Maximum Permissive Exposure

FCC ID: VRSHSD-0015-Q

Product Name: LCD Monitor

Model No: (1)HSD-0015-Q (2)OMEN X 65 (3)Omen X Emperium 65 Display (4)OMEN X Emperium 65 with NVIDIA G-SYNC HDR (5)OMEN X Emperium 65 Big Format Gaming Display with NVIDIA G-SYNC HDR

1. According to FCC CFR 47 §1.1310, the criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b).

Table 1 Limits for Maximum Permissible Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density $\left(\mathbf{m W} / \mathrm{cm}^{2}\right)$	Average Time $($ Minutes $)$	
(A) Limits For Occupational / Control Exposures (f = frequency)					
$30-300$	61.4	0.163	1.0	6	
$300-1500$	\ldots	\ldots	$\mathrm{f} / 300$	6	
$1500-100,000$	\ldots	\ldots	5.0	6	
(B) Limits For General Population / Uncontrolled Exposure (f = frequency)					
$30-300$	27.5	0.073	0.2	30	
$300-1500$	\ldots	\ldots	$\mathrm{f} / 1500$	30	
$1500-100,000$	\ldots	\ldots	1.0	30	

Qisda Corporation declares that the product described above has been evaluated and found to comply with the RF exposure limits for humans, as specified based on ANSI/FCC recommendation.
2. MPE Calculation

WIFI 2.4G MPE

Based on safety distance (r) 20cm, the antenna gain (G) is 1.875 Numerical, and the highest power output (P) is $\mathbf{5 0 1 . 1 8 7 m W}$, the power density (S) is $\mathbf{0 . 1 8 6 9 5 2 m W / \mathbf { c m } ^ { 2 }}$.

RF Exposure Calculations:
$S=\left(P^{*} G\right) /\left(4^{*} \pi^{*} r^{2}\right)$ or $r=\sqrt{\left(P^{*} G\right) /\left(4^{*} \pi^{*} S\right)}$
Where :

Based on safety distance $(\mathrm{r})=$	20 cm		
Highest Power Output $(\mathrm{P})=$	$27 \mathrm{dBm}=$	501.187	mW
Antenna Gain $(\mathrm{G})=$	$2.73 \mathrm{dBi}=$	$\mathbf{1 . 8 7 5}$	Numerical
MPE $(\mathrm{S})=\left(\mathrm{P}^{\star} \mathrm{G}\right) /\left(4^{\star} \pi^{\star} \mathrm{r}^{2}\right)=$	$=\left(501.187^{\star} 1.875\right) /\left(\mathbf{4}^{\star} \boldsymbol{\pi}^{\star} \mathbf{2 0}^{2}\right)=$	$\mathbf{0 . 1 8 6 9 5 2}$	$\mathrm{mW} / \mathrm{cm}^{2}$

WIFI 5G MPE

Based on safety distance (r) 20cm, the antenna gain (G) is 2.432 Numerical, and the highest power output (P) is 158.489 mW , the power density (S) is $0.276682 \mathrm{~mW} / \mathrm{cm}^{2}$.

RF Exposure Calculations:
$S=\left(P^{*} G\right) /\left(4^{*} \pi^{*} r^{2}\right)$ or $r=\sqrt{\left(P^{*} G\right) /\left(4^{*} \pi^{*} S\right)}$
Where :

Based on safety distance (r)=	20 cm	
Highest Power Output (P)=	$22 \mathrm{dBm}=$	158.489 mW
Antenna Gain (G)=	$3.86 \mathrm{dBi}=$	2.432 Numerical
$\operatorname{MPE}(\mathrm{S})=\left(\mathrm{P}^{*} \mathrm{G}\right) /\left(4^{*} \Pi^{*} \mathrm{r}^{2}\right)=$	$=(158.489 * 2.432) /\left(4 * \pi * 20^{2}\right)=$	$0.076682 \mathrm{~mW} / \mathrm{cm}^{2}$

BT MPE

Based on safety distance (r) 20cm, the antenna gain (G) is 1.875 Numerical, and the highest power output (P) is $\mathbf{1 0 . 0 0 0} \mathbf{m W}$, the power density (S) is $0.003730 \mathrm{~mW} / \mathbf{c m}^{2}$.

RF Exposure Calculations:
$S=\left(P^{*} G\right) /\left(4^{*} \pi^{*} r^{2}\right)$ or $r=\sqrt{\left(P^{*} G\right) /\left(4^{*} \pi^{*} S\right)}$
Where :

Based on safety distance $(\mathrm{r})=$	20 cm		
Highest Power Output $(\mathrm{P})=$	$10 \mathrm{dBm}=$	$\mathbf{1 0 . 0 0 0}$	mW
Antenna Gain $(\mathrm{G})=$	$2.73 \mathrm{dBi}=$	$\mathbf{1 . 8 7 5}$	Numerical
MPE $(\mathrm{S})=\left(\mathrm{P}^{*} \mathrm{G}\right) /\left(4^{\star} \Pi^{\star} \mathrm{r}^{2}\right)=$	$=(\mathbf{1 0 . 0 0 0} \mathbf{1 . 8 7 5}) /\left(\mathbf{4}^{\star} \boldsymbol{\pi}^{\star} \mathbf{2 0} \mathbf{0}^{2}\right)=$	$\mathbf{0 . 0 0 3 7 3 0}$	$\mathrm{mW} / \mathrm{cm}^{2}$

MPE			
WIFI 2.4G $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	BT $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Total $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
0.186952	0.003730	0.190682	$\leqq 1$

Sincerely Yours,

