

CONFORMANCE TEST REPORT FOR FCC 47 CFR, Part 15 Subpart C

Report No.: 16-03-MAS-057-02

Client:	Qisda Corporation
Product:	MOD-SM QIS BT/WLAN CWM-02B-BT2-SP D5
Model:	GW52
FCC ID:	VRSGW52
Manufacturer/supplier:	Qisda Optronics(SuZhou) Co., Ltd
Date test item received:	2016/03/11
Date test campaign complet	red: 2016/04/07
Date of issue:	2016/04/25

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

Total number of pages of this test report: 171 pages Total number of pages of photos: External photos 2 pages Internal photos 2 pages Setup photos 4 pages

Test Engineer	Checked By	Approved By	
Perylon	falcon Shi	Jerry Huang	
Perry Lin	Falcon Shi	Jerry Huang	

ELECTRONICS TESTING CENTER, TAIWAN No.8, Lane 29, Wenming Rd. Guishan Dist. Taoyuan City 33383, Taiwan, R.O.C. TEL: (03) 3276170~4 INT: +886-3-3276170~4 FAX: (03) 3276188 INT: +886-3-3276188

Client	: Qisda Corporation
Address	: No.157, Shanying Rd., Gueishan Dist., Taoyuan City 333, Taiwan
Manufacturer	: Qisda Optronics(SuZhou) Co., Ltd
Address	: 169 Zhujiang Road , New District , Suzhou , China
EUT	: MOD-SM QIS BT/WLAN CWM-02B-BT2-SP D5
Trade name	: Harman
Model No.	: GW52
Power Source	: 3.8Vdc

Regulations applied : FCC 47 CFR, Part 15 Subpart C

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

The compliance test is only certified for the test equipment and the results of the testing report relate only to the item tested. The compliance test of this report was conducted in accordance with the appropriate standards. It's not intention to assure the quality and performance of the product. This report shall not be reproduced except in full, without the approval of ETC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Laboratory Introduction: Electronics Testing Center, Taiwan is recognized, filed and mutual recognition arrangement as following:

- ① ISO9001: TüV Product Service
- ② ISO/IEC 17025: BSMI, TAF, NCC, NVLAP, ILAC MRA, UL, Compliance
- ³ Filing: FCC, Industry Canada, VCCI
- (4) MRA: Australia, Hong Kong, New Zealand, Singapore, USA, Japan, Korea, China, APLAC through TAF
- ^⑤ FCC Registration Number: 91095, 392735, 278818
- ⁶ Industry Canada Site Registration Number: IC 2949A-2

rvlaj

NVLAP Lab Code 200133-0

Table of Contents

Page

*

1 GENERAL INFORMATION	5
1.1 Product Description	5
1.2 Characteristics of Device	5
1.3 Test Methodology	5
1.4 Test Facility	6
1.5 Test Summary	6
2 PROVISIONS APPLICABLE	7
2.1 Definition	7
2.2 Requirement for Compliance	
2.3 Restricted Bands of Operation	10
2.4 Labeling Requirement	10
2.5 User Information	11
3. SYSTEM TEST CONFIGURATION	12
3.1 Devices for Tested System	12
3.2 Dscription of Test modes	
4 CONDUCTED EMISSION MEASUREMENT	14
4.1 Standard Applicable	14
4.2 Measurement Procedure	14
4.3 Conducted Emission Data	15
4.4 Result Data Calculation	17
4.5 Conducted Measurement EquiPMent	17
5 ANTENNA REQUIREMENT	18
5.1 Standard Applicable	18
5.2 Antenna Construction and Directional Gain	18
6 EMISSION BANDWIDTH MEASUREMENT	19
6.1 Standard Applicable	19
6.2 Measurement Procedure	19
6.3 Measurement Equipment	19
6.4 Measurement Data	20
7 OUTPUT POWER MEASUREMENT	36
7.1 Standard Applicable	36
7.2 Measurement Procedure	36
7.3 Measurement Equipment	36
7.4 Measurement Data	37

8 POWER DENSITY MEASUREMENT	1
8.1 Standard Applicable	1
8.2 Measurement Procedure	1
8.3 Measurement Equipment	1
8.4 Measurement Data	2
9 SPURIOUS EMISSION - RF CONDUCTED MEASUREMENT	8
9.1 Standard Applicable	8
9.2 Measurement Procedure	8
9.3 Measurement Equipment	8
9.4 Measurement Data	9
10 RADIATED EMISSION MEASUREMENT	1
10.1 Standard Applicable	1
10.2 Measurement Procedure	1
10.3 Measuring Instrument	3
10.4 Radiated Emission Data	4
10.5 Field Strength Calculation	0
11. EQUIPMENTS LIST FOR TESTING	1

1 GENERAL INFORMATION

1.1 Product Description

- a) Type of EUT : MOD-SM QIS BT/WLAN CWM-02B-BT2-SP D5
- b) Trade Name : Harman
- c) Model No. : GW52
- d) FCC ID : VRSGW52

1.2 Characteristics of Device

GW52 is built on the Marvell® 88W8787 low-cost highly-integrated IEEE 802.11b/g/n MAC/Baseband/RF WLAN and Bluetooth Baseband/RF system-on-chip (SoC). The module supports IEEE 802.11n with maximum data rates up to 72Mbps (20 MHz channel) and 150 Mbps (40MHz), 802.11g payload data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps, as well as 802.11b data rates of 1, 2, 5.5 and 11 Mbps for WLAN operation. For Bluetooth operation, the module supports Bluetooth 3.0 + High Speed (HS) (also compliant with Bluetooth 2.1 + EDR). For security, the 88W8787 supports the IEEE 802.11i security standard through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), and Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP) security mechanisms. For security, the 88W8787 supports the IEEE 802.11i security standard through implementation of the Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), and Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP) security mechanisms. The module also supports Internet Protocol Security (IPsec) with DES/3DES/AES encryption and MD5/SHA-1 authentication as well as 802.11e Quality of Service (QoS). The module supports dual SDIO host interface for connecting the WLAN and Bluetooth to the host processor. For Bluetooth application the high-speed UART (up to 4MB/s, PCM/Inter-IC Sound (I2S), are supported. It conforms to the IEEE 802.11b/g/n protocal and operates in the unlicensed ISM Band at 2.4 GHz.

RF chain	1T1R
Frequency Range	IEEE 802.11b/g, 802.11n HT20: 2412MHz~2462MHz
	IEEE 802.11n HT40: 2422MHz~2452MHz
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels
	IEEE 802.11n HT40: 7 Channels
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps
	IEEE 802.11g: 54, 48, 36, 24, 18, 12, 11, 9, 6 Mbps
	IEEE 802.11n HT20: 65, 58.5, 52, 39, 26, 19.5, 13, 6.5Mbps
	IEEE 802.11n HT40: 135, 121.5, 108, 81, 54, 40.5, 27, 13.5 Mbps
Type of Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK, BPSK)

1.3 Test Methodology

All testing were performed according to the procedures in ANSI C63.10 (2013) and FCC CFR 47 Part 2 and Part 15 and KDB 558074 D01 v03r05.

1.4 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wen-ming Road, Lo-shan Tsun, Kweishan Hsiang, Taoyuan, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

1.5 Test Summary

Requirement	FCC Paragraph #	Test Pass
Antenna Requirement	15.203	\square
Conducted Emission	15.207	\square
Emission Bandwidth	15.247 (a)(2)	\square
Output Power Requirement	15.247 (b)	\square
Power Density Requirement	15.247 (e)	\boxtimes
Spurious Emissions	15.247 (d)	\square
Radiated Emission	15.247 (d)	

Note: The test setup and measurement method for conductive output power measurements shown in this test report is different to the "Peak Output Power" test. Certain measurement uncertainty of peak power may be expected with the use of different power detection method or measuring equipment. Therefore, the conductive output power measurement results provided in this test report may be different to the specification of the device under test.

2 PROVISIONS APPLICABLE

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device :

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note : A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction.

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

For unintentional device, according to §15.107(a) Line Conducted Emission Limits is as following:

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

*Decreases with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limits is same as above table.

(2) Radiated Emission Requirement

For unintentional device, according to §15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency MHz	Distance Meters	Radiated dB μ V/m	Radiated μV/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
above 960	3	54.0	500

For intentional radiator device, according to §15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table::

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

(3) Antenna Requirement

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

(4) Bandwidth Requirement

According to 15.247 (a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

(5) Output Power Requirement

For systems using digital modulation, according to 15.247(b), the maximum peak output power of the intentional radiator shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(6) Spurious Emissions Measurement

According to 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a) (see Section 15.205(c)).

(7) Power Density Requirement

According to 15.247 (e), for digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission..

2.3 Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Only spurious emissions are permitted in any of the frequency bands listed below :

** : Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device :

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

3. SYSTEM TEST CONFIGURATION 3.1 Devices for Tested System

Device	Manufacture	Model No.	Cable Description
* MOD-SM QIS BT/WLAN CWM- 02B-BT2-SP D5	Qisda Optronics(SuZhou) Co., Ltd	GW52	
DC Power Supply	GW	GPS-3030D	1.8m*1 Unshielded Power Line 1.0m*1 Unshielded Signal Line

Remark

1. "*" means equipment under test.

2.

Test Software:	MFG-MF-8787-FC8-SYSKT-1.2.7.51-14.0.34			
Power setting:	Mode	Channel	Setting	
	b	Low	15	
		Mid	15	
		High	15	
	g	Low	15	
		Mid	15	
		High	15	
	gn HT20	Low	15	
		Mid	15	
		High	15	
	gn HT40	Low	15	
		Mid	15	
		High	15	

3.2 Dscription of Test modes

3.2.1 IEEE 802.11b, 802.11g, 802.11n HT20 mode:

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low = 1	2412
Middle = 6	2437
High = 11	2462

IEEE 802.11b mode: 1 Mbps data rate is the worse case for full testing.

IEEE 802.11g mode: 6 Mbps data rate is the worse case for full testing.

IEEE 802.11n HT20 mode: MCS0 6.5 Mbps data rate is the worse case for full testing.

3.2.2 IEEE 802.11n HT40 mode:

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low = 3	2422	
Middle = 6	2437	
High = 9	2452	

IEEE 802.11n HT40 mode: 13.5 Mbps data rate is the worse case for full testing.

3.2.3 Test Mode Description

3.2.3.1 Modulation Type

Test Mode	Modulation
А	IEEE 802.11b
В	IEEE 802.11g
С	IEEE 802.11 gn HT20
D	IEEE 802.11 gn HT40

Test modes A,B,C			
Test Channel Frequency (MHz)			
Channel Low(L)	2412		
Channel Mid(M)	2437		
Channel High(H)	2462		

Test mode D				
Test Channel Frequency (MHz				
Channel Low(L)	2422			
Channel Mid(M)	2437			
Channel High(H)	2452			

3.2.3.2 Test Mode and Worse Case Determination

Item	Test Item	Test mode	Frequrency(MHz)
1	Conducted emission measurement	D (note1)	M (note2)
2	Emisson bandwidth measurement	A , B , C , D	L , M , H
3	Output power measurement	A , B , C , D	L , M , H
4	Power density measurement	A, B, C, D	L , M , H
5	Spurious emission	A , B , C , D	L , M , H
6	Radiated emisson measurement(Harmonic)	A , B , C , D	L , M , H
6.1	Radiated emisson measurement (Below 1GHz)	D (note1)	M (note2)
6.2	Radiated emisson measurement (Above 1GHz)	A , B , C , D	L , M , H

Note: 1. Pretest result is no difference in four test modes, Choose one for final testing.

2. Pretest result is no difference by channel low, middle and high. Choose one for final testing and record the result

4 CONDUCTED EMISSION MEASUREMENT

4.1 Standard Applicable

For unintentional and intentional device, Line Conducted Emission Limits are in accordance to § 15.107(a) and §15.207(a) respectively. Both Limits are identical specification.

4.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v03r05.
- 2. Setup the configuration per figure 1.
- 3. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
- 4. Record the 6 highest emissions relative to the limit.
- 5. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then record the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
- 6. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
- 7. Repeat all above procedures on measuring each operation mode of EUT.

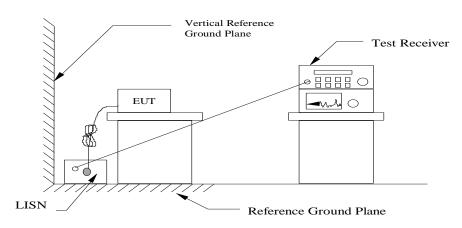
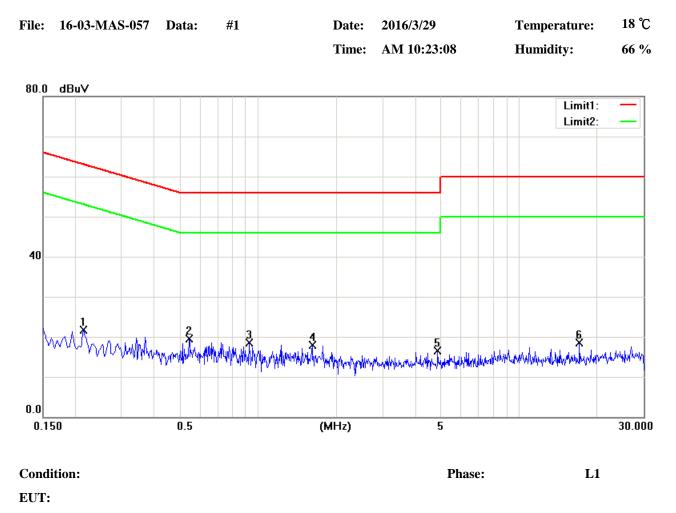



Figure 1 : Conducted emissions measurement configuration

4.3 Conducted Emission Data

Model:

Test Mode:

Note:

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		dB	(dBuV)	(dBuV)	(dB)
1	0.2140	12.09	peak	9.65	21.74	63.05	-41.31
2	0.5460	9.84	peak	9.66	19.50	56.00	-36.50
3	0.9260	8.85	peak	9.67	18.52	56.00	-37.48
4	1.6140	8.26	peak	9.69	17.95	56.00	-38.05
5	4.8780	6.65	peak	9.76	16.41	56.00	-39.59
6	17.0580	8.58	peak	9.89	18.47	60.00	-41.53

Note: 1. Place of measurement: EMC LAB. of the ETC.

2. "***" means the value was too low to be measured.

3. If the data table appeared symbol of "----" means the Q.P. value is under the limit of AVG. so, the AVG. value doesn't need to be measured.

- 4. "#" means the noise was too low, so record the peak value.
- 5. The estimated measurement uncertainty of the result measurement is ± 2.5 dB.

Model:

Test Mode:

Note:

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		dB	(dBuV)	(dBuV)	(dB)
1	0.2180	9.87	peak	9.63	19.50	62.89	-43.39
2	0.3700	10.28	peak	9.64	19.92	58.50	-38.58
3	0.4780	10.06	peak	9.64	19.70	56.37	-36.67
4	1.3420	7.29	peak	9.67	16.96	56.00	-39.04
5	4.2740	6.80	peak	9.72	16.52	56.00	-39.48
6	17.0500	8.09	peak	9.97	18.06	60.00	-41.94

Note: 1. Place of measurement: EMC LAB. of the ETC.

2. "***" means the value was too low to be measured.

3. If the data table appeared symbol of "----" means the Q.P. value is under the limit of AVG. so, the AVG. value doesn't need to be measured.

- 4. "#" means the noise was too low, so record the peak value.
- 5. The estimated measurement uncertainty of the result measurement is ± 2.5 dB.

4.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

RESULT = READING + LISN FACTOR (Included Cable Loss)

4.5 Conducted Measurement EquiPMent

The following test equiPMent are used during the conducted test.

Equipment	Manufacturer	Model No.
EMI Test Receiver	R&S	ESCI
V-LISN	R&S	ENV216

5 ANTENNA REQUIREMENT

5.1 Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to §15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2 Antenna Construction and Directional Gain

The antennas is a Surface Dipole Antenna

Antenna Type	Dipole
Antenna Gain	2 dBi

The directional gain of antenna doesn't greater than 6 dBi, the power won't be reduced.

6 EMISSION BANDWIDTH MEASUREMENT

6.1 Standard Applicable

According to 15.247(a)(2), system using digital modulation techniques, the minimum 6dB bandwidth shall be at least 500 kHz.

6.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v03r05.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 4. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 5. Repeat above procedures until all frequencies measured were complete.

Figure 2: Emission bandwidth measurement configuration.

6.3 Measurement Equipment

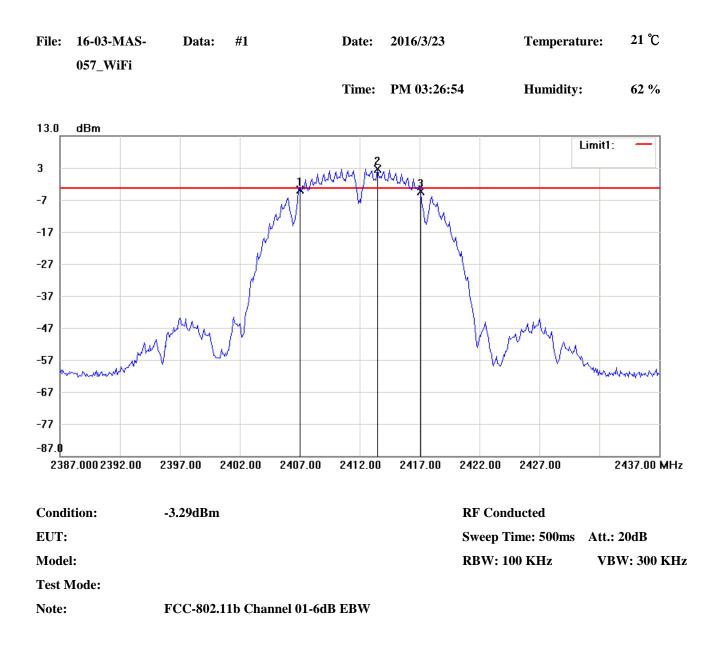
Equipment	Manufacturer	Model No.	
Spectrum Analyzer	Agilent	E4446A	

6.4 Measurement Data

6.4.1 IEEE 802.11b

Test Date: Mar. 23, 2016

Temperature: <u>21°C</u>

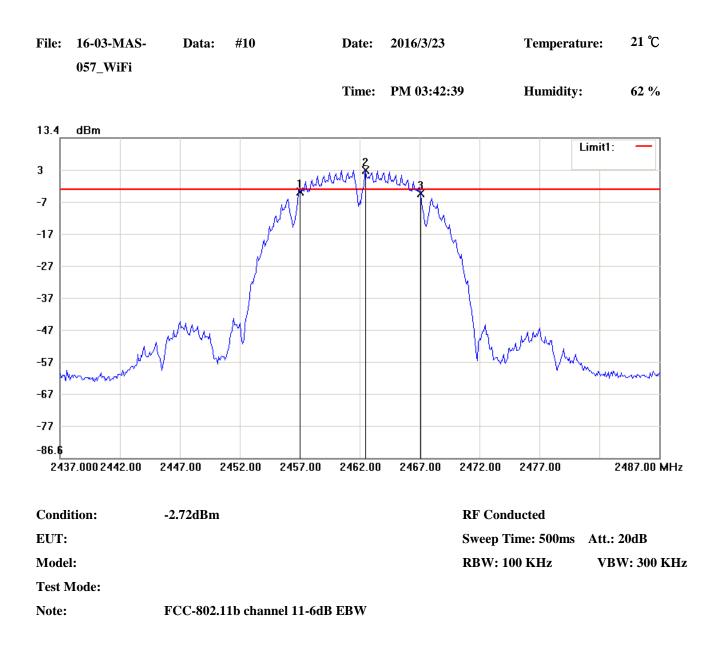

Humidity: <u>62%</u>

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	10.167	500	Page 21
М	10.167	500	Page 22
Н	10.167	500	Page 23

Note:

1. Please refer to page 21 to page 23 for chart

2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$


No.	Frequency(MHz)	Level(dBm)
1	2406.91670	-3.87
2	2413.50000	2.71
3	2417.08330	-4.32

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	10.1666	-0.45

No.	Frequency(MHz)	Level(dBm)
1	2431.91670	-3.25
2	2437.50000	3.65
3	2442.08330	-3.52

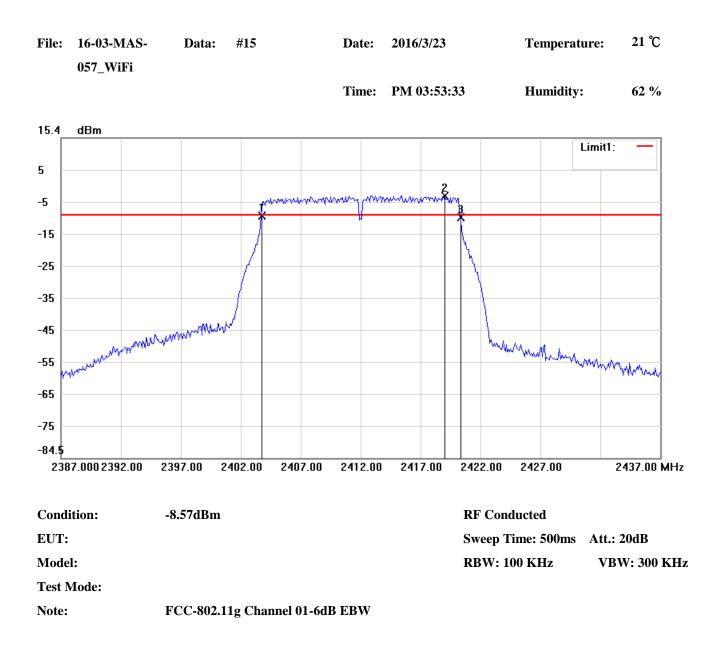
No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	10.1666	-0.27

No.	Frequency(MHz)	Level(dBm)
1	2456.91670	-3.46
2	2462.50000	3.28
3	2467.08330	-4.07

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	10.1666	-0.61

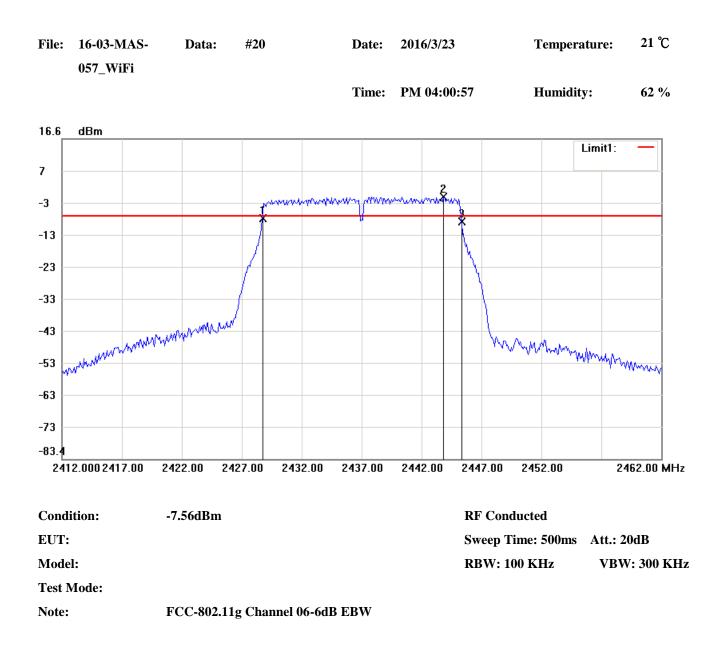
6.4.2 IEEE 802.11g

Temperature: <u>21°C</u>

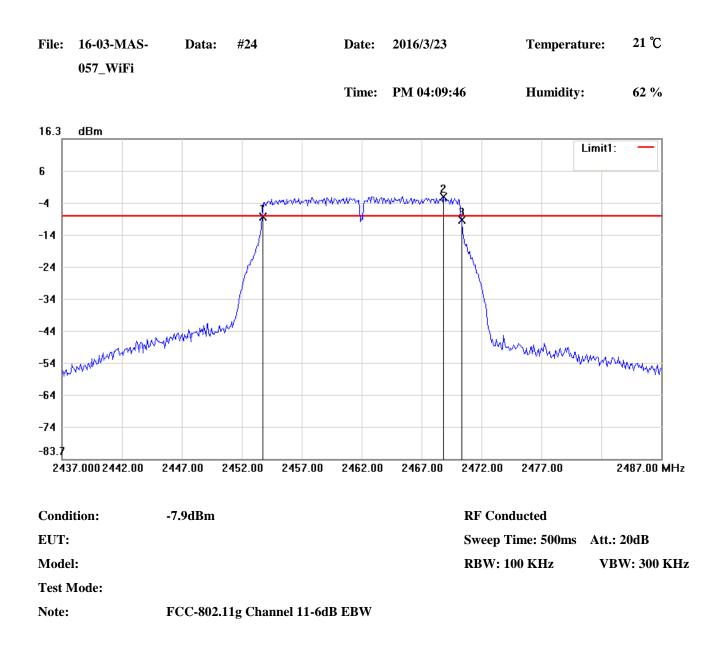

Humidity: <u>62%</u>

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	16.667	500	Page 25
М	16.667	500	Page 26
Н	16.667	500	Page 27

Note:


1. Please refer to page 25 to page 27 for chart

2. The estimated measurement uncertainty of the result measurement is 8.25×10^{-7} ($1GHz \leq f \leq 18GHz$)


No.	Frequency(MHz)	Level(dBm)
1	2403.66670	-8.95
2	2418.91670	-2.57
3	2420.33330	-9.46

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	16.6666	-0.51

No.	Frequency(MHz)	Level(dBm)
1	2428.66670	-8.22
2	2443.83330	-1.56
3	2445.33330	-9.42

No.		△Frequency (MHz)	∆Level(dB)
1	mk3-mk1	16.6666	-1.2

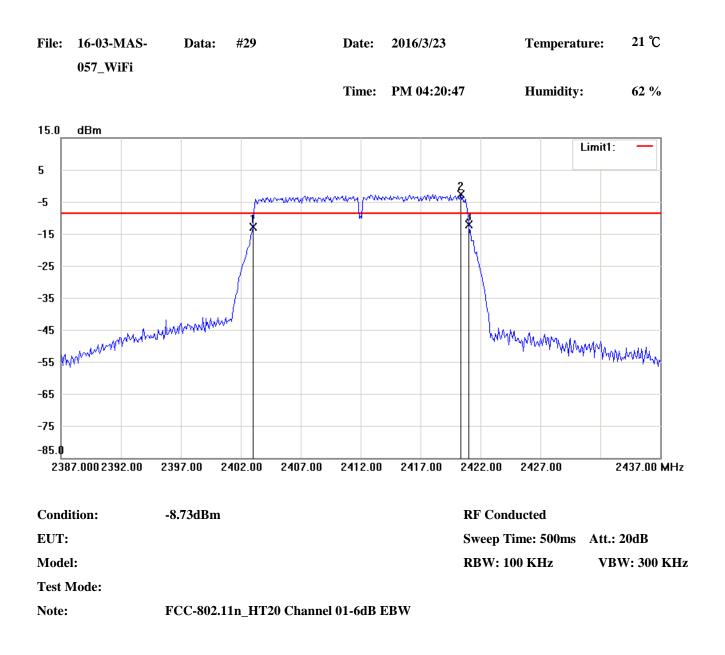
No.	Frequency(MHz)	Level(dBm)
1	2453.66670	-8.19
2	2468.83330	-1.90
3	2470.33330	-9.18

