

MET Laboratories, Inc. *Safety Certification - EMI - Telecom Environmental Simulation*

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372

3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372

13501 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

January 18, 2016

Amimon
2 Maskit St Building D, 2nd floor
Herzlia, Israel 46733

Dear Tal Keren-Zvi,

Enclosed is the EMC Wireless Class II Permissive Change test report for compliance testing of the Amimon, MAGLAN as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15.407 Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,
MET LABORATORIES, INC.

Jennifer Warnell
Documentation Department

Reference: (\Amimon\EMC88731-FCC407 UNII 2 Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc.

Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372

3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372

13501 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

**Amimon
Model MAGLAN**

Tested under
the Certification Rules
contained in
Title 47 of the CFR, Part 15.407
for Intentional Radiators

MET Report: EMC88731-FCC407 UNII 2 Rev. 1

January 18, 2016

Prepared For:

**Amimon
2 Maskit St Building D, 2nd floor
Herzelia, Israel 46733**

Prepared By:
MET Laboratories, Inc.
914 W. Patapsco Ave.
Baltimore, MD 21230

Electromagnetic Compatibility Criteria Class II Permissive Change Test Report

for the

**Amimon
Model MAGLAN**

Tested under
the Certification Rules
contained in
Title 47 of the CFR, Part 15.407
for Intentional Radiators

Hadid Jones, Project Engineer
Electromagnetic Compatibility Lab

Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 15.407 of the FCC Rules under normal use and maintenance.

Asad Bajwa,
Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	January 7, 2016	Initial Issue.
1	January 18, 2016	Editorial correction.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview.....	4
	B. References.....	5
	C. Test Site	5
	D. Description of Test Sample	5
	E. Equipment Configuration.....	6
	F. Support Equipment	6
	G. Ports and Cabling Information.....	7
	H. Mode of Operation.....	7
	I. Method of Monitoring EUT Operation	8
	J. Modifications	8
	a) Modifications to EUT	8
	b) Modifications to Test Standard.....	8
	K. Disposition of EUT	8
III.	DFS Requirements and Radar Waveform Description & Calibration	9
	A. DFS Requirements	10
	B. Radar Test Waveforms	12
	C. Radar Waveform Calibration	13
IV.	DFS Test Procedure and Test Results	15
	A. DFS Test Setup	16
	B. Statistical Performance Check	17
	C. UNII Detection Bandwidth	22
V.	Test Equipment	25
VI.	Certification & User's Manual Information	27
	A. Certification Information	28
	B. Label and User's Manual Information	32

List of Tables

Table 1. Executive Summary of EMC Part 15.407 Compliance Testing	2
Table 2. EUT Summary.....	4
Table 3. References	5
Table 4. Equipment Configuration	6
Table 5. Support Equipment.....	6
Table 6. Ports and Cabling Information	7
Table 7. Applicability of DFS requirements during normal operation	10
Table 8. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.....	11
Table 9. Statistical Performance Check – Radar Type 1, 5500 MHz, 20 MHz.....	18
Table 10. Statistical Performance Check – Radar Type 1, 5510 MHz, 5493 MHz, 40 MHz.....	20
Table 27. UNII Detection Bandwidth, Test Results, 5500 MHz	23
Table 28. UNII Detection Bandwidth, Test Results, 5510 MHz	24
Table 11. Test Equipment List	26

List of Figures

Figure 1. Block Diagram of Test Configuration.....	7
Figure 2. Test Setup Diagram.....	16

List of Photographs

Photograph 1. Amimon MAGLAN	6
Photograph 2. DFS Radar Test Signal Generator	13

List of Plots

Plot 1. Calibration Plot, 5.500 GHz.....	14
Plot 2. Calibration Plot, 5.51 GHz.....	14

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
<i>d</i>	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
<i>f</i>	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
H	Magnetic Field
HCP	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μH	microhenry
μ	microfarad
μ s	microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

IV. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Amimon MAGLAN, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the MAGLAN. Amimon should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the MAGLAN, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with Amimon, purchase order number 15000701. All tests were conducted using measurement procedure ANSI C63.4-2014.

