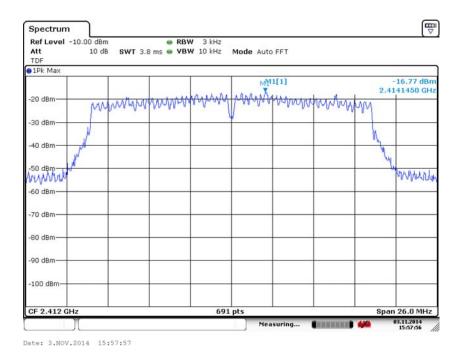

Date: 3.NOV.2014 15:51:24



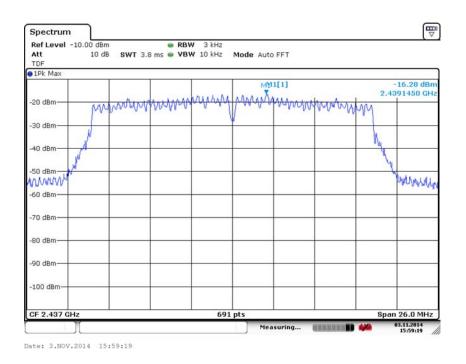
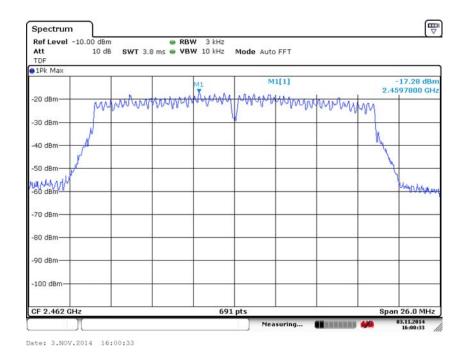
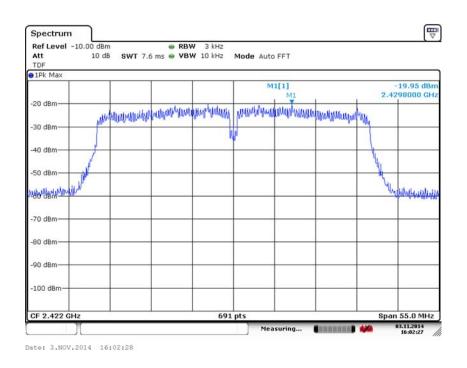
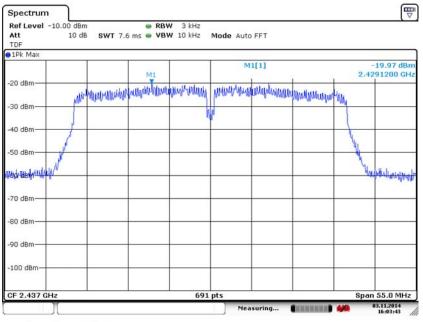
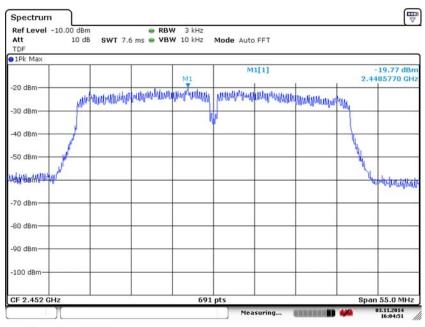


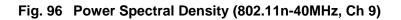
Fig. 90 Power Spectral Density (802.11g, Ch 11)



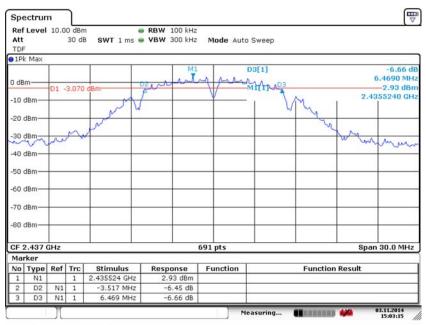








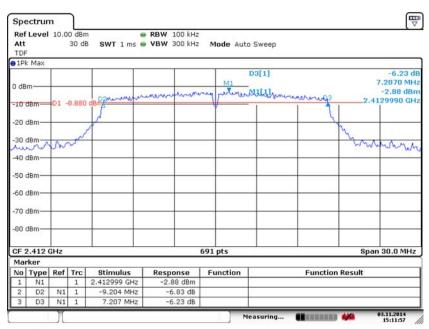
Date: 3.NOV.2014 16:04:51



Att TDF		10.0	0 dBn 30 dB		_	RBW 100 k VBW 300 k		Mode Auto	o Sweep			a =2,00
1P	: Max				_		_	M1	pot 11			c = 0 40
0 dB						- An		ma the ma	D3[1]			-6.58 dE 4.4720 MH
Jab	m	D1 -	2.930	dBm	D	Sur and			MITIN		1.56577	-3.07 dBn
10 (dBm—			M				Ψ	. \	M	2.4	125210 GH
_				M	W				1	N M		
-20 (dBm—	<u> </u>		Mo			_			20		
20.	Bra	R	M	4			_				my	1.1
~	m	par									in the	mon
40 (dBm—				-		_			-		
-50 (dBm	<u> </u>		-	_		_	_		-		-
-60 (dBm—						_					
70 (dBm-	<u> </u>					_	_	_	_		
-80 (dBm—	<u> </u>					_					
CE 2	2.412	GHz					-	691 pts			Sna	n 30.0 MHz
Mar					_		_					
No	Туре	Ref	Trc	Stimulus		Response		Function		Function	Result	
1	N1	Q 8	1	2.412521 GH		3.07 dB						
2	D2	N1	1	-5.514 MH		-6.56 d	-					
3	D3	N1	1	4.472 MH	łz	-6.58 d	B		2			

Date: 3.NOV.2014 14:53:59

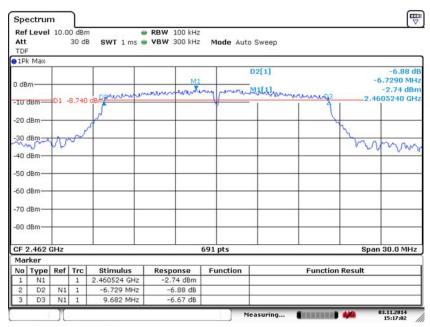
Date: 3.NOV.2014 15:03:16


Fig. 98 Occupied 6dB Bandwidth (802.11b, Ch 6)

Att TDF		10.0	0 dBn 30 dB			100 kHz 300 kHz	Mode Auto	o Sweep			
1P	(Max						1.11	politi			e ro de
							M1	D3[1]		5	-6.53 dE
) dB	m	D1 -	3.140	dBm	UZAN	Junear	allow a	Mitting			2.86 dBm
10	dBm		262.02		f	-	Y	1		2.46	4790 GH
				July 1	\mathcal{V}			Nº C	2		
20 (dBm	-		~~		+			Y		
	dBm		1.4	L.S.					N	10000	
300	JBm-	Mar	20	<i>r</i>				2	W	Les	mon
40	dBm-	1					_				a channe
				- I - I							
-50 (dBm	<u> </u>				+					
60 (dBm	<u> </u>		-		-					
-70 (dBm-	-		-		+					
.00	dBm—										
001	John										
CF 2	2.462	GHz				- a	691 pts			Span	30.0 MHz
Mar	ker										
No	Туре	Ref	Trc	Stimulus	Res	oonse	Function	F	unction Re	sult	
1	N1	0	1	2.461479 GH		.86 dBm					
2	D2	N1	1	-4.472 MH		6.50 dB					
3	D3	N1	1	5.21 MH	z -	6.53 dB		2			