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	16.6666	-0.99

6.4.3 IEEE 802.11n, HT20

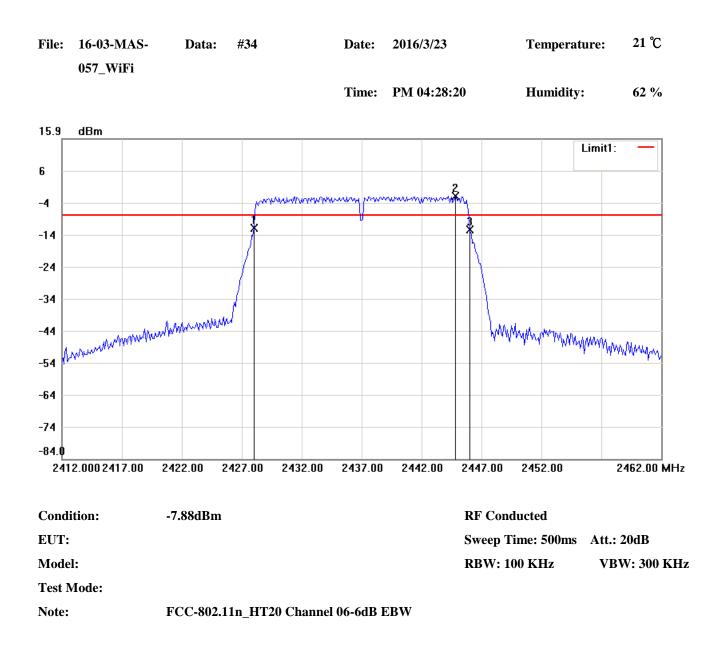
Test Date: <u>Mar. 25, 2010</u>	Test Date:	Mar. 23, 2016
---------------------------------	------------	---------------

Temperature: <u>21°C</u>

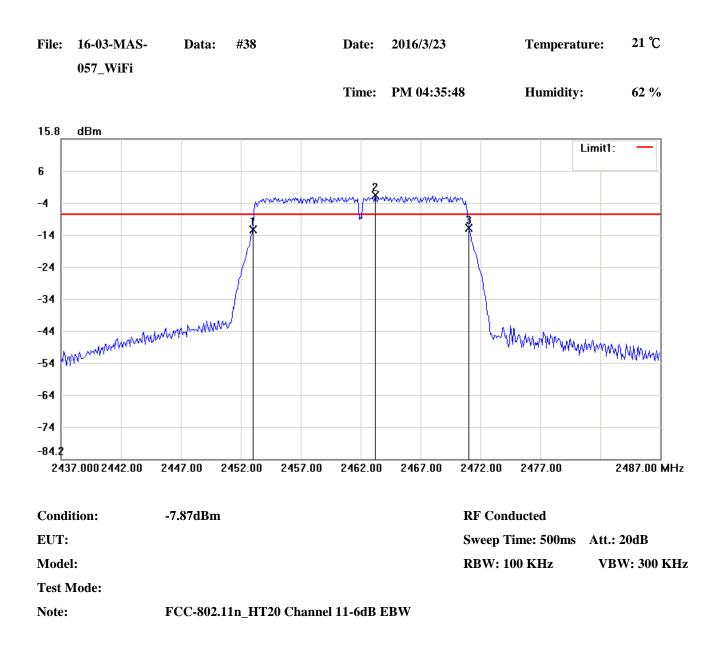

Humidity: <u>62%</u>

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	18	500	Page 29
М	18	500	Page 30
Н	18	500	Page 31

Note:


1. Please refer to page 29 to page 31 for chart

2. The estimated measurement uncertainty of the result measurement is $8.25 \times 10^{-7} (1 \text{GHz} \leq f \leq 18 \text{GHz})$


No.	Frequency(MHz)	Level(dBm)
1	2403.00000	-12.90
2	2420.33330	-2.73
3	2421.00000	-12.15

No.		△Frequency (MHz)	∆Level(dB)
1	mk3-mk1	18	0.75

No.	Frequency(MHz)	Level(dBm)
1	2428.00000	-12.04
2	2444.83330	-1.88
3	2446.00000	-12.39

No.		△Frequency (MHz)	∆Level(dB)
1	mk3-mk1	18	-0.35

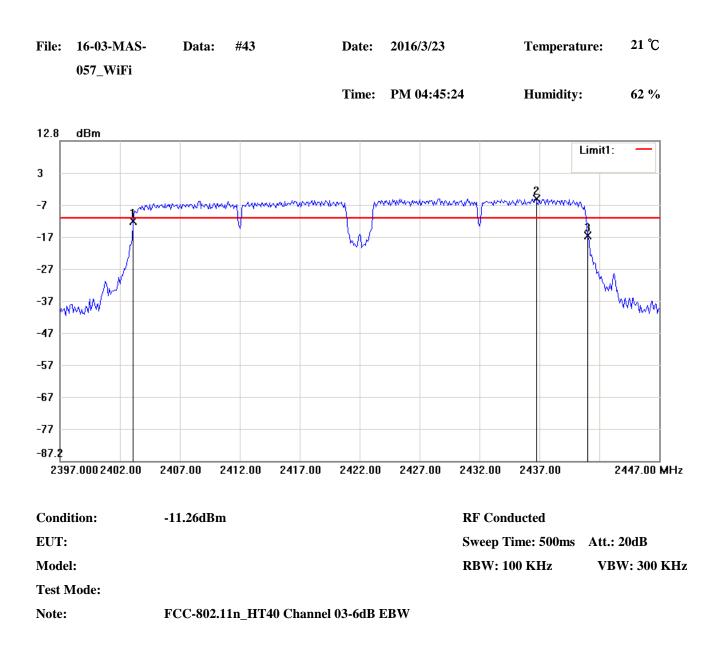
No. Frequency(MHz)		Level(dBm)	
1	2453.00000	-12.50	
2	2463.25000	-1.87	
3	2471.00000	-12.02	

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	18	0.48

6.4.4 IEEE 802.11n, HT40

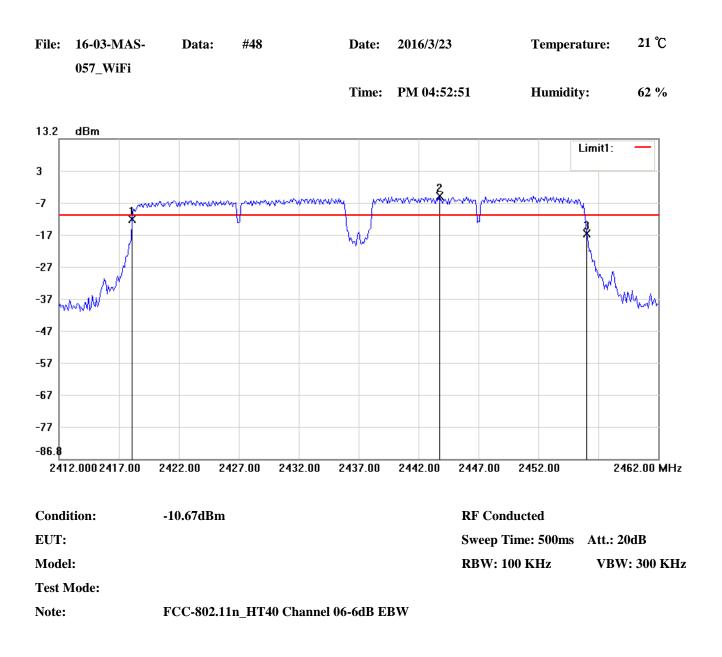
T Test Date:	Mar.	23,	2016

Temperature: <u>21°C</u>

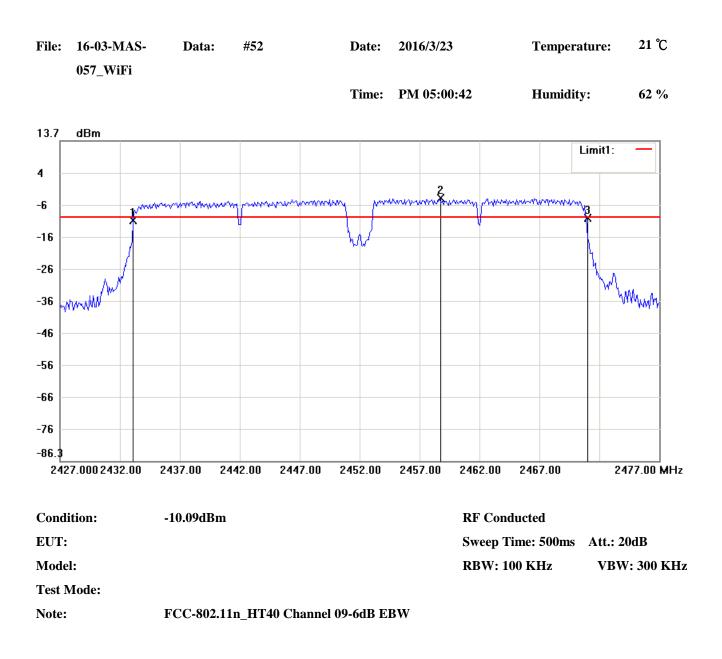

Humidity: <u>62%</u>

Channel	6dB Bandwidth	FCC Limit	Chart
	(MHz)	(kHz)	
L	37.917	500	Page 33
М	37.917	500	Page 34
Н	37.833	500	Page 35

Note:


1. Please refer to page 33 to page 35 for chart

2. The estimated measurement uncertainty of the result measurement is 8.25×10^{-7} (1GHz $\leq f \leq 18$ GHz)


No.	Frequency(MHz)	Level(dBm)
1	2403.08330	-12.46
2	2436.66670	-5.26
3	2441.00000	-16.87

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	37.9167	-4.41

No.	Frequency(MHz)	Level(dBm)
1	2418.08330	-11.96
2	2443.66670	-4.67
3	2456.00000	-16.41

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	37.9167	-4.45

No.	Frequency(MHz)	Level(dBm)
1	2433.08330	-11.08
2	2458.66670	-4.09
3	2470.91670	-10.42

No.		△Frequency(MHz)	∆Level(dB)
1	mk3-mk1	37.8334	0.66

7 OUTPUT POWER MEASUREMENT

7.1 Standard Applicable

For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v03r05.
- 2. The test is performed in accordance with FCC KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)
- 3. Position the EUT as shown in figure 2.

7.3 Measurement Equipment

Equipment	Manufacturer	Model No.
Power Meter	Agilent	N1912A
Wideband Power Sensor	Agilent	N1922A

7.4 Measurement Data

7.4.1 IEEE 802.11b

Tes	st Date: <u>Mar. 2</u> .	3 <u>, 2016</u> Tempe	rature: <u>21°C</u>	Humidity: <u>62</u>	<u>%</u>
	Channel	Maximum Peak	FCC Limit	Chart	
		Output Power (dBm)	(dBm)		
	L	14.56	30.0	-	
	М	15.50	30.0	-	
	Н	15.31	30.0	-	

Note:

The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

-

7.4.2 IEEE 802.11g

Η

Te	st Date: <u>Mar. 2</u>	3, 2016 Tempera	ature: <u>21°C</u>	Humidity: <u>62</u>	<u>%</u>
	Channel	Maximum Peak Output Power (dBm)	FCC Limit (dBm)	Chart	
	L	20.69	30.0	-	
	М	21.54	30.0	-	

21.58

Note:

The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

30.0

7.4.3 IEEE 802.11n, HT20

Test Date: Mar. 23, 2016	23, 2016
--------------------------	----------

Temperature: <u>21°C</u>

Humidity: <u>62%</u>

Channel	Maximum Peak	FCC Limit	Chart
	Output Power (dBm)	(dBm)	
L	21.09	30.0	-
М	21.97	30.0	-
Н	21.92	30.0	-

Note:

The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

7.4.4 IEEE 802.11n, HT40

Tes	st Date: <u>Mar. 23</u> ,	<u>, 2016</u> Temp	erature: <u>21°C</u>	Humidity: <u>62%</u>
	Channel	Maximum Peak	FCC Limit	Chart
		Output Power (dBm)	(m W)	
	L	22.51	1000	-
	М	22.89	1000	-
	Н	23.03	1000	-

Note:

The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

8 POWER DENSITY MEASUREMENT

8.1 Standard Applicable

According to 15.247(e), for direct sequence systems, the transmitted power density averaged over any 1 second interval shall not be greater than 8 dBm in any 3 kHz bandwidth within these bands.

8.2 Measurement Procedure

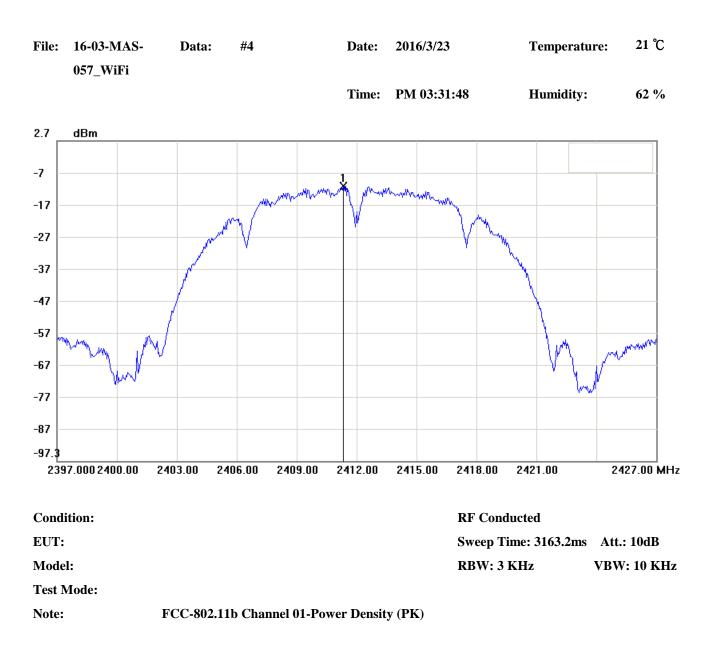
- 1. The testing follows FCC KDB 558074 D01 v03r05.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 2. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set EUT to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 4. Adjust the center frequency of spectrum analyzer on highest level appearing on spectral display within a 300 kHz frequency span.
- 5. Set the spectrum analyzer on a 3 kHz resolution bandwidth and 10 kHz video bandwidth as well as max. hold function, then record the measurement result.
- 6. Repeat above procedures until all measured frequencies were complete.

8.3 Measurement Equipment

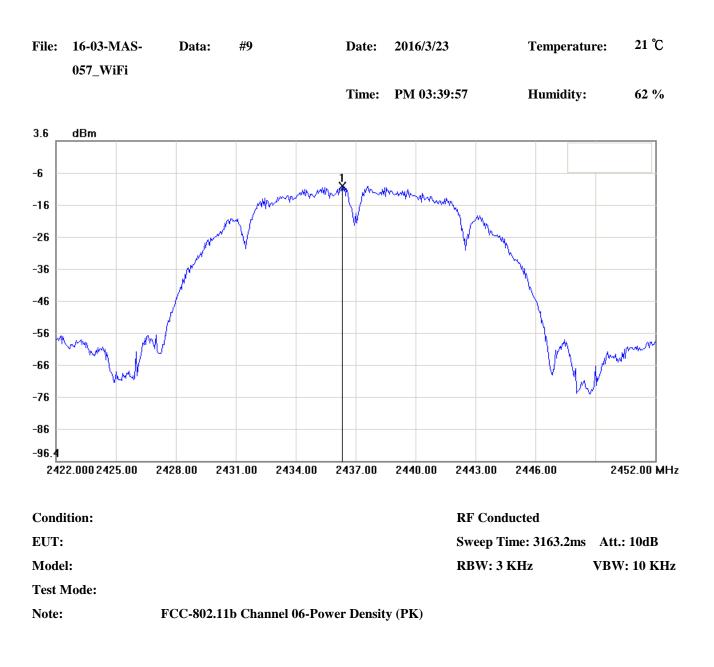
Equipment	Manufacturer	Model No.
Spectrum Analyzer	Agilent	E4446A

8.4 Measurement Data

8.4.1 IEEE 802.11b


Test Date:	Mar	23	2016
Test Date.	iviai.	45,	2010

Temperature: <u>21°C</u>


Humidity: <u>62%</u>

Channel	Peak Power Spectral Density (dBm)	FCC Limit (dBm)	Chart
L	-11.31	8	Page 43
М	-10.55	8	Page 44
Н	-10.67	8	Page 45

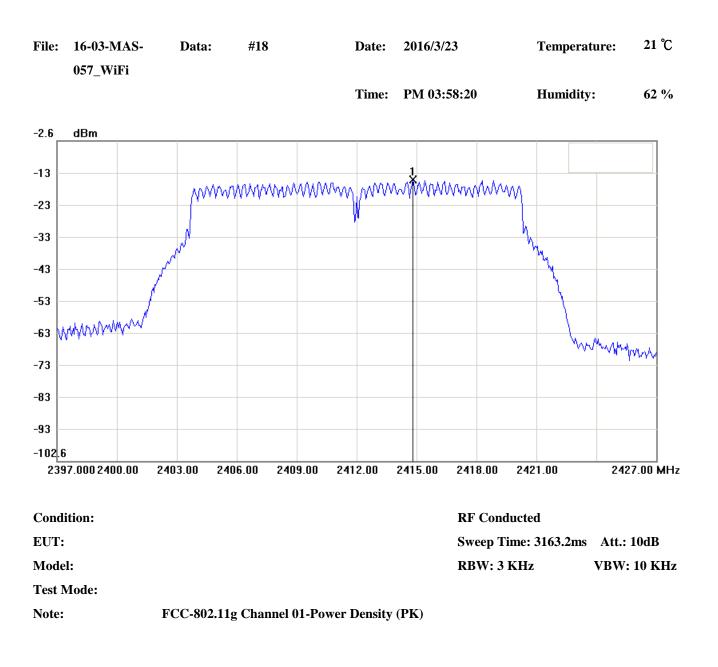
- 1. Please refer to page 43 to page 45 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

No.	Frequency(MHz)	Level(dBm)
1	2411.35000	-11.31

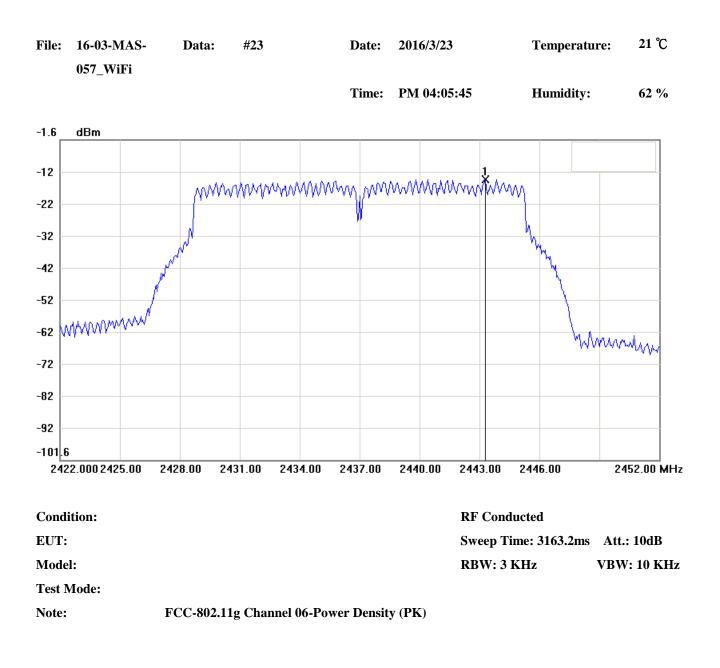
No.	Frequency(MHz)	Level(dBm)
1	2436.35000	-10.55

No.	Frequency(MHz)	Level(dBm)
1	2461.35000	-10.67

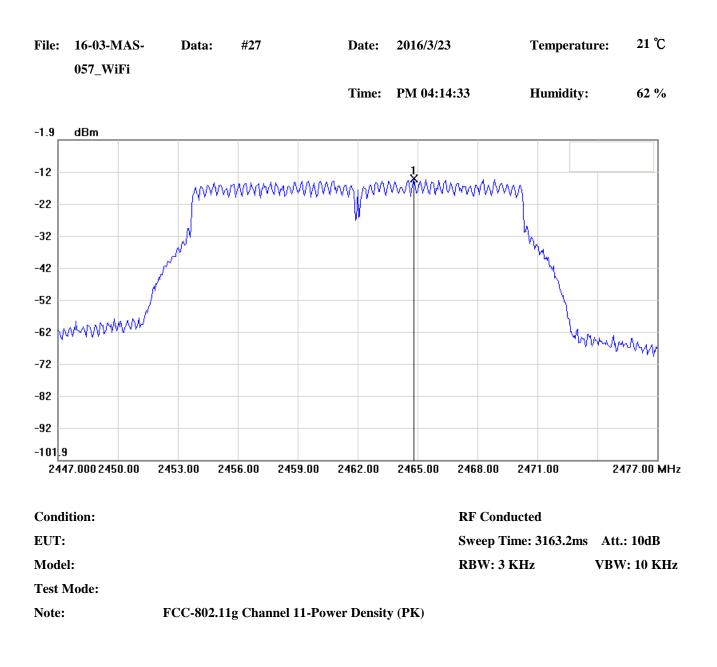
8.4.2 IEEE 802.11g


Test Date:	Mar.	23.	2016	

Temperature: <u>21°C</u>


Humidity: <u>62%</u>

Channel	Peak Power Spectral Density (dBm)	FCC Limit (dBm)	Chart
L	-14.73	8	Page 47
М	-13.85	8	Page 48
Н	-14.05	8	Page 49

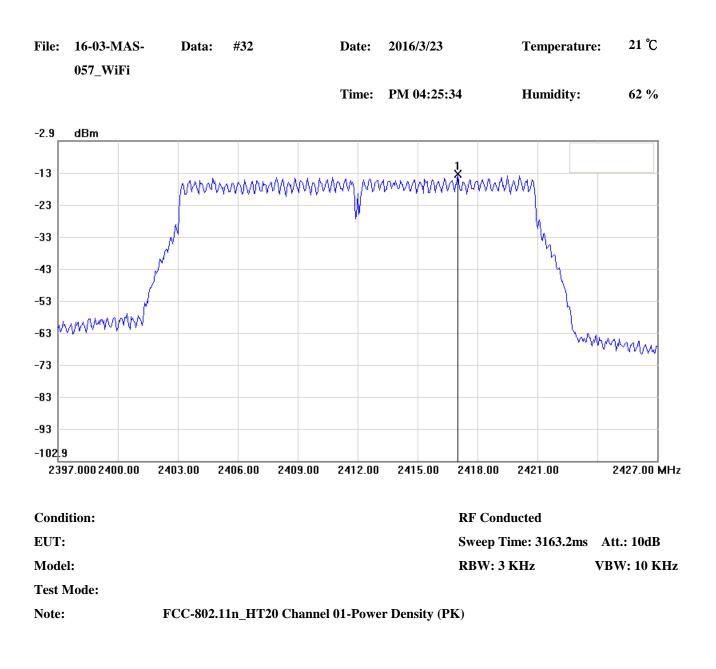

- 1. Please refer to page 47 to page 49 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

No.	Frequency(MHz)	Level(dBm)
1	2414.80000	-14.73

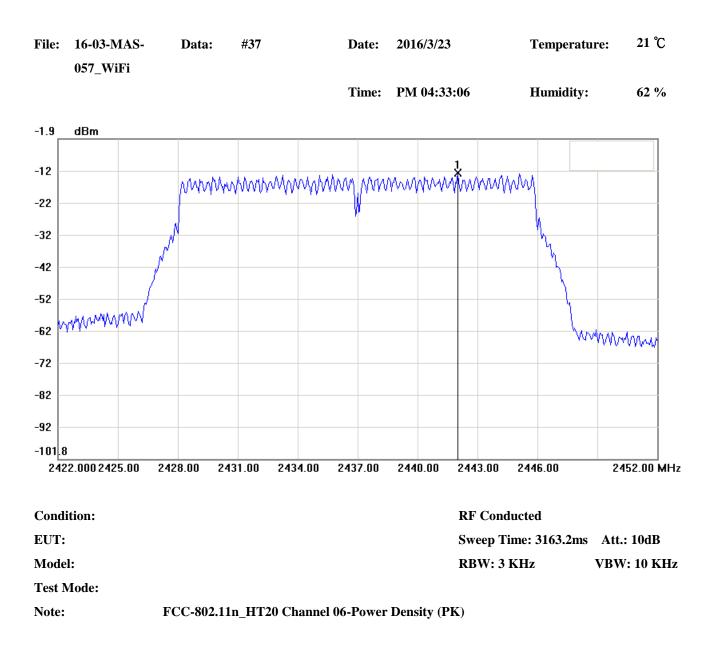
No.	Frequency(MHz)	Level(dBm)
1	2443.30000	-13.85

No.	Frequency(MHz)	Level(dBm)
1	2464.80000	-14.05

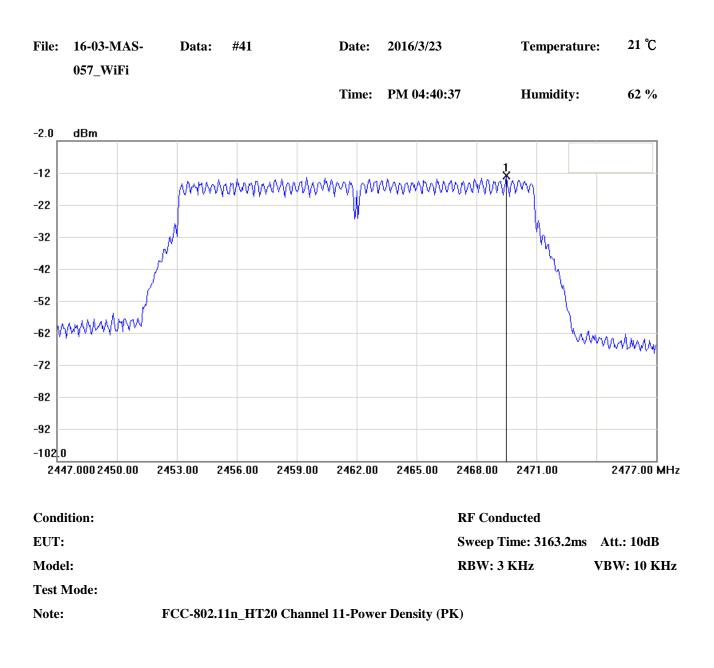
8.4.3 IEEE 802.11n, HT20


Test Date:	Mar	23	2016
Test Date.	iviai.	<i>23</i> ,	2010

Temperature: <u>21°C</u>

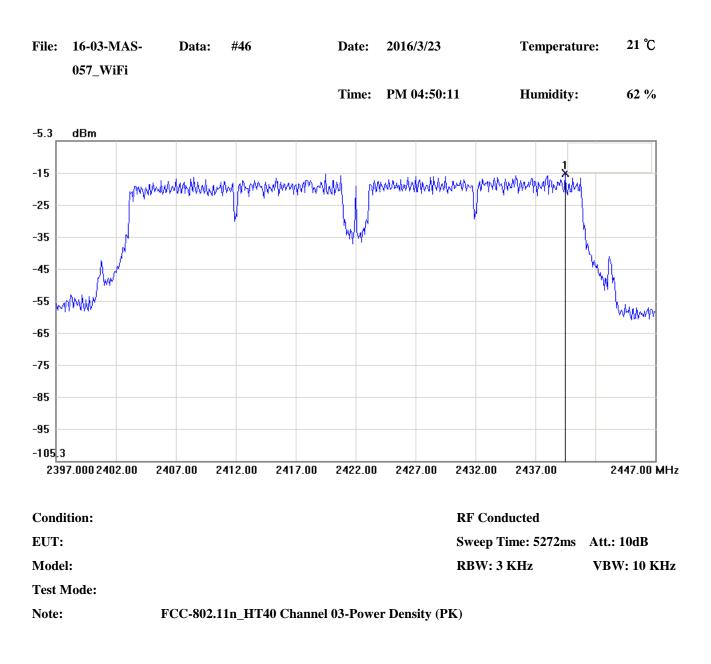

Humidity: <u>62%</u>

Channel	Peak Power Spectral Density (dBm)	FCC Limit (dBm)	Chart
L	-13.34	8	Page 51
М	-12.37	8	Page 52
Н	-12.78	8	Page 53