FCC Reference	Description	Results
15.407 (h)(2)	Statistical Performance Check (Radar Pulse Type 1)	Compliant
15.407	U-NII Detection Bandwidth	Complaint

Table 1. Executive Summary of EMC Part 15.407 Compliance Testing

V. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Amimon to perform testing on the MAGLAN, under Amimon's purchase order number 15000701.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Amimon MAGLAN.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	MAGLAN	
Model(s) Covered:	MAGLAN	
EUT Specifications:	Primary Power: 12VDC	
	FCC ID: VQSAMNMGIN01	
	Type of Modulations:	BPSK; OFDM
	Equipment Code:	NII
	Peak RF Output Power:	5260-5320 MHz: 23.81 dBm 5500-5700 MHz: 23.93 dBm
	EUT Frequency Ranges:	5260 – 5320 MHz; 5500 – 5700 MHz;
Analysis:	The results obtained relate only to the item(s) tested.	
Environmental Test Conditions:	Temperature: 15-35° C	
	Relative Humidity: 30-60%	
	Barometric Pressure: 860-1060 mbar	
Evaluated by:	Hadid Jones	
Report Date(s):	January 18, 2016	

Table 2. EUT Summary

B. References

CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
KDB 905462 D02	UNII DFS Compliance Procedures New Rules v01r02

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

D. Description of Test Sample

The MAGLAN video Sink module is designed to be at the receiver end of the WHDI downstream. The MAGLAN receives wireless downstream transmission, demodulates it and regenerates the video, audio and control content transmitted by the WHDI source.

The receiver works at the 5GHz unlicensed band.

The channel bandwidth can be operated at 40MHz and 20 MHz modes.

The MAGLAN board has 5 receiving channels (Multiple-In), and single transmitting channel (Single-Out).

The MAGLAN is a DFS Master device. It is equipped with all features and characteristics required to fully provide CAC and ISM requirements for Radar-Detection.

The MAGLAN board is designed to be integrated with any custom-designed video interface board (e.g. HDMI or DH-SDI video interfaces), to form a complete product with standard video output and wireless capabilities.

The MAGLAN board is independent module, fully performing the wireless functionality of the WHDI video link.

Photograph 1. Amimon MAGLAN

E. Equipment Configuration

Ref. ID	Slot #	Name / Description
A	N/A	MAGLAN

Table 4. Equipment Configuration

F. Support Equipment

Amimon supplied support equipment necessary for the operation and testing of the MAGLAN. All support equipment supplied is listed in the following Support Equipment List.