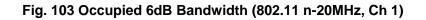
Date: 3.NOV.2014 15:00:24

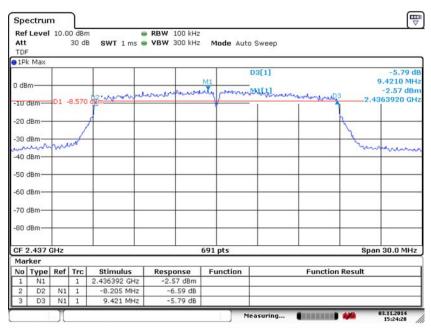
Date: 3.NOV.2014 15:11:58


Fig. 100 Occupied 6dB Bandwidth (802.11g, Ch 1)

Ref Att		10.0	0 dBn 30 dB		RBW 100 kHz VBW 300 kHz		uto Sweep	
1P	k Max							10000
0 dB	m				MI	ney percen	D3[1]	-6.84 dt 9.6820 MH -2.61 dBn
-10	dBm—	01 -	8.610	dBm				2.4355240 GH
-20	dBm—			d and a second		_		h
my.	dBm-	n	and					mannam
131	dBm—					_		
60	dBm—	-				_		
70	dBm—			-		_		
-80	dBm—	-						
CF :	2.437	GHz				691 pts	A.C.	Span 30.0 MHz
	rker							
	Туре	Ref		Stimulus	Response	Function	Fun	ction Result
1	N1	6 3	1	2.435524 GHz	-2.61 dBm			
2	D2 D3	N1 N1	1	-6.729 MHz 9.682 MHz	-6.45 dB -6.84 dB			

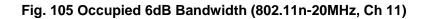
Date: 3.NOV.2014 15:13:56

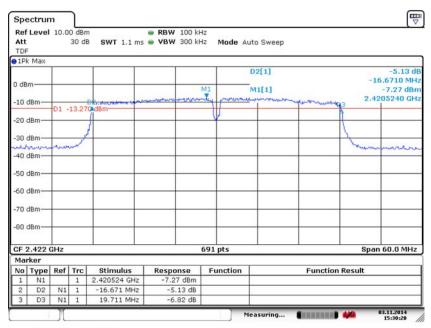

Date: 3.NOV.2014 15:17:03


Fig. 102 Occupied 6dB Bandwidth (802.11g, Ch 11)

Ref Att		10.0	0 dBn 30 df		RBW 100 kHz VBW 300 kHz	Mode Aut	to Sweep	
1P	k Max						100403	1200
0 dB	m			D2. Anname	NI ware man	ng permi	D3[1]	-6.91 di 11.7220 MH -2.77 dBn 2.1001350 CH
10	dBm	01 -	-8.780	dem			1 1	2.4091350 GH
20	dBm—		,	A				
m	dBm-	non	w			-		formour
40	dBm—							
50	dBm—	-						
60	dBm—	-						
70	dBm—	_				_		
80	dBm—	_				_		
CF :	2.412	GHz				691 pts		Span 30.0 MHz
	rker							
	Туре	Ref		Stimulus	Response	Function	Fu	nction Result
1	N1	0	1	2.409135 GHz	-2.77 dBm			
2	D2 D3	N1 N1	1	-5.948 MHz 11.722 MHz	-6.39 dB -6.91 dB			

Date: 3.NOV.2014 15:21:09

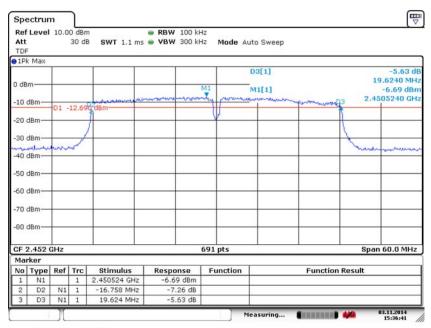

Date: 3.NOV.2014 15:24:28


Fig. 104 Occupied 6dB Bandwidth (802.11 n-20MHz, Ch 6)

Ref Att		10.0	0 dBn 30 df		RBW 100 kHz VBW 300 kHz	Mode Aut	o Sweep	1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 -
	k Max							
) dB	im				e nanone month	MI	D3[1]	-6.14 di 9.4650 MH -2.53 dBn
10	dBm—	D1 -	8.540	dem			1 1	2.4613490 GH
20	dBm		1	A		_		
30	dBm	<u> </u>	5					7
40	dBm-	num	~	_		_		manutano
50	dBm—	-						
60	dBm—	-						
70	dBm—							
80	dBm—							
CF :	2.462	GHz				691 pts	a. a.	Span 30.0 MHz
	rker							
	Туре	Ref		Stimulus	Response	Function	Fun	ction Result
1	N1	0	1	2.461349 GHz	-2.53 dBm			
2	D2 D3	N1 N1	1	-8.162 MHz 9.465 MHz	-6.13 dB -6.14 dB			

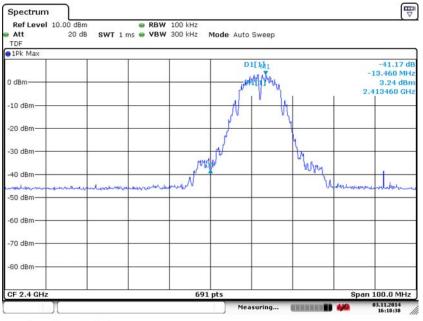
Date: 3.NOV.2014 15:26:31

Date: 3.NOV.2014 15:30:20

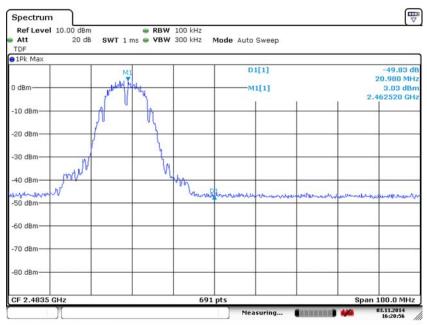

Fig. 106 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 3)

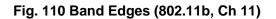
Ref L	evel	10.0	0 dBn	n	RBW	100 kH	z		
Att			30 d8	3 SWT 1.1 ms	. VBW	300 kH	z Mode A	uto Sweep	
TDF								8	
1Pk I	Max								
								D2[1]	-5.05 df
) dBm		<u> </u>							-16.6710 MH
				1 · · · · · · · · · · · · · · · · · · ·	wwww			M1[1]	-6.90 dBn 2.4355240 GH
-10 dB	3m-	01	10.00	Od dBm	www.	mana	ay parente	ansaman	2.4355240 GH
		01 -	12.90				(J		ħ
-20 dB	3m								
-30 dB			1						
-30 08		1000	1						Emonophic manage
40 dB									
				1 1					
-50 dB	3m—	-					_		
-60 dB	3m—								
-70 dB	100								
-70 ub	5111								
-80 dB	3m			-					
CF 2.	437 (GHz					591 pts		Span 60.0 MHz
Mark									
No	1000	Ref	Trc	Stimulus	Respo	nse	Function	Fu	unction Result
1	N1		1	2.435524 GHz) dBm			
2	D2	N1	1	-16.671 MHz	-5.	05 dB			
3	D3	N1	1	19.711 MHz	-7.	09 dB			

Date: 3.NOV.2014 15:34:04



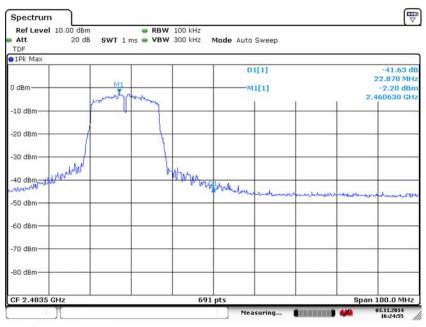
Date: 3.NOV.2014 15:36:41

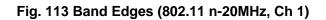

Fig. 108 Occupied 6dB Bandwidth (802.11n-40MHz, Ch 9)