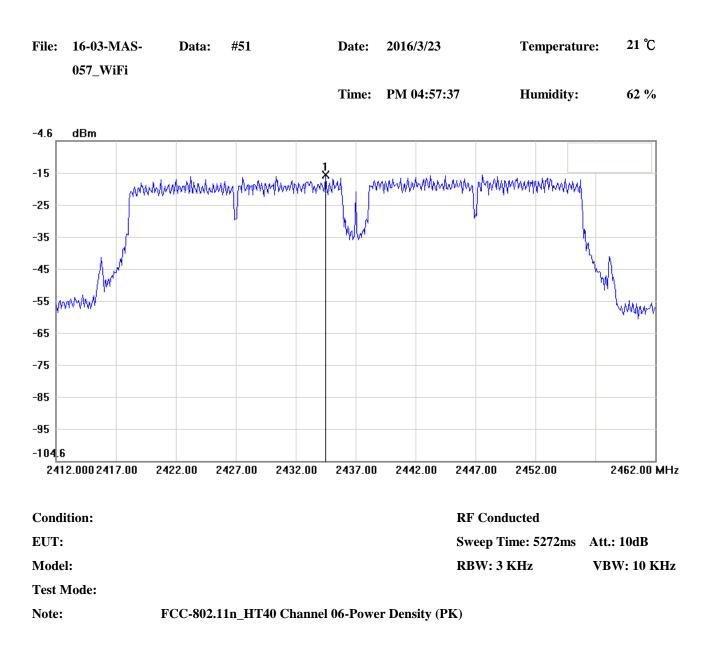

- 1. Please refer to page 51 to page 53 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

No.	Frequency(MHz)	Level(dBm)
1	2417.00000	-13.34

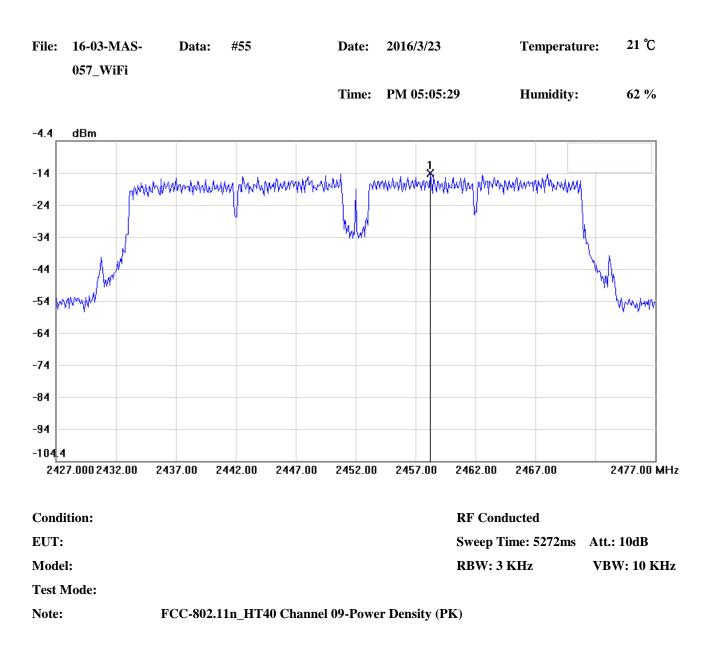
No.	Frequency(MHz)	Level(dBm)
1	2442.00000	-12.37



No.	Frequency(MHz)	Level(dBm)
1	2469.50000	-12.78


8.4.4 IEEE 802.11n, HT40

Test Date: <u>Mar. 23, 20</u>	<u>)16</u> Temp	erature: <u>21°C</u>	Humidity: <u>62%</u>
Channel	Peak Power Spectral	FCC Limit	Chart
	Density (dBm)	(dBm)	
L	-15.51	8	Page 55
М	-15.17	8	Page 56
Н	-14.44	8	Page 57


- 1. Please refer to page 55 to page 57 for chart
- 2. The estimated measurement uncertainty of the result measurement is $\pm 1.5 dB(1GHz \leq f \leq 18GHz)$

No.	Frequency(MHz)	Level(dBm)
1	2439.50000	-15.51

No.	Frequency(MHz)	Level(dBm)
1	2434.50000	-15.17

No.	Frequency(MHz)	Level(dBm)
1	2458.25000	-14.44

9 SPURIOUS EMISSION - RF CONDUCTED MEASUREMENT

9.1 Standard Applicable

According to 12.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a) (see Section 15.205(c)).

9.2 Measurement Procedure

- 1. The testing follows FCC KDB 558074 D01 v03r05.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Position the EUT as shown in figure 2. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 4. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 5. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

6. Repeat above procedures until all measured frequencies were complete.

9.3 Measurement Equipment

Equipment	Manufacturer	Model No.
Spectrum Analyzer	Agilent	E4446A

9.4 Measurement Data

9.4.1 IEEE 802.11b

Test Date: Mar. 23, 2016	Temperature: <u>21°C</u>	Humidity: <u>62%</u>
Channel	Frequency(MHz)	Chart
1	2412	Page 61, Page 63
6	2437	Page 64
11	2462	Page 62, Page 65

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of -band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 61 to page 65 for chart

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

9.4.2 IEEE 802.11g

Channel	Frequency(MHz)	Chart
1	2412	Page 66, Page 68
6	2437	Page 69
11	2462	Page 67, Page 70

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of –band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 66 to page 70 for chart

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

9.4.3 IEEE 802.11n, HT20

Channel	Frequency(MHz)	Chart
1	2412	Page 71 Page 73
6	2437	Page 74
11	2462	Page 72, Page 75

Frequency Band: 2400 MHz ~ 2483.5 MHz

All out-of –band conducted emissions were more than 20dB below the carrier.

Note: 1. Please refer to page 71 to page 75 for chart

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

9.4.4 IEEE 802.11n, HT40

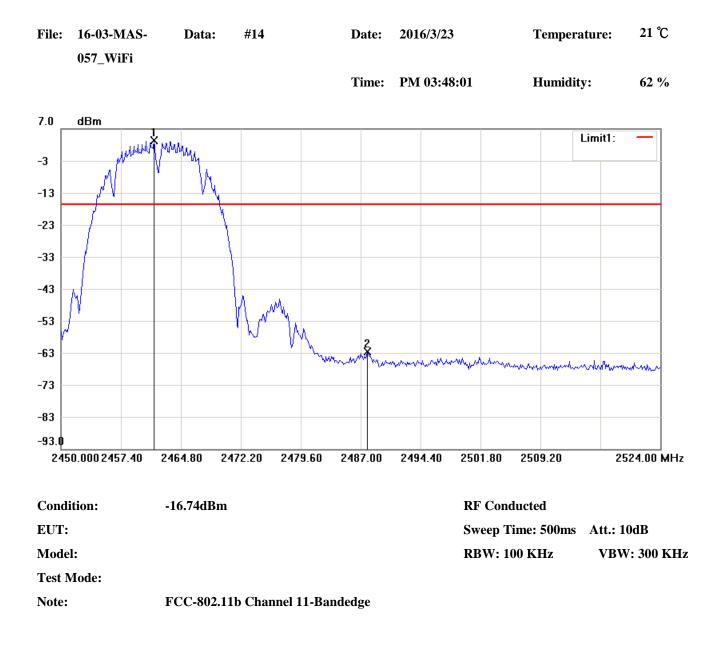
Test Date:	May 05, 2014

Temperature: <u>22°C</u>

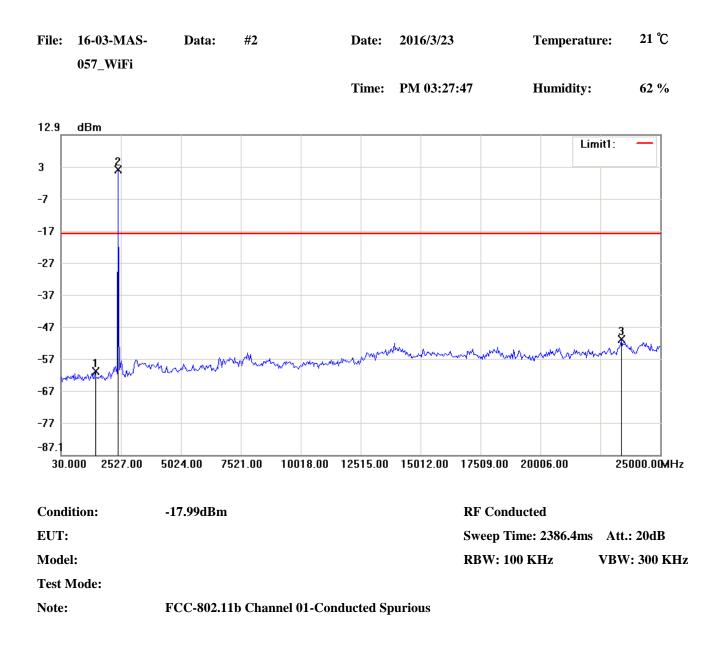
Humidity: 60%

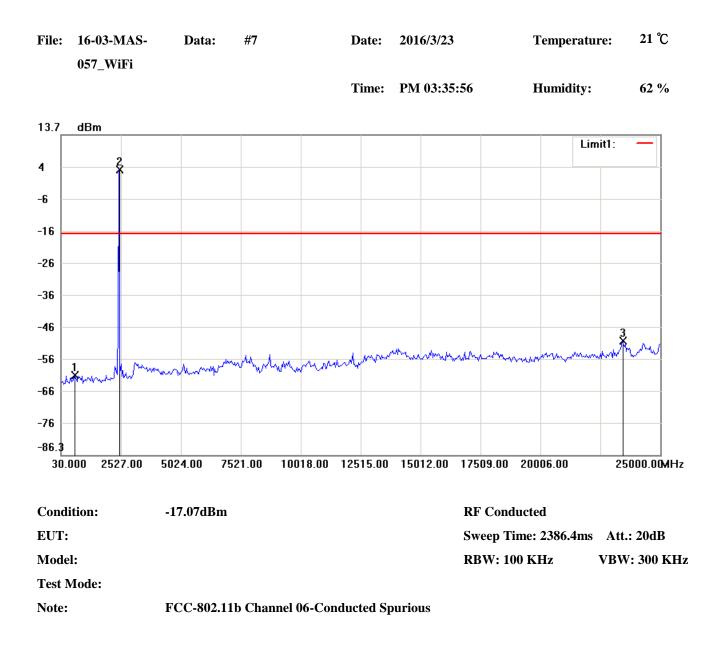
Channel	Chart
L	Page 76, Page 78
М	Page 79
Н	Page 77, Page 80

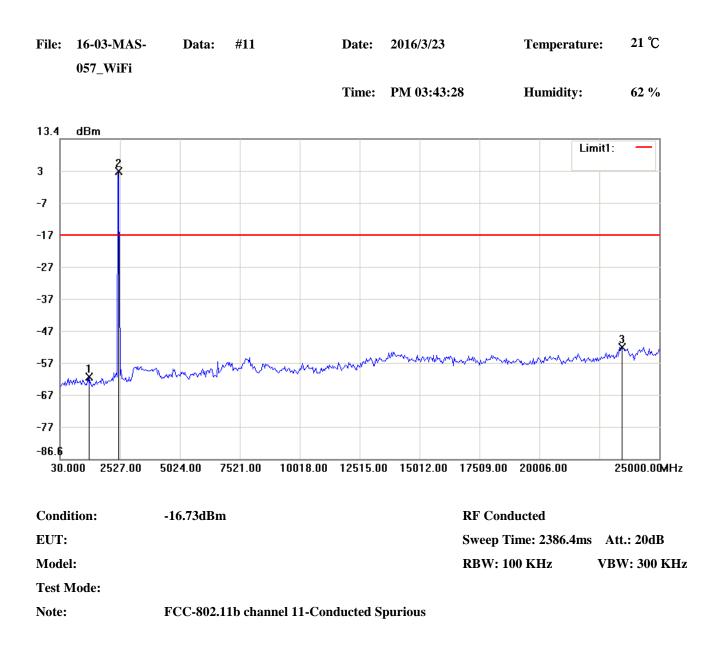
Frequency Band: 2400 MHz ~ 2483.5 MHz

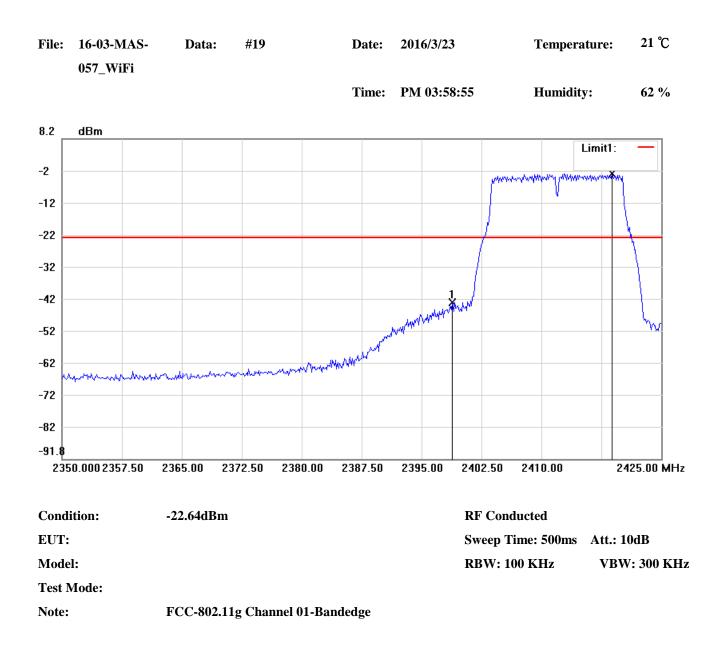

All out-of -band conducted emissions were more than 20dB below the carrier.

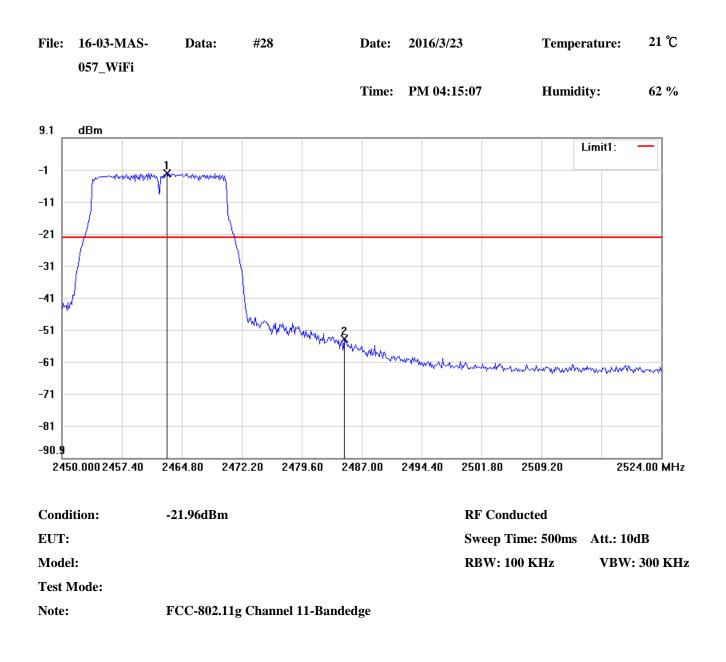
Note: 1. Please refer to page 76 to page 80 for chart

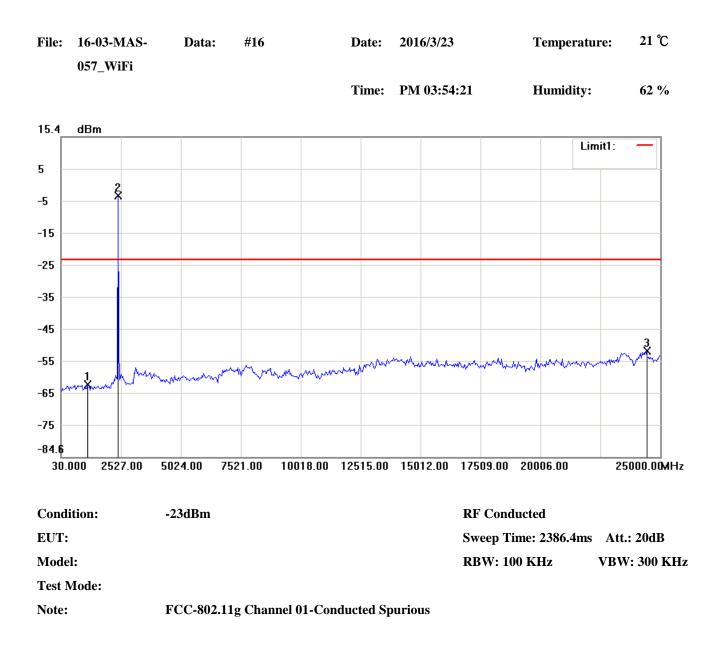

2. An external attenuator is used as part of the test system for these measurements, the attenuation introduced by the external attenuator has not been explicitly compensated in the measured power level as it is irrelevant to these specific measurement results.

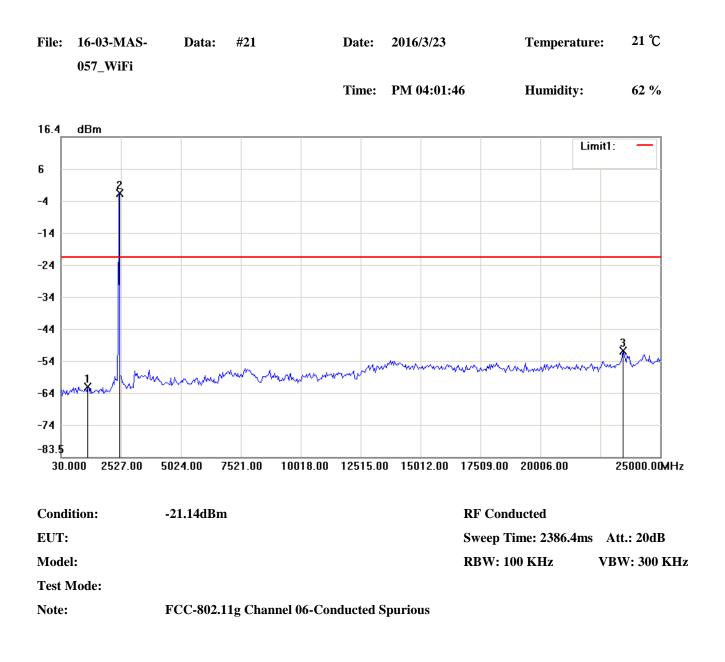

No.	Frequency(MHz)	Level(dBm)
1	2397.00000	-44.09
2	2413.50000	2.40

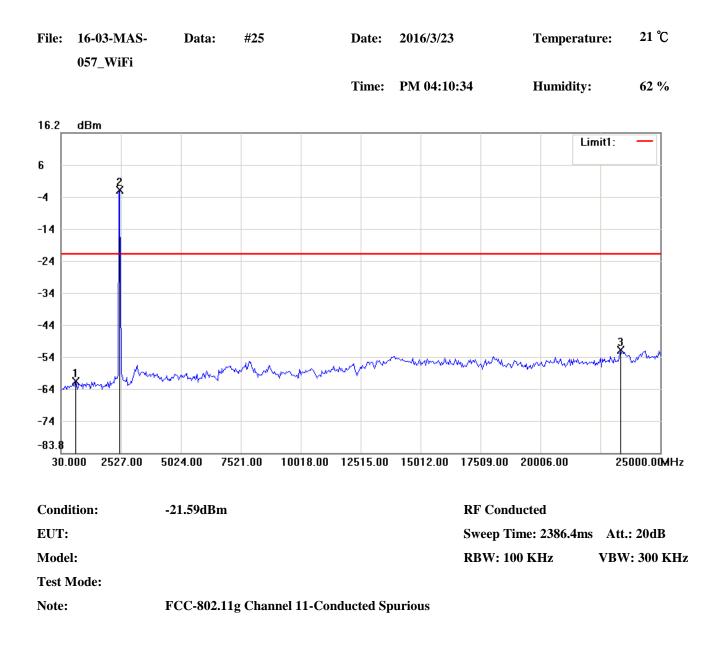

No.	Frequency(MHz)	Level(dBm)
1	2461.47000	3.26
2	2487.86330	-62.72

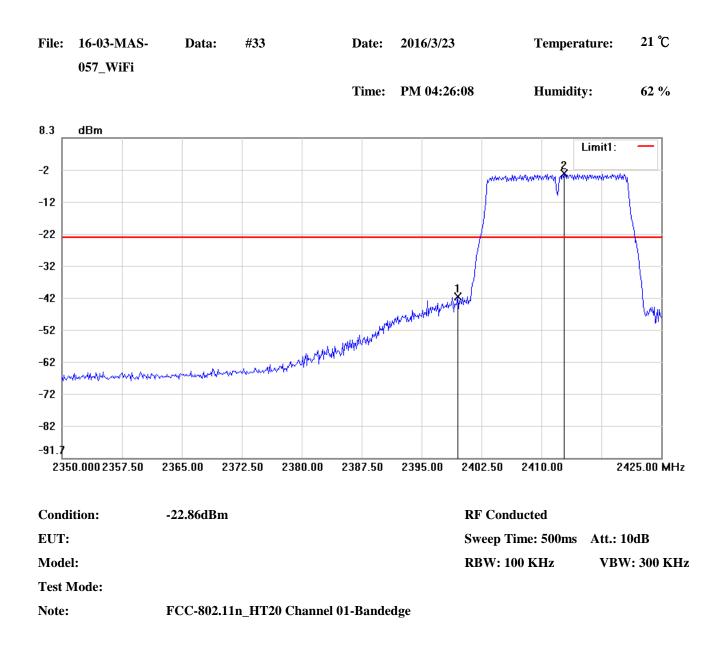

No.	Frequency(MHz)	Level(dBm)
1	1444.96670	-60.95
2	2402.15000	2.01
3	23376.95000	-50.89

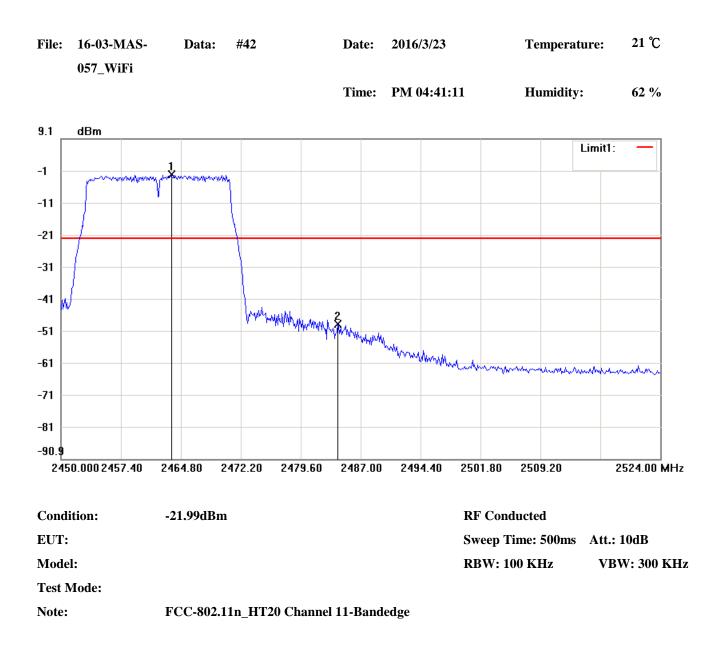

No.	Frequency(MHz)	Level(dBm)
1	571.0167	-61.44
2	2443.76670	2.93
3	23418.56670	-50.53

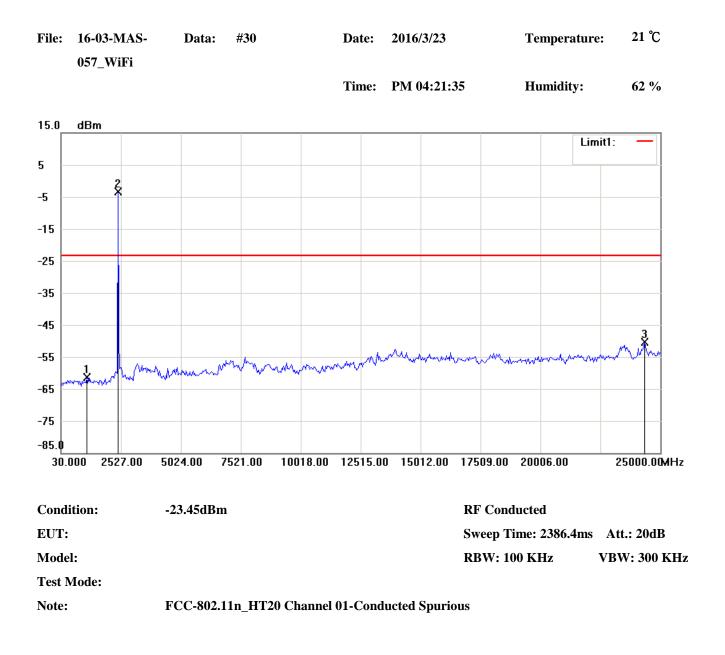

No.	Frequency(MHz)	Level(dBm)
1	1195.26670	-60.90
2	2443.76670	3.27
3	23460.18330	-51.62

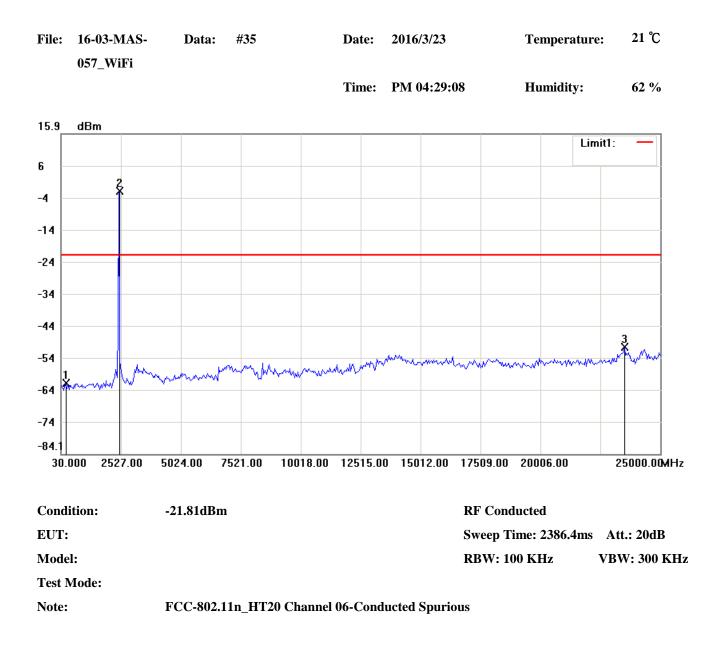

No.	Frequency(MHz)	Level(dBm)
1	2398.87500	-42.93
2	2418.87500	-2.64

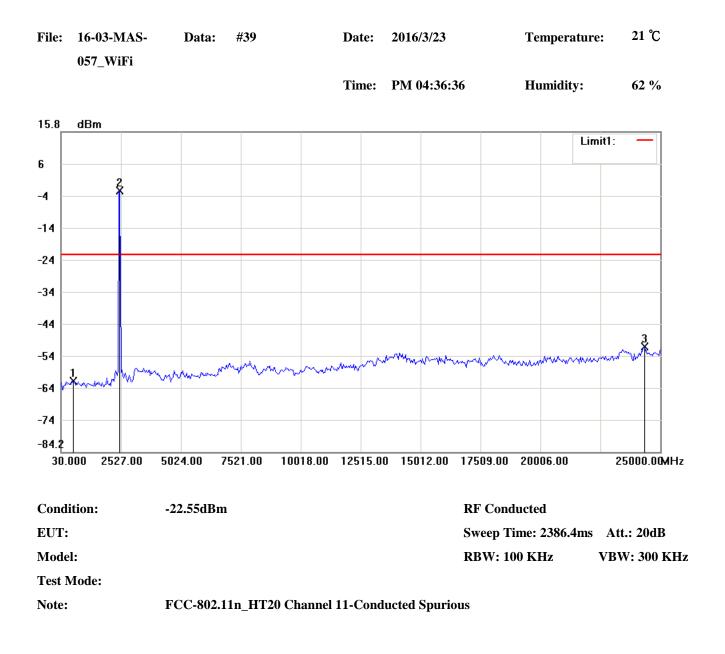

No.	Frequency(MHz)	Level(dBm)
1	2462.82670	-1.96
2	2484.90330	-53.70

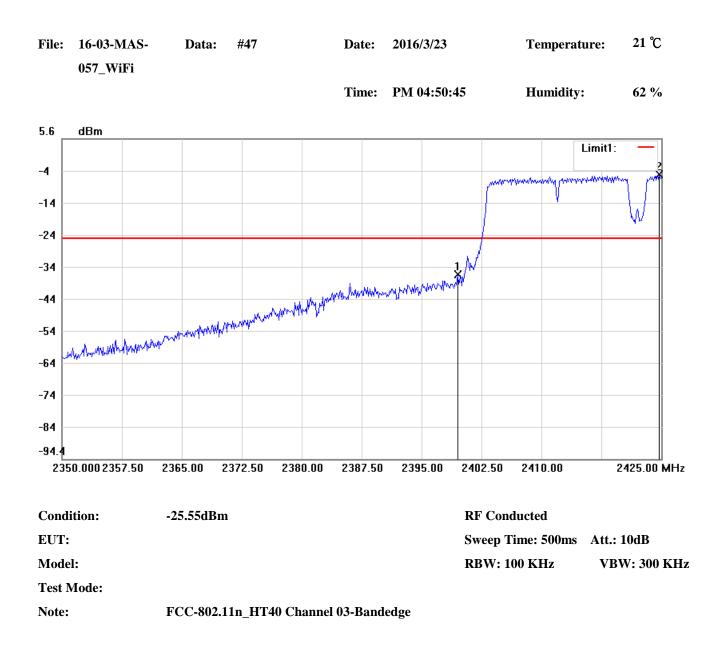

No.	Frequency(MHz)	Level(dBm)
1	1153.65000	-62.08
2	2402.15000	-3.00
3	24417.36670	-51.53