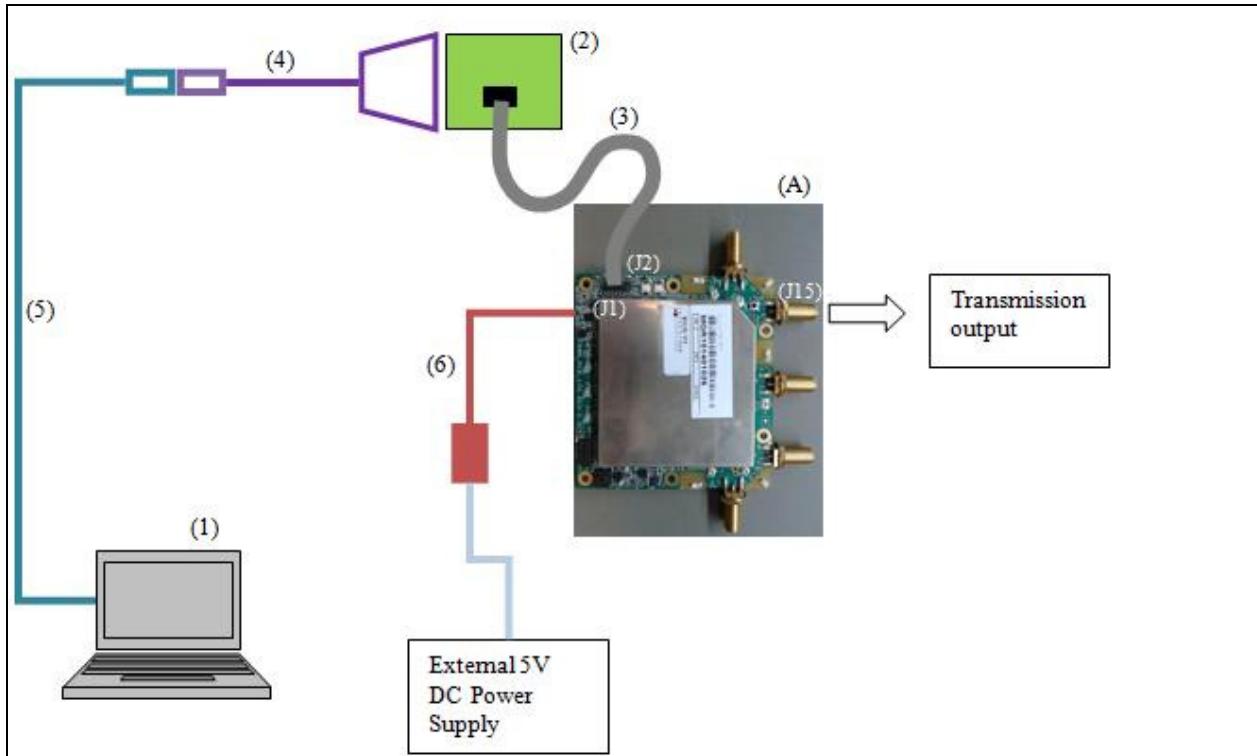

Ref. ID	Name / Description	Manufacturer	Model Number	Customer Supplied Calibration Data
1	PC Laptop	N/A	N/A	N/A
2	Debug Board (APP; MAGLAN)	Amimon	AMN043PCB	N/A
3	Debug Flat Cable	N/A	N/A	N/A
4	USB-to-Serial Converter (APP; MAGLAN)	ATEN	UC-232A	N/A
5	USB cable (optional)	N/A	N/A	N/A
6	MAGLAN supply cord	Amimon	-	N/A

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
J15	RF TX Port	External Antenna	1	N/A	N/A	UL
J1	12V DC Supply	MAGLAN 5V Power Supply Cord	1	0.1	No	12VDC
J2	APP UART	Debug Flat Cable	1	0.1	No	APP
J3	MAC UART	Debug Flat Cable	1	0.1	No	MAC

Table 6. Ports and Cabling Information

Figure 1. Block Diagram of Test Configuration

H. Mode of Operation

The MAGLAN board can be set into Test mode, simulating continuous normal operating mode.

This mode is enabled by simple GUI provided by AMIMON's 'AppCom' Tool.

The tool enables setting the EUT to Transmit or Receive modes. It controls the center channel frequency, the operating channel bandwidth, and the TX channel power.

A complete description of operation is detailed in 'How to use AppCom Regulation control.doc' file.

I. Method of Monitoring EUT Operation

Slow blinking (on-off once during 1sec) blue LED indicates that board is functioning.

Fast blinking (on-off 3-4 times during 1sec) same LED, means that the board is out of calibration.

When this LED is not blinking this means that board has a certain problem.

Using the SW tool to configure the board, when configuration ended successfully a clear green indication appears, while a red bad indication appears when the desired configuration fails.

J. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Amimon upon completion of testing.

III. DFS Requirements and Radar Waveform Description & Calibration

A. DFS Requirements

Table 7. Applicability of DFS requirements during normal operation

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
<i>U-NII Detection Bandwidth and Statistical Performance Check</i>	All BW modes must be tested	Not required
<i>Channel Move Time and Channel Closing Transmission Time</i>	Test using widest BW mode available	Test using the widest BW mode available for the link
<i>All other tests</i>	Any single BW mode	Not required
<p>Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.</p>		

The operational behavior and individual DFS requirements that are associated with these modes are as follows:

- Master Devices
 - a) The Master Device will use DFS in order to detect Radar Waveforms with received signal strength above the DFS Detection Threshold in the 5250 – 5350 MHz and 5470 – 5725 MHz bands. DFS is not required in the 5150 – 5250 MHz or 5725 – 5825 MHz bands.
 - b) Before initiating a network on a Channel, the Master Device will perform a Channel Availability Check for specified time duration (Channel Availability Check Time) to ensure that there is no radar system operating on the Channel, using DFS described under subsection a) above.
 - c) The Master Device initiates a U-NII network by transmitting control signals that will enable other U-NII device to Associate with the Master Device.
 - d) During normal operation, the Master Device will monitor the Channel (In-Service Monitoring) to ensure that there is not radar system operating on the Channel, using DFS described under a).
 - e) If the Master Device has detected a Radar Waveform during In-Service Monitoring as described under d), the Operating Channel of the U-NII network is no longer an Available Channel. The Master Device will instruct all associated Client Device(s) to stop transmitting on this Channel within the Channel Move Time. The transmissions during the Channel Move Time will be limited to the Channel Closing Transmission Time.
 - f) Once the Master Device has detected a Radar Waveform it will not utilize the Channel for the duration of the Non-Occupancy Period.¹
 - g) If the Master Device delegates the In-Service Monitoring to a Client Device, then the combination will be tested to the requirements described under d) through f) above.
- Client Devices
 - a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
 - b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
 - c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

¹ Applies to detection during the Channel Availability Check or In-Service Monitoring.

- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

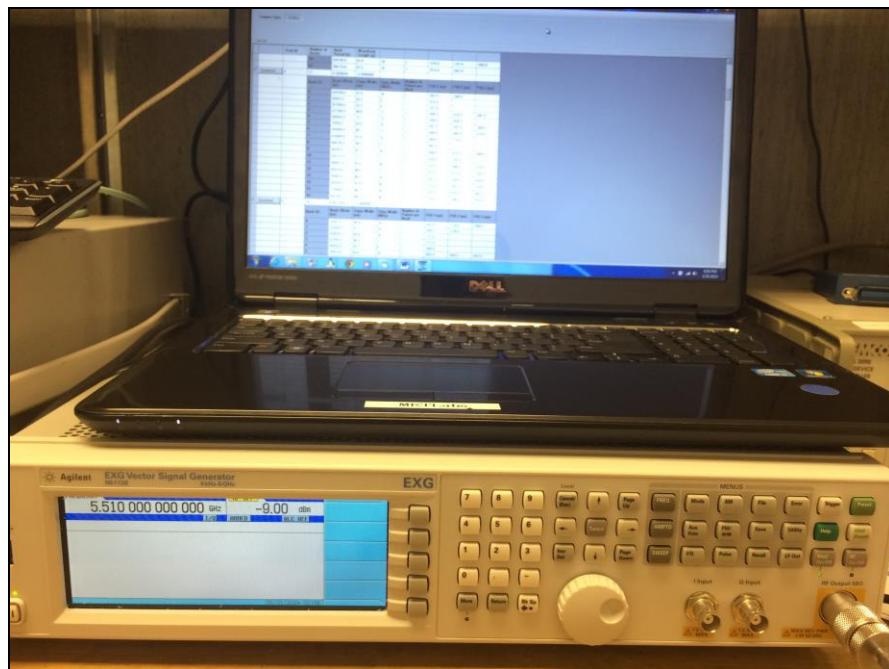
Table 8. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP \geq 200 milliwatt	-64 dBm
EIRP $<$ 200 milliwatt and power spectral density $<$ 10 dBm/MHz	-62 dBm
EIRP $<$ 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.
Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

