclusion

The light source of the EUT is to be placed 1 meter from the sensor. The IL 1700 is set to zero point the background lightning and to measure integrated light. The integrated light can then be measured during 4 pulses, and the final value will be directly in candela.

The Tron 40S MkII and Tron 40GPS MkII are 100% identical related to this test, so the test results are valid for both units.

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_405MKII&805_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 5 of 10

1.7 Test Jig drawings

The EPIRB can be set to the right elevation and rotated to the right azimuth.

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_405MKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 6 of 10

1.8 Test Jig pictures

Figure 1.8a Showing test jig and light sensor with lens and a measure stick

Figure 1.8b Front of IL 1700

Figure 1.8c Azimuth scale

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&00S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 7 of 10

1.9 Calibration certificate

/ Kalibreringsbevis Certificate of calibration ologisk Institutt Oppdragsgiver Client Utferende enhet/lab. Department/laboratory responsible Jotron AS Teknologisk Institutt as Postboks 1019 KIRKESTIEN I 3601 KONGSBERG 3280 TIODALYNG Bevisnr. Certificate no. Kalibreringsdato Date of calibration Utskriftsdate Date of print Sidenr Jantali sider Poge so. JNn. of pages 07-047546 21.11.07 22.11,2007 1 av of 2 Kalibrert utstyr Collbrated equipment Kalibrert av Colibrated by - Tis objektib Ti's obj. 10 423565 Arne Figenschou Kundens ID Clients /// JE-415 Serienr, Seriel no. 4651 aler Finch · Objekt Object Radiometer Febriket Manufacturer InternationalLight Nodell Model IL1700 Kalibreringsdata Colibration data Kalibreringsprosedyre Calibration procedure LP 4007 Status Status Kal. uten justering / Cal. without adjustments Temperature of fultighet. Temperature and humidity Anbefalt rev kallbrarke · Anbefalt ny kalibroring Recommended new collbr. 22,11.08 Kalibreringsnormaler Collibration standards ObjektID Objekt Object ID Object 406067 Research Radiometer Neste kalib. Next calibr. 06.2008 Fabrikat Objekttype Object type IL.1700 Monufacturer International Light Detector/ Filter 406069 International Light SED033/Y/W 06,2008 Merknader Comments Kalibrering er utført som kompøreringsmåling mot identisk primær referanse og vil ikke erstatte InternationalLight kalibrering av Radiometeret. Instrumentet er kelsteren i henhold til dokumentert prosodyse som kan forevises på foresperset, og mot målsnormaler som er sporbare til notjonale eller internasjonale normaler. This instrument is antibated according to documented proceedure which will be available upon request, and against measuring normals traceable to netional an international standard.

Teknologisk Institutt as						
Auroveien 24C No 2608 51, Hanahaugen, HG-01)1 (55.6 11/ =47 22 86 50-60 Falst =47 22 33 16 61	Kongsborg Natringsperk Ps 1019, HO 3601 Kongsborg TV -47 13 36 87 00 Taka +47 12 28 87 37	Hilesdowen 19 NO-4015 Stavanger TV -47 51 68 62 15 Falu -47 51 68 62 18	Rysibesen Äptaes Po 23, NO-5146 Japtnes TV -47 54 23 75 45 Paks -47 54 31 22 D	Televetien 3 P5 44, NO-5411 Lactingen T01 +47 NS 22 76 00 Pata +47 75 93 10 54	Raufest Industri park P5 563, H0-3835 Raufest T1 ² =47 61 15 44 79 Faks =47 61 15 36 25	Remaport@ksionslaght.re www.telueologtik.re Org.nt.442.140.680

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 8 of 10

Kalibreringsbevis

Certificate of calibration

Bevianr, Certificate na. 07-047546 Side Page 2 av of 2 Dato Date 22.11.2007

Måleprotokoll fra kalibrering

Kalibrering av: TI's objekt ID Fabrikat: Modell: Serie nr.;

Radiometer 423565 InternationalLight IL1700 Research Radiometer 4651

Detector: Filter: Input Optic: SED033 #8237 Y #28008 L30 #293

Utforelse:

Kompareringsmåling mot TI's referanse Radiometer Primær standard Raidometer benyttet ved komparering er identisk med InternationalLight IL1700

Radiometerets detektor er kalibrert mot hvittlysreferanse ved rett lysinnfall. Til kalibrering benyttes Tungsten Halogen glodelampe med fargetemperatur 3000k ±3% Referansedetektor er cosinus korrigert for rett lysinnfall med størst spektral følsomhet ved 555 nm i henhold til CIE V 2. Photopic Standard.