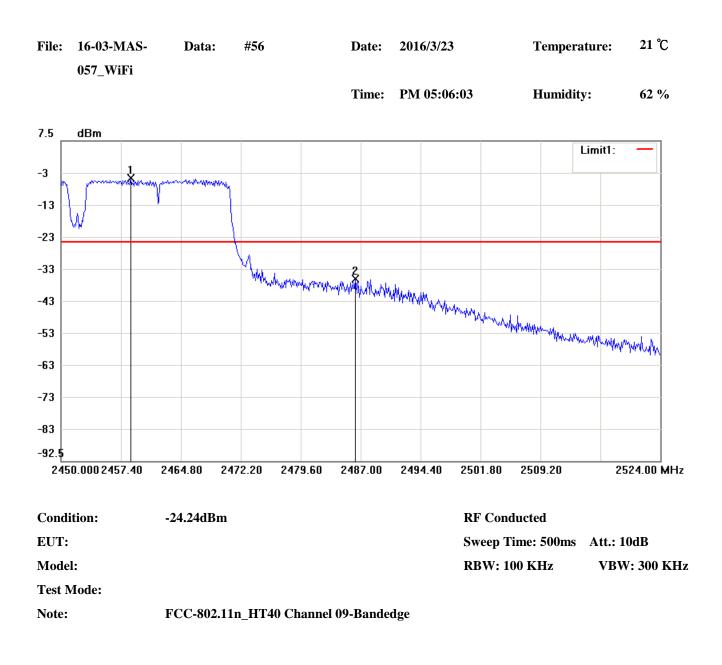

No.	Frequency(MHz)	Level(dBm)
1	1153.65000	-61.63
2	2443.76670	-1.14
3	23460.18330	-50.30

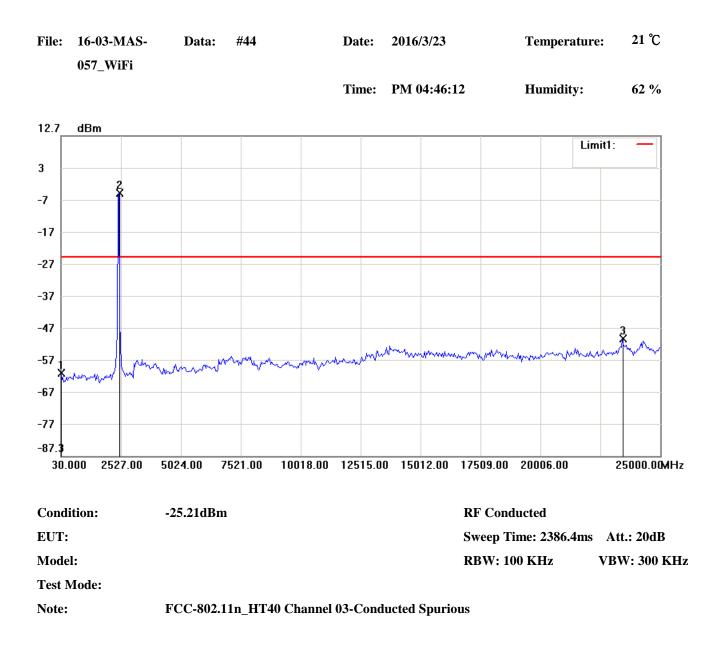

No.	Frequency(MHz)	Level(dBm)
1	654.2500	-61.40
2	2443.76670	-1.59
3	23335.33330	-51.61

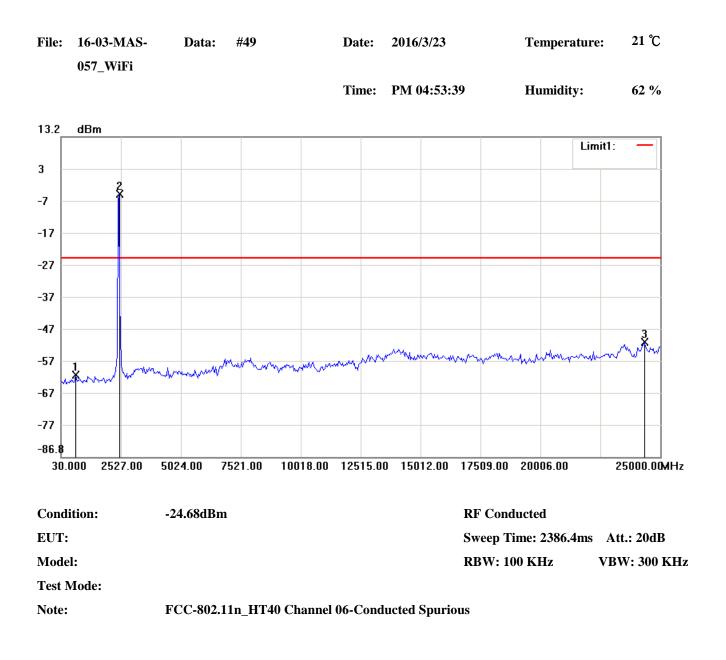

No.	Frequency(MHz)	Level(dBm)
1	2399.50000	-41.40
2	2412.87500	-2.86

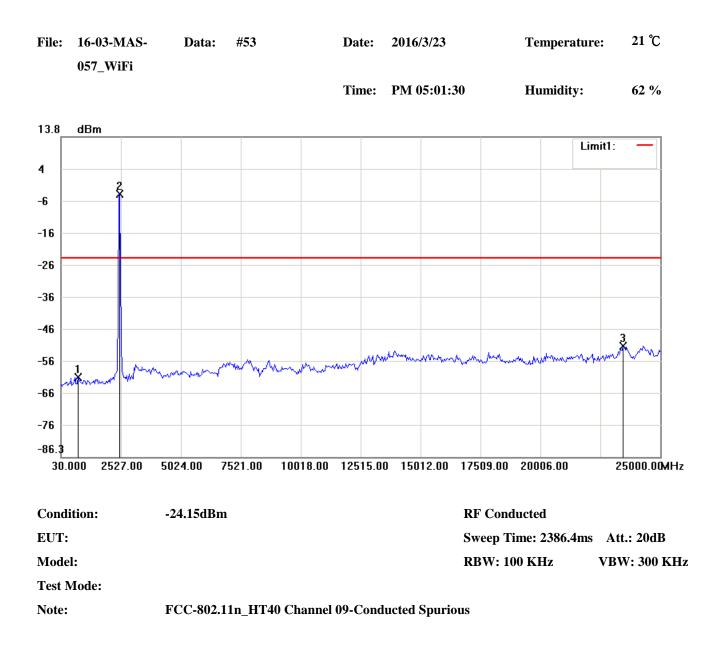

No.	Frequency(MHz)	Level(dBm)
1	2463.56670	-1.99
2	2484.16330	-48.78


No.	Frequency(MHz)	Level(dBm)		
1	1112.03330	-61.27		
2	2402.15000	-3.45		
3	24334.13330	-50.41		


No.	Frequency(MHz)	Level(dBm)	
1	196.4667	-62.03	
2	2443.76670	-1.81	
3	23501.80000	-50.58	


No.	Frequency(MHz)	Level(dBm)		
1	529.4000	-61.97		
2	2443.76670	-2.55		
3	24334.13330	-51.40		


No.	Frequency(MHz)	Level(dBm)		
1	2399.50000	-36.79		
2	2424.75000	-5.55		


No.	Frequency(MHz)	Level(dBm)		
1	2458.63330	-4.24		
2	2486.38330	-35.71		

No.	Frequency(MHz)	Level(dBm)		
1	30.0000	-61.41		
2	2443.76670	-5.21		
3	23418.56670	-50.74		

No.	Frequency(MHz)	Level(dBm)		
1	654.2500	-61.16		
2	2443.76670	-4.68		
3	24334.13330	-50.83		

No.	Frequency(MHz)	Level(dBm)		
1	737.4833	-61.25		
2	2443.76670	-4.15		
3	23460.18330	-51.51		

10 RADIATED EMISSION MEASUREMENT

10.1 Standard Applicable

For unintentional radiator, the radiated emission shall comply with §15.109(a).

For intentional radiators, according to §15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with §15.247 (d)

10.2 Measurement Procedure

The testing follows FCC KDB 558074 D01 v03r05.

A.Preliminary Measurement For Portable Devices.

- For movable devices, the following procedure was performed to determine the maximum emission axis of EUT (X,Y and Z axis):
- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving ntenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. The axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.
- 4. The position in which the maximum noise occurred was "X axis". (Please see the test setup photos)

B. Final Measurement

- 1. Setup the configuration per figure 1 and 2 for frequencies measured below and above 1 GHz respectively. Turn on EUT and make sure that it is in continuous operating function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a semi-anechoic chamber to determine the accurate frequencies of higher emissions and then each selected frequency is precisely measured. As the same purpose, for emission measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission measured below and above 1 GHz, set the spectrum analyzer on a 120 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 ° to 360 ° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.

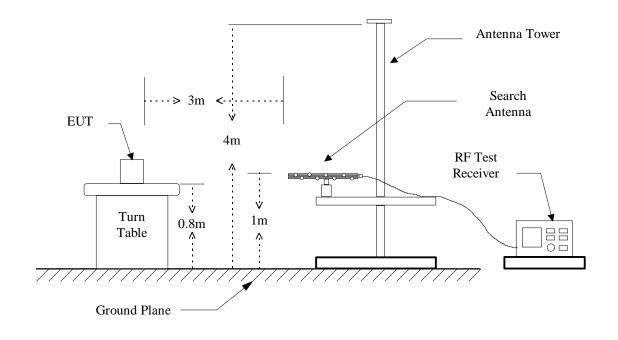
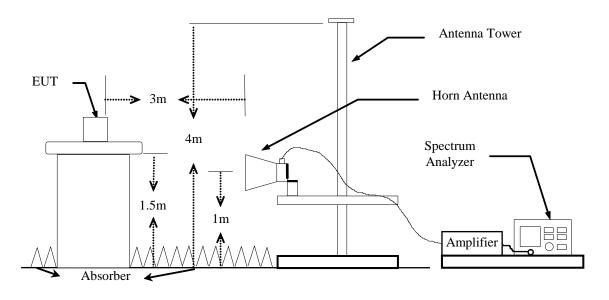



Figure 3 : Frequencies measured below 1 GHz configuration

Figure 4 : Frequencies measured above 1 GHz configuration

10.3 Measuring Instrument

Equipment	Manufacturer	Model No.		
EMI Receiver	R&S	ESCI		
Spectrum Analyzer	R&S	FSU46		
Horn Antenna	EMCO	3115		
BiLog Antenna	Schaffner	CBL6112B		
Horn Antenna	EMCO	3116		
Preamplifier	Hewlett-Packard	8449B		
Loop Antenna	EMCO	6512		
PRE-Amplifier	EMCI	PA303N		

The following instrument are used for radiated emissions measurement :

Measuring instrument setup in measured frequency band when specified detector function is used :

Frequency Band	T / /		Resolution	Video
(MHz)	Instrument	Function	Bandwidth	Bandwidth
	RF Test Receiver	Quasi-Peak	120 kHz	300 kHz
30 to 1000	Spectrum Analyzer	Peak	120 kHz	300 kHz
	Spectrum Analyzer	Peak	1 MHz	1 MHz
Above 1000	Spectrum Analyzer	Average	1 MHz	VBW_avg
				(Note)

Note:For average measurement

Condition	VBW_avg
Duty cycle is no less than 98 percent	10 Hz
Duty cycle is less than 98 percent, T is the	> 1
minimum transmission duration over which the	<i>T</i>
transmitter is on and is transmitting at its	
maximum power control level for the tested mode	
of operation	
Current use	10Hz

10.4 Radiated Emission Data

10.4.1 Harmonic

10.4.1.1 IEEE 802.11b

Test Date: <u>Apr. 01, 2016</u>

Temperature: <u>20°C</u>

Humidity: 60%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			-1.99			74.0	54.0	
4824.0000	V			-1.99			74.0	54.0	
7236.0000	Н			0.97			74.0	54.0	
7236.0000	v			0.97			74.0	54.0	
9648.0000	Н			2.55			74.0	54.0	
9648.0000	v			2.55			74.0	54.0	
12060.0000	Н			4.84			74.0	54.0	
12060.0000	V			4.84			74.0	54.0	
14472.0000	Н			9.35			74.0	54.0	
14472.0000	v			9.35			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

b) Channel 6

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			-1.88			74.0	54.0	
4874.0000	V			-1.88			74.0	54.0	
7311.0000	Н			1.15			74.0 54.0		
7311.0000	V			1.15			74.0	54.0	
9748.0000	Н			2.65			74.0 54.0		
9748.0000	V			2.65			74.0 54.0		
12185.0000	Н			4.91			74.0	54.0	
12185.0000	v						74.0	54.0	
14622.0000	Н			8.68			74.0	54.0	
14622.0000	v			8.68			74.0	54.0	

Fundamental Frequency: 2437 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

c) Channel 11

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	Ì.		Peak	AVG	Peak	AVG	(dB)
4924.0000	Н			-1.77			74.0	54.0	
4924.0000	V			-1.77			74.0	54.0	
7386.0000	Н						74.0 54.0		
7386.0000	V			1.33			74.0	54.0	
9848.0000	Н			2.75				54.0	
9848.0000	v			2.75			74.0	54.0	
12310.0000	Н			4.99			74.0	54.0	
12310.0000	v						74.0	54.0	
14772.0000	Н			7.93			74.0	54.0	
14772.0000	v			7.93			74.0	54.0	

Fundamental Frequency: 2462 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

10.4.1.2 IEEE 802.11g

Test Date: <u>Apr. 01, 2016</u>

Temperature: <u>20°C</u>

Humidity: 60%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			-1.99			74.0	54.0	
4824.0000	V			-1.99			74.0	54.0	
7236.0000	Н			0.97			74.0	54.0	
7236.0000	V			0.97			74.0	54.0	
9648.0000	Н			2.55			74.0	54.0	
9648.0000	v			2.55			74.0	54.0	
12060.0000	Н			4.84			74.0	54.0	
12060.0000	v			4.84			74.0	54.0	
14472.0000	Н			9.35			74.0	54.0	
14472.0000	v			9.35			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

b) Channel 6

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			-1.88			74.0	54.0	
4874.0000	v			-1.88			74.0	54.0	
7311.0000	Н			1.15			74.0 54.0		
7311.0000	v			1.15			74.0	54.0	
9748.0000	Н			2.65			74.0 54.0		
9748.0000	v			2.65			74.0 54.0		
12185.0000	Н			4.91			74.0	54.0	
12185.0000	v						74.0	54.0	
14622.0000	Н			8.68			74.0	54.0	
14622.0000	v			8.68			74.0	54.0	

Fundamental Frequency: 2437 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

c) Channel 11

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	Ì.		Peak	AVG	Peak	AVG	(dB)
4924.0000	Н			-1.77			74.0	54.0	
4924.0000	V			-1.77			74.0	54.0	
7386.0000	Н						74.0 54.0		
7386.0000	V			1.33			74.0	54.0	
9848.0000	Н			2.75				54.0	
9848.0000	v			2.75			74.0	54.0	
12310.0000	Н			4.99			74.0	54.0	
12310.0000	v						74.0	54.0	
14772.0000	Н			7.93			74.0	54.0	
14772.0000	v			7.93			74.0	54.0	

Fundamental Frequency: 2462 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

10.4.1.3 IEEE 802.11n, HT20

Test Date: <u>Apr. 01, 2016</u>

Temperature: <u>20°C</u>

Humidity: 60%

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4824.0000	Н			-1.99			74.0	54.0	
4824.0000	V			-1.99			74.0	54.0	
7236.0000	Н			0.97			74.0	54.0	
7236.0000	V			0.97			74.0	54.0	
9648.0000	Н			2.55			74.0	54.0	
9648.0000	v			2.55			74.0	54.0	
12060.0000	Н			4.84			74.0	54.0	
12060.0000	v			4.84			74.0	54.0	
14472.0000	Н			9.35			74.0	54.0	
14472.0000	v			9.35			74.0	74.0 54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

b) Channel 6

Frequency	Ant Pol		ding	Correct Factor		sult		mit	Margin
	FOI	(dBuV/	m)@3m	Factor	(dBuV/	/m)@3m	(dBuV/	m)@3m	(worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			-1.88			74.0	54.0	
4874.0000	v			-1.88			74.0	54.0	
7311.0000	Н			1.15			74.0 54.0		
7311.0000	v			1.15			74.0	54.0	
9748.0000	Н			2.65			74.0	54.0	
9748.0000	v			2.65			74.0 54.0		
12185.0000	Н			4.91			74.0	54.0	
12185.0000	v						74.0	54.0	
14622.0000	Н			8.68			74.0	54.0	
14622.0000	V			8.68			74.0	54.0	

Fundamental Frequency: 2437 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

c) Channel 11

Frequency	Ant Pol		ding m)@3m	Correct Factor	-	sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak AVG		(dB)	Peak	AVG	Peak	AVG	(dB)
4924.0000	Н			-1.77			74.0	54.0	
4924.0000	V			-1.77			74.0	54.0	
7386.0000	Н						74.0 54.0		
7386.0000	V			1.33			74.0	54.0	
9848.0000	Н			2.75				54.0	
9848.0000	v			2.75			74.0	54.0	
12310.0000	Н			4.99			74.0	54.0	
12310.0000	V			4.99			74.0	54.0	
14772.0000	Н			7.93			74.0	54.0	
14772.0000	v						74.0	54.0	

Fundamental Frequency: 2462 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

10.4.1.4 IEEE 802.11n, HT40

Test Date: <u>Apr. 01, 2016</u>

Temperature: <u>20°C</u>

Humidity: 60%

a) Channel 1

Fundamental Frequency: 2422 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4844.0000	Н			-1.94			74.0	54.0	
4844.0000	V			-1.94			74.0	54.0	
7266.0000	Н			1.04			74.0	54.0	
7266.0000	v			1.04			74.0	54.0	
9688.0000	Н			2.59			74.0	54.0	
9688.0000	v			2.59			74.0	54.0	
12110.0000	Н			4.87			74.0	54.0	
12110.0000	v			4.87			74.0	54.0	
14532.0000	Н			9.14			74.0	54.0	
14532.0000	v			9.14			74.0	54.0	

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

b) Channel 6

Frequency	Ant Pol		ding	Correct Factor		sult		mit	Margin
	1.01	(dBuV/	m)@3m	Pactor	(dBuV/	/m)@3m	(dBuV/	m)@3m	(worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4874.0000	Н			-1.88			74.0	54.0	
4874.0000	v			-1.88			74.0	54.0	
7311.0000	Н			1.15			74.0 54.0		
7311.0000	v			1.15			74.0	54.0	
9748.0000	Н			2.65			74.0	54.0	
9748.0000	v			2.65			74.0 54.0		
12185.0000	Н			4.91			74.0	54.0	
12185.0000	v						74.0	54.0	
14622.0000	Н			8.68			74.0	54.0	
14622.0000	V			8.68			74.0	54.0	

Fundamental Frequency: 2437 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

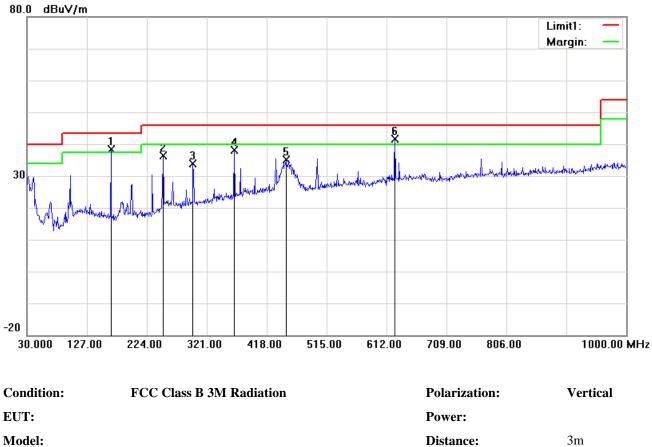
c) Channel 11

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult /m)@3m		mit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
4904.0000	Н			-1.81			74.0	54.0	
4904.0000	V			-1.81			74.0	54.0	
7356.0000	Н			1.25			74.0 54.0		
7356.0000	v			1.25			74.0	54.0	
9808.0000	Н			2.71			74.0 54.0		
9808.0000	v			2.71			74.0	54.0	
12260.0000	Н			4.96			74.0	54.0	
12260.0000	v						74.0	54.0	
14712.0000	Н			8.24			74.0	54.0	
14712.0000	V			8.24			74.0	54.0	

Fundamental Frequency: 2452 MHz

- 1. Item of margin shown in above table refer to average limit.
- 2. Remark "---" means that the emissions level is too low to be measured.
- 3. If the peak result is under the average limit, that is deemed to meet the average limit.
- 4. If there is only peak result, item "Margin" referred to "peak result average limit".
- 5. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

10.4.2 Spurious Emission


Operation Mode: Tx

10.4.2.1 30MHz to 1GHz

File	: 16-							Date: Fime:	2016 AM		16:44			mpei imidi	rature: ity:	:	20 °C 60 %			
80.	0 dB	uV/m																Limi	+1 -	
																		Mar		_
				_																
	<u> </u>					ş		3	4 X				ž				ь Х			
30		1	X					In I	1	March	l ales		hadh	ter marker of the	Anna	ultiment	www.when	mentional	untr	Julian All
	1		hour	en the hand	h	Inne	aftern	Jr 1.	ww.		d phone day -									
	July	r ^{adi}																		
-20 31		127.	00	224	.00	321	.00	418	3.00	5	15.00	613	2.00	709.	.00	806	.00		10	00.00 MHz
Con	dition	:		FC	C Cla	ss B	3M]	Radia	tion	l				Pola	arizat	tion:		J	Hori	zontal
EUI	Γ:													Pow	ver:					
Mod	lel:													Dist	ance	:			3m	
Test	t Mod	e:																		
ът .																				

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1	165.8000	20.32	peak	11.94	32.26	43.50	-11.24
2	298.6900	24.79	peak	15.72	40.51	46.00	-5.49
3	365.6200	22.56	peak	17.83	40.39	46.00	-5.61
4	432.5500	19.43	peak	19.37	38.80	46.00	-7.20
5	625.5800	14.08	peak	22.21	36.29	46.00	-9.71
6	832.1900	11.97	peak	24.36	36.33	46.00	-9.67

File:	16-03-MAS-057	Data:	#4	Date:	2016/4/1	Temperature:	20 °C
				Time:	AM 11:49:17	Humidity:	60 %

Model:

Test Mode:

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
	(MHz)	(dBuV)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1	165.8000	26.48	peak	11.94	38.42	43.50	-5.08
2	250.1900	21.47	peak	14.79	36.26	46.00	-9.74
3	298.6900	18.24	peak	15.72	33.96	46.00	-12.04
4	365.6200	20.24	peak	17.83	38.07	46.00	-7.93
5	449.0400	15.48	peak	19.63	35.11	46.00	-10.89
6	625.5800	19.33	peak	22.21	41.54	46.00	-4.46

10.4.2.2 above 1GHz

10.4.2.2.1.	0.4.2.2.1.1 Fundamental Frequency: 2412 MHz											
Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	nit m)@3m	Margin (worse)			
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)			
1000.0000	Н	53.4		-14.10	39.3		74.0	54.0	-14.7			
1000.0000	V	53.7		-14.10	39.6		74.0	54.0	-14.4			
1067.3077	Н	51.0		-13.83	37.2		74.0	54.0	-16.8			
1123.3974	V	50.4		-13.60	36.8		74.0	54.0	-17.2			
1399.3590	Н	50.8		-12.47	38.3		74.0	54.0	-15.7			
1747.1153	Н	50.2		-10.67	39.5		74.0	54.0	-14.5			

10.4.2.2.1 IEEE 802.11b

10 4 2 2 1 1 Eurodomontal Eraguanary 2412 MIL

10.4.2.2.1.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m	Lir (dBuV/	nit m)@3m	Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1307.3717	Н	50.5		-12.86	37.6		74.0	54.0	-16.4
1000.0000	V	52.9		-14.10	38.8		74.0	54.0	-15.2
1123.3974	V	50.9		-13.60	37.3		74.0	54.0	-16.7

10.4.2.2.1.3 Fundamental Frequency: 2462 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor		Result (dBuV/m)@3m		Limit (dBuV/m)@3m	
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(worse) (dB)
1000.0000	Н	53.1		-14.10	39.0		74.0	54.0	-15.0
1076.2820	Н	48.1		-13.79	34.3		74.0	54.0	-19.7
1123.3974	Н	49.8		-13.60	36.2		74.0	54.0	-17.8

Note: 1. Place of Measurement: Measuring site of the ETC.

- 2. Item of margin shown in above table refer to average limit.
- 3. Remark "---" means that the emissions level is too low to be measured.
- 4. If the peak result is under the average limit, that is deemed to meet the average limit.
- 5. If there is only peak result, item "Margin" referred to "peak result average limit".
 6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
- 7. The estimated measurement uncertainty of the result measurement is
 - ± 4.2 dB (9kHz $\leq f \leq 30$ MHz)
 - ± 4.6 dB (30MHz $\leq f < 300$ MHz).
 - ± 4.4 dB (300MHz $\leq f < 1000$ MHz).
 - ± 2.9 dB (1GHz $\leq f < 18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).