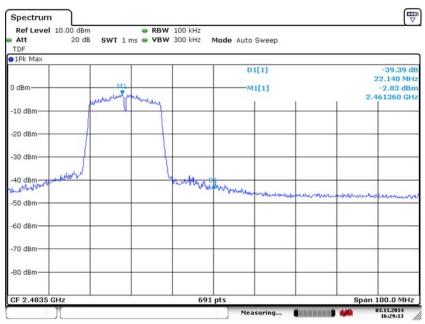


Date: 3.NOV.2014 16:18:38

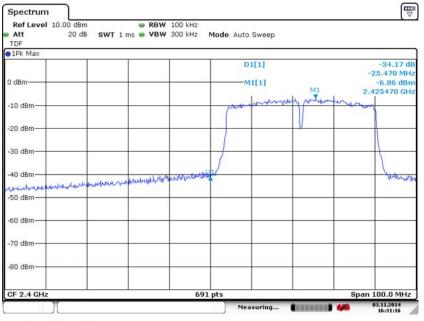


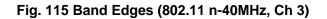

Date: 3.NOV.2014 16:20:56

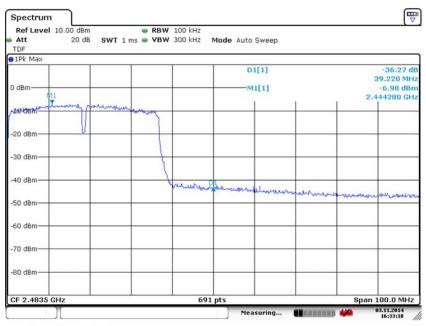

Date: 3.NOV.2014 16:24:55


Fig. 112 Band Edges (802.11g, Ch 11)

Date: 3.NOV.2014 16:27:07



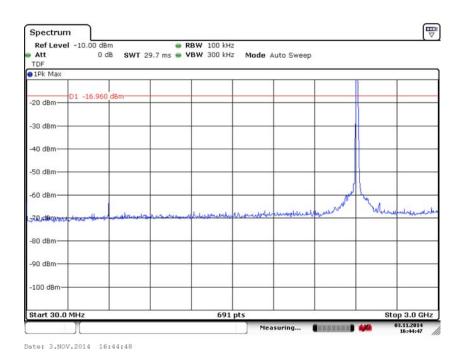
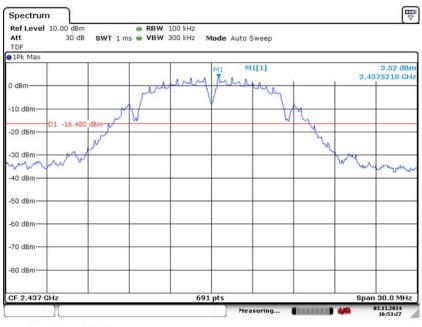

Date: 3.NOV.2014 16:29:12

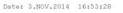

Fig. 114 Band Edges (802.11 n-20MHz, Ch 11)

Date: 3.NOV.2014 16:31:16

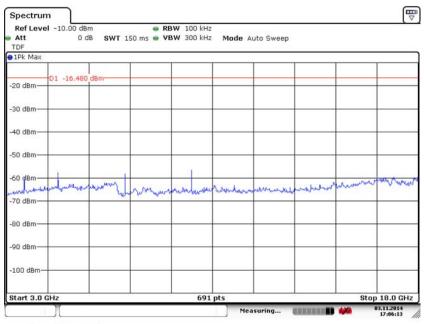
Date: 3.NOV.2014 16:33:18

Fig. 116 Band Edges (802.11 n-40MHz, Ch 9)

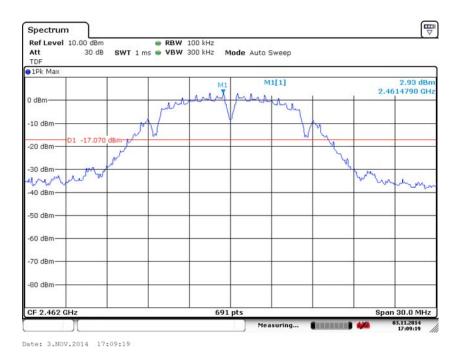




Fig. 118 Conducted Spurious Emission (802.11b, Ch1, 30 MHz-3 GHz)

Ref Level -10.00 dBm		RBW 100 kHz	259 - 51 - 71 - 51 - 74		102.00
Att 0 dB	SWT 150 ms 🖷	VBW 300 kHz	Mode Auto Swee	p	
1Pk Max					
D1 -16.960 dB	3m				
20 dBm					
2012211					
30 dBm-				-	
10 dBm					
50 dBm-					
50 dBm		100			
a manufertubeture of	war lager themas	in the street	u-arabalaha	- hunder	nemer when a load
70 dBm	allow where	and more thank	and a contraction of	and a start of the	
80 dBm					
90 dBm					
100 dBm					
tart 3.0 GHz		691 p	ts	Witten Witten	Stop 18.0 GHz



Ref Leve Att TDF	el -10.00 dB 0 d		🥮 R 19.7 ms 🖷 V	BW 100 kH BW 300 kH		luto Sweep			
1Pk Max									
-20 dBm	D1 -16.480	dBm							
30 dBm									
40 dBm—									
50 dBm—									
60 dBm—		1					he for	Wy .	
70. dBawa	an the second	and the here was	deres and	-dramar-bar	generador	montrantitud	with	When	habersheen
80 dBm—									
90 dBm—	-								
100 dBm-									
tart 30.0	MHz	I		691	pts			Sto	p 3.0 GHz
	Y					suring			03.11.2014 17:05:27



Date: 3.NOV.2014 17:06:14

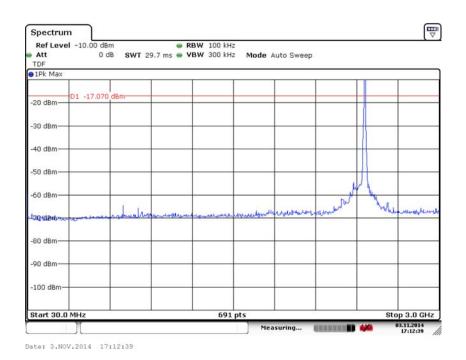


Fig. 124 Conducted Spurious Emission (802.11b, Ch11, 30 MHz-3 GHz)

Ref Level -10.00 dBm Att 0 dB SV	● R VT 150 ms ● V	BW 100 kHz	Mada Au	ha C			
TDF	VI 150 ms 🖷 V	DW 300 KH2	Mode Au	to Sweep			
1Pk Max							
20 dBm D1 -17.070 dBm							
20 0611							
30 dBm							
50 ubili				о. С		1	
40 d8m							
HO USIN		1 1					
50 dBm							
		1 1					
60 dBm							
will with range and wanted	1 he have	all all and all and all	Janandren	A labore Bally of	mound	instation	mound
70 dBm	And the strong	nor and the second	nas altra	Anno man			
80 dBm							
90 dBm							
100 dBm		-					
tart 3.0 GHz		691	nts	10.00		Ston	18.0 GHz
		091	pes				3.11.2014