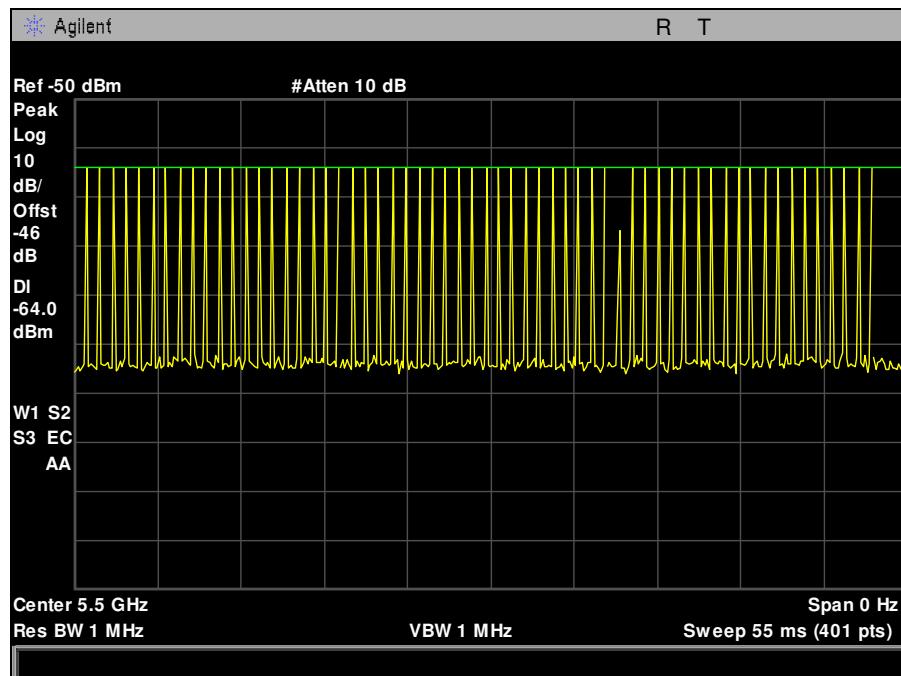
B. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

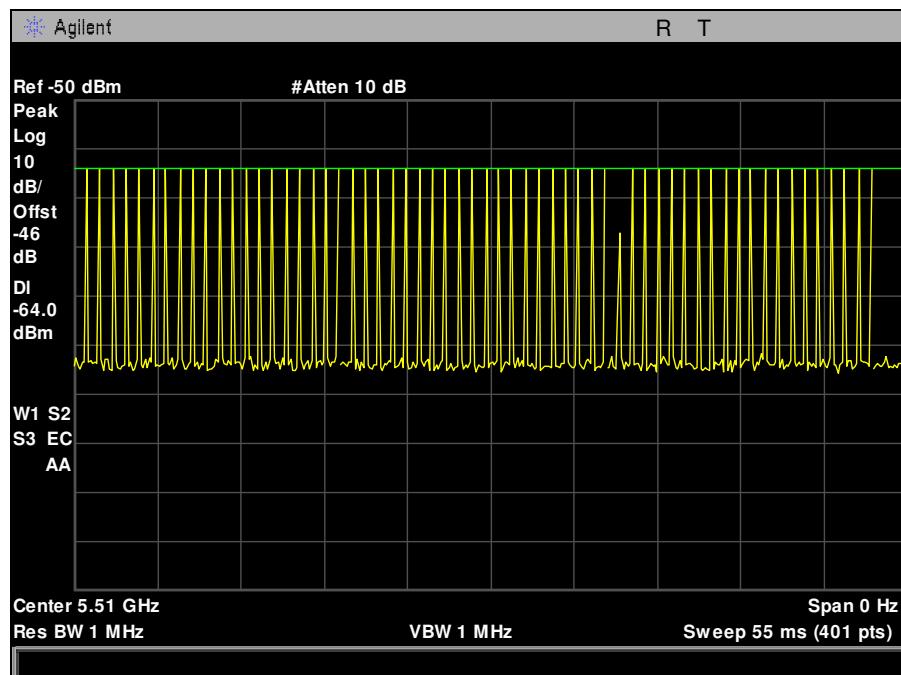

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	Roundup $\left\lceil \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right) \right\rceil$	60%	30
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.					

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.


C. Radar Waveform Calibration

The following equipment setup was used to calibrate the radiated Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer's resolution bandwidth (RBW) was set to 3 MHz and the video bandwidth (VBW) was set to 3 MHz. The radar test signal generator is shown in Photograph 2.



Photograph 2. DFS Radar Test Signal Generator

Radar Waveform Calibration

Plot 1. Calibration Plot, 5.500 GHz

Plot 2. Calibration Plot, 5.51 GHz

IV. DFS Test Procedure and Test Results

A. DFS Test Setup

The test setup, which consists of test equipment and equipment under test (EUT), is diagrammed in Figure 2.