Radiometer er avlest i lux med innstillinger likt iht InternationalLight kalibreringssertifikat pr. 22-Jun-05. (YIS) Photopic illuminance response sensitivity factor: 1.342E-07 (A) (lux-1) ILI 700 +5V Bias: Off

Måleresultat ved komparering

Nominell måleverdi	Avlest Radiometer	Mält differ	anse
Hluminans lux	lux	lux	76
280	2.80	0	0
410	420	10	2
780	820	40	5
1130	1200	70	6
2000	2100	100	5
3000	3000	0	0

Status

Radiometer viser god overenstemmelse ved komparering mot tilsvarende instrumet.

Beregnet måleusikkerhet:

Site State and The State S respons på ±30 grader.

Sporbarhet: NIST, U.S. National Institute of Standards and Technology

JOTRON	Test Report	Version D
M:\03_Development\Project_Design\ TRON_40SMKII&60S_200503\Admin \Approval\Jotron Tests	Tron 40S/GPS MkII	Page 9 of 10

1.10 Light test

The flash rate of the light to be controlled.

1.10.1 Flash rate The flash rate was: 21

1.10.2 Test results

Test No.1: Effective luminous intensity at minus 20 degrees

Azimuth	Elevation (in Degrees)								
(in Degrees)	10	20	30	40	50	60	70	80	90
0	2,7	2,3	1,6	1,5	1,6	0,8	0,9	2,4	1,5

Table 1.10a Effective luminous intensity at minus 20 degrees

Test No.2: Effective luminous intensity at normal temperature

Azimuth				Elevat	tion (in D	egrees)			
(in Degrees)	10	20	30	40	50	60	70	80	90
0	3,4	2,4	1,6	1,4	1,5	0,8	0,8	2,3	1,5
45	3,8	2,5	1,6	1,5					
90	3,4	2,4	1,7	1,6	1,5	0,8	0,9	2,8	
135	3,8	2,6	1,4	1,4					
180	3,4	2,4	1,6	1,4	1,3	0,6	0,9	2,4	
225	3,8	2,6	1,7	1,4					
270	3,5	2,3	1,7	1,5	1,5	0,8	0,8	2,1	
315	3,6	2,5	1,6	1,4					

Table 1.10b Effective luminous intensity at normal temperature

Test No.3: Effective luminous intensity at plus 55 degrees

Azimuth	Elevation (in Degrees)								
(in Degrees)	10	20	30	40	50	60	70	80	90
180	2,6	1,8	1,1	1,1	1,0	0,4	0,6	1,4	1,2

Table 1.10c Effective luminous intensity at plus 55 degrees

JOTRON	Test Report	Version D
M:03_Development/Project_Design/ TRON_40SMKII&005_200503\Admin VoprovalUptron Tests	Tron 40S/GPS MkII	Page 10 of 10

1.11 Test summary

Test No.	Test	IEC 61097-2 Ed.3 CDV	Result (Pass/Fail)	Date	Witness	Notified Body Number
1	At minus 20 degrees	5.3.3.3*	P	30.11.07	10%	0470
2	At normal temperature	5.3.3.3	Р	30.11.07	Ca %	0470
3	At plus 55 degrees	5.3.3.3*	P	30.11.07	14%	0470

* Limited measurements agreed with Mrs. Doreen Thoma, BSH, 29.11.2007

Authorized By: allow Bjørn Rishovd

QA Manager Jotron AS Supervised by:

11. com the Ole A. Lynum

Technical Examination Officer Nemko AS

Information On Previous Testing (Inadvertent Activation Test)

DET NORSKE VERITAS

Report No: 2003-3162, rev. 01

TECHNICAL REPORT

7.2.3 Hose stream

Test specifications:

IEC 60945, 8.8 ETSI EN 300 066, 6.9

Test characteristics:

Parameters	Severity levels
Flow	2300 l/min
Hose inner diameter	63,5 mm
Distance between end	3,5 m
of hose and EUT	(1,5 m above EUT)
Directions of flow	All directions in an arc of 180°
	perpendicular to normal
	mounting position
Period of testing	5 min

The EUT was fixed to a wooden plat during testing.