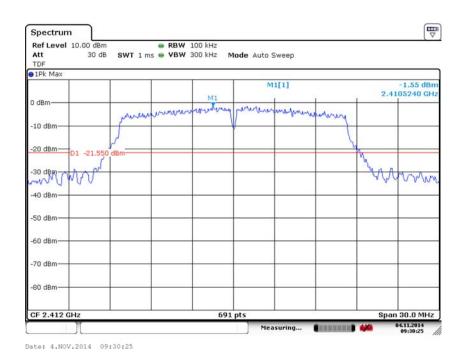
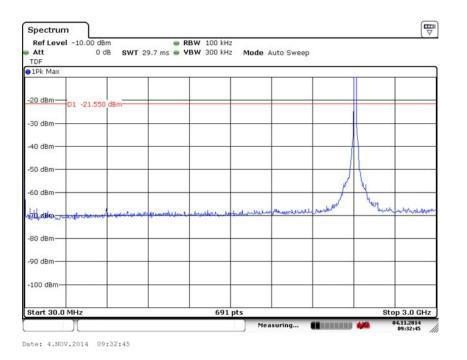
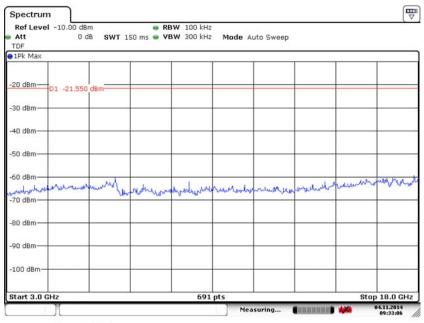
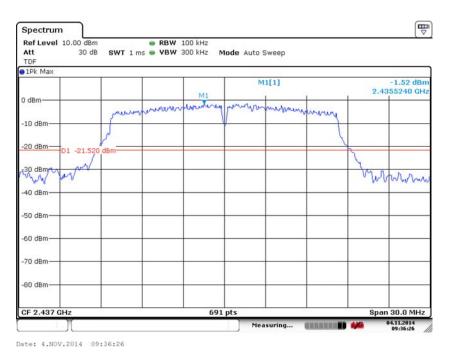
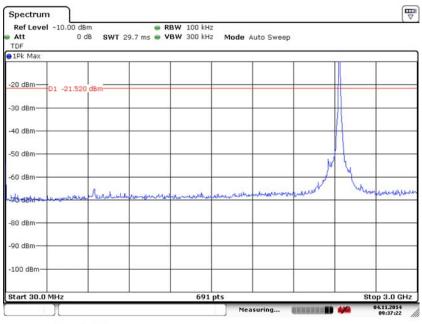
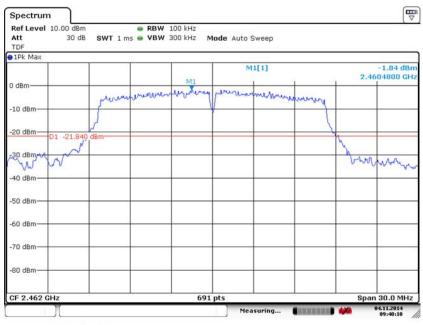




Fig. 126 Conducted Spurious Emission (802.11g, Ch1, Center Frequency)

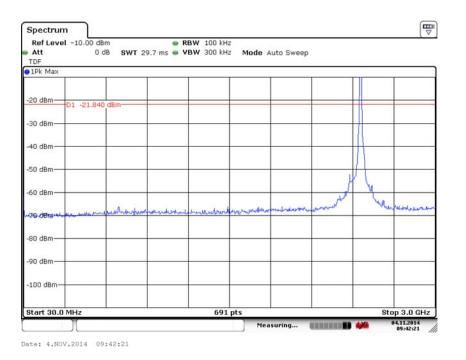


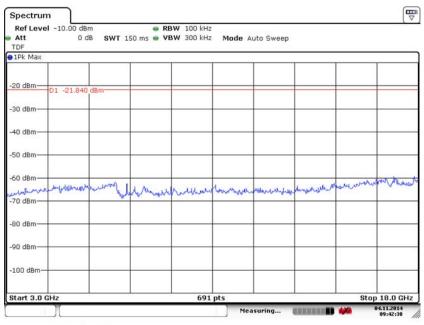
Date: 4.NOV.2014 09:33:06

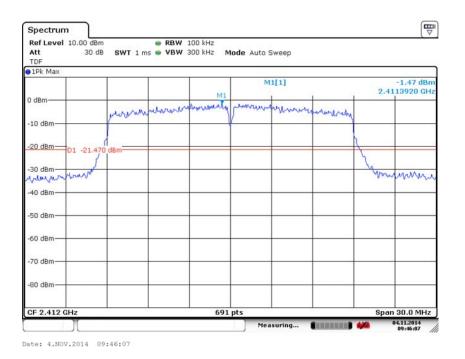


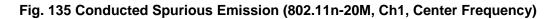

Date: 4.NOV.2014 09:37:22

Ref Level -10.00 dBm	🖷 RBW		0000-00			1.000
	/T 150 ms 🖷 VBW	300 kHz Mode	Auto Sweep			
TDF 1Pk Max						
IPK MdA						
-20 dBm-01 -21.520 dBm-						
01 -21.520 dbiii						
30 dBm-						
40 dBm			-			
00-000000						
50 dBm			_			
	1 1					
-60 dBm					1000	
with which when the whore we will be a start when the second start	1 In the way	and when the able	manufal an sea	entrementer	nenny	marin
-70 dBm	And remained as	All Maria and a factor	Photos on Charle			
-80 dBm					-	
-90 dBm			_			
-100 dBm			_			
Start 3.0 GHz	91 - 91 91	691 pts	100 ⁻ 10			18.0 GHz
1			teasuring	E REAL DE LA CALLANDIA DE LA CAL		4.11.2014 09:37:40




Date: 4.NOV.2014 09:40:10





Date: 4.NOV.2014 09:42:38

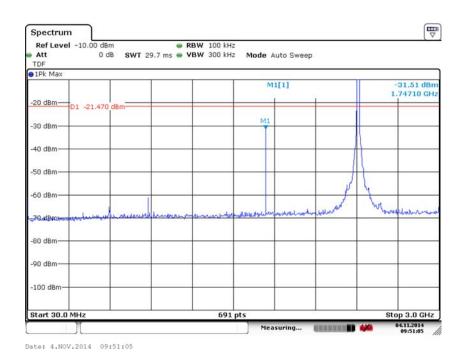
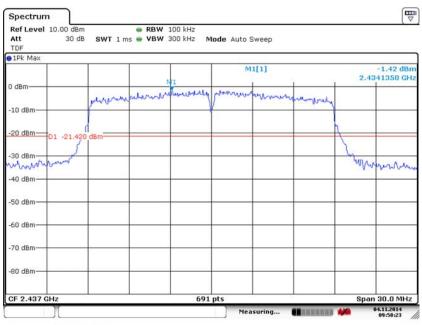
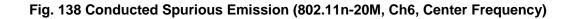
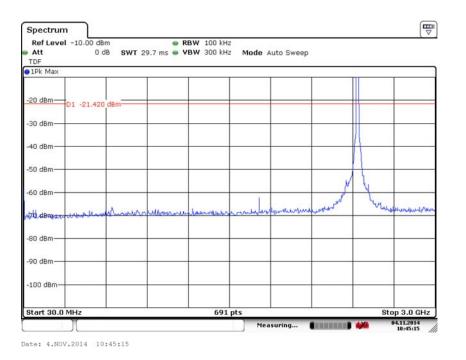



Fig. 136 Conducted Spurious Emission (802.11n-20M, Ch1, 30 MHz-3 GHz)



Ref Level -10.00 dBm		RBW 100 kH	C 2500 30 031	SS - 63			1 - 174 -
Att 0 dB	SWT 150 ms 🖷	VBW 300 kH	z Mode A	uto Sweep			
1Pk Max							
20 dBm-D1 -21.470 dBm		_	-	-			
30 dBm		-	-	-			
40 dBm			-	-			
50 dBm		-	-	-	-		
-60 dBm						and and	and the
mohadhermanightan method	Marray	moundan	whathe	emplallesnikers	and when the stand	and the second	0.515
70 dBm	1.10		-	-			
80 dBm							<u> </u>
90 dBm			-				
100 dBm		-	-				
tart 3.0 GHz		69	1 pts			Stor	18.0 GHz
		0,					94.11.2014