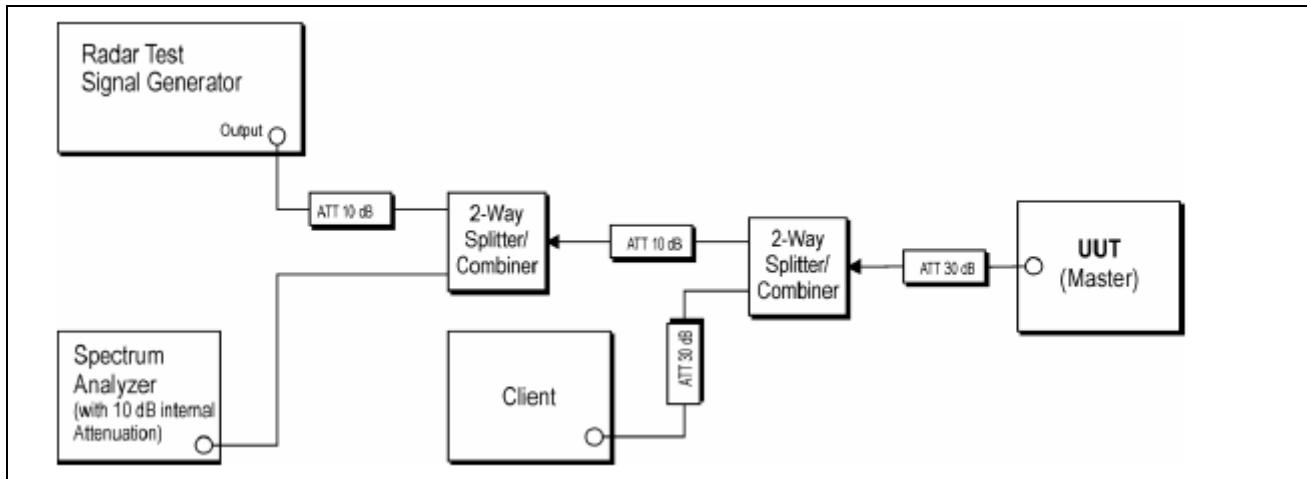


Figure 2. Test Setup Diagram

B. Statistical Performance Check

Test Requirements: § 15.407 During In-Service Monitoring, the EUT requires a minimum percentage of successful radar detections from all required radar waveforms at a level equal to the DFS Detection Threshold + 1dB.

Test Procedure: Stream the MPEG test file from the Master Device to the Client Device on the selected Channel for the entire period of the test. The Radar Waveform generator sends the individual waveform for the radar type 1 at -63dbm. Statistical data is gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

$$\frac{\text{TotalWaveformDetections}}{\text{TotalWaveformTrials}} \times 100$$

The Minimum number of trials, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.

Test Results: The equipment was compliant with § 15.407 Radar Type 1 Statistical Performance Check.

Test Engineer: Hadid Jones

Test Date: 12/01/15

Statistical Performance Check (20MHz BW)

Radar Type	Trial #	Pulse Repetition Frequency Number	Pulse Width (μsec)	PRI (μsec)	Detection	
					1 = Yes, 0 = No	
1	1	9	1474.9	678	1	
	2	14	1285.3	778	1	
	3	2	1858.7	538	1	
	4	5	1672.2	598	1	
	5	15	1253.1	798	1	
	6	19	1139.0	878	1	
	7	8	1519.8	658	1	
	8	1	1930.5	518	1	
	9	11	1930.5	518	1	
	10	18	1392.8	718	1	
	11	3	1165.5	858	1	
	12	22	1792.1	558	1	
	13	7	1066.1	938	1	
	14	17	1567.4	638	1	
	15	4	1193.3	838	1	
	16	n/a	1730.1	578	1	
	17	n/a	1269.0	788	1	
	18	n/a	1333.3	750	1	
	19	n/a	329.9	3031	1	
	20	n/a	1070.7	934	1	
	21	n/a	421.1	2375	1	
	22	n/a	1088.1	919	1	
	23	n/a	376.9	2653	1	
	24	n/a	1007.0	993	1	
	25	n/a	375.2	2665	1	
	26	n/a	410.2	2438	1	
	27	n/a	435.9	2294	1	
	28	n/a	546.7	1829	1	
	29	n/a	423.7	2360	1	
	30	n/a	445.6	2244	1	
Detection Percentage					100% (> 60%)	
EUT Test Frequency					5,500 MHz	
Radar Frequency					5493-5507 MHz	