8. Please refer to page 102 to page 110 for char.

10.4.2.2.2 IEEE 802.11g

Frequency	Ant Pol		Reading Con (dBuV/m)@3m Fa			Result (dBuV/m)@3m		Limit (dBuV/m)@3m		
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)	
1000.0000	Н	53.6		-14.10	39.5		74.0	54.0	-14.5	
1123.3974	Н	49.1		-13.60	35.5		74.0	54.0	-18.5	

10.4.2.2.2.1 Fundamental Frequency: 2412 MHz

10.4.2.2.2.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		Limit (dBuV/m)@3m	
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	53.0		-14.10	38.9		74.0	54.0	-15.1
1125.6410	Н	48.6		-13.59	35.0		74.0	54.0	-19.0

10.4.2.2.2.3 Fundamental Frequency: 2462 MHz

Fraguanay	Ant	Reading		Correct	Res	Result		Limit	
Frequency	Pol	(dBuV/m)@3m		Factor	(dBuV/m)@3m		(dBuV/m)@3m		(worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	53.3		-14.10	39.2		74.0	54.0	-14.8

Note: 1. Place of Measurement: Measuring site of the ETC.

- 2. Item of margin shown in above table refer to average limit.
- 3. Remark "---" means that the emissions level is too low to be measured.
- 4. If the peak result is under the average limit, that is deemed to meet the average limit.
- 5. If there is only peak result, item "Margin" referred to "peak result average limit".
- 6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
- 7. The estimated measurement uncertainty of the result measurement is
 - ± 4.2 dB (9kHz $\leq f \leq 30$ MHz)
 - ± 4.6 dB (30MHz $\leq f < 300$ MHz).
 - ± 4.4 dB (300MHz $\leq f < 1000$ MHz).
 - ± 2.9 dB (1GHz $\leq f < 18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).

8. Please refer to page 111 to page 119 for char.

10.4.2.2.3 IEEE 802.11n, HT20

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		Limit (dBuV/m)@3m	
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	52.0		-14.10	37.9		74.0	54.0	-16.1
1123.3974	Н	48.3		-13.60	34.7		74.0	54.0	-19.3

10.4.2.2.3.1 Fundamental Frequency: 2412 MHz

10.4.2.2.3.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol		ding m)@3m	Correct Factor		sult m)@3m		Limit (dBuV/m)@3m	
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	53.0		-14.10	38.9		74.0	54.0	-15.1
1125.6410	Н	49.2		-13.59	35.6		74.0	54.0	-18.4

10.4.2.2.3.3 Fundamental Frequency: 2462 MHz

Frequency Pol		Reading		Correct	Result		Lir	Margin	
1 5	Pol	(dBuV/m)@3m		Factor	(dBuV/m)@3m		(dBuV/m)@3m		(worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	53.3		-14.10	39.2		74.0	54.0	-14.8
1125.0600	Н	49.5		-13.59	35.9		74.0	54.0	-18.1

Note: 1. Place of Measurement: Measuring site of the ETC.

- 2. Item of margin shown in above table refer to average limit.
- 3. Remark "---" means that the emissions level is too low to be measured.
- 4. If the peak result is under the average limit, that is deemed to meet the average limit.
- 5. If there is only peak result, item "Margin" referred to "peak result average limit".
- 6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
- 7. The estimated measurement uncertainty of the result measurement is
 - ± 4.2 dB (9kHz $\leq f \leq 30$ MHz)
 - ± 4.6 dB (30MHz $\leq f < 300$ MHz).
 - ± 4.4 dB (300MHz $\leq f < 1000$ MHz).
 - ± 2.9 dB (1GHz $\leq f < 18$ GHz).
 - ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).

8. Please refer to page 120 to page 128 for char.

10.4.2.2.4 IEEE 802.11n, HT40

10.4.2.2.4.1 Fundamental Frequency: 2422 MHz

Frequency	Ant	Reading	Correct	Duty	Result @3m	Limit @3m	Margins		
	Pol	(dBuV)	Factor	Factor	(dBuV/m)	(dBuV/m)			
(MHz)	H / V	Peak	(dB)	(dB)	Peak AVG	Peak AVG	(dB)		
Radiated emission frequencies above 1 GHz to 25 GHz									
were too low to be measured.									

10.4.2.2.4.2 Fundamental Frequency: 2437 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	52.4		-14.10	38.3		74.0	54.0	-15.7
1000.0000	V	48.7		-14.10	34.6		74.0	54.0	-19.4
1123.3974	Н	48.9		-13.60	35.3		74.0	54.0	-18.7
1376.9230	V	47.7		-12.56	35.1		74.0	54.0	-18.9

10.4.2.2.4.3 Fundamental Frequency: 2452 MHz

Frequency	Ant Pol	Reading (dBuV/m)@3m		Correct Factor	Result (dBuV/m)@3m		Limit (dBuV/m)@3m		Margin (worse)
(MHz)	H/V	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	(dB)
1000.0000	Н	53.1		-14.10	39.0		74.0	54.0	-15.0
1125.0600	Н	49.6		-13.59	36.0		74.0	54.0	-18.0

Note: 1. Place of Measurement: Measuring site of the ETC.

2. Item of margin shown in above table refer to average limit.

3. Remark "----" means that the emissions level is too low to be measured.

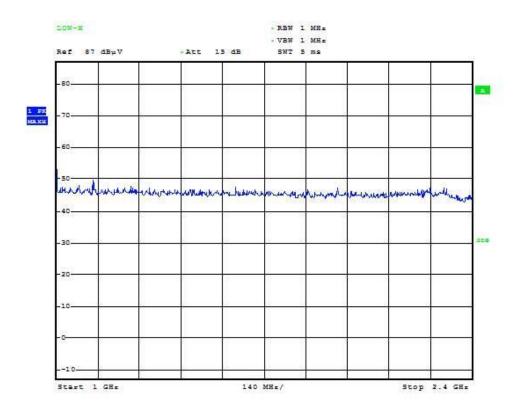
4. If the peak result is under the average limit, that is deemed to meet the average limit.

5. If there is only peak result, item "Margin" referred to "peak result – average limit".

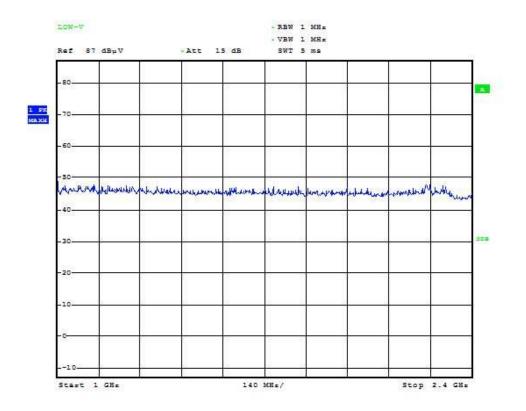
6. The radiation emissions have been measured to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.

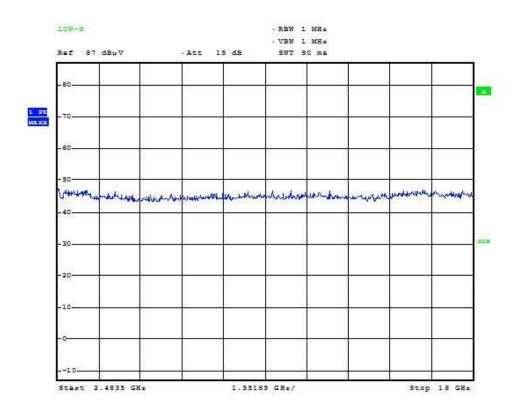
7. The estimated measurement uncertainty of the result measurement is

 ± 4.2 dB (9kHz $\leq f \leq 30$ MHz)

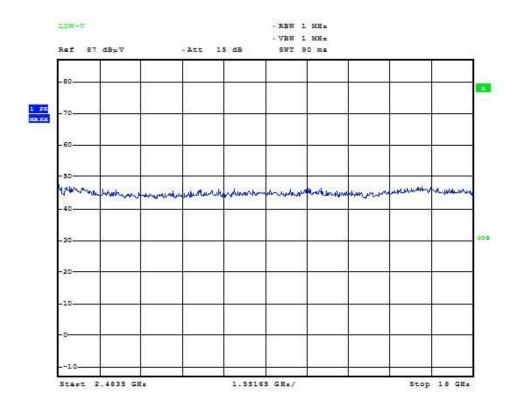

 ± 4.6 dB (30MHz $\leq f < 300$ MHz).

 ± 4.4 dB (300MHz $\leq f < 1000$ MHz).

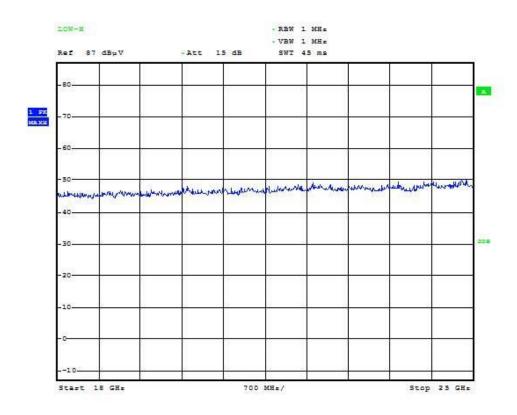

- ± 2.9 dB (1GHz $\leq f < 18$ GHz).
- ± 3.5 dB (18GHz $\leq f \leq 40$ GHz).