Date: 4.NOV.2014 09:58:24

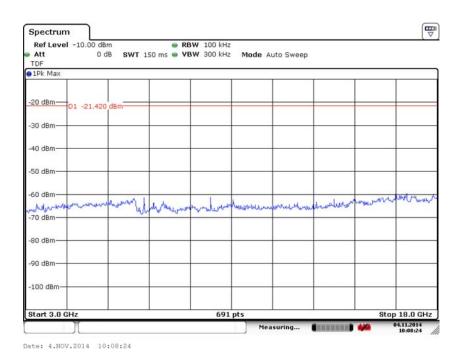


Fig. 140 Conducted Spurious Emission (802.11n-20M, Ch6, 3 GHz-18 GHz)

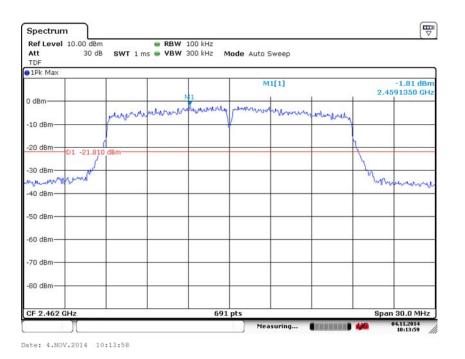
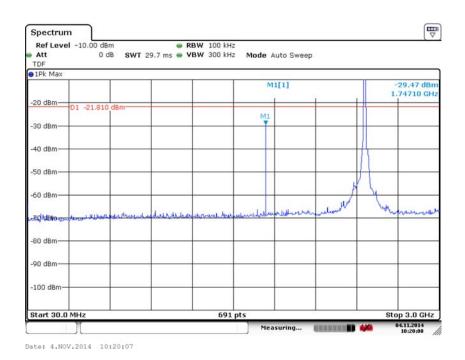
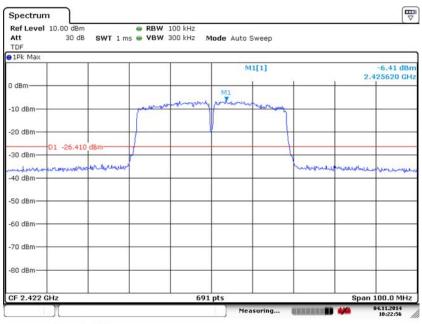
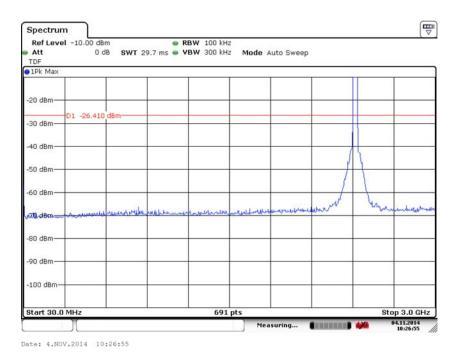
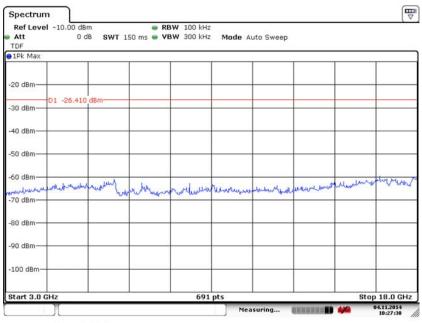



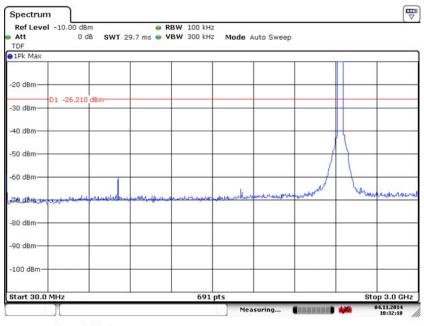
Fig. 141 Conducted Spurious Emission (802.11n-20M, Ch11, Center Frequency)



Ref Level -10.00 dBm	🖷 RB	W 100 kHz	10 NA 1993 M. 19			
	/T 150 ms 🖷 VB	W 300 kHz	Mode Auto Swee	эр		
TDF						
1Pk Max						
20 dBm						
D1 -21.810 dBm						
30 dBm				_		
40 dBm						
60 dBm						
		1				
50 dBm						_
achwarmenterteretureturetureturetureturetureturet	1 In Maria	Level with the	with her with her the	montestan	confront which	- March
70 dBm	man win	da no con a se				
30 dBm						
90 dBm						
100 dBm						
tart 3.0 GHz		691 pt:	s	50	Stop	18.0 GHz
						4.11.2014

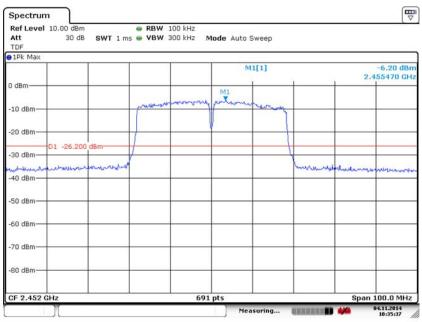


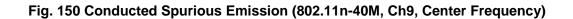

Date: 4.NOV.2014 10:22:56


Date: 4.NOV.2014 10:27:30

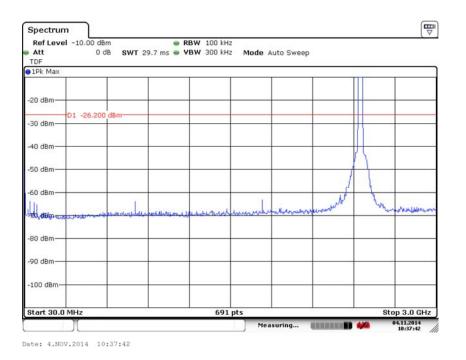
	RBW 100 kHz VBW 300 kHz Mode Auto 1	Sweep	
1Pk Max	M	11[1]	-6.21 dBm
0 dBm			2.440470 GHz
	MI	100 M 10 M	
-10 dBm	were and a service of the service of	harring	
-20 dBm			
D1 -26.210 dBm			
30 dBm		hereites	
-40 dBm-		- water Calif	monthematication
F0 d0m			
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
CF 2.437 GHz	691 pts		Span 100.0 MHz
		suring	

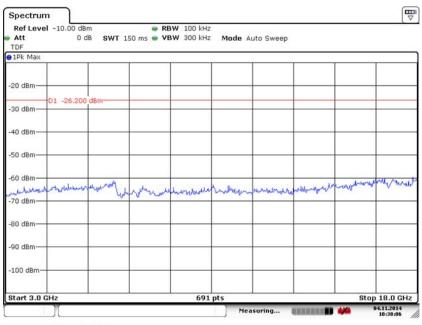
Fig. 147 Conducted Spurious Emission (802.11n-40M, Ch6, Center Frequency)


Date: 4.NOV.2014 10:32:17



Ref Level -10.00 dBm Att 0 dB		 RBW 100 kHz VBW 300 kHz 				
TDF 0 UB	SWI 150 ms (• • • • • • • • • • • • • • • • • • •	Mode Auto S	weep		
1Pk Max						
20 dBm						
01 -26.210 d	IBm-					
				<u></u>		
10 dBm						
50 dBm						
io dBm	wint .	. I al a	munerenter	the sheet the rose	enshingthe hours	when
70 dBm	and Monday	water water and the second	Indiana and a construction	all control of the second		
30 dBm						
90 dBm						
100 dBm					_	
		691	pts		Stop 1	8.0 GHz
tart 3.0 GHz						




Date: 4.NOV.2014 10:35:37

Date: 4.NOV.2014 10:38:06

Ref Level -10.00 dBm		BW 100 kHz	100.5	2224			1.000
Att 0 dB	SWT 80 ms 👄 V	'BW 300 kHz	Mode Auto	o Sweep			
1Pk Max							
Limit Check	eck PASS					1	
Odb-line 20db-line		PASS					
1011111111111							
-30 dBm-							
-40 dBm							
-50 dBm		_					
Sedeman and	www.hand				and the second starting of		a and the latest
	munorent	abertal	and the second s	many	por many	manifes	
-70 dBm		-					
-80 dBm		-					
-90 dBm		_					
-100 dBm							
Start 18.0 GHz		691	pts	10 10.11		Stop	26.0 GHz
Y			Meas	uring		04	4.11.2014 10:40:27