Table 9. Statistical Performance Check – Radar Type 1, 5500 MHz, 20 MHz

Aggregate Results (5500MHz, 20MHz BW)

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detections
1	30	30	100%
2*	30	30	100%
3*	30	30	100%
4*	30	30	100%
Aggregate = (100% + 100% + 100% + 100%)/4 = 100%			

*See Metlabs Test Report EMC41655D-FCC407 Rev. 1 (UNII 2)

Statistical Performance Check (40MHz BW)

Radar Type	Trial #	Pulse Repetition Frequency Number	Pulse Width (usec)	PRI (usec)	Detection	
					1 = Yes, 0 = No	
1	1	14	1285.3	778	1	
	2	16	1222.5	818	1	
	3	1	1930.5	518	1	
	4	15	1672.2	598	1	
	5	23	326.2	3066	1	
	6	17	1193.3	838	1	
	7	13	1319.3	758	1	
	8	11	1392.8	718	1	
	9	8	1519.8	658	1	
	10	18	1165.5	858	1	
	11	9	1474.9	678	1	
	12	21	1089.3	918	1	
	13	7	1567.4	638	1	
	14	19	1139.0	878	1	
	15	20	1113.6	898	1	
	16	n/a	473.3	2113	1	
	17	n/a	692.0	1445	1	
	18	n/a	377.9	2646	1	
	19	n/a	497.8	2009	1	
	20	n/a	462.1	2164	1	
	21	n/a	1893.9	528	1	
	22	n/a	564.7	1771	1	
	23	n/a	438.2	2282	1	
	24	n/a	357.8	2795	1	
	25	n/a	370.6	2698	1	
	26	n/a	713.3	1402	1	
	27	n/a	1890.4	529	1	
	28	n/a	1865.7	536	1	
	29	n/a	588.2	1700	1	
	30	n/a	470.8	2124	1	
Detection Percentage					100% (> 60%)	
EUT Test Frequency					5,510 MHz	
Radar Frequency					5,493 - 5527MHz	

Table 10. Statistical Performance Check – Radar Type 1, 5510 MHz, 5493 MHz, 40 MHz

Aggregate Results (5510MHz, 40MHz BW)

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detections
1	30	30	100%
2*	30	30	100%
3*	30	30	100%
4*	30	30	100%
Aggregate = (100% + 100% + 100% + 100%)/4 = 100%			

*See Metlabs Test Report EMC41655D-FCC407 Rev. 1 (UNII 2)

C. UNII Detection Bandwidth

Test Requirement(s): § 15.407 A Minimum 100% of the UNI II 99% transmission power bandwidth

Test Procedure: All UNII channels for this device have identical channel bandwidths.

A single burst of the short pulse radar type 1 is produced at 5500 MHz, at the -63dBm test level. The UUT is set up as a standalone device (no associated client, and no data traffic).

A single radar burst is generated for a minimum of 10 trials, and the response of the UUT is recorded. The UUT must detect the radar waveform 90% or more of the time.

The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted F_H .

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted F_L .

The U-NII Detection Bandwidth is calculated as follows:

$$\text{U-NII Detection Bandwidth} = F_H - F_L$$

Test Results: EUT is compliant with the detection bandwidth requirement. $F_H - F_L > 99\%$ transmission power bandwidth.