Result: With the modification described in Ch. 5.2, EUT passed the test

Det Norske Veritas

Report No: 2003-3162, rev. 01

TECHNICAL REPORT

5 EQUIPMENT UNDER TEST

5.1 Equipment submitted for tests

Overall designation of product:

Description	Make	Туре	S/N	Remarks
EPIR float free release bracket	Jotron	FB-5	NA	Prototype

The above will be referred from now as EUT (Equipment Under Test).

5.2 Modifications during testing

In order to pass the various tests, the EUT was modified as follows:

Test	Modifications
Release Mechanism	An extra weight was added to the outer shell
	to make the weight asymmetrical.
Vibration/Bump	A new design of the FB-5 bracket is being
	produced in the nearest future. To upgrade the
	unit used for testing to the right shape, tape
	was used on the inner side of the capsule.
Hose stream	Fixing of the label tag was moved from the
	release pin to a separate screw.

Information On Previous Testing (Automatic Release Mechanism And Automatic Activation Tests)

DET NORSKE VERITAS

Report No: 2003-3162, rev. 01

TECHNICAL REPORT

7 TESTS

Wherever several test specifications cover the same issue, the most severe requirement was used as basis for the testing.

7.1 Functional tests

7.1.1 Release mechanism

Test specifications: ETSI EN 300 066, 12

Test characteristics:

Parameters	Severity levels
Release depth	Before 4,0m
Orientations	Normal mounting pos.
	Rolling 90° both sides
	Pitching 90° both sides
	Upside-down

The EUT was mounted on a rod and slowly submerged into water¹, until the release mechnism was activated. The depth at time of activation was observed.

Result: In one of the orientations, the EPIRB floated up successfully, but did not release itself from the outer shell of the EUT even after reaching the surface. The EUT was therefore slightly modified (see Ch. 5.2). Repeated tests after the modification were successful. The EPIRB released itself well before 4 meter and the EUT passed the test.

DET NORSKE VERITAS

Report No: 2003-3162, rev. 01

TECHNICAL REPORT

5 EQUIPMENT UNDER TEST

5.1 Equipment submitted for tests

Overall designation of product:

Description	Make	Туре	S/N	Remarks
EPIR float free release bracket	Jotron	FB-5	NA	Prototype

The above will be referred from now as EUT (Equipment Under Test).

5.2 Modifications during testing

In order to pass the various tests, the EUT was modified as follows:

Test	Modifications
Release Mechanism	An extra weight was added to the outer shell
	to make the weight asymmetrical.
Vibration/Bump	A new design of the FB-5 bracket is being
	produced in the nearest future. To upgrade the
	unit used for testing to the right shape, tape
	was used on the inner side of the capsule.
Hose stream	Fixing of the label tag was moved from the
	release pin to a separate screw.

Information On Previous Testing (Solar Radiation and Oil Resistance)

Tjodalyng: 19.01.2007

To whom it may concern

Ref. type approval of Tron 40S/GPS MkII.

This letter is to advise that our above mentioned EPIRB and mounting bracket uses exactly the same stainless steel metal parts, UV and mould resistant labels, and heavy duty polycarbonate case as our Tron40S, approved first time in 1997.

This equipment has proven itself most capable of withstanding subjection to a severe maritime environment over a long period of time, and we have so far delivered more than 20000 units to the market.

Based on use of the same material combination above and manufacturer documentation supplied we request acceptance, by way of waiver, to tests laid out within EN60945 clauses 8.10 and 8.11, covering resistance to solar radiation and oil resistance.

For and behalf of Jotron AS

Bion Allum

Bjørn Allum Technical Manager