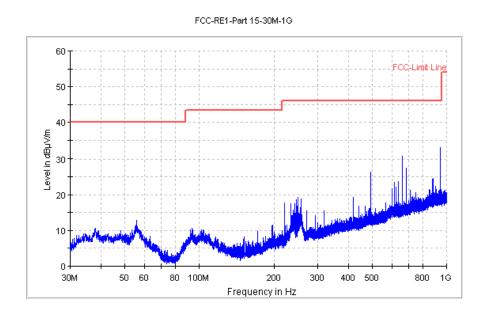


Fig. 154 Radiated Spurious Emission (802.11b, Ch1, 30MHz-1 GHz)

FCC-RE2-1-18G-PEAK+AV

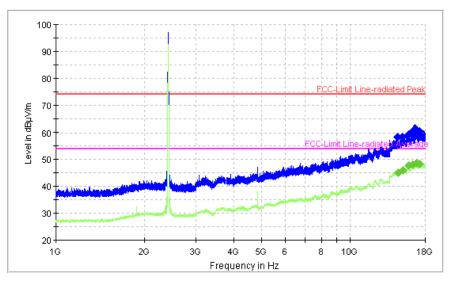


Fig. 155 Radiated Spurious Emission (802.11b, Ch1, 1 GHz-18 GHz)

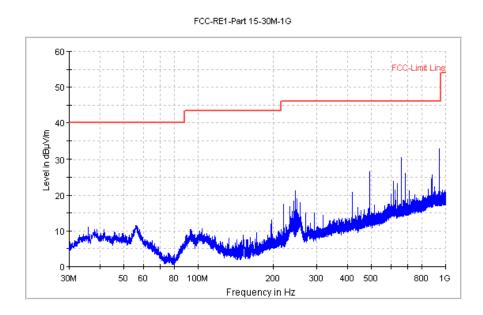


Fig. 156 Radiated Spurious Emission (802.11b, Ch6, 30MHz-1 GHz)

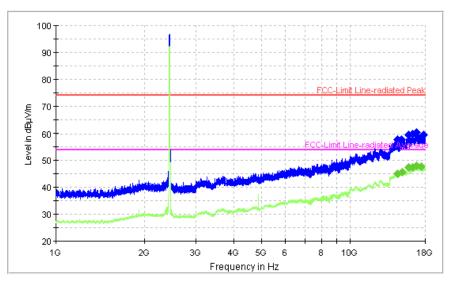


Fig. 157 Radiated Spurious Emission (802.11b, Ch6, 1 GHz-18 GHz)

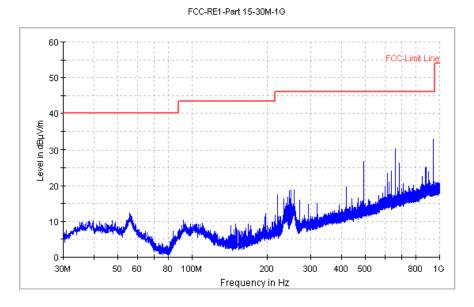


Fig. 158 Radiated Spurious Emission (802.11b, Ch11, 30MHz-1 GHz)

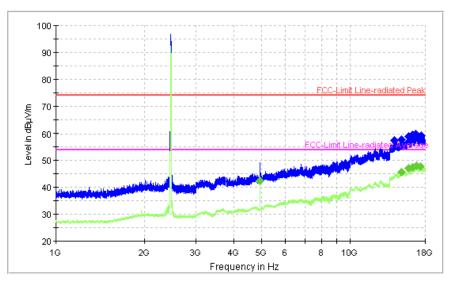
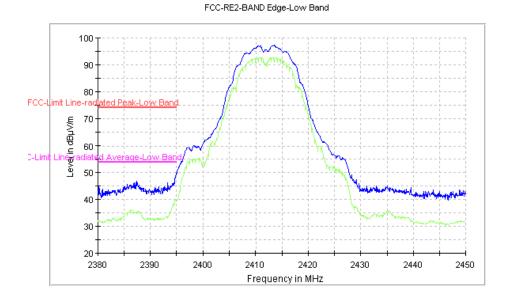
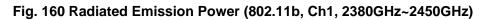




Fig. 159 Radiated Spurious Emission (802.11b, Ch11, 1 GHz-18 GHz)

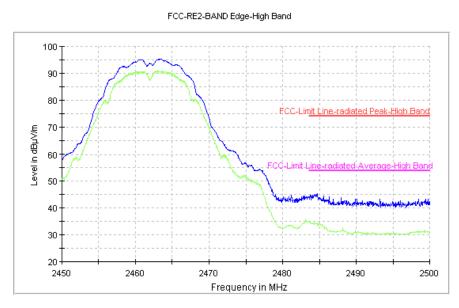


Fig. 161 Radiated Emission Power (802.11b, Ch11, 2450GHz~2500GHz)

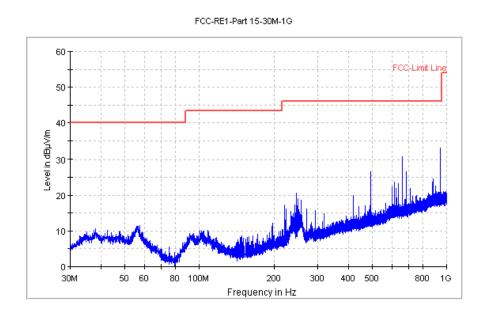


Fig. 162 Radiated Spurious Emission (802.11g, Ch1,30MHz-1 GHz)

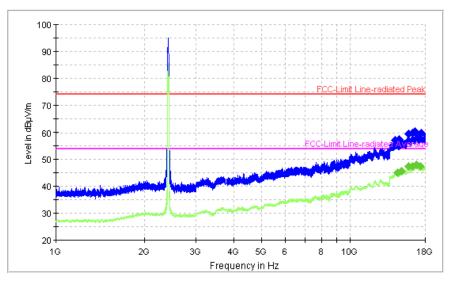


Fig. 163 Radiated Spurious Emission (802.11g, Ch1, 1 GHz-18 GHz)

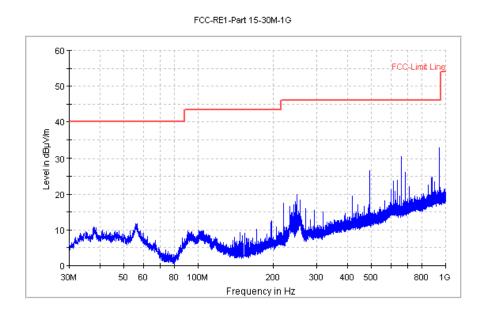
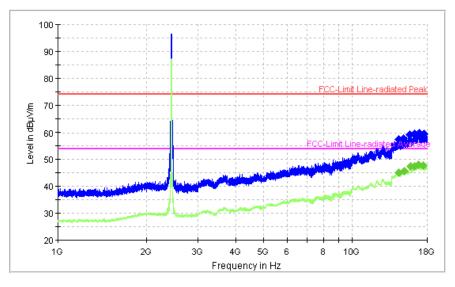



Fig. 164 Radiated Spurious Emission (802.11g, Ch6, 30MHz-1 GHz)

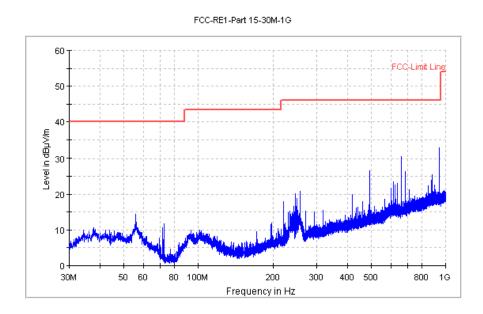


Fig. 166 Radiated Spurious Emission (802.11g, Ch11, 30MHz-1 GHz)