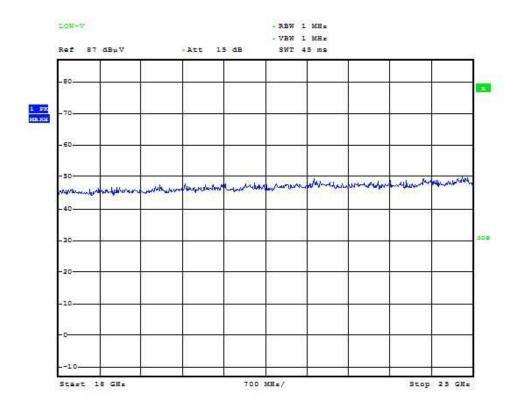

8. Please refer to page 129 to page 137 for char.

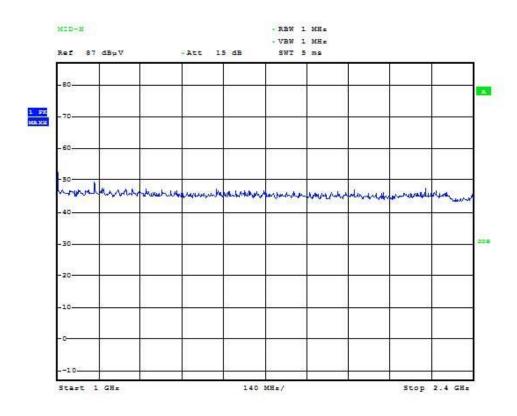
IEEE 802.11b

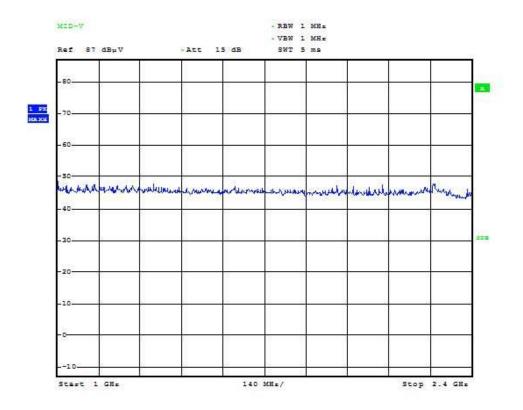


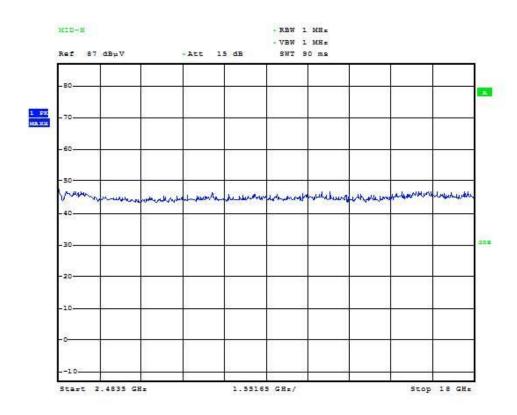
Date: 24.MAR.2016 02:07:04

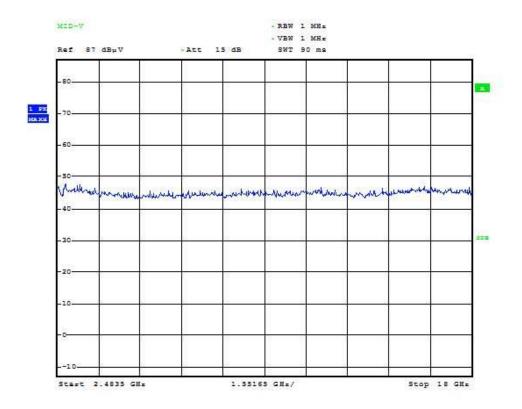


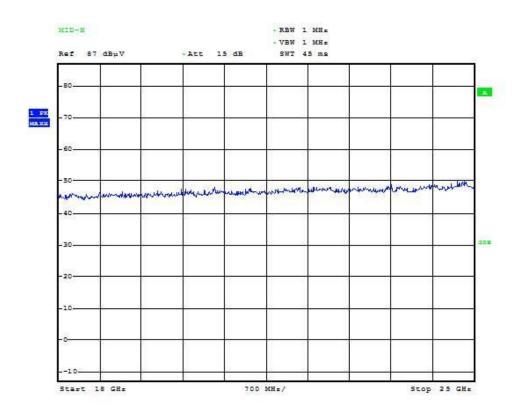

Date: 24.MAR.2016 02:08:16

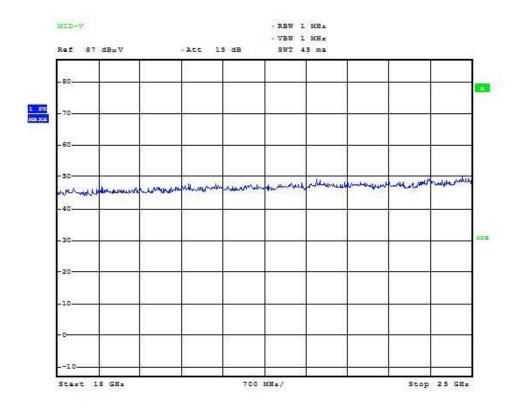

Date: 24.MAR.2016 02:11:49

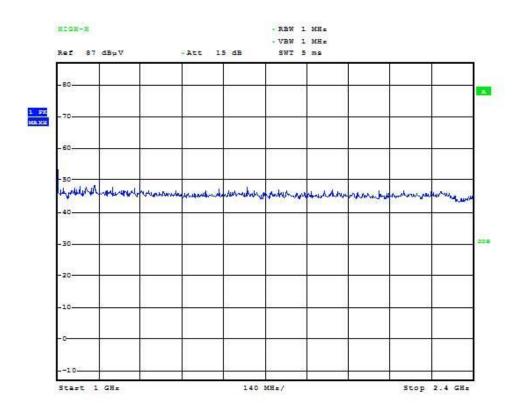

Date: 24.MAR.2016 02:09:27

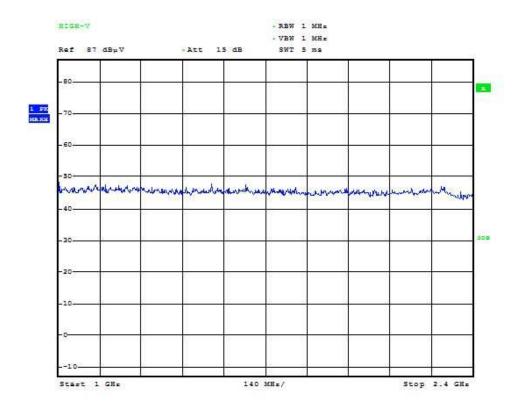

Date: 24.MAR.2016 02:13:00

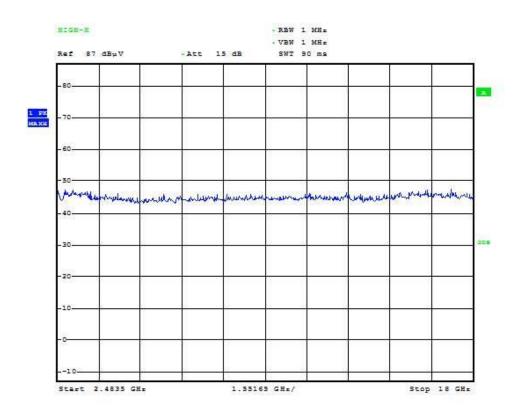

Date: 24.MAR.2016 02:14:31

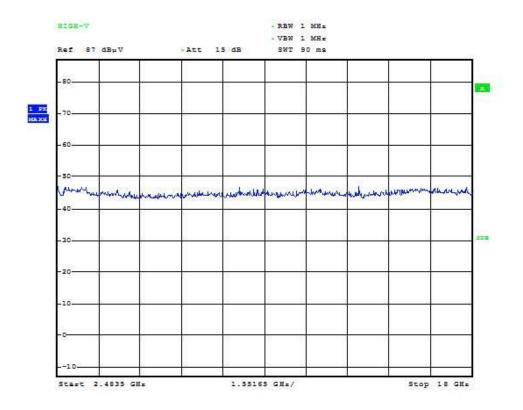

Date: 24.MAR.2016 02:18:02

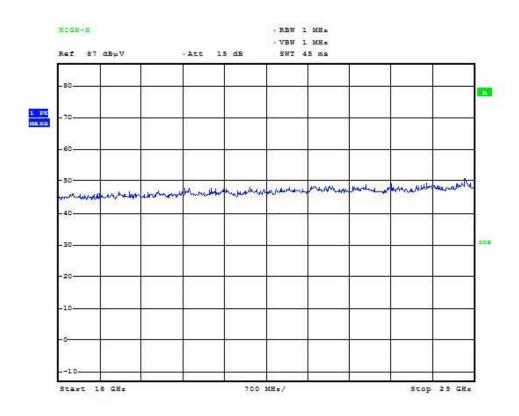

Date: 24.MAR.2016 02:15:42

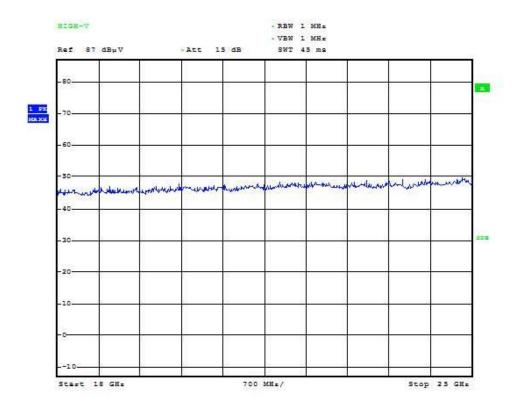

Date: 24.MAR.2016 02:19:12


Date: 24.MAR.2016 02:16:51

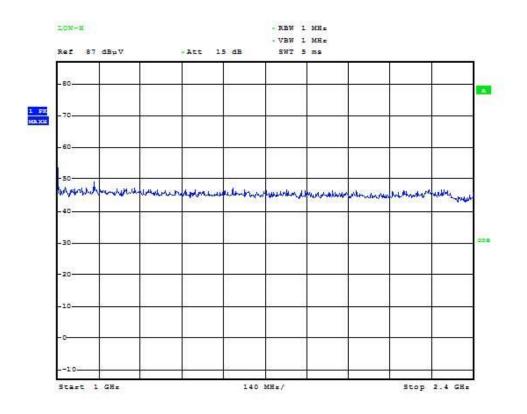

Date: 24.MAR.2016 02:20:23


Date: 24.MAR.2016 02:23:35

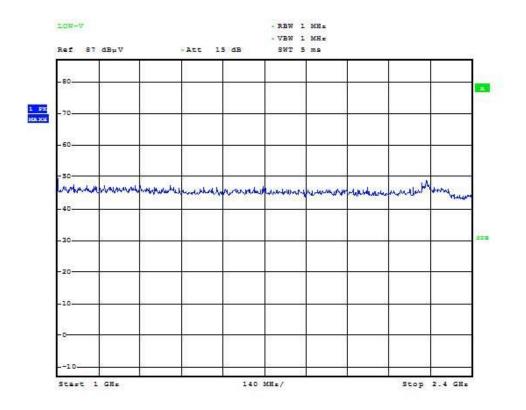

Date: 24.MAR.2016 02:27:08

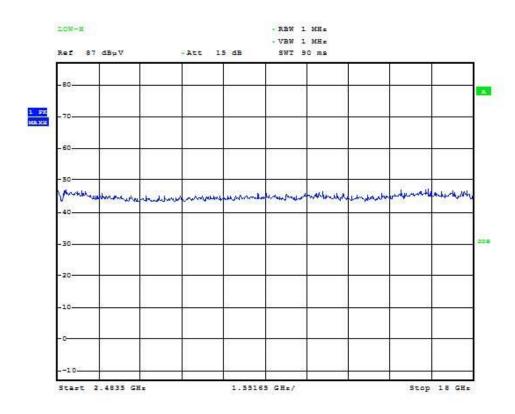

Date: 24.MAR.2016 02:24:46

Date: 24.MAR.2016 02:28:18

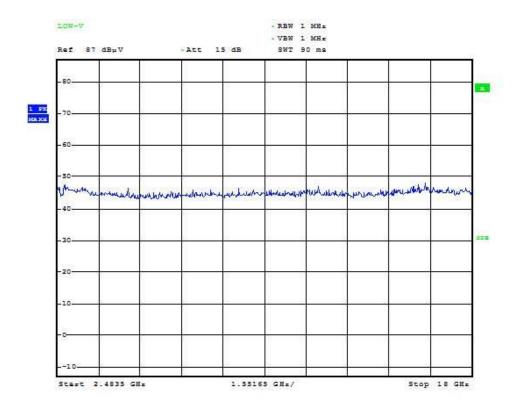


Date: 24.MAR.2016 02:25:57

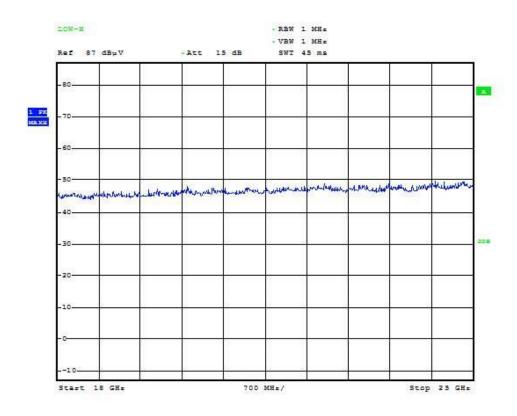


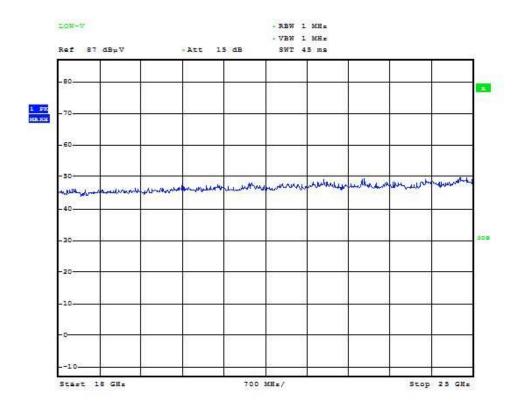

Date: 24.MAR.2016 02:29:29

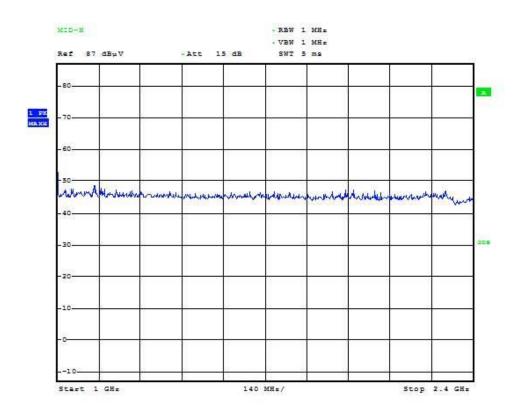
IEEE 802.11g

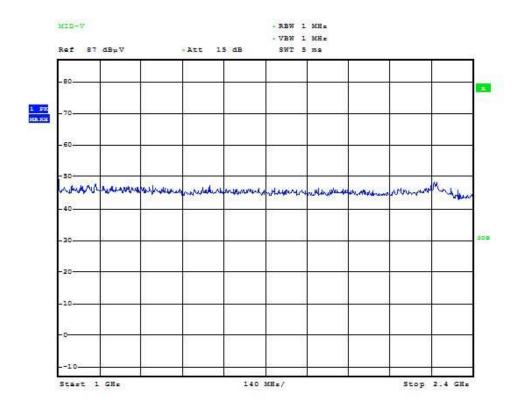


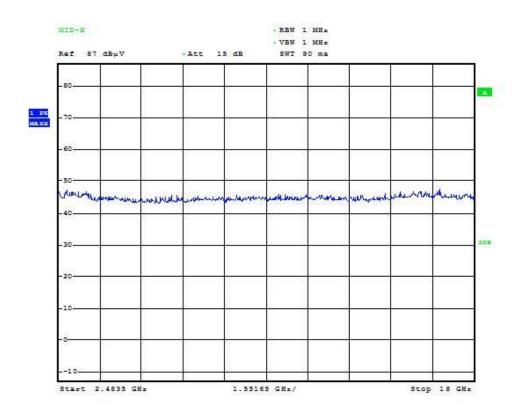
Date: 24.MAR.2016 02:35:07

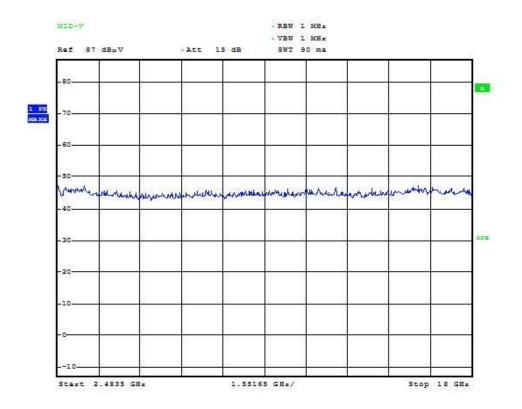


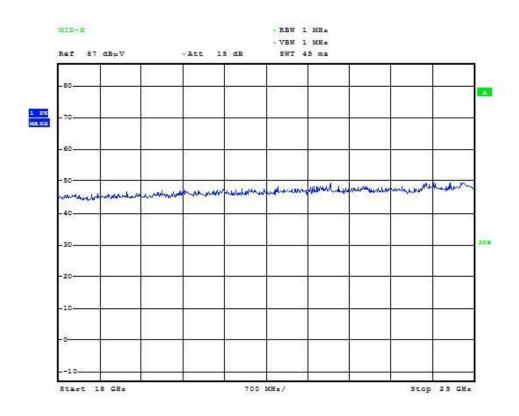

Date: 24.MAR.2016 02:36:19

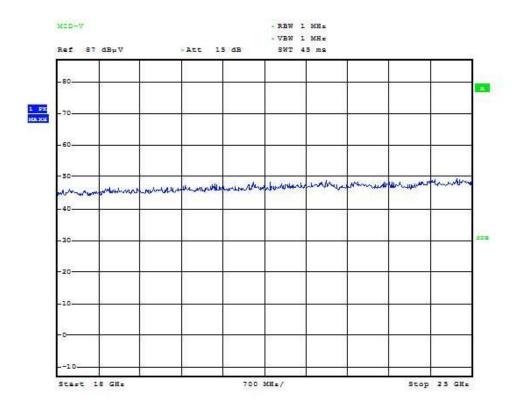

Date: 24.MAR.2016 02:39:51

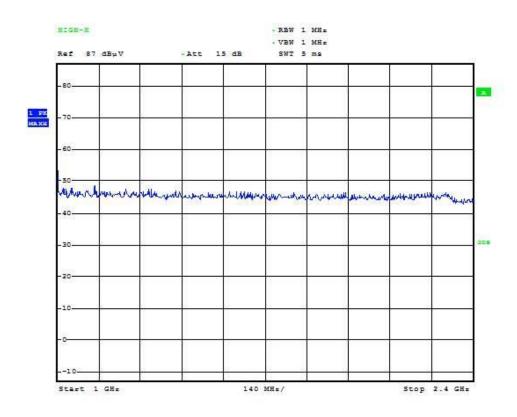

Date: 24.MAR.2016 02:37:30

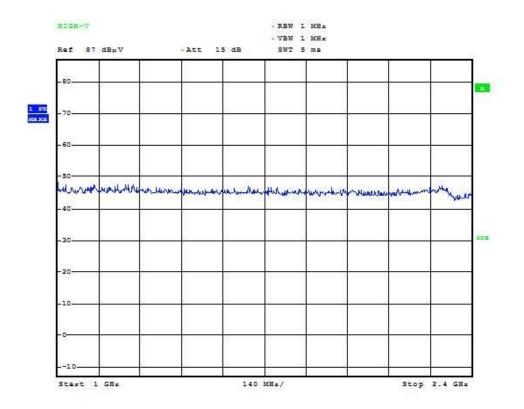

Date: 24.MAR.2016 02:41:02

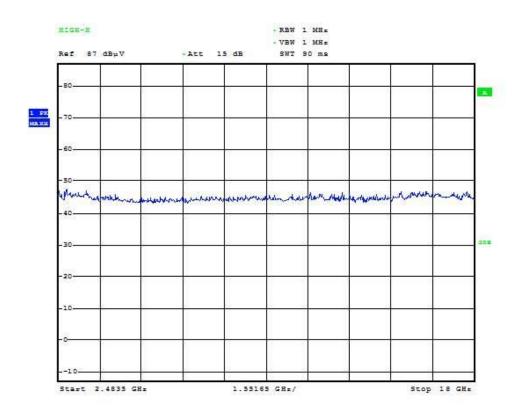

Date: 24.MAR.2016 02:43:37

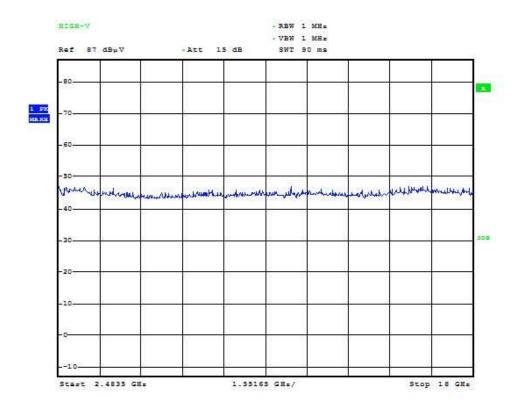

Date: 24.MAR.2016 02:47:11

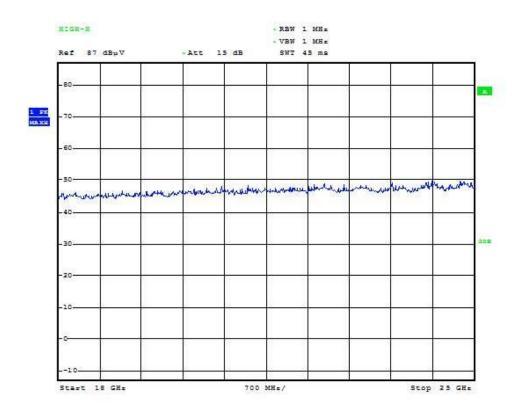

Date: 24.MAR.2016 02:44:49

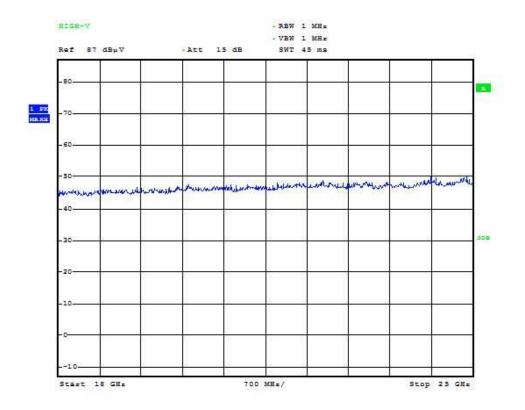

Date: 24.MAR.2016 02:48:21


Date: 24.MAR.2016 02:46:00

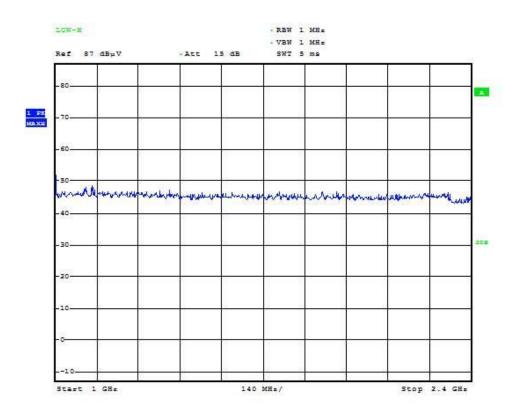

Date: 24.MAR.2016 02:49:32


Date: 24.MAR.2016 02:51:15

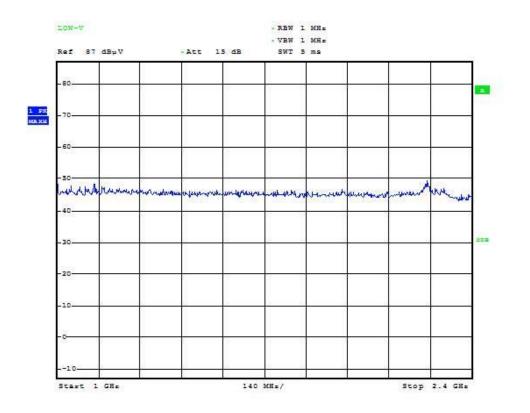

Date: 24.MAR.2016 02:54:48


Date: 24.MAR.2016 02:52:27

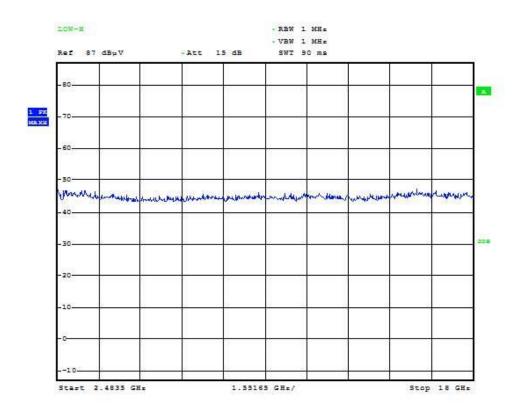
Date: 24.MAR.2016 02:55:58

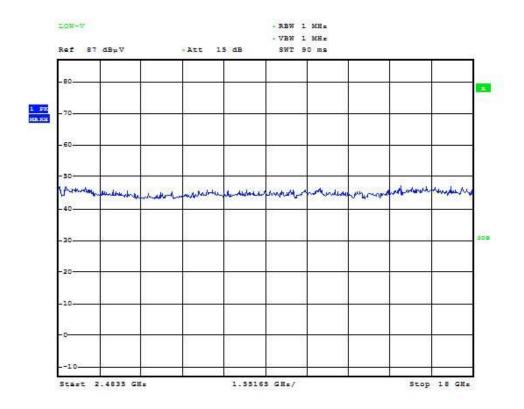


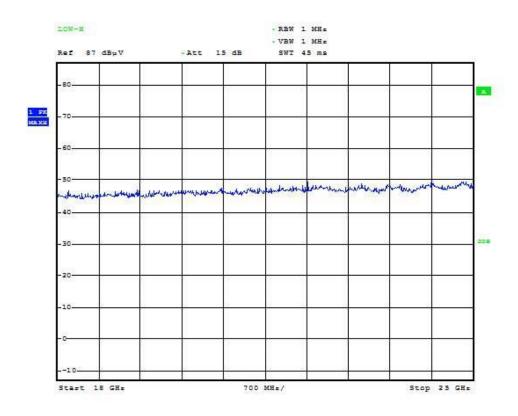
Date: 24.MAR.2016 02:53:37

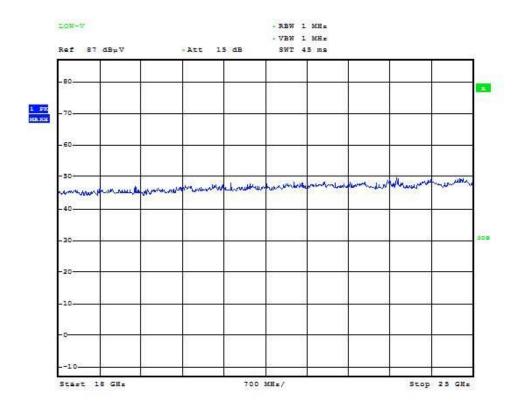


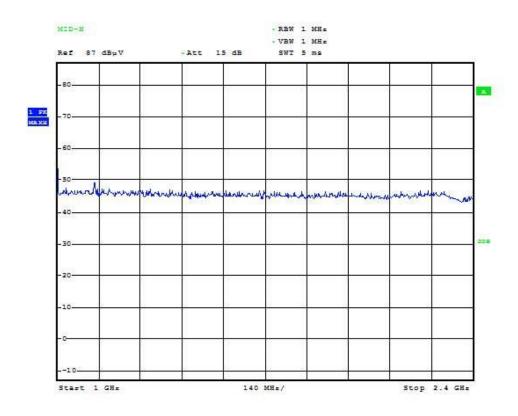
Date: 24.MAR.2016 02:57:10

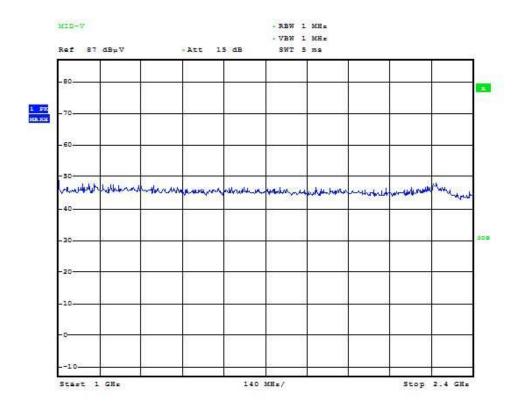

IEEE 802.11n HT20

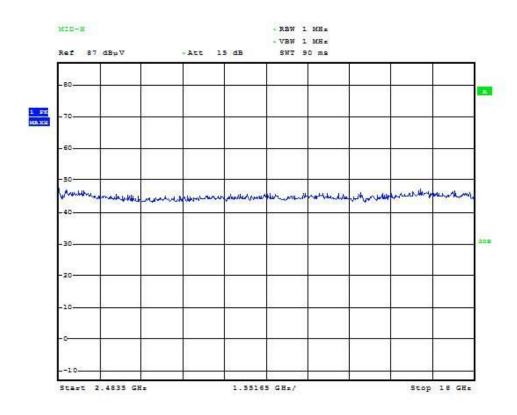

Date: 24.MAR.2016 03:00:11

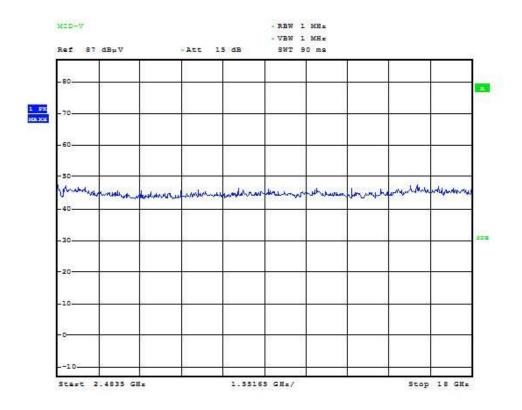

Date: 24.MAR.2016 03:03:45

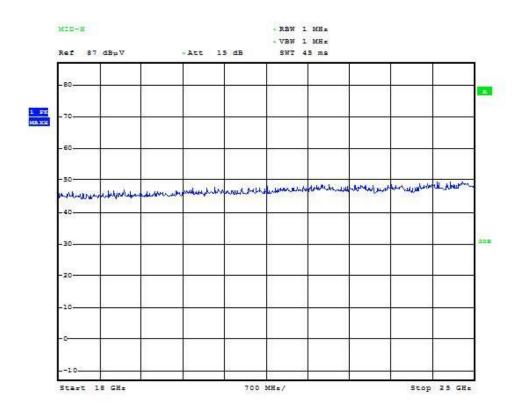

Date: 24.MAR.2016 03:01:23

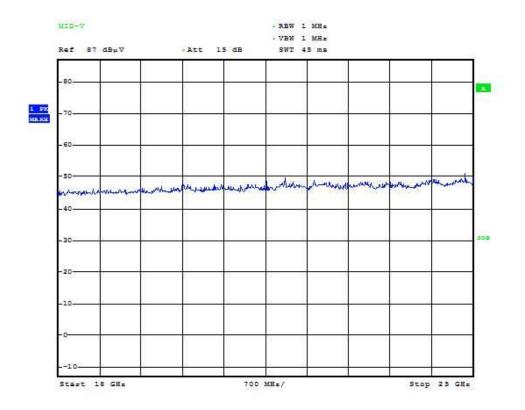

Date: 24.MAR.2016 03:04:57

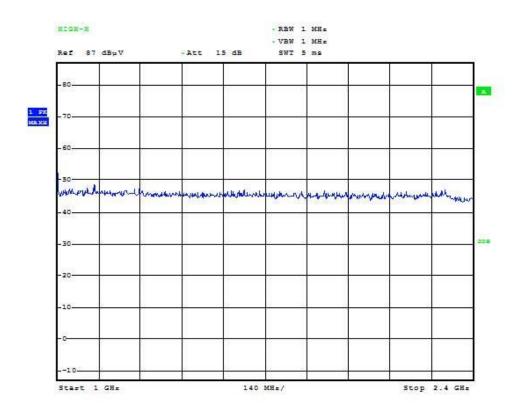

Date: 24.MAR.2016 03:02:34

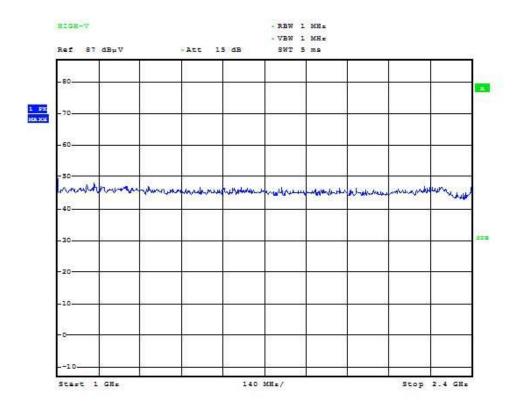

Date: 24.MAR.2016 03:06:08

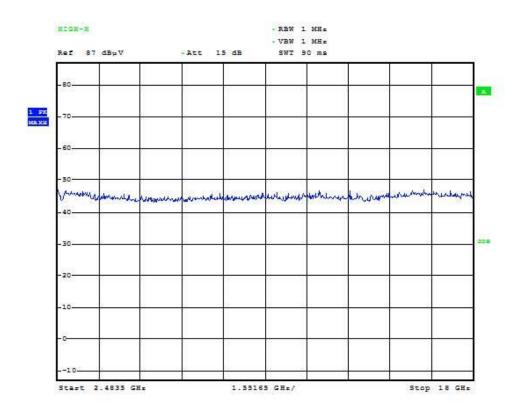

Date: 24.MAR.2016 03:07:46

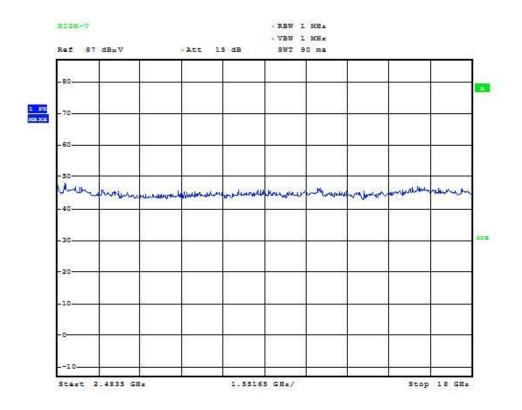

Date: 24.MAR.2016 03:11:20

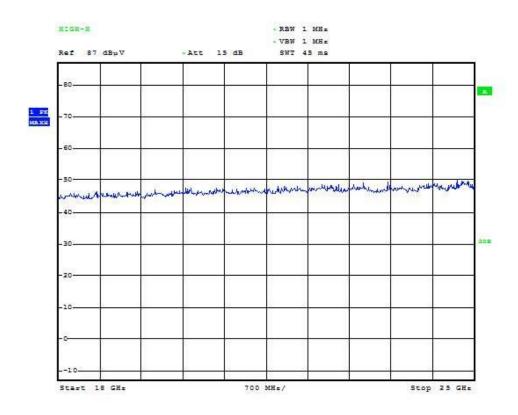

Date: 24.MAR.2016 03:08:58

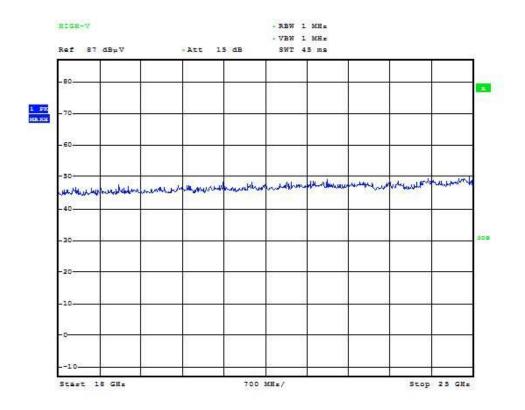

Date: 24.MAR.2016 03:12:31


Date: 24.MAR.2016 03:10:09

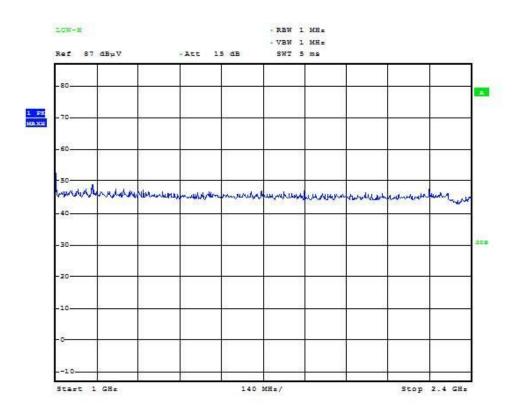

Date: 24.MAR.2016 03:13:42


Date: 24.MAR.2016 03:15:55

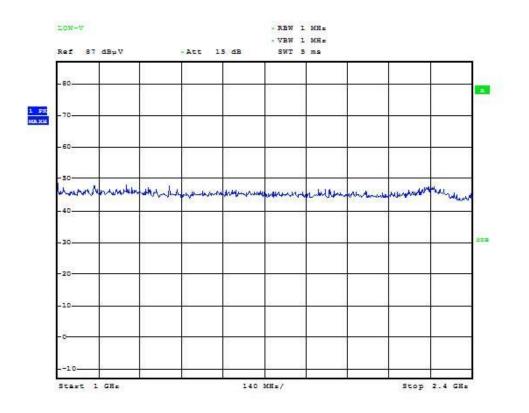

Date: 24.MAR.2016 03:19:28


Date: 24.MAR.2016 03:17:06

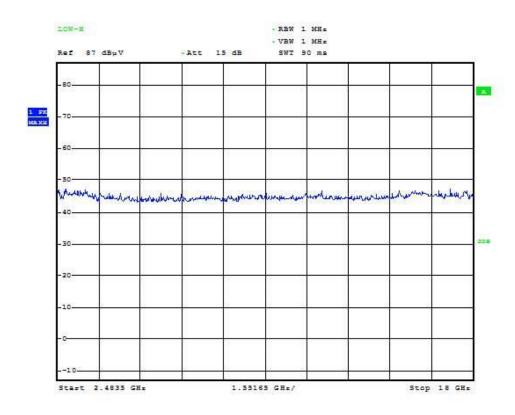
Date: 24.MAR.2016 03:20:38

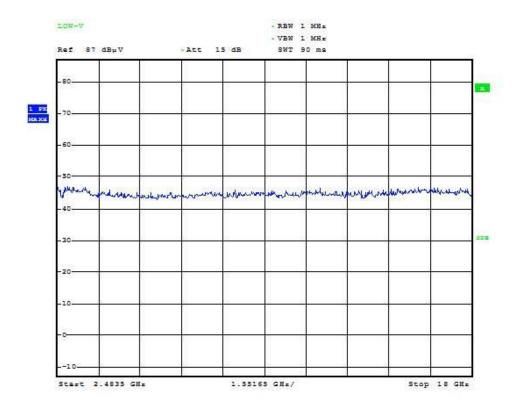


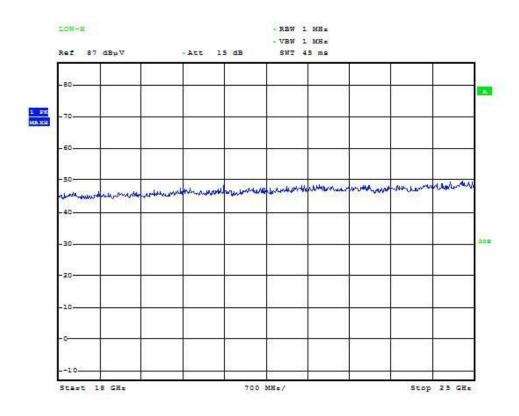
Date: 24.MAR.2016 03:18:16

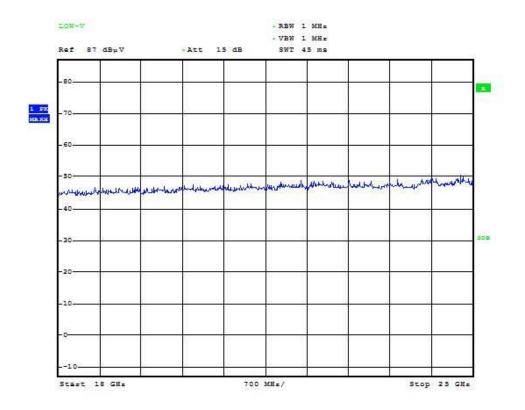


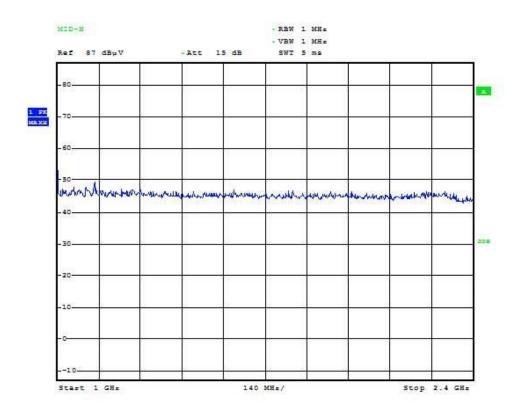
Date: 24.MAR.2016 03:21:49