Test Engineer: Djed Mouada

Test Date: 05/30/14 – 06/06/14

UNII Detection Bandwidth – Test Results

Radar Frequency (MHz)	EUT Frequency- 5500MHz										Detection Rate (%)
	1	2	3	4	5	6	7	8	9	10	
5490	0	0	0	0	0	0	0	0	0	0	-
5491	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5496	1	1	1	1	1	1	1	1	1	1	100
5497	1	1	1	1	1	1	1	1	1	1	100
5498	1	1	1	1	1	1	1	1	1	1	100
5499	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5501	1	1	1	1	1	1	1	1	1	1	100
5502	1	1	1	1	1	1	1	1	1	1	100
5503	1	1	1	1	1	1	1	1	1	1	100
5504	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5506	1	1	1	1	1	1	1	1	1	1	100
5507	1	1	1	1	1	1	1	1	1	1	100
5508	1	1	1	1	1	1	1	1	1	1	100
5509	1	1	1	1	1	1	1	1	1	1	100
5510	0	0	0	0	0	0	0	0	0	0	-
											100%
Detection Bandwidth = $f_h - f_l = 5509 \text{ MHz} - 5491 \text{ MHz} = 18 \text{ MHz}$											
EUT 99f% Bandwidth = 15.453MHz											

Table 11. UNII Detection Bandwidth, Test Results, 5500 MHz

EUT Frequency- 5510MHz											
Radar Frequency (MHz)	DFS Detection Trials (1=Detection, 0= No Detection)										
	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
5489	1	1	1	1	1	1	1	1	1	1	100
5490	1	1	1	1	1	1	1	1	1	1	100
5491	1	1	1	1	1	1	1	1	1	1	100
5492	1	1	1	1	1	1	1	1	1	1	100
5493	1	1	1	1	1	1	1	1	1	1	100
5494	1	1	1	1	1	1	1	1	1	1	100
5495	1	1	1	1	1	1	1	1	1	1	100
5496	1	1	1	1	1	1	1	1	1	1	100
5497	1	1	1	1	1	1	1	1	1	1	100
5498	1	1	1	1	1	1	1	1	1	1	100
5499	1	1	1	1	1	1	1	1	1	1	100
5500	1	1	1	1	1	1	1	1	1	1	100
5501	1	1	1	1	1	1	1	1	1	1	100
5502	1	1	1	1	1	1	1	1	1	1	100
5503	1	1	1	1	1	1	1	1	1	1	100
5504	1	1	1	1	1	1	1	1	1	1	100
5505	1	1	1	1	1	1	1	1	1	1	100
5506	1	1	1	1	1	1	1	1	1	1	100
5507	1	1	1	1	1	1	1	1	1	1	100
5508	1	1	1	1	1	1	1	1	1	1	100
5509	1	1	1	1	1	1	1	1	1	1	100
5510	1	1	1	1	1	1	1	1	1	1	100
5511	1	1	1	1	1	1	1	1	1	1	100
5512	1	1	1	1	1	1	1	1	1	1	100
5513	1	1	1	1	1	1	1	1	1	1	100
5514	1	1	1	1	1	1	1	1	1	1	100
5515	1	1	1	1	1	1	1	1	1	1	100
5516	1	1	1	1	1	1	1	1	1	1	100
5517	1	1	1	1	1	1	1	1	1	1	100
5518	1	1	1	1	1	1	1	1	1	1	100
5519	1	1	1	1	1	1	1	1	1	1	100
5520	1	1	1	1	1	1	1	1	1	1	100
5521	1	1	1	1	1	1	1	1	1	1	100
										100%	
Detection Bandwidth = $f_b - f_l = 5521\text{MHz} - 5489\text{MHz} = 32\text{MHz}$											
EUT 99% Bandwidth = 31.1281MHz											

Table 12. UNII Detection Bandwidth, Test Results, 5510 MHz

VII. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET ASSET #	EQUIPMENT	MANUFACTURER	MODEL	LAST CAL DATE	CAL DUE DATE
1T4612	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	09/01/2015	03/01/2017
1T4871	VECTOR SIGNAL GENERATOR	AGILENT TECHNOLOGIES	N5172B	06/16/2014	12/16/2015

Table 13. Test Equipment List

VIII. Certification & User's Manual Information

Certification & User's Manual Information

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) *The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.*
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or pre-production stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

(e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:

- (i) *Compliance testing;*
- (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
- (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
- (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
- (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.

(e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.

(f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

Certification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.² *In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer,* be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

² In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

Certification & User's Manual Information

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

(i) *If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.*

(ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.

(2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Certification & User's Manual Information

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

(a) *In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:*

(1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.

(5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Verification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.