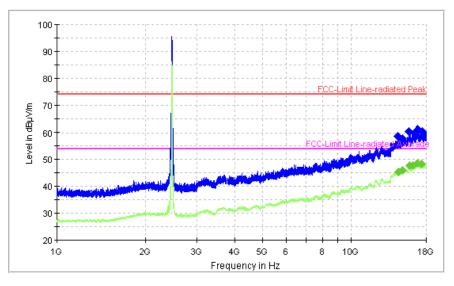


Fig. 167 Radiated Spurious Emission (802.11g, Ch11, 1 GHz-18 GHz)

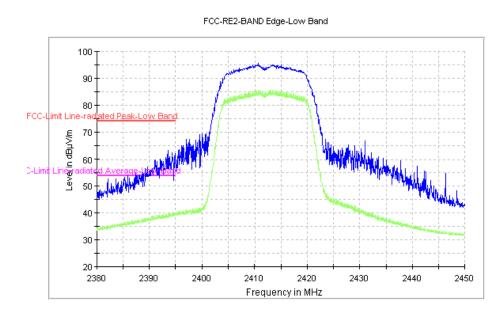


Fig. 168 Radiated Emission Power (802.11g, Ch1, 2380GHz~2450GHz)

FCC-RE2-BAND Edge-High Band

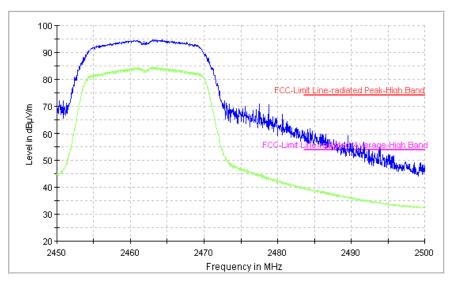


Fig. 169 Radiated Emission Power (802.11g, Ch11, 2450GHz~2500GHz)

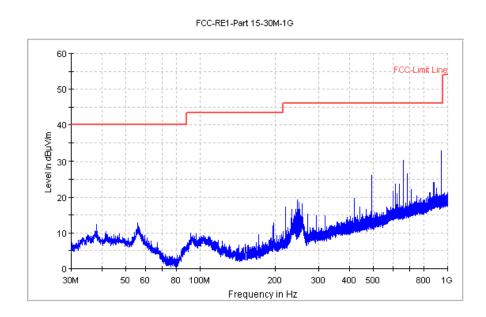


Fig. 170 Radiated Spurious Emission (802.11n-20M, Ch1, 30MHz-1 GHz)

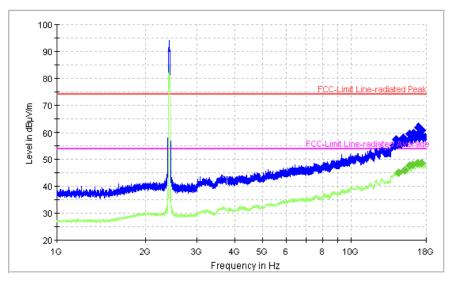


Fig. 171 Radiated Spurious Emission (802.11n-20M, Ch1, 1 GHz-18 GHz)

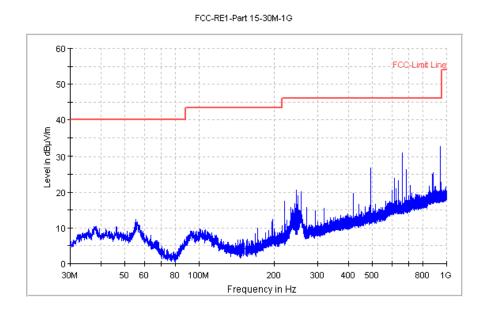


Fig. 172 Radiated Spurious Emission (802.11n-20M, Ch6, 30MHz-1 GHz)

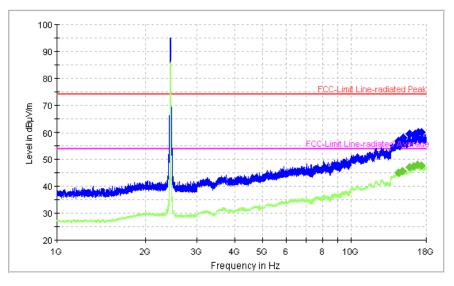


Fig. 173 Radiated Spurious Emission (802.11n-20M, Ch6, 1 GHz-18 GHz)

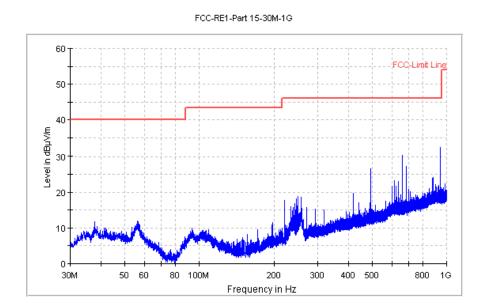


Fig. 174 Radiated Spurious Emission (802.11n-20M, Ch11, 30MHz-1 GHz)

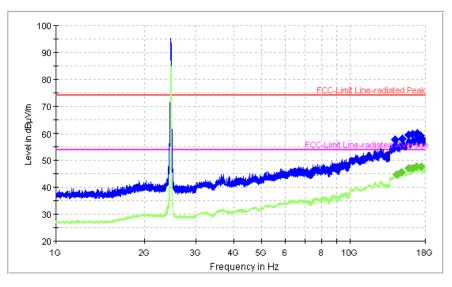


Fig. 175 Radiated Spurious Emission (802.11n-20M, Ch11, 1 GHz-18 GHz)

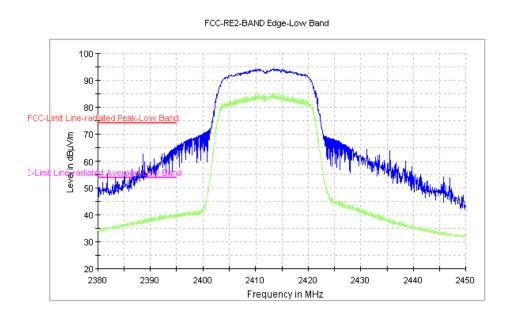


Fig. 176 Radiated Emission Power (802.11n-20M, Ch1, 2380GHz~2450GHz)

FCC-RE2-BAND Edge-High Band

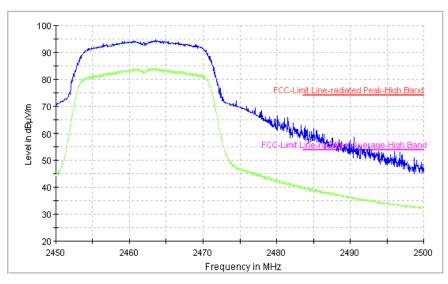


Fig. 177 Radiated Emission Power (802.11n-20M, Ch11, 2450GHz~2500GHz)

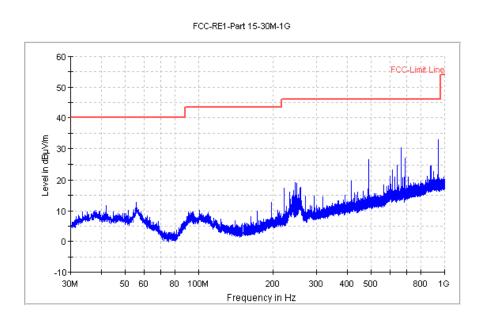


Fig. 178 Radiated Spurious Emission (802.11n-40M, Ch3, 30MHz-1 GHz)