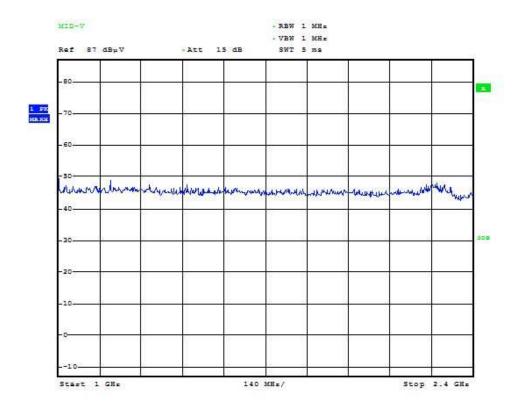

IEEE 802.11n HT40

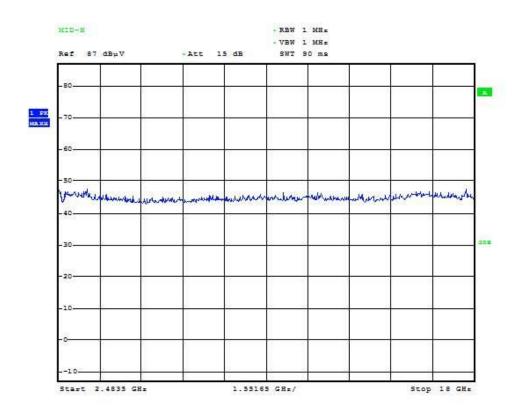

Date: 24.MAR.2016 03:24:48

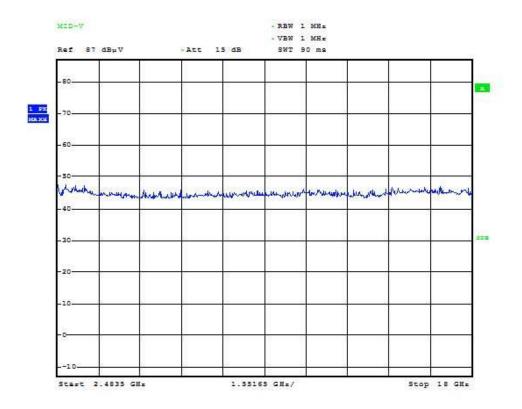

Date: 24.MAR.2016 03:28:22

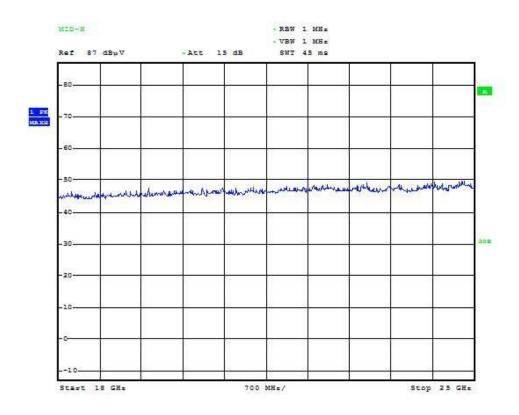

Date: 24.MAR.2016 03:26:00

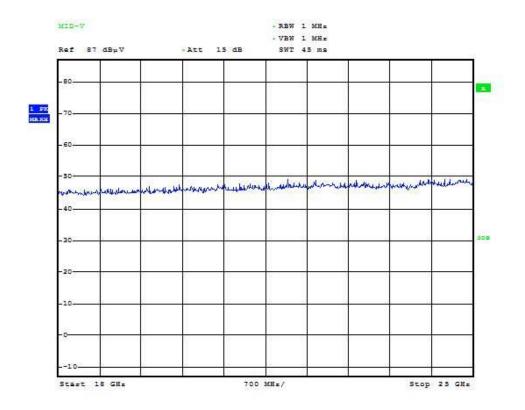

Date: 24.MAR.2016 03:29:33

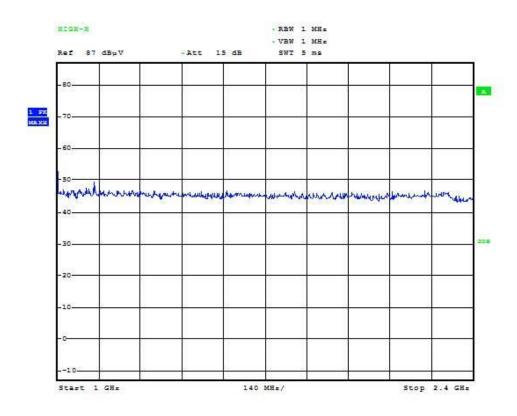

Date: 24.MAR.2016 03:27:11

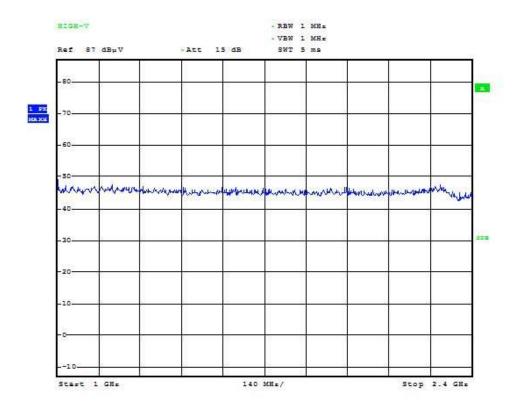

Date: 24.MAR.2016 03:30:45

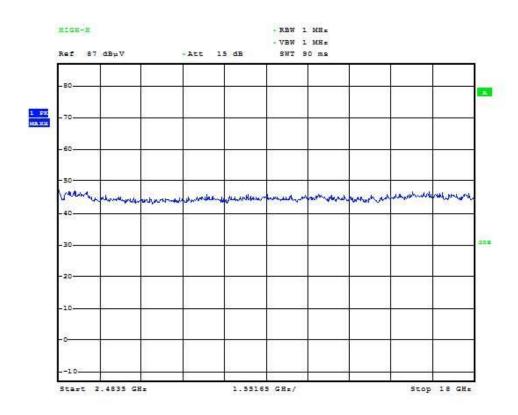

Date: 24.MAR.2016 03:32:33

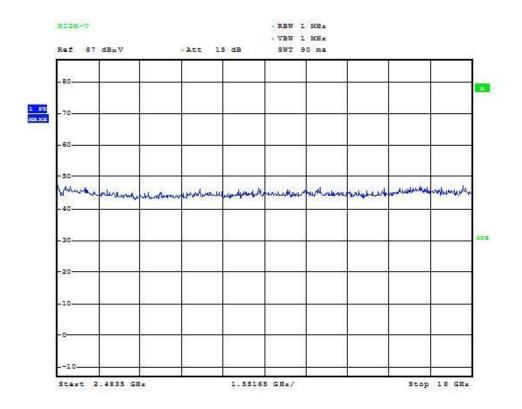

Date: 24.MAR.2016 03:36:06

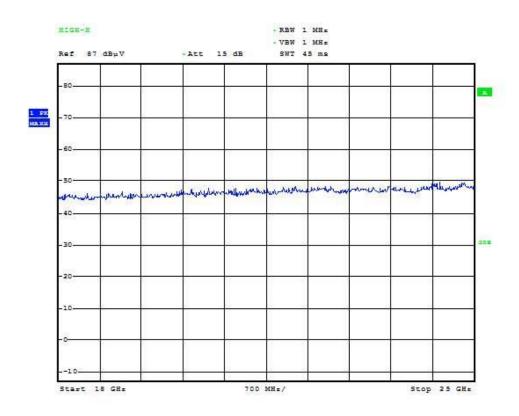

Date: 24.MAR.2016 03:33:44

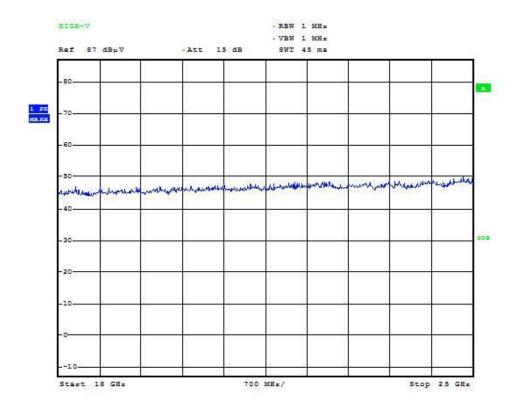

Date: 24.MAR.2016 03:37:17


Date: 24.MAR.2016 03:34:55


Date: 24.MAR.2016 03:38:29


Date: 24.MAR.2016 03:40:11

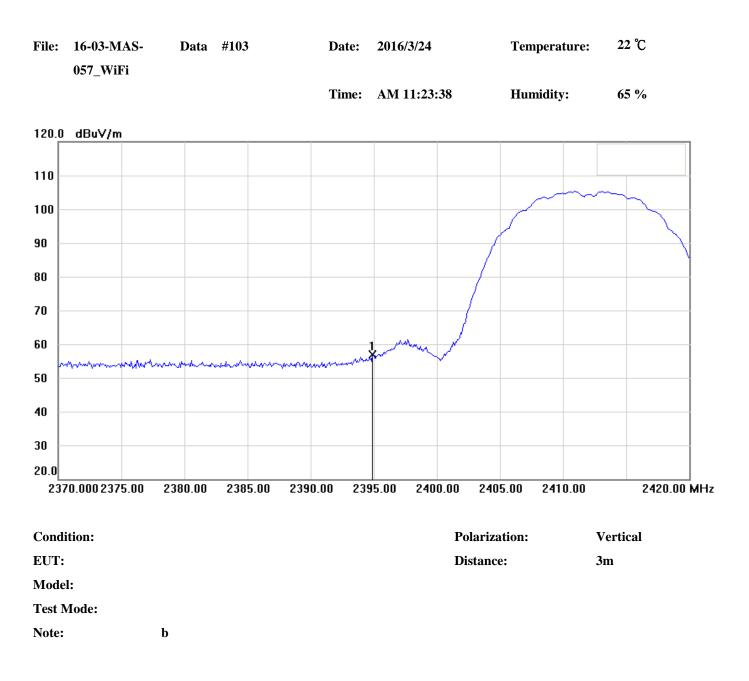

Date: 24.MAR.2016 03:43:45


Date: 24.MAR.2016 03:41:23

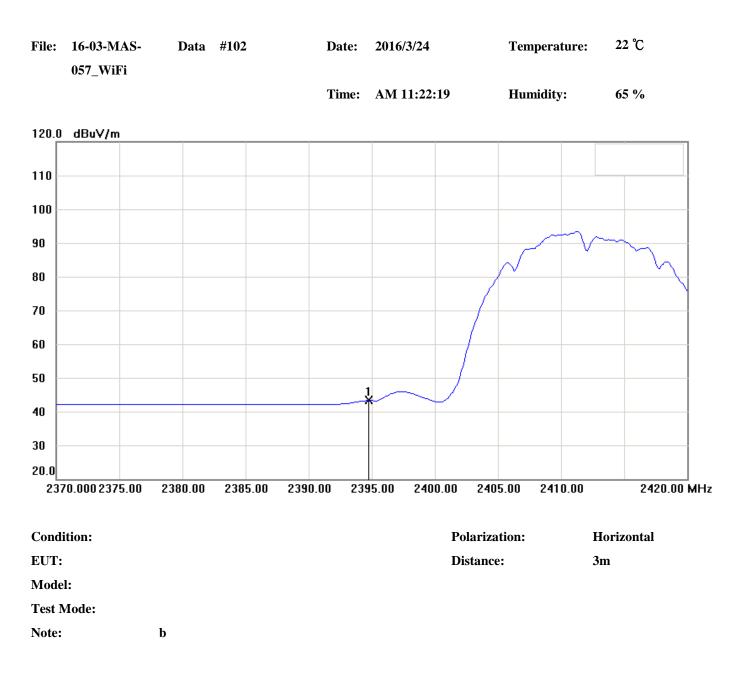
Date: 24.MAR.2016 03:44:56

Date: 24.MAR.2016 03:42:34

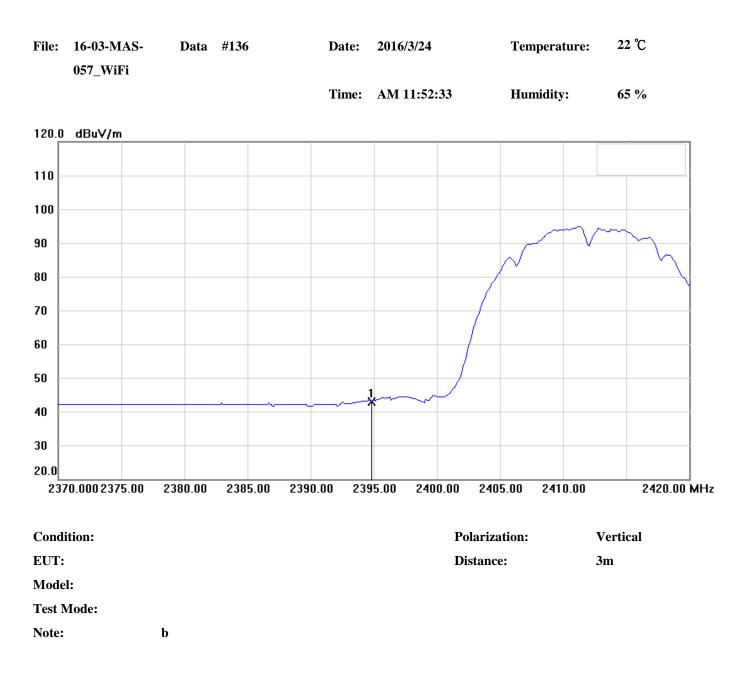
Date: 24.MAR.2016 03:46:07

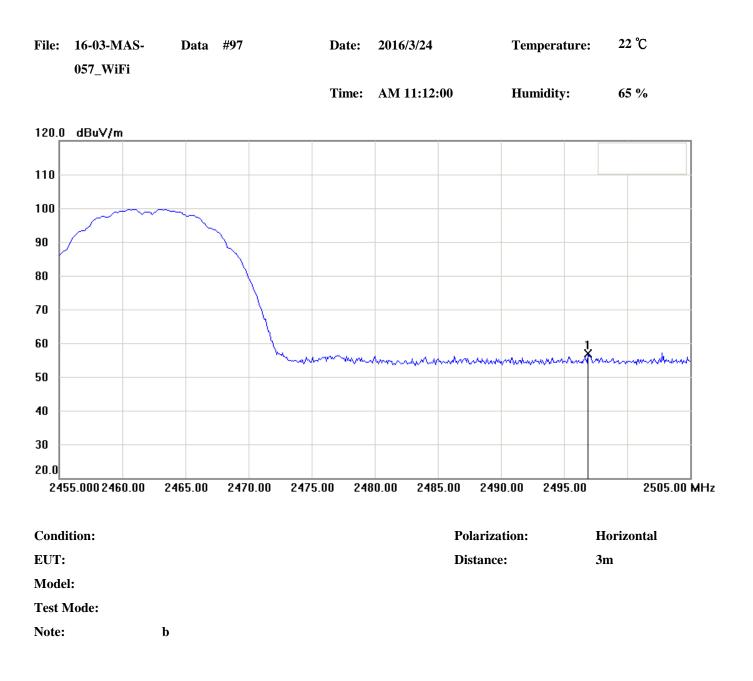

10.4.3 Radiated Measurement at Bandedge with Fundamental Frequencies and co-location

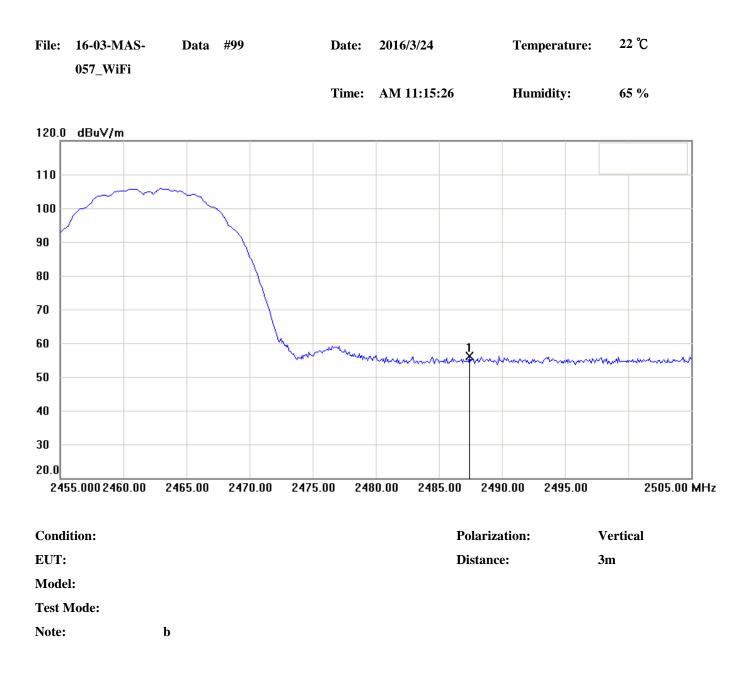
IEEE 802.11b

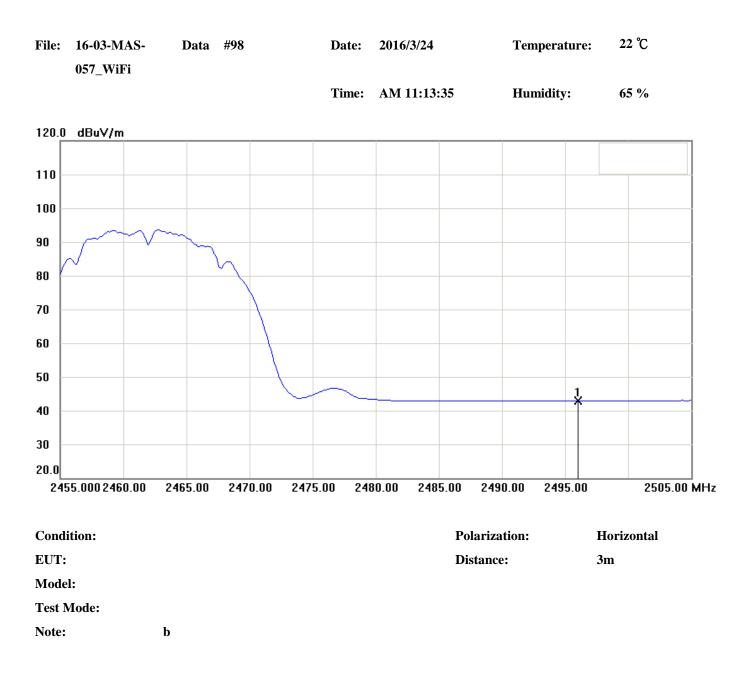

File:	16-03-MAS- 057_WiFi	Data	#101	Da	nte: 2016	5/3/24	Ter	mperature:	22 °C	
				Ti	me: AM	11:21:03	Hu	midity:	65 %	
120.0	dBu∀/m									
110										
100 -								~~~~	~~~	
90							ſ			
80 -										4
70										_
60 -					1					_
50 -	moundan	manhanh	mann	mhanna	mm	maur				
40 -										
30										
20.0										
	0.000 2375.00	2380.00	2385.00	2390.00	2395.00	2400.00	2405.00	2410.00	2420.0	0 MHz
Condi	ition.					D	larization:		Horizontal	
EUT:							istance:		3m	
Mode	1:									
Test N	Aode:									
Note:		b								

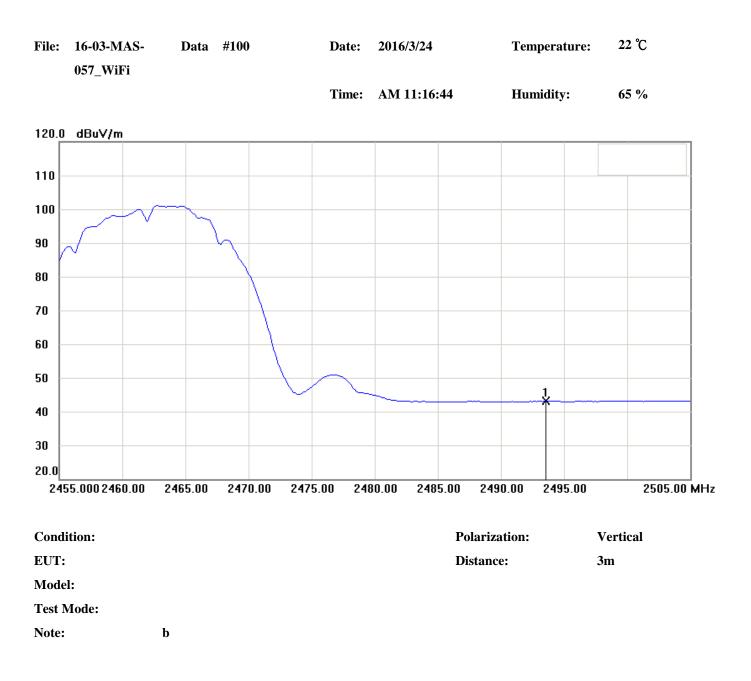
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.9198	27.41	peak	28.56	55.97	74	-18.03	150	59	


Note: 1. Remark "---" means that the emissions level is too low to be measured.


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.9198	28.20	peak	28.61	56.81	74	-17.19	150	60	

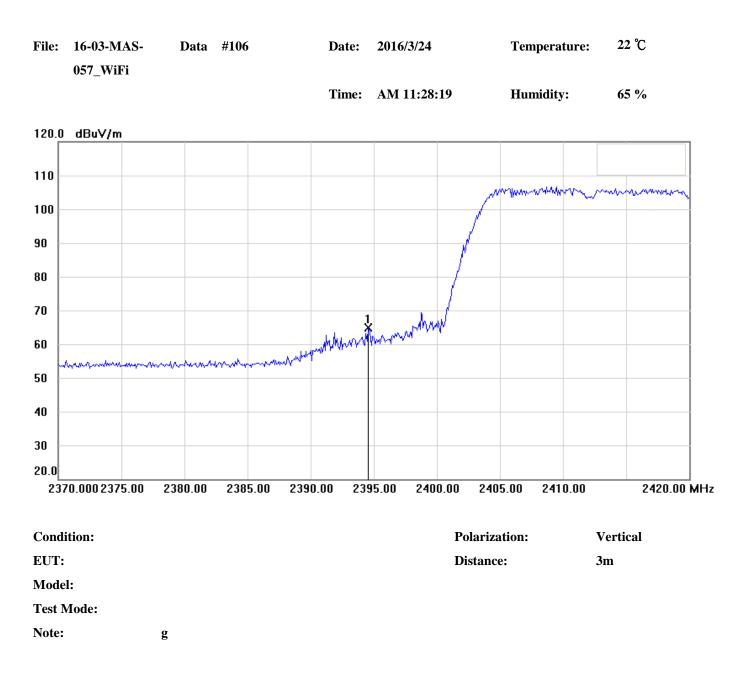

I	No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
		(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
	1	2394.7595	14.73	AVG	28.56	43.29	54	-10.71	150	60	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.8396	14.20	AVG	28.56	42.76	54	-11.24	150	61	

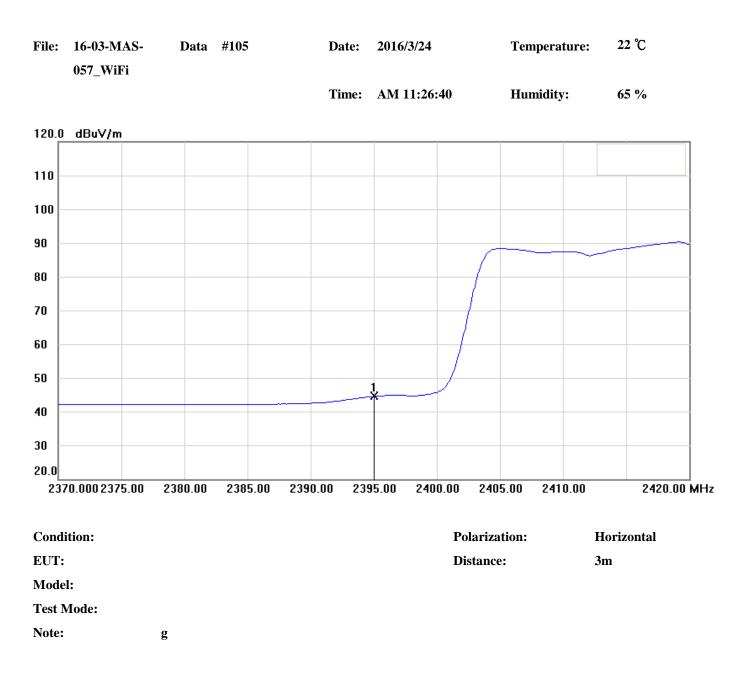

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2496.9070	28.00	peak	28.89	56.89	74	-17.11	150	62	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2487.4520	27.23	peak	28.86	56.09	74	-17.91	150	59	

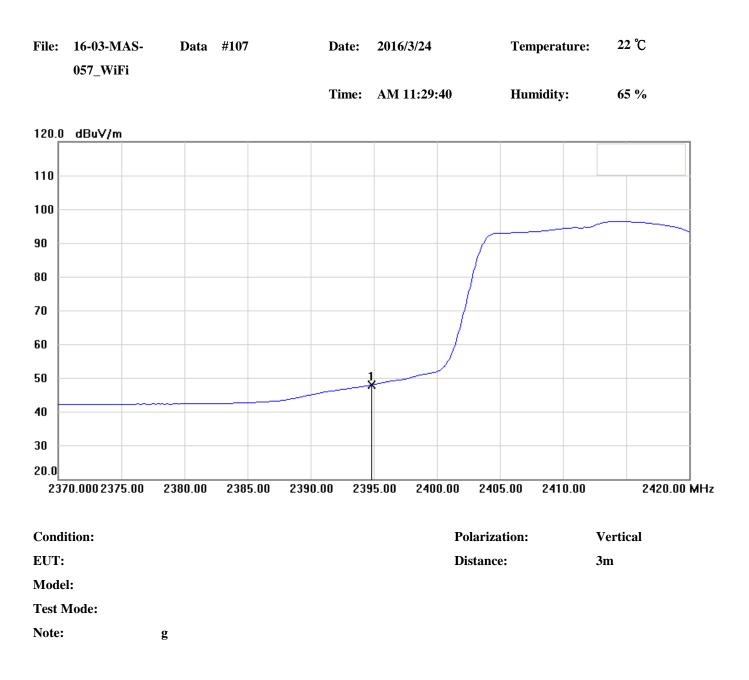
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2496.0255	14.07	AVG	28.89	42.96	54	-11.04	150	61	

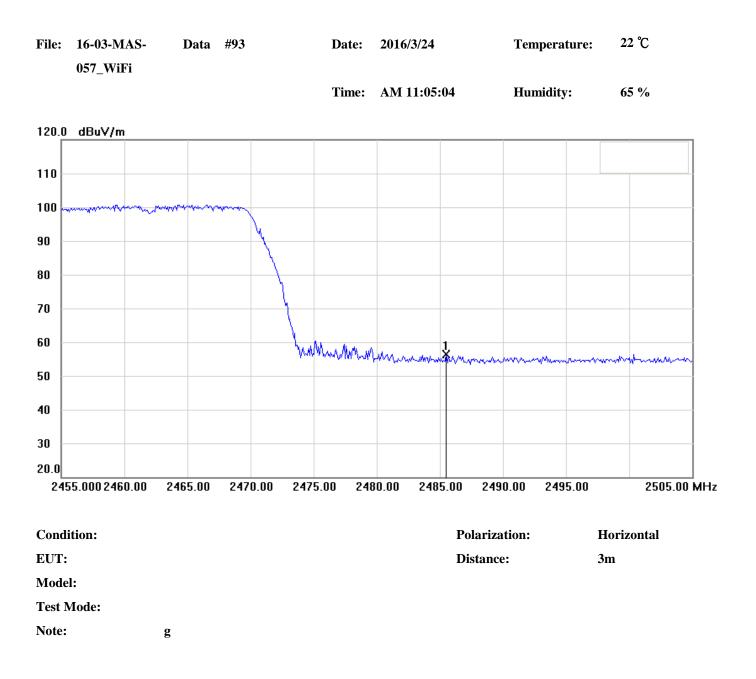

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2493.5417	14.18	AVG	28.88	43.06	54	10.94	150	60	

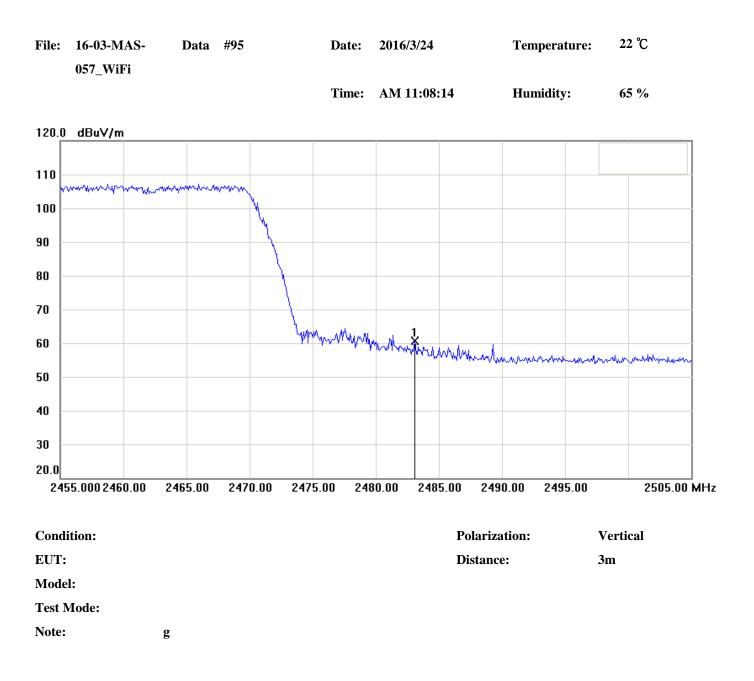
IEEE 802.11g

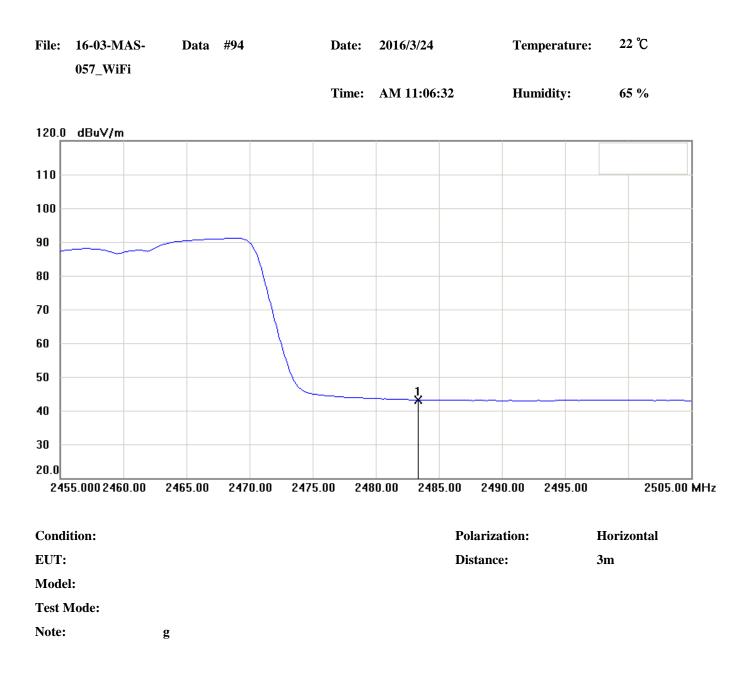

File: 16-03-MAS- 057_WiFi	Data	#104	Da	nte: 2016	5/3/24	Ter	nperature:	22 °C	
			Ti	me: AM	11:25:17	Hu	midity:	65 %	
120.0 dBuV/m								1	
110									
100									
90							- marganese	Ar And Marine Marine	
80						/			
70					/				
60				1	Martin				
50		an a	www.www.www	. And Marine	MUNT V I				
40									
30									
20.0						0.405.00	0.410.00		
2370.0002375.00	2380.00	2385.00	2390.00	2395.00	2400.00	2405.00	2410.00	2420.00 M	MHZ
Condition:					P	olarization:		Horizontal	
EUT:					D	istance:		3m	
Model: Test Mode:									
Note:	g								
	2								

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2393.3973	28.54	peak	28.56	57.10	74	-16.9	150	59	


Note: 1. Remark "---" means that the emissions level is too low to be measured.