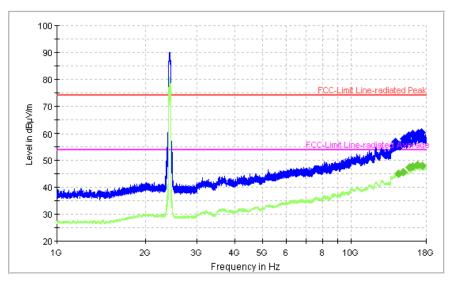


Fig. 179 Radiated Spurious Emission (802.11n-40M, Ch3, 1 GHz-18 GHz)

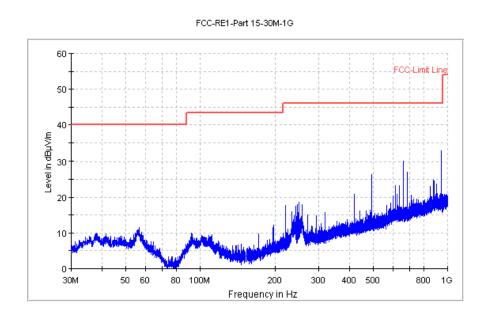


Fig. 180 Radiated Spurious Emission (802.11n-40M, Ch6, 30MHz-1 GHz)

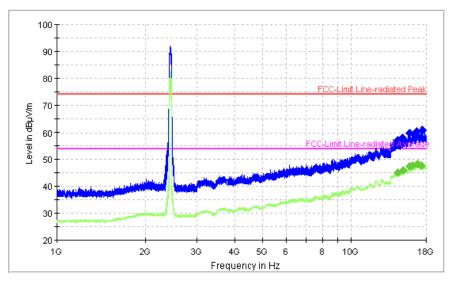


Fig. 181 Radiated Spurious Emission (802.11n-40M, Ch6, 1 GHz-18 GHz)

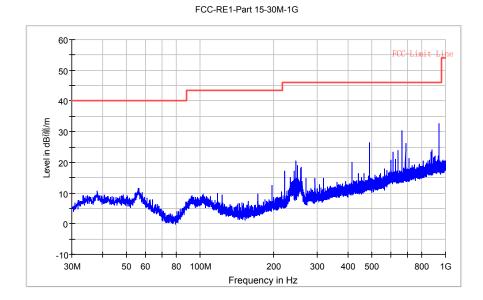


Fig. 182 Radiated Spurious Emission (802.11n-40M, Ch9, 30MHz-1 GHz)

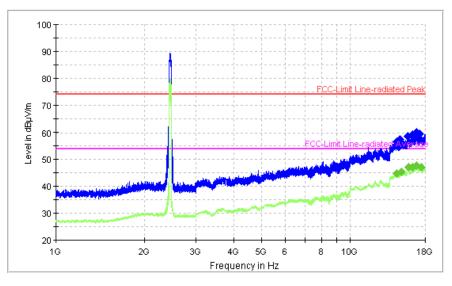


Fig. 183 Radiated Spurious Emission (802.11n-40M, Ch9, 1 GHz-18 GHz)

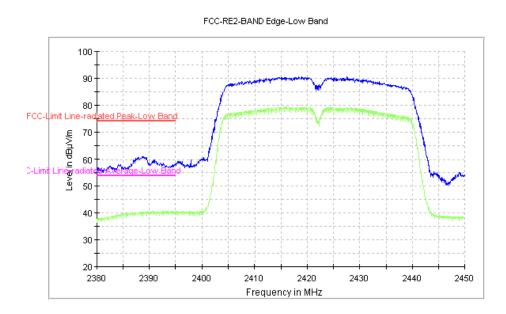


Fig. 184 Radiated Emission Power (802.11n-40M, Ch3, 2380GHz~2450GHz)

FCC-RE2-BAND Edge-High Band

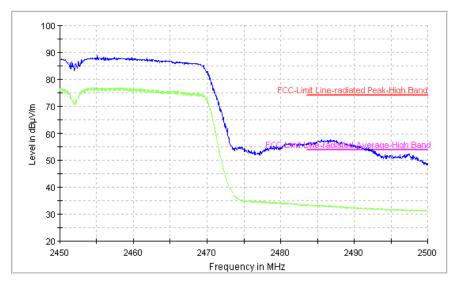


Fig. 185 Radiated Emission Power (802.11n-20M, Ch9, 2450GHz~2500GHz)

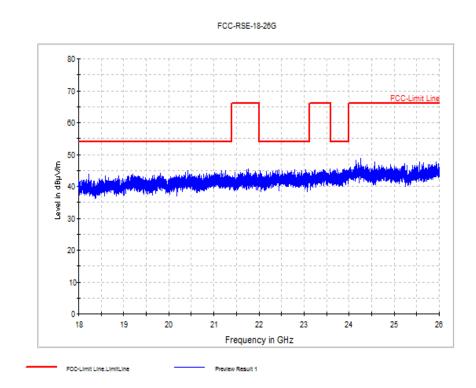


Fig. 186 Radiated emission: 18 GHz - 26 GHz

ESH2-Z5 Scan-FCC

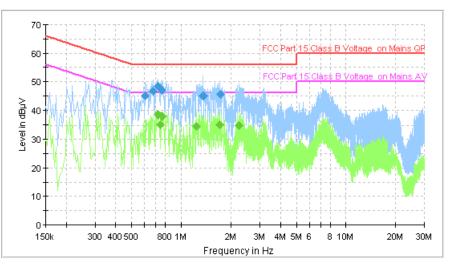


Fig. 187 AC Powerline Conducted Emission (Traffic, AE2)

MEASUREINT RESULT. Quasifear						
Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.602000	44.9	FLO	L1	10.0	11.1	56.0
0.674000	46.6	FLO	L1	10.0	9.4	56.0
0.726000	48.4	FLO	L1	10.0	7.6	56.0
0.770000	47.1	FLO	L1	10.1	8.9	56.0
1.358000	45.1	FLO	L1	10.1	10.9	56.0
1.718000	45.4	FLO	L1	10.1	10.6	56.0

MEASUREMENT RESULT: " QuasiPeak "

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.726000	38.4	FLO	L1	10.0	7.6	46.0
0.750000	35.1	FLO	L1	10.0	10.9	46.0
0.766000	38.0	FLO	L1	10.1	8.0	46.0
1.238000	34.5	FLO	L1	10.1	11.5	46.0
1.710000	35.2	FLO	L1	10.1	10.8	46.0
2.230000	34.9	FLO	L1	10.1	11.1	46.0

ESH2-Z5 Scan-FCC

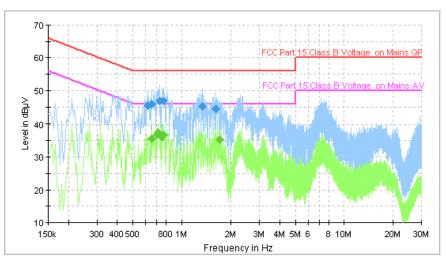


Fig. 188 AC Powerline Conducted Emission (Idle, AE2)

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.622000	45.5	FLO	L1	10.0	10.5	56.0
0.654000	46.0	FLO	L1	10.0	10.0	56.0
0.730000	47.0	FLO	L1	10.0	9.0	56.0
0.778000	47.0	FLO	L1	10.1	9.0	56.0
1.350000	45.1	FLO	L1	10.1	10.9	56.0
1.606000	44.6	FLO	L1	10.1	11.4	56.0

MEASUREMENT RESULT: " QuasiPeak "

MEASUREMENT RESULT: " Average "

Frequency (MHz)	CAverage (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.654000	35.6	FLO	L1	10.0	10.4	46.0
0.706000	36.7	FLO	L1	10.0	9.3	46.0
0.714000	37.6	FLO	L1	10.0	8.4	46.0
0.758000	36.0	FLO	L1	10.1	10.0	46.0
0.778000	36.7	FLO	L1	10.1	9.3	46.0
1.710000	35.4	FLO	L1	10.1	10.6	46.0

*** END OF REPORT BODY ***