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.5994	36.25	peak	28.60	64.85	74	-9.15	150	60	

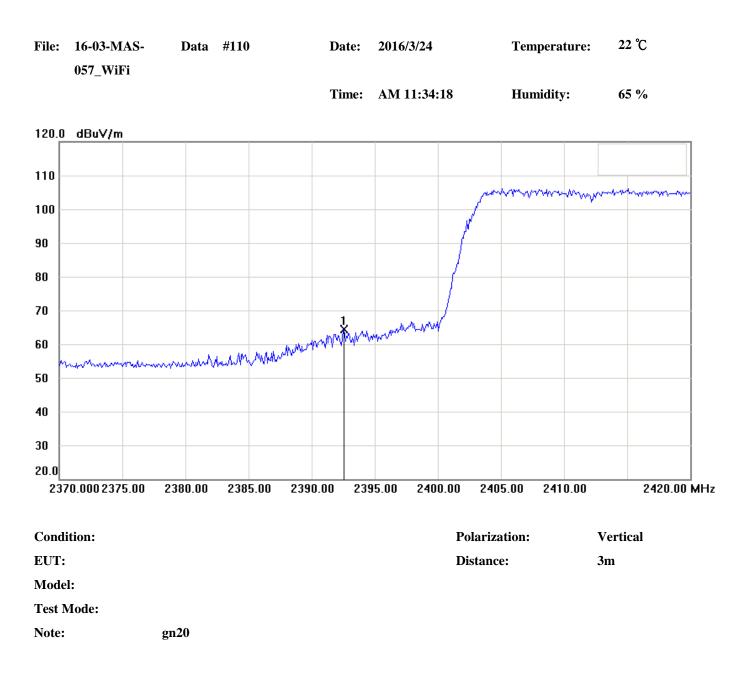

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2395.0000	15.97	AVG	28.56	44.53	54	-9.47	150	61	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.8395	19.34	AVG	28.61	47.95	54	-6.05	150	62	

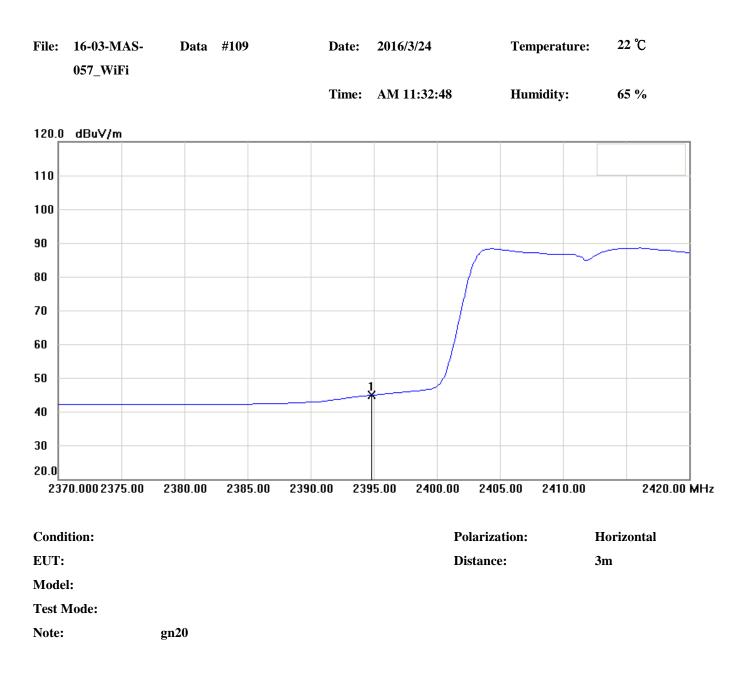
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2485.5288	27.63	peak	28.85	56.48	74	-17.52	150	60	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.1250	31.90	peak	28.85	60.75	74	-13.25	150	63	

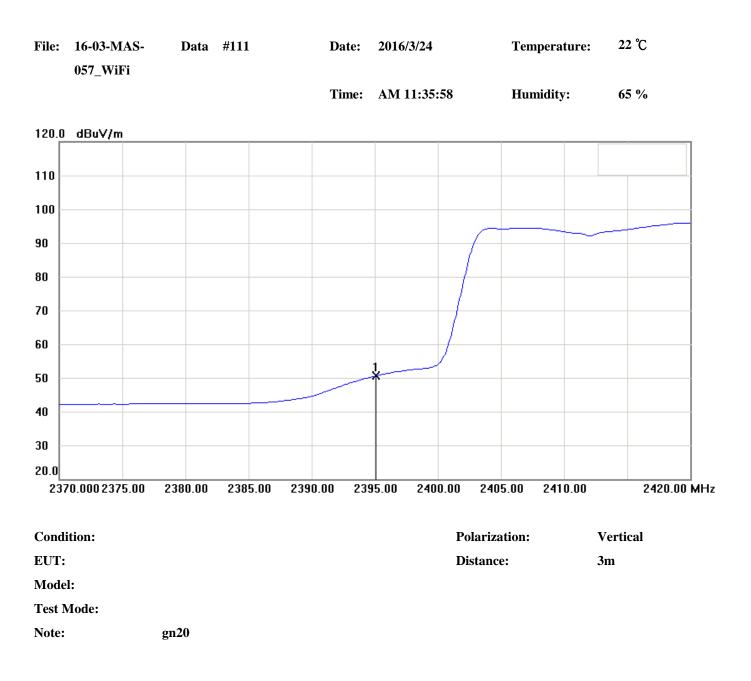
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.3654	14.37	AVG	28.85	43.22	54	-10.78	150	61	

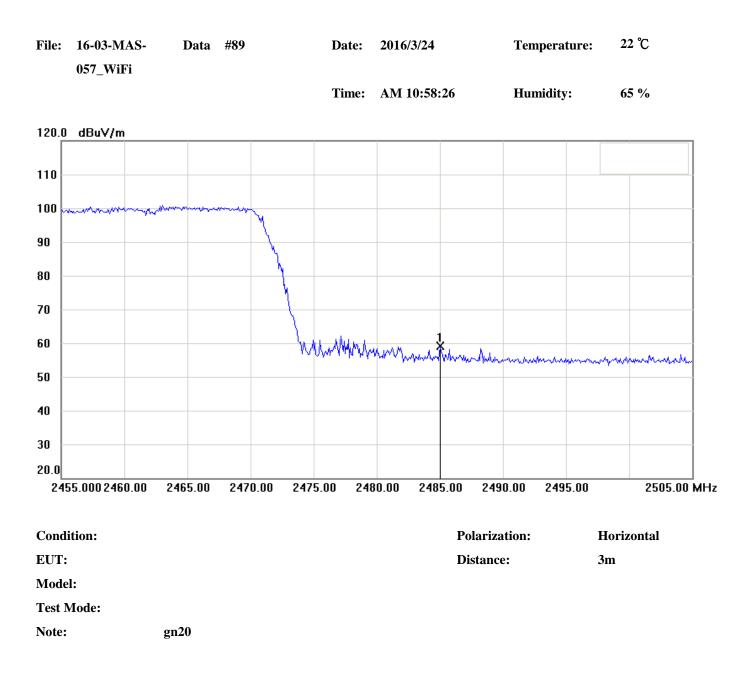

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.8461	15.63	AVG	28.85	44.48	54	-9.52	150	60	

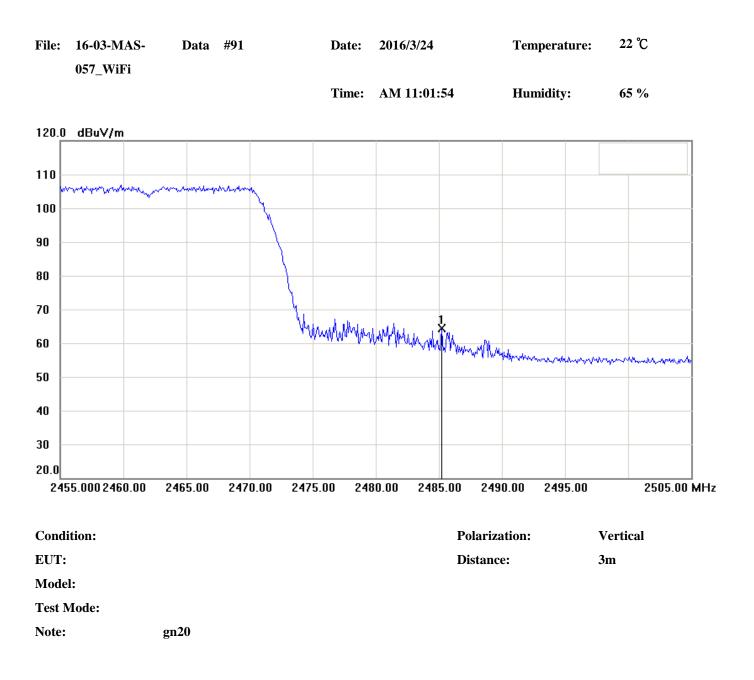
IEEE 802.11n, HT20

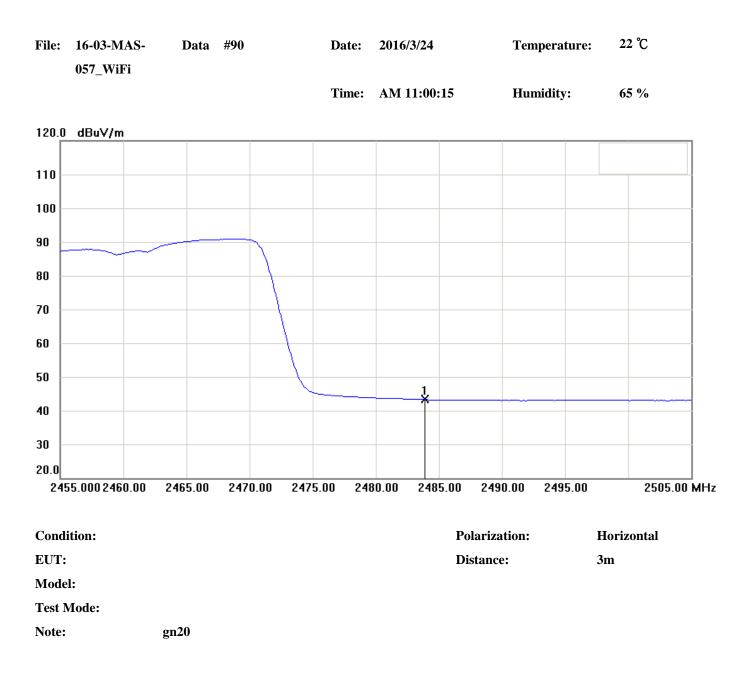

File: 16-03-MAS- 057_WiFi	Data	#108	Da	te: 2016	/3/24	Ter	nperature:	22 °C	
			Tir	ne: AM	11:31:37	Hu	midity:	65 %	
120.0 dBuV/m									
110									
100						Jamesman	man	man man	~
90					1				
80									
70									
60			www.mohur	1 	www				
50	naharboan	homeshald	www.wrwr	a.m. h					
40									
30									
20.0									
2370.0002375.00	2380.00	2385.00	2390.00	2395.00	2400.00	2405.00	2410.00	2420.0	0 MHz
Condition:					Do	larization:		Horizontal	
EUT:						stance:		3m	
Model:									
Test Mode:									
Note:	gn20								

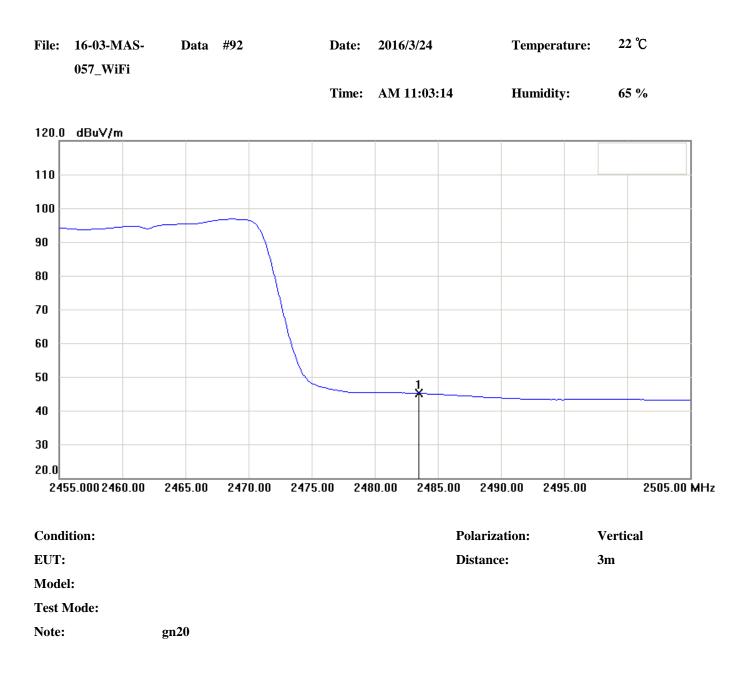
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.1986	29.72	peak	28.56	58.28	74	-15.72	150	61	


Note: 1. Remark "---" means that the emissions level is too low to be measured.


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2392.5961	35.70	peak	28.60	64.30	74	-9.7	150	59	

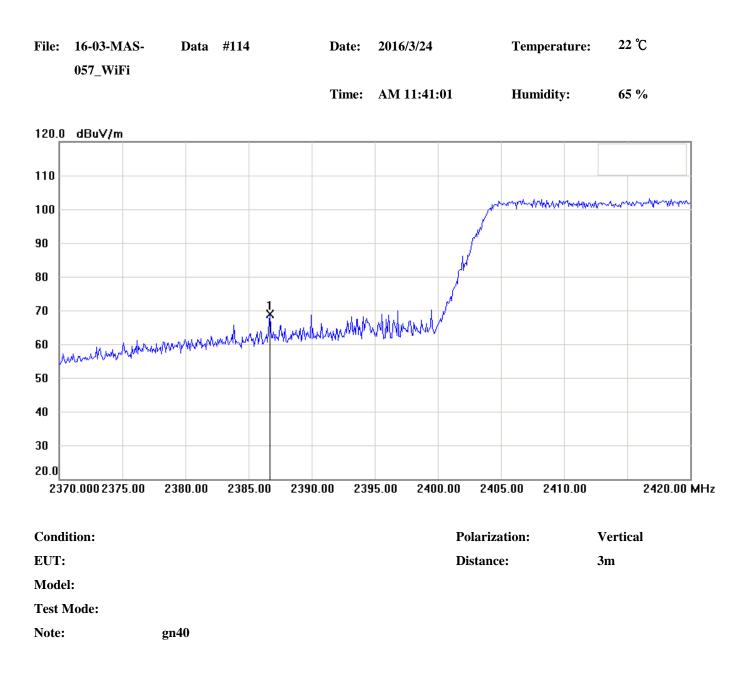

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.8395	16.33	AVG	28.56	44.89	54	-9.11	150	61	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2395.0801	21.98	AVG	28.61	50.59	54	-3.41	150	60	

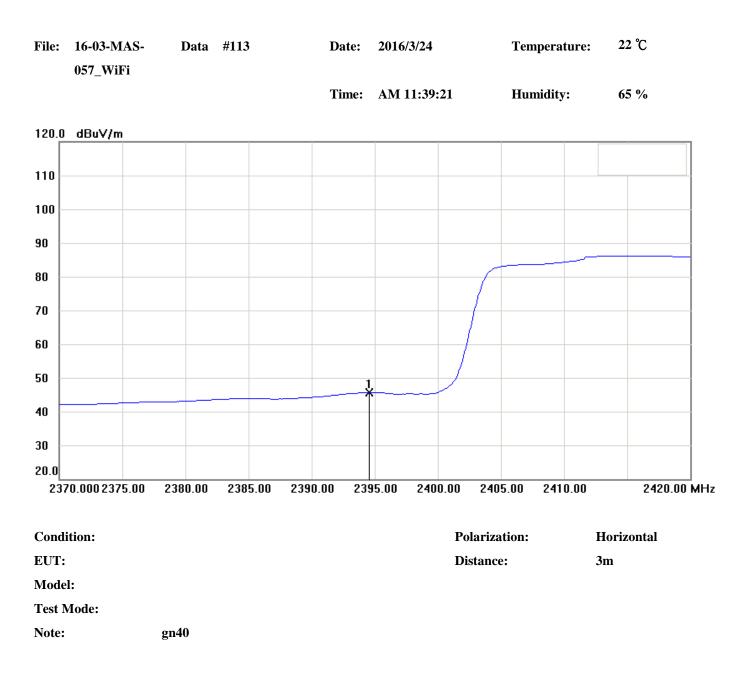

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2485.0480	30.23	peak	28.85	59.08	74	-14.92	150	61	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2485.2082	35.57	peak	28.86	64.43	74	-9.57	150	61	

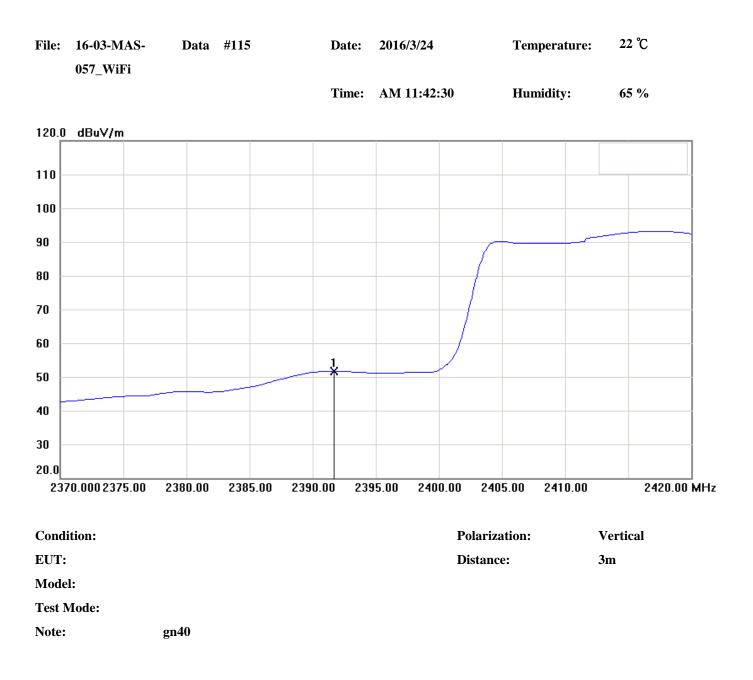
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.9262	14.48	AVG	28.85	43.33	54	-10.67	150	61	

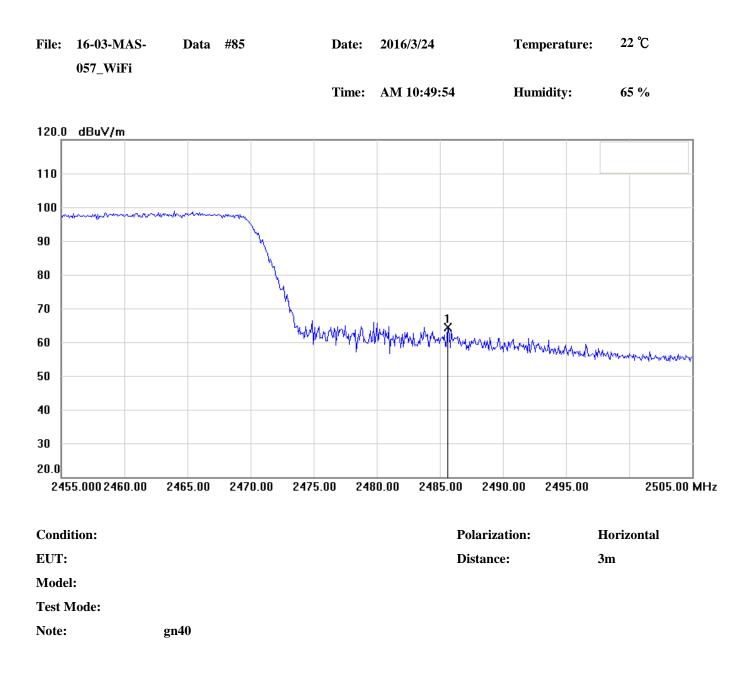

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.5255	16.27	AVG	28.85	45.12	54	-8.88	150	63	

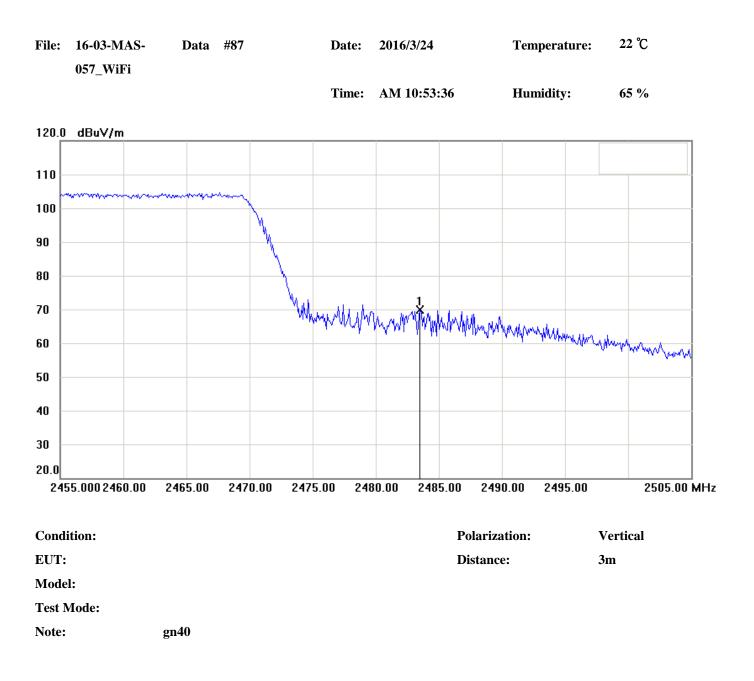
IEEE 802.11n, HT40

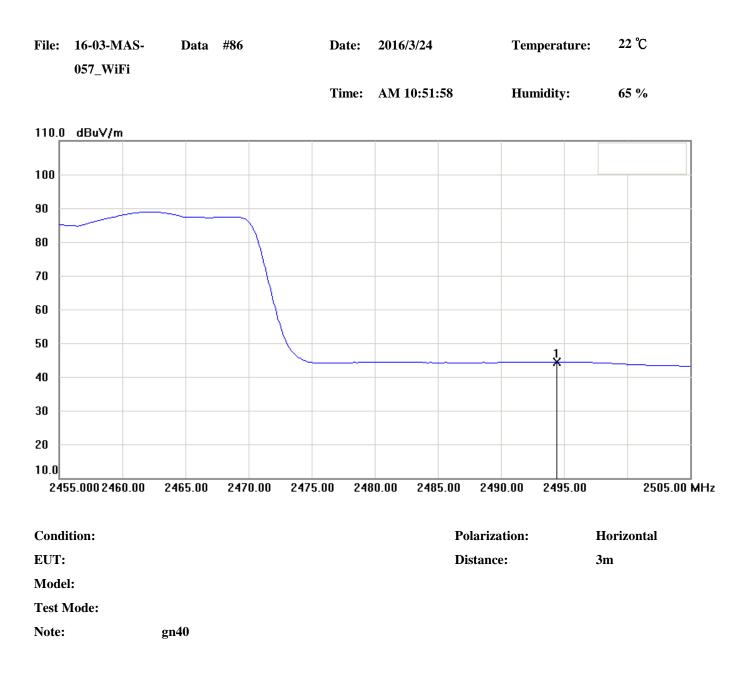

File:	16-03-MAS- 057_WiFi	Data	#112	Da	nte: 2016	/3/24	Ter	nperature	22 °C
				Ti	me: AM	11:37:58	Hu	midity:	65 %
120.0	dBuV/m								
110									
100									
90							marian	mum	and the second s
							X		
80						1	V		
70					1 X II	L. Mar			
60		mm	mhilment	Manundyanah	MAN	handthan			
50									
40									
30 20.0									
	70.000 2375.00	2380.00	2385.00	2390.00	2395.00	2400.00	2405.00	2410.00	2420.00 MHz
Cond	ition					De	larization:		Horizontal
EUT:							stance:		3m
Mode									
Test N		40							
Note:		gn40							

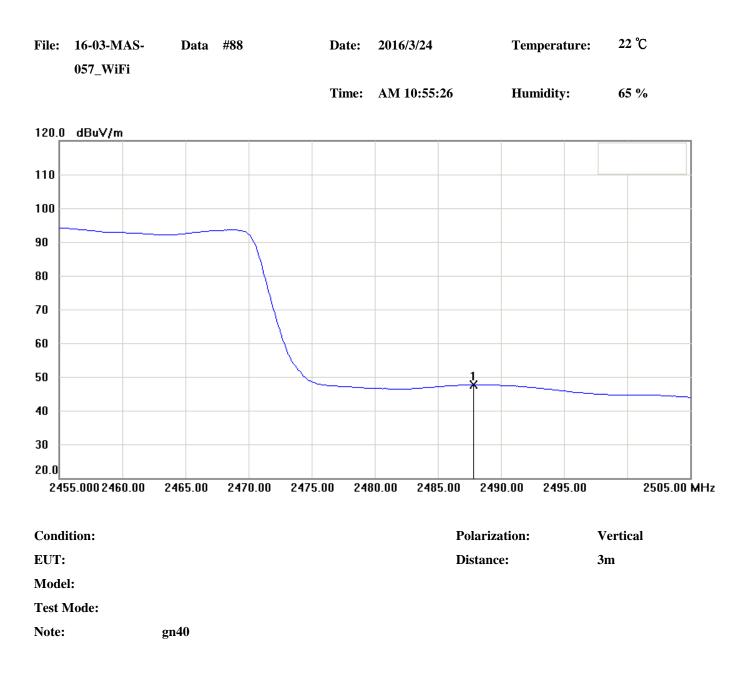
No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2389.7595	33.74	peak	28.56	62.30	74	-11.7	150	60	


Note: 1. Remark "---" means that the emissions level is too low to be measured.


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2386.6667	40.35	peak	28.58	68.93	74	-5.07	150	61	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2394.5994	17.10	AVG	28.56	45.66	54	-8.34	150	60	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2391.7145	23.08	AVG	28.60	51.68	54	-2.32	150	60	


No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2485.6090	35.62	peak	28.85	64.47	74	-9.53	150	61	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2483.5255	40.91	peak	28.85	69.76	74	-4.24	150	60	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2494.4230	15.59	AVG	28.88	44.47	54	-9.53	100	62	

No.	Frequency	Reading	Detector	Corrected	Result	Limit	Margin	Height	Degree	Comment
	(MHz)	(dBuV/m)		dB/m	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2487.8526	18.79	AVG	28.87	47.66	54	-6.34	100	60	

10.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

11. EQUIPMENTS LIST FOR TESTING

Equipment	Manufacturer	Model No.	S/N	Calibration Date	Next Cal. Due
EMI Test Receiver	R&S	ESCI	13054418-001	05/04/2015	05/03/2016
V-LISN	R&S	ENV216	13057719-001	05/13/2015	05/12/2016
Spectrum Analyzer	Agilent	E4446A	13052013-001	10/07/2015	10/06/2016
Power Meter	Agilent	N1922A	13053523-001	12/05/2015	12/04/2016
Peak Power Sensor	Agilent	N1912A	13050625-001	12/05/2015	12/04/2016
EMI Receiver	R&S	ESCI	13054423-001	01/28/2016	01/27/2017
Spectrum Analyzer	R&S	FSU46	13040904-001	01/22/2016	01/21/2017
Horn Antenna	EMCO	3115	13059201-001	09/10/2015	09/09/2016
BiLog Antenna	Schaffner	CBL6112B	2927	10/16/2015	10/15/2016
Hom Antenna	EMCO	3116	13059202-001	08/22/2015	08/21/2016
PRE-Amplifier	Agilent	8449B	13040709-001	11/21/2015	11/20/2016
Loop Antenna	EMCO	6512	13054104-001	07/01/2015	06/30/2016
PRE-Amplifier	EMCI	PA303N	13040720-001	07/14/2015	07/13/2016